Subversion Repositories HelenOS

Rev

Rev 3036 | Rev 3425 | Go to most recent revision | Only display areas with differences | Ignore whitespace | Details | Blame | Last modification | View Log | RSS feed

Rev 3036 Rev 3127
1
/*
1
/*
2
 * Copyright (c) 2001-2006 Jakub Jermar
2
 * Copyright (c) 2001-2006 Jakub Jermar
3
 * All rights reserved.
3
 * All rights reserved.
4
 *
4
 *
5
 * Redistribution and use in source and binary forms, with or without
5
 * Redistribution and use in source and binary forms, with or without
6
 * modification, are permitted provided that the following conditions
6
 * modification, are permitted provided that the following conditions
7
 * are met:
7
 * are met:
8
 *
8
 *
9
 * - Redistributions of source code must retain the above copyright
9
 * - Redistributions of source code must retain the above copyright
10
 *   notice, this list of conditions and the following disclaimer.
10
 *   notice, this list of conditions and the following disclaimer.
11
 * - Redistributions in binary form must reproduce the above copyright
11
 * - Redistributions in binary form must reproduce the above copyright
12
 *   notice, this list of conditions and the following disclaimer in the
12
 *   notice, this list of conditions and the following disclaimer in the
13
 *   documentation and/or other materials provided with the distribution.
13
 *   documentation and/or other materials provided with the distribution.
14
 * - The name of the author may not be used to endorse or promote products
14
 * - The name of the author may not be used to endorse or promote products
15
 *   derived from this software without specific prior written permission.
15
 *   derived from this software without specific prior written permission.
16
 *
16
 *
17
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
 */
27
 */
28
 
28
 
29
/** @addtogroup genericmm
29
/** @addtogroup genericmm
30
 * @{
30
 * @{
31
 */
31
 */
32
 
32
 
33
/**
33
/**
34
 * @file
34
 * @file
35
 * @brief   Address space related functions.
35
 * @brief   Address space related functions.
36
 *
36
 *
37
 * This file contains address space manipulation functions.
37
 * This file contains address space manipulation functions.
38
 * Roughly speaking, this is a higher-level client of
38
 * Roughly speaking, this is a higher-level client of
39
 * Virtual Address Translation (VAT) subsystem.
39
 * Virtual Address Translation (VAT) subsystem.
40
 *
40
 *
41
 * Functionality provided by this file allows one to
41
 * Functionality provided by this file allows one to
42
 * create address spaces and create, resize and share
42
 * create address spaces and create, resize and share
43
 * address space areas.
43
 * address space areas.
44
 *
44
 *
45
 * @see page.c
45
 * @see page.c
46
 *
46
 *
47
 */
47
 */
48
 
48
 
49
#include <mm/as.h>
49
#include <mm/as.h>
50
#include <arch/mm/as.h>
50
#include <arch/mm/as.h>
51
#include <mm/page.h>
51
#include <mm/page.h>
52
#include <mm/frame.h>
52
#include <mm/frame.h>
53
#include <mm/slab.h>
53
#include <mm/slab.h>
54
#include <mm/tlb.h>
54
#include <mm/tlb.h>
55
#include <arch/mm/page.h>
55
#include <arch/mm/page.h>
56
#include <genarch/mm/page_pt.h>
56
#include <genarch/mm/page_pt.h>
57
#include <genarch/mm/page_ht.h>
57
#include <genarch/mm/page_ht.h>
58
#include <mm/asid.h>
58
#include <mm/asid.h>
59
#include <arch/mm/asid.h>
59
#include <arch/mm/asid.h>
60
#include <preemption.h>
60
#include <preemption.h>
61
#include <synch/spinlock.h>
61
#include <synch/spinlock.h>
62
#include <synch/mutex.h>
62
#include <synch/mutex.h>
63
#include <adt/list.h>
63
#include <adt/list.h>
64
#include <adt/btree.h>
64
#include <adt/btree.h>
65
#include <proc/task.h>
65
#include <proc/task.h>
66
#include <proc/thread.h>
66
#include <proc/thread.h>
67
#include <arch/asm.h>
67
#include <arch/asm.h>
68
#include <panic.h>
68
#include <panic.h>
69
#include <debug.h>
69
#include <debug.h>
70
#include <print.h>
70
#include <print.h>
71
#include <memstr.h>
71
#include <memstr.h>
72
#include <macros.h>
72
#include <macros.h>
73
#include <arch.h>
73
#include <arch.h>
74
#include <errno.h>
74
#include <errno.h>
75
#include <config.h>
75
#include <config.h>
76
#include <align.h>
76
#include <align.h>
77
#include <arch/types.h>
77
#include <arch/types.h>
78
#include <syscall/copy.h>
78
#include <syscall/copy.h>
79
#include <arch/interrupt.h>
79
#include <arch/interrupt.h>
80
 
80
 
81
#ifdef CONFIG_VIRT_IDX_DCACHE
81
#ifdef CONFIG_VIRT_IDX_DCACHE
82
#include <arch/mm/cache.h>
82
#include <arch/mm/cache.h>
83
#endif /* CONFIG_VIRT_IDX_DCACHE */
83
#endif /* CONFIG_VIRT_IDX_DCACHE */
84
 
84
 
85
#ifndef __OBJC__
85
#ifndef __OBJC__
86
/**
86
/**
87
 * Each architecture decides what functions will be used to carry out
87
 * Each architecture decides what functions will be used to carry out
88
 * address space operations such as creating or locking page tables.
88
 * address space operations such as creating or locking page tables.
89
 */
89
 */
90
as_operations_t *as_operations = NULL;
90
as_operations_t *as_operations = NULL;
91
 
91
 
92
/**
92
/**
93
 * Slab for as_t objects.
93
 * Slab for as_t objects.
94
 */
94
 */
95
static slab_cache_t *as_slab;
95
static slab_cache_t *as_slab;
96
#endif
96
#endif
97
 
97
 
98
/**
98
/**
99
 * This lock serializes access to the ASID subsystem.
99
 * This lock serializes access to the ASID subsystem.
100
 * It protects:
100
 * It protects:
101
 * - inactive_as_with_asid_head list
101
 * - inactive_as_with_asid_head list
102
 * - as->asid for each as of the as_t type
102
 * - as->asid for each as of the as_t type
103
 * - asids_allocated counter
103
 * - asids_allocated counter
104
 */
104
 */
105
SPINLOCK_INITIALIZE(asidlock);
105
SPINLOCK_INITIALIZE(asidlock);
106
 
106
 
107
/**
107
/**
108
 * This list contains address spaces that are not active on any
108
 * This list contains address spaces that are not active on any
109
 * processor and that have valid ASID.
109
 * processor and that have valid ASID.
110
 */
110
 */
111
LIST_INITIALIZE(inactive_as_with_asid_head);
111
LIST_INITIALIZE(inactive_as_with_asid_head);
112
 
112
 
113
/** Kernel address space. */
113
/** Kernel address space. */
114
as_t *AS_KERNEL = NULL;
114
as_t *AS_KERNEL = NULL;
115
 
115
 
116
static int area_flags_to_page_flags(int aflags);
116
static int area_flags_to_page_flags(int aflags);
117
static as_area_t *find_area_and_lock(as_t *as, uintptr_t va);
117
static as_area_t *find_area_and_lock(as_t *as, uintptr_t va);
118
static bool check_area_conflicts(as_t *as, uintptr_t va, size_t size,
118
static bool check_area_conflicts(as_t *as, uintptr_t va, size_t size,
119
    as_area_t *avoid_area);
119
    as_area_t *avoid_area);
120
static void sh_info_remove_reference(share_info_t *sh_info);
120
static void sh_info_remove_reference(share_info_t *sh_info);
121
 
121
 
122
#ifndef __OBJC__
122
#ifndef __OBJC__
123
static int as_constructor(void *obj, int flags)
123
static int as_constructor(void *obj, int flags)
124
{
124
{
125
    as_t *as = (as_t *) obj;
125
    as_t *as = (as_t *) obj;
126
    int rc;
126
    int rc;
127
 
127
 
128
    link_initialize(&as->inactive_as_with_asid_link);
128
    link_initialize(&as->inactive_as_with_asid_link);
129
    mutex_initialize(&as->lock);   
129
    mutex_initialize(&as->lock);   
130
   
130
   
131
    rc = as_constructor_arch(as, flags);
131
    rc = as_constructor_arch(as, flags);
132
   
132
   
133
    return rc;
133
    return rc;
134
}
134
}
135
 
135
 
136
static int as_destructor(void *obj)
136
static int as_destructor(void *obj)
137
{
137
{
138
    as_t *as = (as_t *) obj;
138
    as_t *as = (as_t *) obj;
139
 
139
 
140
    return as_destructor_arch(as);
140
    return as_destructor_arch(as);
141
}
141
}
142
#endif
142
#endif
143
 
143
 
144
/** Initialize address space subsystem. */
144
/** Initialize address space subsystem. */
145
void as_init(void)
145
void as_init(void)
146
{
146
{
147
    as_arch_init();
147
    as_arch_init();
148
 
148
 
149
#ifndef __OBJC__
149
#ifndef __OBJC__
150
    as_slab = slab_cache_create("as_slab", sizeof(as_t), 0,
150
    as_slab = slab_cache_create("as_slab", sizeof(as_t), 0,
151
        as_constructor, as_destructor, SLAB_CACHE_MAGDEFERRED);
151
        as_constructor, as_destructor, SLAB_CACHE_MAGDEFERRED);
152
#endif
152
#endif
153
   
153
   
154
    AS_KERNEL = as_create(FLAG_AS_KERNEL);
154
    AS_KERNEL = as_create(FLAG_AS_KERNEL);
155
    if (!AS_KERNEL)
155
    if (!AS_KERNEL)
156
        panic("can't create kernel address space\n");
156
        panic("can't create kernel address space\n");
157
   
157
   
158
}
158
}
159
 
159
 
160
/** Create address space.
160
/** Create address space.
161
 *
161
 *
162
 * @param flags Flags that influence way in wich the address space is created.
162
 * @param flags Flags that influence way in wich the address space is created.
163
 */
163
 */
164
as_t *as_create(int flags)
164
as_t *as_create(int flags)
165
{
165
{
166
    as_t *as;
166
    as_t *as;
167
 
167
 
168
#ifdef __OBJC__
168
#ifdef __OBJC__
169
    as = [as_t new];
169
    as = [as_t new];
170
    link_initialize(&as->inactive_as_with_asid_link);
170
    link_initialize(&as->inactive_as_with_asid_link);
171
    mutex_initialize(&as->lock);   
171
    mutex_initialize(&as->lock);   
172
    (void) as_constructor_arch(as, flags);
172
    (void) as_constructor_arch(as, flags);
173
#else
173
#else
174
    as = (as_t *) slab_alloc(as_slab, 0);
174
    as = (as_t *) slab_alloc(as_slab, 0);
175
#endif
175
#endif
176
    (void) as_create_arch(as, 0);
176
    (void) as_create_arch(as, 0);
177
   
177
   
178
    btree_create(&as->as_area_btree);
178
    btree_create(&as->as_area_btree);
179
   
179
   
180
    if (flags & FLAG_AS_KERNEL)
180
    if (flags & FLAG_AS_KERNEL)
181
        as->asid = ASID_KERNEL;
181
        as->asid = ASID_KERNEL;
182
    else
182
    else
183
        as->asid = ASID_INVALID;
183
        as->asid = ASID_INVALID;
184
   
184
   
185
    atomic_set(&as->refcount, 0);
185
    atomic_set(&as->refcount, 0);
186
    as->cpu_refcount = 0;
186
    as->cpu_refcount = 0;
187
#ifdef AS_PAGE_TABLE
187
#ifdef AS_PAGE_TABLE
188
    as->genarch.page_table = page_table_create(flags);
188
    as->genarch.page_table = page_table_create(flags);
189
#else
189
#else
190
    page_table_create(flags);
190
    page_table_create(flags);
191
#endif
191
#endif
192
 
192
 
193
    return as;
193
    return as;
194
}
194
}
195
 
195
 
196
/** Destroy adress space.
196
/** Destroy adress space.
197
 *
197
 *
198
 * When there are no tasks referencing this address space (i.e. its refcount is
198
 * When there are no tasks referencing this address space (i.e. its refcount is
199
 * zero), the address space can be destroyed.
199
 * zero), the address space can be destroyed.
200
 *
200
 *
201
 * We know that we don't hold any spinlock.
201
 * We know that we don't hold any spinlock.
202
 */
202
 */
203
void as_destroy(as_t *as)
203
void as_destroy(as_t *as)
204
{
204
{
205
    ipl_t ipl;
205
    ipl_t ipl;
206
    bool cond;
206
    bool cond;
207
    DEADLOCK_PROBE_INIT(p_asidlock);
207
    DEADLOCK_PROBE_INIT(p_asidlock);
208
 
208
 
209
    ASSERT(atomic_get(&as->refcount) == 0);
209
    ASSERT(atomic_get(&as->refcount) == 0);
210
   
210
   
211
    /*
211
    /*
212
     * Since there is no reference to this area,
212
     * Since there is no reference to this area,
213
     * it is safe not to lock its mutex.
213
     * it is safe not to lock its mutex.
214
     */
214
     */
215
 
215
 
216
    /*
216
    /*
217
     * We need to avoid deadlock between TLB shootdown and asidlock.
217
     * We need to avoid deadlock between TLB shootdown and asidlock.
218
     * We therefore try to take asid conditionally and if we don't succeed,
218
     * We therefore try to take asid conditionally and if we don't succeed,
219
     * we enable interrupts and try again. This is done while preemption is
219
     * we enable interrupts and try again. This is done while preemption is
220
     * disabled to prevent nested context switches. We also depend on the
220
     * disabled to prevent nested context switches. We also depend on the
221
     * fact that so far no spinlocks are held.
221
     * fact that so far no spinlocks are held.
222
     */
222
     */
223
    preemption_disable();
223
    preemption_disable();
224
    ipl = interrupts_read();
224
    ipl = interrupts_read();
225
retry:
225
retry:
226
    interrupts_disable();
226
    interrupts_disable();
227
    if (!spinlock_trylock(&asidlock)) {
227
    if (!spinlock_trylock(&asidlock)) {
228
        interrupts_enable();
228
        interrupts_enable();
229
        DEADLOCK_PROBE(p_asidlock, DEADLOCK_THRESHOLD);
229
        DEADLOCK_PROBE(p_asidlock, DEADLOCK_THRESHOLD);
230
        goto retry;
230
        goto retry;
231
    }
231
    }
232
    preemption_enable();    /* Interrupts disabled, enable preemption */
232
    preemption_enable();    /* Interrupts disabled, enable preemption */
233
    if (as->asid != ASID_INVALID && as != AS_KERNEL) {
233
    if (as->asid != ASID_INVALID && as != AS_KERNEL) {
234
        if (as != AS && as->cpu_refcount == 0)
234
        if (as != AS && as->cpu_refcount == 0)
235
            list_remove(&as->inactive_as_with_asid_link);
235
            list_remove(&as->inactive_as_with_asid_link);
236
        asid_put(as->asid);
236
        asid_put(as->asid);
237
    }
237
    }
238
    spinlock_unlock(&asidlock);
238
    spinlock_unlock(&asidlock);
239
 
239
 
240
    /*
240
    /*
241
     * Destroy address space areas of the address space.
241
     * Destroy address space areas of the address space.
242
     * The B+tree must be walked carefully because it is
242
     * The B+tree must be walked carefully because it is
243
     * also being destroyed.
243
     * also being destroyed.
244
     */
244
     */
245
    for (cond = true; cond; ) {
245
    for (cond = true; cond; ) {
246
        btree_node_t *node;
246
        btree_node_t *node;
247
 
247
 
248
        ASSERT(!list_empty(&as->as_area_btree.leaf_head));
248
        ASSERT(!list_empty(&as->as_area_btree.leaf_head));
249
        node = list_get_instance(as->as_area_btree.leaf_head.next,
249
        node = list_get_instance(as->as_area_btree.leaf_head.next,
250
            btree_node_t, leaf_link);
250
            btree_node_t, leaf_link);
251
 
251
 
252
        if ((cond = node->keys)) {
252
        if ((cond = node->keys)) {
253
            as_area_destroy(as, node->key[0]);
253
            as_area_destroy(as, node->key[0]);
254
        }
254
        }
255
    }
255
    }
256
 
256
 
257
    btree_destroy(&as->as_area_btree);
257
    btree_destroy(&as->as_area_btree);
258
#ifdef AS_PAGE_TABLE
258
#ifdef AS_PAGE_TABLE
259
    page_table_destroy(as->genarch.page_table);
259
    page_table_destroy(as->genarch.page_table);
260
#else
260
#else
261
    page_table_destroy(NULL);
261
    page_table_destroy(NULL);
262
#endif
262
#endif
263
 
263
 
264
    interrupts_restore(ipl);
264
    interrupts_restore(ipl);
265
 
265
 
266
#ifdef __OBJC__
266
#ifdef __OBJC__
267
    [as free];
267
    [as free];
268
#else
268
#else
269
    slab_free(as_slab, as);
269
    slab_free(as_slab, as);
270
#endif
270
#endif
271
}
271
}
272
 
272
 
273
/** Create address space area of common attributes.
273
/** Create address space area of common attributes.
274
 *
274
 *
275
 * The created address space area is added to the target address space.
275
 * The created address space area is added to the target address space.
276
 *
276
 *
277
 * @param as Target address space.
277
 * @param as Target address space.
278
 * @param flags Flags of the area memory.
278
 * @param flags Flags of the area memory.
279
 * @param size Size of area.
279
 * @param size Size of area.
280
 * @param base Base address of area.
280
 * @param base Base address of area.
281
 * @param attrs Attributes of the area.
281
 * @param attrs Attributes of the area.
282
 * @param backend Address space area backend. NULL if no backend is used.
282
 * @param backend Address space area backend. NULL if no backend is used.
283
 * @param backend_data NULL or a pointer to an array holding two void *.
283
 * @param backend_data NULL or a pointer to an array holding two void *.
284
 *
284
 *
285
 * @return Address space area on success or NULL on failure.
285
 * @return Address space area on success or NULL on failure.
286
 */
286
 */
287
as_area_t *
287
as_area_t *
288
as_area_create(as_t *as, int flags, size_t size, uintptr_t base, int attrs,
288
as_area_create(as_t *as, int flags, size_t size, uintptr_t base, int attrs,
289
           mem_backend_t *backend, mem_backend_data_t *backend_data)
289
           mem_backend_t *backend, mem_backend_data_t *backend_data)
290
{
290
{
291
    ipl_t ipl;
291
    ipl_t ipl;
292
    as_area_t *a;
292
    as_area_t *a;
293
   
293
   
294
    if (base % PAGE_SIZE)
294
    if (base % PAGE_SIZE)
295
        return NULL;
295
        return NULL;
296
 
296
 
297
    if (!size)
297
    if (!size)
298
        return NULL;
298
        return NULL;
299
 
299
 
300
    /* Writeable executable areas are not supported. */
300
    /* Writeable executable areas are not supported. */
301
    if ((flags & AS_AREA_EXEC) && (flags & AS_AREA_WRITE))
301
    if ((flags & AS_AREA_EXEC) && (flags & AS_AREA_WRITE))
302
        return NULL;
302
        return NULL;
303
   
303
   
304
    ipl = interrupts_disable();
304
    ipl = interrupts_disable();
305
    mutex_lock(&as->lock);
305
    mutex_lock(&as->lock);
306
   
306
   
307
    if (!check_area_conflicts(as, base, size, NULL)) {
307
    if (!check_area_conflicts(as, base, size, NULL)) {
308
        mutex_unlock(&as->lock);
308
        mutex_unlock(&as->lock);
309
        interrupts_restore(ipl);
309
        interrupts_restore(ipl);
310
        return NULL;
310
        return NULL;
311
    }
311
    }
312
   
312
   
313
    a = (as_area_t *) malloc(sizeof(as_area_t), 0);
313
    a = (as_area_t *) malloc(sizeof(as_area_t), 0);
314
 
314
 
315
    mutex_initialize(&a->lock);
315
    mutex_initialize(&a->lock);
316
   
316
   
317
    a->as = as;
317
    a->as = as;
318
    a->flags = flags;
318
    a->flags = flags;
319
    a->attributes = attrs;
319
    a->attributes = attrs;
320
    a->pages = SIZE2FRAMES(size);
320
    a->pages = SIZE2FRAMES(size);
321
    a->base = base;
321
    a->base = base;
322
    a->sh_info = NULL;
322
    a->sh_info = NULL;
323
    a->backend = backend;
323
    a->backend = backend;
324
    if (backend_data)
324
    if (backend_data)
325
        a->backend_data = *backend_data;
325
        a->backend_data = *backend_data;
326
    else
326
    else
327
        memsetb((uintptr_t) &a->backend_data, sizeof(a->backend_data),
327
        memsetb((uintptr_t) &a->backend_data, sizeof(a->backend_data),
328
            0);
328
            0);
329
 
329
 
330
    btree_create(&a->used_space);
330
    btree_create(&a->used_space);
331
   
331
   
332
    btree_insert(&as->as_area_btree, base, (void *) a, NULL);
332
    btree_insert(&as->as_area_btree, base, (void *) a, NULL);
333
 
333
 
334
    mutex_unlock(&as->lock);
334
    mutex_unlock(&as->lock);
335
    interrupts_restore(ipl);
335
    interrupts_restore(ipl);
336
 
336
 
337
    return a;
337
    return a;
338
}
338
}
339
 
339
 
340
/** Find address space area and change it.
340
/** Find address space area and change it.
341
 *
341
 *
342
 * @param as Address space.
342
 * @param as Address space.
343
 * @param address Virtual address belonging to the area to be changed. Must be
343
 * @param address Virtual address belonging to the area to be changed. Must be
344
 *     page-aligned.
344
 *     page-aligned.
345
 * @param size New size of the virtual memory block starting at address.
345
 * @param size New size of the virtual memory block starting at address.
346
 * @param flags Flags influencing the remap operation. Currently unused.
346
 * @param flags Flags influencing the remap operation. Currently unused.
347
 *
347
 *
348
 * @return Zero on success or a value from @ref errno.h otherwise.
348
 * @return Zero on success or a value from @ref errno.h otherwise.
349
 */
349
 */
350
int as_area_resize(as_t *as, uintptr_t address, size_t size, int flags)
350
int as_area_resize(as_t *as, uintptr_t address, size_t size, int flags)
351
{
351
{
352
    as_area_t *area;
352
    as_area_t *area;
353
    ipl_t ipl;
353
    ipl_t ipl;
354
    size_t pages;
354
    size_t pages;
355
   
355
   
356
    ipl = interrupts_disable();
356
    ipl = interrupts_disable();
357
    mutex_lock(&as->lock);
357
    mutex_lock(&as->lock);
358
   
358
   
359
    /*
359
    /*
360
     * Locate the area.
360
     * Locate the area.
361
     */
361
     */
362
    area = find_area_and_lock(as, address);
362
    area = find_area_and_lock(as, address);
363
    if (!area) {
363
    if (!area) {
364
        mutex_unlock(&as->lock);
364
        mutex_unlock(&as->lock);
365
        interrupts_restore(ipl);
365
        interrupts_restore(ipl);
366
        return ENOENT;
366
        return ENOENT;
367
    }
367
    }
368
 
368
 
369
    if (area->backend == &phys_backend) {
369
    if (area->backend == &phys_backend) {
370
        /*
370
        /*
371
         * Remapping of address space areas associated
371
         * Remapping of address space areas associated
372
         * with memory mapped devices is not supported.
372
         * with memory mapped devices is not supported.
373
         */
373
         */
374
        mutex_unlock(&area->lock);
374
        mutex_unlock(&area->lock);
375
        mutex_unlock(&as->lock);
375
        mutex_unlock(&as->lock);
376
        interrupts_restore(ipl);
376
        interrupts_restore(ipl);
377
        return ENOTSUP;
377
        return ENOTSUP;
378
    }
378
    }
379
    if (area->sh_info) {
379
    if (area->sh_info) {
380
        /*
380
        /*
381
         * Remapping of shared address space areas
381
         * Remapping of shared address space areas
382
         * is not supported.
382
         * is not supported.
383
         */
383
         */
384
        mutex_unlock(&area->lock);
384
        mutex_unlock(&area->lock);
385
        mutex_unlock(&as->lock);
385
        mutex_unlock(&as->lock);
386
        interrupts_restore(ipl);
386
        interrupts_restore(ipl);
387
        return ENOTSUP;
387
        return ENOTSUP;
388
    }
388
    }
389
 
389
 
390
    pages = SIZE2FRAMES((address - area->base) + size);
390
    pages = SIZE2FRAMES((address - area->base) + size);
391
    if (!pages) {
391
    if (!pages) {
392
        /*
392
        /*
393
         * Zero size address space areas are not allowed.
393
         * Zero size address space areas are not allowed.
394
         */
394
         */
395
        mutex_unlock(&area->lock);
395
        mutex_unlock(&area->lock);
396
        mutex_unlock(&as->lock);
396
        mutex_unlock(&as->lock);
397
        interrupts_restore(ipl);
397
        interrupts_restore(ipl);
398
        return EPERM;
398
        return EPERM;
399
    }
399
    }
400
   
400
   
401
    if (pages < area->pages) {
401
    if (pages < area->pages) {
402
        bool cond;
402
        bool cond;
403
        uintptr_t start_free = area->base + pages*PAGE_SIZE;
403
        uintptr_t start_free = area->base + pages*PAGE_SIZE;
404
 
404
 
405
        /*
405
        /*
406
         * Shrinking the area.
406
         * Shrinking the area.
407
         * No need to check for overlaps.
407
         * No need to check for overlaps.
408
         */
408
         */
409
 
409
 
410
        /*
410
        /*
411
         * Start TLB shootdown sequence.
411
         * Start TLB shootdown sequence.
412
         */
412
         */
413
        tlb_shootdown_start(TLB_INVL_PAGES, AS->asid, area->base +
413
        tlb_shootdown_start(TLB_INVL_PAGES, AS->asid, area->base +
414
            pages * PAGE_SIZE, area->pages - pages);
414
            pages * PAGE_SIZE, area->pages - pages);
415
 
415
 
416
        /*
416
        /*
417
         * Remove frames belonging to used space starting from
417
         * Remove frames belonging to used space starting from
418
         * the highest addresses downwards until an overlap with
418
         * the highest addresses downwards until an overlap with
419
         * the resized address space area is found. Note that this
419
         * the resized address space area is found. Note that this
420
         * is also the right way to remove part of the used_space
420
         * is also the right way to remove part of the used_space
421
         * B+tree leaf list.
421
         * B+tree leaf list.
422
         */    
422
         */    
423
        for (cond = true; cond;) {
423
        for (cond = true; cond;) {
424
            btree_node_t *node;
424
            btree_node_t *node;
425
       
425
       
426
            ASSERT(!list_empty(&area->used_space.leaf_head));
426
            ASSERT(!list_empty(&area->used_space.leaf_head));
427
            node =
427
            node =
428
                list_get_instance(area->used_space.leaf_head.prev,
428
                list_get_instance(area->used_space.leaf_head.prev,
429
                btree_node_t, leaf_link);
429
                btree_node_t, leaf_link);
430
            if ((cond = (bool) node->keys)) {
430
            if ((cond = (bool) node->keys)) {
431
                uintptr_t b = node->key[node->keys - 1];
431
                uintptr_t b = node->key[node->keys - 1];
432
                count_t c =
432
                count_t c =
433
                    (count_t) node->value[node->keys - 1];
433
                    (count_t) node->value[node->keys - 1];
434
                unsigned int i = 0;
434
                unsigned int i = 0;
435
           
435
           
436
                if (overlaps(b, c * PAGE_SIZE, area->base,
436
                if (overlaps(b, c * PAGE_SIZE, area->base,
437
                    pages * PAGE_SIZE)) {
437
                    pages * PAGE_SIZE)) {
438
                   
438
                   
439
                    if (b + c * PAGE_SIZE <= start_free) {
439
                    if (b + c * PAGE_SIZE <= start_free) {
440
                        /*
440
                        /*
441
                         * The whole interval fits
441
                         * The whole interval fits
442
                         * completely in the resized
442
                         * completely in the resized
443
                         * address space area.
443
                         * address space area.
444
                         */
444
                         */
445
                        break;
445
                        break;
446
                    }
446
                    }
447
       
447
       
448
                    /*
448
                    /*
449
                     * Part of the interval corresponding
449
                     * Part of the interval corresponding
450
                     * to b and c overlaps with the resized
450
                     * to b and c overlaps with the resized
451
                     * address space area.
451
                     * address space area.
452
                     */
452
                     */
453
       
453
       
454
                    cond = false;   /* we are almost done */
454
                    cond = false;   /* we are almost done */
455
                    i = (start_free - b) >> PAGE_WIDTH;
455
                    i = (start_free - b) >> PAGE_WIDTH;
456
                    if (!used_space_remove(area, start_free,
456
                    if (!used_space_remove(area, start_free,
457
                        c - i))
457
                        c - i))
458
                        panic("Could not remove used "
458
                        panic("Could not remove used "
459
                            "space.\n");
459
                            "space.\n");
460
                } else {
460
                } else {
461
                    /*
461
                    /*
462
                     * The interval of used space can be
462
                     * The interval of used space can be
463
                     * completely removed.
463
                     * completely removed.
464
                     */
464
                     */
465
                    if (!used_space_remove(area, b, c))
465
                    if (!used_space_remove(area, b, c))
466
                        panic("Could not remove used "
466
                        panic("Could not remove used "
467
                            "space.\n");
467
                            "space.\n");
468
                }
468
                }
469
           
469
           
470
                for (; i < c; i++) {
470
                for (; i < c; i++) {
471
                    pte_t *pte;
471
                    pte_t *pte;
472
           
472
           
473
                    page_table_lock(as, false);
473
                    page_table_lock(as, false);
474
                    pte = page_mapping_find(as, b +
474
                    pte = page_mapping_find(as, b +
475
                        i * PAGE_SIZE);
475
                        i * PAGE_SIZE);
476
                    ASSERT(pte && PTE_VALID(pte) &&
476
                    ASSERT(pte && PTE_VALID(pte) &&
477
                        PTE_PRESENT(pte));
477
                        PTE_PRESENT(pte));
478
                    if (area->backend &&
478
                    if (area->backend &&
479
                        area->backend->frame_free) {
479
                        area->backend->frame_free) {
480
                        area->backend->frame_free(area,
480
                        area->backend->frame_free(area,
481
                            b + i * PAGE_SIZE,
481
                            b + i * PAGE_SIZE,
482
                            PTE_GET_FRAME(pte));
482
                            PTE_GET_FRAME(pte));
483
                    }
483
                    }
484
                    page_mapping_remove(as, b +
484
                    page_mapping_remove(as, b +
485
                        i * PAGE_SIZE);
485
                        i * PAGE_SIZE);
486
                    page_table_unlock(as, false);
486
                    page_table_unlock(as, false);
487
                }
487
                }
488
            }
488
            }
489
        }
489
        }
490
 
490
 
491
        /*
491
        /*
492
         * Finish TLB shootdown sequence.
492
         * Finish TLB shootdown sequence.
493
         */
493
         */
494
 
494
 
495
        tlb_invalidate_pages(as->asid, area->base + pages * PAGE_SIZE,
495
        tlb_invalidate_pages(as->asid, area->base + pages * PAGE_SIZE,
496
            area->pages - pages);
496
            area->pages - pages);
497
        /*
497
        /*
498
         * Invalidate software translation caches (e.g. TSB on sparc64).
498
         * Invalidate software translation caches (e.g. TSB on sparc64).
499
         */
499
         */
500
        as_invalidate_translation_cache(as, area->base +
500
        as_invalidate_translation_cache(as, area->base +
501
            pages * PAGE_SIZE, area->pages - pages);
501
            pages * PAGE_SIZE, area->pages - pages);
502
        tlb_shootdown_finalize();
502
        tlb_shootdown_finalize();
503
       
503
       
504
    } else {
504
    } else {
505
        /*
505
        /*
506
         * Growing the area.
506
         * Growing the area.
507
         * Check for overlaps with other address space areas.
507
         * Check for overlaps with other address space areas.
508
         */
508
         */
509
        if (!check_area_conflicts(as, address, pages * PAGE_SIZE,
509
        if (!check_area_conflicts(as, address, pages * PAGE_SIZE,
510
            area)) {
510
            area)) {
511
            mutex_unlock(&area->lock);
511
            mutex_unlock(&area->lock);
512
            mutex_unlock(&as->lock);       
512
            mutex_unlock(&as->lock);       
513
            interrupts_restore(ipl);
513
            interrupts_restore(ipl);
514
            return EADDRNOTAVAIL;
514
            return EADDRNOTAVAIL;
515
        }
515
        }
516
    }
516
    }
517
 
517
 
518
    area->pages = pages;
518
    area->pages = pages;
519
   
519
   
520
    mutex_unlock(&area->lock);
520
    mutex_unlock(&area->lock);
521
    mutex_unlock(&as->lock);
521
    mutex_unlock(&as->lock);
522
    interrupts_restore(ipl);
522
    interrupts_restore(ipl);
523
 
523
 
524
    return 0;
524
    return 0;
525
}
525
}
526
 
526
 
527
/** Destroy address space area.
527
/** Destroy address space area.
528
 *
528
 *
529
 * @param as Address space.
529
 * @param as Address space.
530
 * @param address Address withing the area to be deleted.
530
 * @param address Address withing the area to be deleted.
531
 *
531
 *
532
 * @return Zero on success or a value from @ref errno.h on failure.
532
 * @return Zero on success or a value from @ref errno.h on failure.
533
 */
533
 */
534
int as_area_destroy(as_t *as, uintptr_t address)
534
int as_area_destroy(as_t *as, uintptr_t address)
535
{
535
{
536
    as_area_t *area;
536
    as_area_t *area;
537
    uintptr_t base;
537
    uintptr_t base;
538
    link_t *cur;
538
    link_t *cur;
539
    ipl_t ipl;
539
    ipl_t ipl;
540
 
540
 
541
    ipl = interrupts_disable();
541
    ipl = interrupts_disable();
542
    mutex_lock(&as->lock);
542
    mutex_lock(&as->lock);
543
 
543
 
544
    area = find_area_and_lock(as, address);
544
    area = find_area_and_lock(as, address);
545
    if (!area) {
545
    if (!area) {
546
        mutex_unlock(&as->lock);
546
        mutex_unlock(&as->lock);
547
        interrupts_restore(ipl);
547
        interrupts_restore(ipl);
548
        return ENOENT;
548
        return ENOENT;
549
    }
549
    }
550
 
550
 
551
    base = area->base;
551
    base = area->base;
552
 
552
 
553
    /*
553
    /*
554
     * Start TLB shootdown sequence.
554
     * Start TLB shootdown sequence.
555
     */
555
     */
556
    tlb_shootdown_start(TLB_INVL_PAGES, as->asid, area->base, area->pages);
556
    tlb_shootdown_start(TLB_INVL_PAGES, as->asid, area->base, area->pages);
557
 
557
 
558
    /*
558
    /*
559
     * Visit only the pages mapped by used_space B+tree.
559
     * Visit only the pages mapped by used_space B+tree.
560
     */
560
     */
561
    for (cur = area->used_space.leaf_head.next;
561
    for (cur = area->used_space.leaf_head.next;
562
        cur != &area->used_space.leaf_head; cur = cur->next) {
562
        cur != &area->used_space.leaf_head; cur = cur->next) {
563
        btree_node_t *node;
563
        btree_node_t *node;
564
        unsigned int i;
564
        unsigned int i;
565
       
565
       
566
        node = list_get_instance(cur, btree_node_t, leaf_link);
566
        node = list_get_instance(cur, btree_node_t, leaf_link);
567
        for (i = 0; i < node->keys; i++) {
567
        for (i = 0; i < node->keys; i++) {
568
            uintptr_t b = node->key[i];
568
            uintptr_t b = node->key[i];
569
            count_t j;
569
            count_t j;
570
            pte_t *pte;
570
            pte_t *pte;
571
           
571
           
572
            for (j = 0; j < (count_t) node->value[i]; j++) {
572
            for (j = 0; j < (count_t) node->value[i]; j++) {
573
                page_table_lock(as, false);
573
                page_table_lock(as, false);
574
                pte = page_mapping_find(as, b + j * PAGE_SIZE);
574
                pte = page_mapping_find(as, b + j * PAGE_SIZE);
575
                ASSERT(pte && PTE_VALID(pte) &&
575
                ASSERT(pte && PTE_VALID(pte) &&
576
                    PTE_PRESENT(pte));
576
                    PTE_PRESENT(pte));
577
                if (area->backend &&
577
                if (area->backend &&
578
                    area->backend->frame_free) {
578
                    area->backend->frame_free) {
579
                    area->backend->frame_free(area, b +
579
                    area->backend->frame_free(area, b +
580
                        j * PAGE_SIZE, PTE_GET_FRAME(pte));
580
                        j * PAGE_SIZE, PTE_GET_FRAME(pte));
581
                }
581
                }
582
                page_mapping_remove(as, b + j * PAGE_SIZE);            
582
                page_mapping_remove(as, b + j * PAGE_SIZE);            
583
                page_table_unlock(as, false);
583
                page_table_unlock(as, false);
584
            }
584
            }
585
        }
585
        }
586
    }
586
    }
587
 
587
 
588
    /*
588
    /*
589
     * Finish TLB shootdown sequence.
589
     * Finish TLB shootdown sequence.
590
     */
590
     */
591
 
591
 
592
    tlb_invalidate_pages(as->asid, area->base, area->pages);
592
    tlb_invalidate_pages(as->asid, area->base, area->pages);
593
    /*
593
    /*
594
     * Invalidate potential software translation caches (e.g. TSB on
594
     * Invalidate potential software translation caches (e.g. TSB on
595
     * sparc64).
595
     * sparc64).
596
     */
596
     */
597
    as_invalidate_translation_cache(as, area->base, area->pages);
597
    as_invalidate_translation_cache(as, area->base, area->pages);
598
    tlb_shootdown_finalize();
598
    tlb_shootdown_finalize();
599
   
599
   
600
    btree_destroy(&area->used_space);
600
    btree_destroy(&area->used_space);
601
 
601
 
602
    area->attributes |= AS_AREA_ATTR_PARTIAL;
602
    area->attributes |= AS_AREA_ATTR_PARTIAL;
603
   
603
   
604
    if (area->sh_info)
604
    if (area->sh_info)
605
        sh_info_remove_reference(area->sh_info);
605
        sh_info_remove_reference(area->sh_info);
606
       
606
       
607
    mutex_unlock(&area->lock);
607
    mutex_unlock(&area->lock);
608
 
608
 
609
    /*
609
    /*
610
     * Remove the empty area from address space.
610
     * Remove the empty area from address space.
611
     */
611
     */
612
    btree_remove(&as->as_area_btree, base, NULL);
612
    btree_remove(&as->as_area_btree, base, NULL);
613
   
613
   
614
    free(area);
614
    free(area);
615
   
615
   
616
    mutex_unlock(&as->lock);
616
    mutex_unlock(&as->lock);
617
    interrupts_restore(ipl);
617
    interrupts_restore(ipl);
618
    return 0;
618
    return 0;
619
}
619
}
620
 
620
 
621
/** Share address space area with another or the same address space.
621
/** Share address space area with another or the same address space.
622
 *
622
 *
623
 * Address space area mapping is shared with a new address space area.
623
 * Address space area mapping is shared with a new address space area.
624
 * If the source address space area has not been shared so far,
624
 * If the source address space area has not been shared so far,
625
 * a new sh_info is created. The new address space area simply gets the
625
 * a new sh_info is created. The new address space area simply gets the
626
 * sh_info of the source area. The process of duplicating the
626
 * sh_info of the source area. The process of duplicating the
627
 * mapping is done through the backend share function.
627
 * mapping is done through the backend share function.
628
 *
628
 *
629
 * @param src_as Pointer to source address space.
629
 * @param src_as Pointer to source address space.
630
 * @param src_base Base address of the source address space area.
630
 * @param src_base Base address of the source address space area.
631
 * @param acc_size Expected size of the source area.
631
 * @param acc_size Expected size of the source area.
632
 * @param dst_as Pointer to destination address space.
632
 * @param dst_as Pointer to destination address space.
633
 * @param dst_base Target base address.
633
 * @param dst_base Target base address.
634
 * @param dst_flags_mask Destination address space area flags mask.
634
 * @param dst_flags_mask Destination address space area flags mask.
635
 *
635
 *
636
 * @return Zero on success or ENOENT if there is no such task or if there is no
636
 * @return Zero on success or ENOENT if there is no such task or if there is no
637
 * such address space area, EPERM if there was a problem in accepting the area
637
 * such address space area, EPERM if there was a problem in accepting the area
638
 * or ENOMEM if there was a problem in allocating destination address space
638
 * or ENOMEM if there was a problem in allocating destination address space
639
 * area. ENOTSUP is returned if the address space area backend does not support
639
 * area. ENOTSUP is returned if the address space area backend does not support
640
 * sharing.
640
 * sharing.
641
 */
641
 */
642
int as_area_share(as_t *src_as, uintptr_t src_base, size_t acc_size,
642
int as_area_share(as_t *src_as, uintptr_t src_base, size_t acc_size,
643
    as_t *dst_as, uintptr_t dst_base, int dst_flags_mask)
643
    as_t *dst_as, uintptr_t dst_base, int dst_flags_mask)
644
{
644
{
645
    ipl_t ipl;
645
    ipl_t ipl;
646
    int src_flags;
646
    int src_flags;
647
    size_t src_size;
647
    size_t src_size;
648
    as_area_t *src_area, *dst_area;
648
    as_area_t *src_area, *dst_area;
649
    share_info_t *sh_info;
649
    share_info_t *sh_info;
650
    mem_backend_t *src_backend;
650
    mem_backend_t *src_backend;
651
    mem_backend_data_t src_backend_data;
651
    mem_backend_data_t src_backend_data;
652
   
652
   
653
    ipl = interrupts_disable();
653
    ipl = interrupts_disable();
654
    mutex_lock(&src_as->lock);
654
    mutex_lock(&src_as->lock);
655
    src_area = find_area_and_lock(src_as, src_base);
655
    src_area = find_area_and_lock(src_as, src_base);
656
    if (!src_area) {
656
    if (!src_area) {
657
        /*
657
        /*
658
         * Could not find the source address space area.
658
         * Could not find the source address space area.
659
         */
659
         */
660
        mutex_unlock(&src_as->lock);
660
        mutex_unlock(&src_as->lock);
661
        interrupts_restore(ipl);
661
        interrupts_restore(ipl);
662
        return ENOENT;
662
        return ENOENT;
663
    }
663
    }
664
 
664
 
665
    if (!src_area->backend || !src_area->backend->share) {
665
    if (!src_area->backend || !src_area->backend->share) {
666
        /*
666
        /*
667
         * There is no backend or the backend does not
667
         * There is no backend or the backend does not
668
         * know how to share the area.
668
         * know how to share the area.
669
         */
669
         */
670
        mutex_unlock(&src_area->lock);
670
        mutex_unlock(&src_area->lock);
671
        mutex_unlock(&src_as->lock);
671
        mutex_unlock(&src_as->lock);
672
        interrupts_restore(ipl);
672
        interrupts_restore(ipl);
673
        return ENOTSUP;
673
        return ENOTSUP;
674
    }
674
    }
675
   
675
   
676
    src_size = src_area->pages * PAGE_SIZE;
676
    src_size = src_area->pages * PAGE_SIZE;
677
    src_flags = src_area->flags;
677
    src_flags = src_area->flags;
678
    src_backend = src_area->backend;
678
    src_backend = src_area->backend;
679
    src_backend_data = src_area->backend_data;
679
    src_backend_data = src_area->backend_data;
680
 
680
 
681
    /* Share the cacheable flag from the original mapping */
681
    /* Share the cacheable flag from the original mapping */
682
    if (src_flags & AS_AREA_CACHEABLE)
682
    if (src_flags & AS_AREA_CACHEABLE)
683
        dst_flags_mask |= AS_AREA_CACHEABLE;
683
        dst_flags_mask |= AS_AREA_CACHEABLE;
684
 
684
 
685
    if (src_size != acc_size ||
685
    if (src_size != acc_size ||
686
        (src_flags & dst_flags_mask) != dst_flags_mask) {
686
        (src_flags & dst_flags_mask) != dst_flags_mask) {
687
        mutex_unlock(&src_area->lock);
687
        mutex_unlock(&src_area->lock);
688
        mutex_unlock(&src_as->lock);
688
        mutex_unlock(&src_as->lock);
689
        interrupts_restore(ipl);
689
        interrupts_restore(ipl);
690
        return EPERM;
690
        return EPERM;
691
    }
691
    }
692
 
692
 
693
    /*
693
    /*
694
     * Now we are committed to sharing the area.
694
     * Now we are committed to sharing the area.
695
     * First, prepare the area for sharing.
695
     * First, prepare the area for sharing.
696
     * Then it will be safe to unlock it.
696
     * Then it will be safe to unlock it.
697
     */
697
     */
698
    sh_info = src_area->sh_info;
698
    sh_info = src_area->sh_info;
699
    if (!sh_info) {
699
    if (!sh_info) {
700
        sh_info = (share_info_t *) malloc(sizeof(share_info_t), 0);
700
        sh_info = (share_info_t *) malloc(sizeof(share_info_t), 0);
701
        mutex_initialize(&sh_info->lock);
701
        mutex_initialize(&sh_info->lock);
702
        sh_info->refcount = 2;
702
        sh_info->refcount = 2;
703
        btree_create(&sh_info->pagemap);
703
        btree_create(&sh_info->pagemap);
704
        src_area->sh_info = sh_info;
704
        src_area->sh_info = sh_info;
705
        /*
705
        /*
706
         * Call the backend to setup sharing.
706
         * Call the backend to setup sharing.
707
         */
707
         */
708
        src_area->backend->share(src_area);
708
        src_area->backend->share(src_area);
709
    } else {
709
    } else {
710
        mutex_lock(&sh_info->lock);
710
        mutex_lock(&sh_info->lock);
711
        sh_info->refcount++;
711
        sh_info->refcount++;
712
        mutex_unlock(&sh_info->lock);
712
        mutex_unlock(&sh_info->lock);
713
    }
713
    }
714
 
714
 
715
    mutex_unlock(&src_area->lock);
715
    mutex_unlock(&src_area->lock);
716
    mutex_unlock(&src_as->lock);
716
    mutex_unlock(&src_as->lock);
717
 
717
 
718
    /*
718
    /*
719
     * Create copy of the source address space area.
719
     * Create copy of the source address space area.
720
     * The destination area is created with AS_AREA_ATTR_PARTIAL
720
     * The destination area is created with AS_AREA_ATTR_PARTIAL
721
     * attribute set which prevents race condition with
721
     * attribute set which prevents race condition with
722
     * preliminary as_page_fault() calls.
722
     * preliminary as_page_fault() calls.
723
     * The flags of the source area are masked against dst_flags_mask
723
     * The flags of the source area are masked against dst_flags_mask
724
     * to support sharing in less privileged mode.
724
     * to support sharing in less privileged mode.
725
     */
725
     */
726
    dst_area = as_area_create(dst_as, dst_flags_mask, src_size, dst_base,
726
    dst_area = as_area_create(dst_as, dst_flags_mask, src_size, dst_base,
727
        AS_AREA_ATTR_PARTIAL, src_backend, &src_backend_data);
727
        AS_AREA_ATTR_PARTIAL, src_backend, &src_backend_data);
728
    if (!dst_area) {
728
    if (!dst_area) {
729
        /*
729
        /*
730
         * Destination address space area could not be created.
730
         * Destination address space area could not be created.
731
         */
731
         */
732
        sh_info_remove_reference(sh_info);
732
        sh_info_remove_reference(sh_info);
733
       
733
       
734
        interrupts_restore(ipl);
734
        interrupts_restore(ipl);
735
        return ENOMEM;
735
        return ENOMEM;
736
    }
736
    }
737
 
737
 
738
    /*
738
    /*
739
     * Now the destination address space area has been
739
     * Now the destination address space area has been
740
     * fully initialized. Clear the AS_AREA_ATTR_PARTIAL
740
     * fully initialized. Clear the AS_AREA_ATTR_PARTIAL
741
     * attribute and set the sh_info.
741
     * attribute and set the sh_info.
742
     */
742
     */
743
    mutex_lock(&dst_as->lock); 
743
    mutex_lock(&dst_as->lock); 
744
    mutex_lock(&dst_area->lock);
744
    mutex_lock(&dst_area->lock);
745
    dst_area->attributes &= ~AS_AREA_ATTR_PARTIAL;
745
    dst_area->attributes &= ~AS_AREA_ATTR_PARTIAL;
746
    dst_area->sh_info = sh_info;
746
    dst_area->sh_info = sh_info;
747
    mutex_unlock(&dst_area->lock);
747
    mutex_unlock(&dst_area->lock);
748
    mutex_unlock(&dst_as->lock);   
748
    mutex_unlock(&dst_as->lock);   
749
 
749
 
750
    interrupts_restore(ipl);
750
    interrupts_restore(ipl);
751
   
751
   
752
    return 0;
752
    return 0;
753
}
753
}
754
 
754
 
755
/** Check access mode for address space area.
755
/** Check access mode for address space area.
756
 *
756
 *
757
 * The address space area must be locked prior to this call.
757
 * The address space area must be locked prior to this call.
758
 *
758
 *
759
 * @param area Address space area.
759
 * @param area Address space area.
760
 * @param access Access mode.
760
 * @param access Access mode.
761
 *
761
 *
762
 * @return False if access violates area's permissions, true otherwise.
762
 * @return False if access violates area's permissions, true otherwise.
763
 */
763
 */
764
bool as_area_check_access(as_area_t *area, pf_access_t access)
764
bool as_area_check_access(as_area_t *area, pf_access_t access)
765
{
765
{
766
    int flagmap[] = {
766
    int flagmap[] = {
767
        [PF_ACCESS_READ] = AS_AREA_READ,
767
        [PF_ACCESS_READ] = AS_AREA_READ,
768
        [PF_ACCESS_WRITE] = AS_AREA_WRITE,
768
        [PF_ACCESS_WRITE] = AS_AREA_WRITE,
769
        [PF_ACCESS_EXEC] = AS_AREA_EXEC
769
        [PF_ACCESS_EXEC] = AS_AREA_EXEC
770
    };
770
    };
771
 
771
 
772
    if (!(area->flags & flagmap[access]))
772
    if (!(area->flags & flagmap[access]))
773
        return false;
773
        return false;
774
   
774
   
775
    return true;
775
    return true;
776
}
776
}
777
 
777
 
778
/** Handle page fault within the current address space.
778
/** Handle page fault within the current address space.
779
 *
779
 *
780
 * This is the high-level page fault handler. It decides
780
 * This is the high-level page fault handler. It decides
781
 * whether the page fault can be resolved by any backend
781
 * whether the page fault can be resolved by any backend
782
 * and if so, it invokes the backend to resolve the page
782
 * and if so, it invokes the backend to resolve the page
783
 * fault.
783
 * fault.
784
 *
784
 *
785
 * Interrupts are assumed disabled.
785
 * Interrupts are assumed disabled.
786
 *
786
 *
787
 * @param page Faulting page.
787
 * @param page Faulting page.
788
 * @param access Access mode that caused the fault (i.e. read/write/exec).
788
 * @param access Access mode that caused the fault (i.e. read/write/exec).
789
 * @param istate Pointer to interrupted state.
789
 * @param istate Pointer to interrupted state.
790
 *
790
 *
791
 * @return AS_PF_FAULT on page fault, AS_PF_OK on success or AS_PF_DEFER if the
791
 * @return AS_PF_FAULT on page fault, AS_PF_OK on success or AS_PF_DEFER if the
792
 *     fault was caused by copy_to_uspace() or copy_from_uspace().
792
 *     fault was caused by copy_to_uspace() or copy_from_uspace().
793
 */
793
 */
794
int as_page_fault(uintptr_t page, pf_access_t access, istate_t *istate)
794
int as_page_fault(uintptr_t page, pf_access_t access, istate_t *istate)
795
{
795
{
796
    pte_t *pte;
796
    pte_t *pte;
797
    as_area_t *area;
797
    as_area_t *area;
798
   
798
   
799
    if (!THREAD)
799
    if (!THREAD)
800
        return AS_PF_FAULT;
800
        return AS_PF_FAULT;
801
       
801
       
802
    ASSERT(AS);
802
    ASSERT(AS);
803
 
803
 
804
    mutex_lock(&AS->lock);
804
    mutex_lock(&AS->lock);
805
    area = find_area_and_lock(AS, page);   
805
    area = find_area_and_lock(AS, page);   
806
    if (!area) {
806
    if (!area) {
807
        /*
807
        /*
808
         * No area contained mapping for 'page'.
808
         * No area contained mapping for 'page'.
809
         * Signal page fault to low-level handler.
809
         * Signal page fault to low-level handler.
810
         */
810
         */
811
        mutex_unlock(&AS->lock);
811
        mutex_unlock(&AS->lock);
812
        goto page_fault;
812
        goto page_fault;
813
    }
813
    }
814
 
814
 
815
    if (area->attributes & AS_AREA_ATTR_PARTIAL) {
815
    if (area->attributes & AS_AREA_ATTR_PARTIAL) {
816
        /*
816
        /*
817
         * The address space area is not fully initialized.
817
         * The address space area is not fully initialized.
818
         * Avoid possible race by returning error.
818
         * Avoid possible race by returning error.
819
         */
819
         */
820
        mutex_unlock(&area->lock);
820
        mutex_unlock(&area->lock);
821
        mutex_unlock(&AS->lock);
821
        mutex_unlock(&AS->lock);
822
        goto page_fault;       
822
        goto page_fault;       
823
    }
823
    }
824
 
824
 
825
    if (!area->backend || !area->backend->page_fault) {
825
    if (!area->backend || !area->backend->page_fault) {
826
        /*
826
        /*
827
         * The address space area is not backed by any backend
827
         * The address space area is not backed by any backend
828
         * or the backend cannot handle page faults.
828
         * or the backend cannot handle page faults.
829
         */
829
         */
830
        mutex_unlock(&area->lock);
830
        mutex_unlock(&area->lock);
831
        mutex_unlock(&AS->lock);
831
        mutex_unlock(&AS->lock);
832
        goto page_fault;       
832
        goto page_fault;       
833
    }
833
    }
834
 
834
 
835
    page_table_lock(AS, false);
835
    page_table_lock(AS, false);
836
   
836
   
837
    /*
837
    /*
838
     * To avoid race condition between two page faults
838
     * To avoid race condition between two page faults
839
     * on the same address, we need to make sure
839
     * on the same address, we need to make sure
840
     * the mapping has not been already inserted.
840
     * the mapping has not been already inserted.
841
     */
841
     */
842
    if ((pte = page_mapping_find(AS, page))) {
842
    if ((pte = page_mapping_find(AS, page))) {
843
        if (PTE_PRESENT(pte)) {
843
        if (PTE_PRESENT(pte)) {
844
            if (((access == PF_ACCESS_READ) && PTE_READABLE(pte)) ||
844
            if (((access == PF_ACCESS_READ) && PTE_READABLE(pte)) ||
845
                (access == PF_ACCESS_WRITE && PTE_WRITABLE(pte)) ||
845
                (access == PF_ACCESS_WRITE && PTE_WRITABLE(pte)) ||
846
                (access == PF_ACCESS_EXEC && PTE_EXECUTABLE(pte))) {
846
                (access == PF_ACCESS_EXEC && PTE_EXECUTABLE(pte))) {
847
                page_table_unlock(AS, false);
847
                page_table_unlock(AS, false);
848
                mutex_unlock(&area->lock);
848
                mutex_unlock(&area->lock);
849
                mutex_unlock(&AS->lock);
849
                mutex_unlock(&AS->lock);
850
                return AS_PF_OK;
850
                return AS_PF_OK;
851
            }
851
            }
852
        }
852
        }
853
    }
853
    }
854
   
854
   
855
    /*
855
    /*
856
     * Resort to the backend page fault handler.
856
     * Resort to the backend page fault handler.
857
     */
857
     */
858
    if (area->backend->page_fault(area, page, access) != AS_PF_OK) {
858
    if (area->backend->page_fault(area, page, access) != AS_PF_OK) {
859
        page_table_unlock(AS, false);
859
        page_table_unlock(AS, false);
860
        mutex_unlock(&area->lock);
860
        mutex_unlock(&area->lock);
861
        mutex_unlock(&AS->lock);
861
        mutex_unlock(&AS->lock);
862
        goto page_fault;
862
        goto page_fault;
863
    }
863
    }
864
   
864
   
865
    page_table_unlock(AS, false);
865
    page_table_unlock(AS, false);
866
    mutex_unlock(&area->lock);
866
    mutex_unlock(&area->lock);
867
    mutex_unlock(&AS->lock);
867
    mutex_unlock(&AS->lock);
868
    return AS_PF_OK;
868
    return AS_PF_OK;
869
 
869
 
870
page_fault:
870
page_fault:
871
    if (THREAD->in_copy_from_uspace) {
871
    if (THREAD->in_copy_from_uspace) {
872
        THREAD->in_copy_from_uspace = false;
872
        THREAD->in_copy_from_uspace = false;
873
        istate_set_retaddr(istate,
873
        istate_set_retaddr(istate,
874
            (uintptr_t) &memcpy_from_uspace_failover_address);
874
            (uintptr_t) &memcpy_from_uspace_failover_address);
875
    } else if (THREAD->in_copy_to_uspace) {
875
    } else if (THREAD->in_copy_to_uspace) {
876
        THREAD->in_copy_to_uspace = false;
876
        THREAD->in_copy_to_uspace = false;
877
        istate_set_retaddr(istate,
877
        istate_set_retaddr(istate,
878
            (uintptr_t) &memcpy_to_uspace_failover_address);
878
            (uintptr_t) &memcpy_to_uspace_failover_address);
879
    } else {
879
    } else {
880
        return AS_PF_FAULT;
880
        return AS_PF_FAULT;
881
    }
881
    }
882
 
882
 
883
    return AS_PF_DEFER;
883
    return AS_PF_DEFER;
884
}
884
}
885
 
885
 
886
/** Switch address spaces.
886
/** Switch address spaces.
887
 *
887
 *
888
 * Note that this function cannot sleep as it is essentially a part of
888
 * Note that this function cannot sleep as it is essentially a part of
889
 * scheduling. Sleeping here would lead to deadlock on wakeup. Another
889
 * scheduling. Sleeping here would lead to deadlock on wakeup. Another
890
 * thing which is forbidden in this context is locking the address space.
890
 * thing which is forbidden in this context is locking the address space.
891
 *
891
 *
892
 * When this function is enetered, no spinlocks may be held.
892
 * When this function is enetered, no spinlocks may be held.
893
 *
893
 *
894
 * @param old Old address space or NULL.
894
 * @param old Old address space or NULL.
895
 * @param new New address space.
895
 * @param new New address space.
896
 */
896
 */
897
void as_switch(as_t *old_as, as_t *new_as)
897
void as_switch(as_t *old_as, as_t *new_as)
898
{
898
{
899
    DEADLOCK_PROBE_INIT(p_asidlock);
899
    DEADLOCK_PROBE_INIT(p_asidlock);
900
    preemption_disable();
900
    preemption_disable();
901
retry:
901
retry:
902
    (void) interrupts_disable();
902
    (void) interrupts_disable();
903
    if (!spinlock_trylock(&asidlock)) {
903
    if (!spinlock_trylock(&asidlock)) {
904
        /*
904
        /*
905
         * Avoid deadlock with TLB shootdown.
905
         * Avoid deadlock with TLB shootdown.
906
         * We can enable interrupts here because
906
         * We can enable interrupts here because
907
         * preemption is disabled. We should not be
907
         * preemption is disabled. We should not be
908
         * holding any other lock.
908
         * holding any other lock.
909
         */
909
         */
910
        (void) interrupts_enable();
910
        (void) interrupts_enable();
911
        DEADLOCK_PROBE(p_asidlock, DEADLOCK_THRESHOLD);
911
        DEADLOCK_PROBE(p_asidlock, DEADLOCK_THRESHOLD);
912
        goto retry;
912
        goto retry;
913
    }
913
    }
914
    preemption_enable();
914
    preemption_enable();
915
 
915
 
916
    /*
916
    /*
917
     * First, take care of the old address space.
917
     * First, take care of the old address space.
918
     */
918
     */
919
    if (old_as) {
919
    if (old_as) {
920
        ASSERT(old_as->cpu_refcount);
920
        ASSERT(old_as->cpu_refcount);
921
        if((--old_as->cpu_refcount == 0) && (old_as != AS_KERNEL)) {
921
        if((--old_as->cpu_refcount == 0) && (old_as != AS_KERNEL)) {
922
            /*
922
            /*
923
             * The old address space is no longer active on
923
             * The old address space is no longer active on
924
             * any processor. It can be appended to the
924
             * any processor. It can be appended to the
925
             * list of inactive address spaces with assigned
925
             * list of inactive address spaces with assigned
926
             * ASID.
926
             * ASID.
927
             */
927
             */
928
            ASSERT(old_as->asid != ASID_INVALID);
928
            ASSERT(old_as->asid != ASID_INVALID);
929
            list_append(&old_as->inactive_as_with_asid_link,
929
            list_append(&old_as->inactive_as_with_asid_link,
930
                &inactive_as_with_asid_head);
930
                &inactive_as_with_asid_head);
931
        }
931
        }
932
 
932
 
933
        /*
933
        /*
934
         * Perform architecture-specific tasks when the address space
934
         * Perform architecture-specific tasks when the address space
935
         * is being removed from the CPU.
935
         * is being removed from the CPU.
936
         */
936
         */
937
        as_deinstall_arch(old_as);
937
        as_deinstall_arch(old_as);
938
    }
938
    }
939
 
939
 
940
    /*
940
    /*
941
     * Second, prepare the new address space.
941
     * Second, prepare the new address space.
942
     */
942
     */
943
    if ((new_as->cpu_refcount++ == 0) && (new_as != AS_KERNEL)) {
943
    if ((new_as->cpu_refcount++ == 0) && (new_as != AS_KERNEL)) {
944
        if (new_as->asid != ASID_INVALID)
944
        if (new_as->asid != ASID_INVALID)
945
            list_remove(&new_as->inactive_as_with_asid_link);
945
            list_remove(&new_as->inactive_as_with_asid_link);
946
        else
946
        else
947
            new_as->asid = asid_get();
947
            new_as->asid = asid_get();
948
    }
948
    }
949
#ifdef AS_PAGE_TABLE
949
#ifdef AS_PAGE_TABLE
950
    SET_PTL0_ADDRESS(new_as->genarch.page_table);
950
    SET_PTL0_ADDRESS(new_as->genarch.page_table);
951
#endif
951
#endif
952
   
952
   
953
    /*
953
    /*
954
     * Perform architecture-specific steps.
954
     * Perform architecture-specific steps.
955
     * (e.g. write ASID to hardware register etc.)
955
     * (e.g. write ASID to hardware register etc.)
956
     */
956
     */
957
    as_install_arch(new_as);
957
    as_install_arch(new_as);
958
 
958
 
959
    spinlock_unlock(&asidlock);
959
    spinlock_unlock(&asidlock);
960
   
960
   
961
    AS = new_as;
961
    AS = new_as;
962
}
962
}
963
 
963
 
964
/** Write directly into a page, bypassing area flags.
964
/** Write directly into a page, bypassing area flags.
965
 *
965
 *
966
 * This allows a debugger to write into a page that is mapped read-only
966
 * This allows a debugger to write into a page that is mapped read-only
967
 * (such as the text segment). Naturally, this is only possible if the
967
 * (such as the text segment). Naturally, this is only possible if the
968
 * correspoinding area is not shared and anonymous.
968
 * correspoinding area is not shared and anonymous.
969
 *
969
 *
970
 * FIXME: doesn't take into account that it isn't a good idea to write
970
 * FIXME: doesn't take into account that it isn't a good idea to write
971
 * into the frame if the area is shared or isn't anonymous
971
 * into the frame if the area is shared or isn't anonymous
972
 */
972
 */
973
static int debug_write_inside_page(uintptr_t va, void *data, size_t n)
973
static int debug_write_inside_page(uintptr_t va, void *data, size_t n)
974
{
974
{
975
    uintptr_t page;
975
    uintptr_t page;
976
    pte_t *pte;
976
    pte_t *pte;
977
    as_area_t *area;
977
    as_area_t *area;
978
    uintptr_t frame;
978
    uintptr_t frame;
979
    ipl_t ipl;
979
    ipl_t ipl;
980
    int rc;
980
    int rc;
981
 
981
 
982
    page = ALIGN_DOWN(va, PAGE_SIZE);
982
    page = ALIGN_DOWN(va, PAGE_SIZE);
983
    ASSERT(ALIGN_DOWN(va + n - 1, PAGE_SIZE) == page);
983
    ASSERT(ALIGN_DOWN(va + n - 1, PAGE_SIZE) == page);
984
 
984
 
985
restart:
985
restart:
986
    mutex_lock(&AS->lock);
986
    mutex_lock(&AS->lock);
987
    ipl = interrupts_disable();
987
    ipl = interrupts_disable();
988
    area = find_area_and_lock(AS, page);
988
    area = find_area_and_lock(AS, page);
989
    if (area->backend != &anon_backend || area->sh_info != NULL) {
989
    if (area->backend != &anon_backend || area->sh_info != NULL) {
990
        mutex_unlock(&area->lock);
990
        mutex_unlock(&area->lock);
991
        mutex_unlock(&AS->lock);
991
        mutex_unlock(&AS->lock);
992
        interrupts_restore(ipl);
992
        interrupts_restore(ipl);
993
 
993
 
994
        rc = as_area_make_writeable(area->base);
994
        rc = as_area_make_writeable(area->base);
995
        if (rc != 0) return rc;
995
        if (rc != 0) return rc;
996
 
996
 
997
        goto restart;
997
        goto restart;
998
    }
998
    }
999
 
999
 
1000
    pte = page_mapping_find(AS, page);
1000
    pte = page_mapping_find(AS, page);
1001
    if (! (pte && PTE_VALID(pte) && PTE_PRESENT(pte)) ) {
1001
    if (! (pte && PTE_VALID(pte) && PTE_PRESENT(pte)) ) {
1002
        mutex_unlock(&area->lock);
1002
        mutex_unlock(&area->lock);
1003
        mutex_unlock(&AS->lock);
1003
        mutex_unlock(&AS->lock);
1004
        interrupts_restore(ipl);
1004
        interrupts_restore(ipl);
1005
 
1005
 
1006
        rc = as_page_fault(page, PF_ACCESS_WRITE, NULL);
1006
        rc = as_page_fault(page, PF_ACCESS_WRITE, NULL);
1007
        if (rc == AS_PF_FAULT) return EINVAL;
1007
        if (rc == AS_PF_FAULT) return EINVAL;
1008
 
1008
 
1009
        goto restart;
1009
        goto restart;
1010
    }
1010
    }
1011
 
1011
 
1012
    frame = PTE_GET_FRAME(pte);
1012
    frame = PTE_GET_FRAME(pte);
1013
    memcpy((void *)(PA2KA(frame) + (va - page)), data, n);
1013
    memcpy((void *)(PA2KA(frame) + (va - page)), data, n);
1014
 
1014
 
1015
    mutex_unlock(&area->lock);
1015
    mutex_unlock(&area->lock);
1016
    mutex_unlock(&AS->lock);
1016
    mutex_unlock(&AS->lock);
1017
    interrupts_restore(ipl);
1017
    interrupts_restore(ipl);
1018
 
1018
 
1019
    return EOK;
1019
    return EOK;
1020
}
1020
}
1021
 
1021
 
1022
/** Write data bypassing area flags.
1022
/** Write data bypassing area flags.
1023
 *
1023
 *
1024
 * See debug_write_inside_page().
1024
 * See debug_write_inside_page().
1025
 */
1025
 */
1026
int as_debug_write(uintptr_t va, void *data, size_t n)
1026
int as_debug_write(uintptr_t va, void *data, size_t n)
1027
{
1027
{
1028
    size_t now;
1028
    size_t now;
1029
    int rc;
1029
    int rc;
1030
 
1030
 
1031
    while (n > 0) {
1031
    while (n > 0) {
-
 
1032
        /* Number of bytes until the end of page */
1032
        now = ALIGN_UP(va, PAGE_SIZE) - va;
1033
        now = ALIGN_DOWN(va, PAGE_SIZE) + PAGE_SIZE - va;
1033
        if (now > n) now = n;
1034
        if (now > n) now = n;
1034
 
1035
 
1035
        rc = debug_write_inside_page(va, data, now);
1036
        rc = debug_write_inside_page(va, data, now);
1036
        if (rc != EOK) return rc;
1037
        if (rc != EOK) return rc;
1037
 
1038
 
1038
        va += now;
1039
        va += now;
1039
        data += now;
1040
        data += now;
1040
        n -= now;
1041
        n -= now;
1041
    }
1042
    }
1042
 
1043
 
1043
    return EOK;
1044
    return EOK;
1044
}
1045
}
1045
 
1046
 
1046
/** Make sure area is private and anonymous.
1047
/** Make sure area is private and anonymous.
1047
 *
1048
 *
1048
 * Not atomic atm.
1049
 * Not atomic atm.
1049
 * @param address   Virtual address in AS.
1050
 * @param address   Virtual address in AS.
1050
 */
1051
 */
1051
int as_area_make_writeable(uintptr_t address)
1052
int as_area_make_writeable(uintptr_t address)
1052
{
1053
{
1053
    ipl_t ipl;
1054
    ipl_t ipl;
1054
    as_area_t *area;
1055
    as_area_t *area;
1055
    uintptr_t base, page;
1056
    uintptr_t base, page;
1056
    uintptr_t old_frame, frame;
1057
    uintptr_t old_frame, frame;
1057
    size_t size;
1058
    size_t size;
1058
    int flags;
1059
    int flags;
1059
    int page_flags;
1060
    int page_flags;
1060
    pte_t *pte;
1061
    pte_t *pte;
1061
    int rc;
1062
    int rc;
1062
    uintptr_t *pagemap;
1063
    uintptr_t *pagemap;
1063
 
1064
 
1064
    ipl = interrupts_disable();
1065
    ipl = interrupts_disable();
1065
    mutex_lock(&AS->lock);
1066
    mutex_lock(&AS->lock);
1066
    area = find_area_and_lock(AS, address);
1067
    area = find_area_and_lock(AS, address);
1067
    if (!area) {
1068
    if (!area) {
1068
        /*
1069
        /*
1069
         * Could not find the address space area.
1070
         * Could not find the address space area.
1070
         */
1071
         */
1071
        mutex_unlock(&AS->lock);
1072
        mutex_unlock(&AS->lock);
1072
        interrupts_restore(ipl);
1073
        interrupts_restore(ipl);
1073
        return ENOENT;
1074
        return ENOENT;
1074
    }
1075
    }
1075
 
1076
 
1076
    if (area->backend == &anon_backend && !area->sh_info) {
1077
    if (area->backend == &anon_backend && !area->sh_info) {
1077
        /* Nothing to do */
1078
        /* Nothing to do */
1078
        mutex_unlock(&area->lock);
1079
        mutex_unlock(&area->lock);
1079
        mutex_unlock(&AS->lock);
1080
        mutex_unlock(&AS->lock);
1080
        interrupts_restore(ipl);
1081
        interrupts_restore(ipl);
1081
        return EOK;
1082
        return EOK;
1082
    }
1083
    }
1083
 
1084
 
1084
    base = area->base;
1085
    base = area->base;
1085
    size = area->pages * PAGE_SIZE;
1086
    size = area->pages * PAGE_SIZE;
1086
    flags = area->flags;
1087
    flags = area->flags;
1087
    page_flags = as_area_get_flags(area);
1088
    page_flags = as_area_get_flags(area);
1088
 
1089
 
1089
    pagemap = malloc(area->pages * sizeof(uintptr_t), 0);
1090
    pagemap = malloc(area->pages * sizeof(uintptr_t), 0);
1090
    page_table_lock(AS, false);
1091
    page_table_lock(AS, false);
1091
 
1092
 
1092
    for (page = base; page < base + size; page += PAGE_SIZE) {
1093
    for (page = base; page < base + size; page += PAGE_SIZE) {
1093
        pte = page_mapping_find(AS, page);
1094
        pte = page_mapping_find(AS, page);
1094
        if (!pte || !PTE_PRESENT(pte) || !PTE_READABLE(pte)) {
1095
        if (!pte || !PTE_PRESENT(pte) || !PTE_READABLE(pte)) {
1095
            /* Fetch the missing page */
1096
            /* Fetch the missing page */
1096
            if (!area->backend || !area->backend->page_fault) {
1097
            if (!area->backend || !area->backend->page_fault) {
1097
                page_table_unlock(AS, false);
1098
                page_table_unlock(AS, false);
1098
                mutex_unlock(&area->lock);
1099
                mutex_unlock(&area->lock);
1099
                mutex_unlock(&AS->lock);
1100
                mutex_unlock(&AS->lock);
1100
                interrupts_restore(ipl);
1101
                interrupts_restore(ipl);
1101
                return EINVAL;
1102
                return EINVAL;
1102
            }
1103
            }
1103
            if (area->backend->page_fault(area, page, PF_ACCESS_READ) != AS_PF_OK) {
1104
            if (area->backend->page_fault(area, page, PF_ACCESS_READ) != AS_PF_OK) {
1104
                page_table_unlock(AS, false);
1105
                page_table_unlock(AS, false);
1105
                mutex_unlock(&area->lock);
1106
                mutex_unlock(&area->lock);
1106
                mutex_unlock(&AS->lock);
1107
                mutex_unlock(&AS->lock);
1107
                interrupts_restore(ipl);
1108
                interrupts_restore(ipl);
1108
                return EINVAL;
1109
                return EINVAL;
1109
            }
1110
            }
1110
        }
1111
        }
1111
        ASSERT(PTE_VALID(pte));
1112
        ASSERT(PTE_VALID(pte));
1112
 
1113
 
1113
        old_frame = PTE_GET_FRAME(pte);
1114
        old_frame = PTE_GET_FRAME(pte);
1114
 
1115
 
1115
        frame = (uintptr_t)frame_alloc(ONE_FRAME, 0);
1116
        frame = (uintptr_t)frame_alloc(ONE_FRAME, 0);
1116
        memcpy((void *) PA2KA(frame), (void *)PA2KA(old_frame),
1117
        memcpy((void *) PA2KA(frame), (void *)PA2KA(old_frame),
1117
            FRAME_SIZE);
1118
            FRAME_SIZE);
1118
 
1119
 
1119
        pagemap[(page - base) / PAGE_SIZE] = frame;
1120
        pagemap[(page - base) / PAGE_SIZE] = frame;
1120
    }
1121
    }
1121
 
1122
 
1122
    page_table_unlock(AS, false);
1123
    page_table_unlock(AS, false);
1123
    mutex_unlock(&area->lock);
1124
    mutex_unlock(&area->lock);
1124
    mutex_unlock(&AS->lock);
1125
    mutex_unlock(&AS->lock);
1125
    interrupts_restore(ipl);
1126
    interrupts_restore(ipl);
1126
 
1127
 
1127
    rc = as_area_destroy(AS, address);
1128
    rc = as_area_destroy(AS, address);
1128
    if (rc < 0) {
1129
    if (rc < 0) {
1129
        free(pagemap);
1130
        free(pagemap);
1130
        return rc;
1131
        return rc;
1131
    }
1132
    }
1132
 
1133
 
1133
    area = as_area_create(AS, flags, size, base, AS_AREA_ATTR_PARTIAL,
1134
    area = as_area_create(AS, flags, size, base, AS_AREA_ATTR_PARTIAL,
1134
        &anon_backend, NULL);
1135
        &anon_backend, NULL);
1135
    if (area == NULL) {
1136
    if (area == NULL) {
1136
        free(pagemap);
1137
        free(pagemap);
1137
        return rc;
1138
        return rc;
1138
    }
1139
    }
1139
 
1140
 
1140
    mutex_lock(&AS->lock);
1141
    mutex_lock(&AS->lock);
1141
    mutex_lock(&area->lock);
1142
    mutex_lock(&area->lock);
1142
    page_table_lock(AS, false);
1143
    page_table_lock(AS, false);
1143
    for (page = base; page < base + size; page += PAGE_SIZE) {
1144
    for (page = base; page < base + size; page += PAGE_SIZE) {
1144
        frame = pagemap[(page - base) / PAGE_SIZE];
1145
        frame = pagemap[(page - base) / PAGE_SIZE];
1145
 
1146
 
1146
        page_mapping_insert(AS, page, frame, page_flags);
1147
        page_mapping_insert(AS, page, frame, page_flags);
1147
        if (!used_space_insert(area, page, 1))
1148
        if (!used_space_insert(area, page, 1))
1148
            panic("Could not insert used space.\n");
1149
            panic("Could not insert used space.\n");
1149
    }
1150
    }
1150
 
1151
 
1151
    page_table_unlock(AS, false);
1152
    page_table_unlock(AS, false);
1152
 
1153
 
1153
    area->attributes &= ~AS_AREA_ATTR_PARTIAL;
1154
    area->attributes &= ~AS_AREA_ATTR_PARTIAL;
1154
 
1155
 
1155
    mutex_unlock(&area->lock);
1156
    mutex_unlock(&area->lock);
1156
    mutex_unlock(&AS->lock);
1157
    mutex_unlock(&AS->lock);
1157
 
1158
 
1158
    free(pagemap);
1159
    free(pagemap);
1159
 
1160
 
1160
    return EOK;
1161
    return EOK;
1161
}
1162
}
1162
 
1163
 
1163
/** Convert address space area flags to page flags.
1164
/** Convert address space area flags to page flags.
1164
 *
1165
 *
1165
 * @param aflags Flags of some address space area.
1166
 * @param aflags Flags of some address space area.
1166
 *
1167
 *
1167
 * @return Flags to be passed to page_mapping_insert().
1168
 * @return Flags to be passed to page_mapping_insert().
1168
 */
1169
 */
1169
int area_flags_to_page_flags(int aflags)
1170
int area_flags_to_page_flags(int aflags)
1170
{
1171
{
1171
    int flags;
1172
    int flags;
1172
 
1173
 
1173
    flags = PAGE_USER | PAGE_PRESENT;
1174
    flags = PAGE_USER | PAGE_PRESENT;
1174
   
1175
   
1175
    if (aflags & AS_AREA_READ)
1176
    if (aflags & AS_AREA_READ)
1176
        flags |= PAGE_READ;
1177
        flags |= PAGE_READ;
1177
       
1178
       
1178
    if (aflags & AS_AREA_WRITE)
1179
    if (aflags & AS_AREA_WRITE)
1179
        flags |= PAGE_WRITE;
1180
        flags |= PAGE_WRITE;
1180
   
1181
   
1181
    if (aflags & AS_AREA_EXEC)
1182
    if (aflags & AS_AREA_EXEC)
1182
        flags |= PAGE_EXEC;
1183
        flags |= PAGE_EXEC;
1183
   
1184
   
1184
    if (aflags & AS_AREA_CACHEABLE)
1185
    if (aflags & AS_AREA_CACHEABLE)
1185
        flags |= PAGE_CACHEABLE;
1186
        flags |= PAGE_CACHEABLE;
1186
       
1187
       
1187
    return flags;
1188
    return flags;
1188
}
1189
}
1189
 
1190
 
1190
/** Compute flags for virtual address translation subsytem.
1191
/** Compute flags for virtual address translation subsytem.
1191
 *
1192
 *
1192
 * The address space area must be locked.
1193
 * The address space area must be locked.
1193
 * Interrupts must be disabled.
1194
 * Interrupts must be disabled.
1194
 *
1195
 *
1195
 * @param a Address space area.
1196
 * @param a Address space area.
1196
 *
1197
 *
1197
 * @return Flags to be used in page_mapping_insert().
1198
 * @return Flags to be used in page_mapping_insert().
1198
 */
1199
 */
1199
int as_area_get_flags(as_area_t *a)
1200
int as_area_get_flags(as_area_t *a)
1200
{
1201
{
1201
    return area_flags_to_page_flags(a->flags);
1202
    return area_flags_to_page_flags(a->flags);
1202
}
1203
}
1203
 
1204
 
1204
/** Create page table.
1205
/** Create page table.
1205
 *
1206
 *
1206
 * Depending on architecture, create either address space
1207
 * Depending on architecture, create either address space
1207
 * private or global page table.
1208
 * private or global page table.
1208
 *
1209
 *
1209
 * @param flags Flags saying whether the page table is for kernel address space.
1210
 * @param flags Flags saying whether the page table is for kernel address space.
1210
 *
1211
 *
1211
 * @return First entry of the page table.
1212
 * @return First entry of the page table.
1212
 */
1213
 */
1213
pte_t *page_table_create(int flags)
1214
pte_t *page_table_create(int flags)
1214
{
1215
{
1215
#ifdef __OBJC__
1216
#ifdef __OBJC__
1216
    return [as_t page_table_create: flags];
1217
    return [as_t page_table_create: flags];
1217
#else
1218
#else
1218
    ASSERT(as_operations);
1219
    ASSERT(as_operations);
1219
    ASSERT(as_operations->page_table_create);
1220
    ASSERT(as_operations->page_table_create);
1220
   
1221
   
1221
    return as_operations->page_table_create(flags);
1222
    return as_operations->page_table_create(flags);
1222
#endif
1223
#endif
1223
}
1224
}
1224
 
1225
 
1225
/** Destroy page table.
1226
/** Destroy page table.
1226
 *
1227
 *
1227
 * Destroy page table in architecture specific way.
1228
 * Destroy page table in architecture specific way.
1228
 *
1229
 *
1229
 * @param page_table Physical address of PTL0.
1230
 * @param page_table Physical address of PTL0.
1230
 */
1231
 */
1231
void page_table_destroy(pte_t *page_table)
1232
void page_table_destroy(pte_t *page_table)
1232
{
1233
{
1233
#ifdef __OBJC__
1234
#ifdef __OBJC__
1234
    return [as_t page_table_destroy: page_table];
1235
    return [as_t page_table_destroy: page_table];
1235
#else
1236
#else
1236
    ASSERT(as_operations);
1237
    ASSERT(as_operations);
1237
    ASSERT(as_operations->page_table_destroy);
1238
    ASSERT(as_operations->page_table_destroy);
1238
   
1239
   
1239
    as_operations->page_table_destroy(page_table);
1240
    as_operations->page_table_destroy(page_table);
1240
#endif
1241
#endif
1241
}
1242
}
1242
 
1243
 
1243
/** Lock page table.
1244
/** Lock page table.
1244
 *
1245
 *
1245
 * This function should be called before any page_mapping_insert(),
1246
 * This function should be called before any page_mapping_insert(),
1246
 * page_mapping_remove() and page_mapping_find().
1247
 * page_mapping_remove() and page_mapping_find().
1247
 *
1248
 *
1248
 * Locking order is such that address space areas must be locked
1249
 * Locking order is such that address space areas must be locked
1249
 * prior to this call. Address space can be locked prior to this
1250
 * prior to this call. Address space can be locked prior to this
1250
 * call in which case the lock argument is false.
1251
 * call in which case the lock argument is false.
1251
 *
1252
 *
1252
 * @param as Address space.
1253
 * @param as Address space.
1253
 * @param lock If false, do not attempt to lock as->lock.
1254
 * @param lock If false, do not attempt to lock as->lock.
1254
 */
1255
 */
1255
void page_table_lock(as_t *as, bool lock)
1256
void page_table_lock(as_t *as, bool lock)
1256
{
1257
{
1257
#ifdef __OBJC__
1258
#ifdef __OBJC__
1258
    [as page_table_lock: lock];
1259
    [as page_table_lock: lock];
1259
#else
1260
#else
1260
    ASSERT(as_operations);
1261
    ASSERT(as_operations);
1261
    ASSERT(as_operations->page_table_lock);
1262
    ASSERT(as_operations->page_table_lock);
1262
   
1263
   
1263
    as_operations->page_table_lock(as, lock);
1264
    as_operations->page_table_lock(as, lock);
1264
#endif
1265
#endif
1265
}
1266
}
1266
 
1267
 
1267
/** Unlock page table.
1268
/** Unlock page table.
1268
 *
1269
 *
1269
 * @param as Address space.
1270
 * @param as Address space.
1270
 * @param unlock If false, do not attempt to unlock as->lock.
1271
 * @param unlock If false, do not attempt to unlock as->lock.
1271
 */
1272
 */
1272
void page_table_unlock(as_t *as, bool unlock)
1273
void page_table_unlock(as_t *as, bool unlock)
1273
{
1274
{
1274
#ifdef __OBJC__
1275
#ifdef __OBJC__
1275
    [as page_table_unlock: unlock];
1276
    [as page_table_unlock: unlock];
1276
#else
1277
#else
1277
    ASSERT(as_operations);
1278
    ASSERT(as_operations);
1278
    ASSERT(as_operations->page_table_unlock);
1279
    ASSERT(as_operations->page_table_unlock);
1279
   
1280
   
1280
    as_operations->page_table_unlock(as, unlock);
1281
    as_operations->page_table_unlock(as, unlock);
1281
#endif
1282
#endif
1282
}
1283
}
1283
 
1284
 
1284
 
1285
 
1285
/** Find address space area and lock it.
1286
/** Find address space area and lock it.
1286
 *
1287
 *
1287
 * The address space must be locked and interrupts must be disabled.
1288
 * The address space must be locked and interrupts must be disabled.
1288
 *
1289
 *
1289
 * @param as Address space.
1290
 * @param as Address space.
1290
 * @param va Virtual address.
1291
 * @param va Virtual address.
1291
 *
1292
 *
1292
 * @return Locked address space area containing va on success or NULL on
1293
 * @return Locked address space area containing va on success or NULL on
1293
 *     failure.
1294
 *     failure.
1294
 */
1295
 */
1295
as_area_t *find_area_and_lock(as_t *as, uintptr_t va)
1296
as_area_t *find_area_and_lock(as_t *as, uintptr_t va)
1296
{
1297
{
1297
    as_area_t *a;
1298
    as_area_t *a;
1298
    btree_node_t *leaf, *lnode;
1299
    btree_node_t *leaf, *lnode;
1299
    unsigned int i;
1300
    unsigned int i;
1300
   
1301
   
1301
    a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf);
1302
    a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf);
1302
    if (a) {
1303
    if (a) {
1303
        /* va is the base address of an address space area */
1304
        /* va is the base address of an address space area */
1304
        mutex_lock(&a->lock);
1305
        mutex_lock(&a->lock);
1305
        return a;
1306
        return a;
1306
    }
1307
    }
1307
   
1308
   
1308
    /*
1309
    /*
1309
     * Search the leaf node and the righmost record of its left neighbour
1310
     * Search the leaf node and the righmost record of its left neighbour
1310
     * to find out whether this is a miss or va belongs to an address
1311
     * to find out whether this is a miss or va belongs to an address
1311
     * space area found there.
1312
     * space area found there.
1312
     */
1313
     */
1313
   
1314
   
1314
    /* First, search the leaf node itself. */
1315
    /* First, search the leaf node itself. */
1315
    for (i = 0; i < leaf->keys; i++) {
1316
    for (i = 0; i < leaf->keys; i++) {
1316
        a = (as_area_t *) leaf->value[i];
1317
        a = (as_area_t *) leaf->value[i];
1317
        mutex_lock(&a->lock);
1318
        mutex_lock(&a->lock);
1318
        if ((a->base <= va) && (va < a->base + a->pages * PAGE_SIZE)) {
1319
        if ((a->base <= va) && (va < a->base + a->pages * PAGE_SIZE)) {
1319
            return a;
1320
            return a;
1320
        }
1321
        }
1321
        mutex_unlock(&a->lock);
1322
        mutex_unlock(&a->lock);
1322
    }
1323
    }
1323
 
1324
 
1324
    /*
1325
    /*
1325
     * Second, locate the left neighbour and test its last record.
1326
     * Second, locate the left neighbour and test its last record.
1326
     * Because of its position in the B+tree, it must have base < va.
1327
     * Because of its position in the B+tree, it must have base < va.
1327
     */
1328
     */
1328
    lnode = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf);
1329
    lnode = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf);
1329
    if (lnode) {
1330
    if (lnode) {
1330
        a = (as_area_t *) lnode->value[lnode->keys - 1];
1331
        a = (as_area_t *) lnode->value[lnode->keys - 1];
1331
        mutex_lock(&a->lock);
1332
        mutex_lock(&a->lock);
1332
        if (va < a->base + a->pages * PAGE_SIZE) {
1333
        if (va < a->base + a->pages * PAGE_SIZE) {
1333
            return a;
1334
            return a;
1334
        }
1335
        }
1335
        mutex_unlock(&a->lock);
1336
        mutex_unlock(&a->lock);
1336
    }
1337
    }
1337
 
1338
 
1338
    return NULL;
1339
    return NULL;
1339
}
1340
}
1340
 
1341
 
1341
/** Check area conflicts with other areas.
1342
/** Check area conflicts with other areas.
1342
 *
1343
 *
1343
 * The address space must be locked and interrupts must be disabled.
1344
 * The address space must be locked and interrupts must be disabled.
1344
 *
1345
 *
1345
 * @param as Address space.
1346
 * @param as Address space.
1346
 * @param va Starting virtual address of the area being tested.
1347
 * @param va Starting virtual address of the area being tested.
1347
 * @param size Size of the area being tested.
1348
 * @param size Size of the area being tested.
1348
 * @param avoid_area Do not touch this area.
1349
 * @param avoid_area Do not touch this area.
1349
 *
1350
 *
1350
 * @return True if there is no conflict, false otherwise.
1351
 * @return True if there is no conflict, false otherwise.
1351
 */
1352
 */
1352
bool check_area_conflicts(as_t *as, uintptr_t va, size_t size,
1353
bool check_area_conflicts(as_t *as, uintptr_t va, size_t size,
1353
              as_area_t *avoid_area)
1354
              as_area_t *avoid_area)
1354
{
1355
{
1355
    as_area_t *a;
1356
    as_area_t *a;
1356
    btree_node_t *leaf, *node;
1357
    btree_node_t *leaf, *node;
1357
    unsigned int i;
1358
    unsigned int i;
1358
   
1359
   
1359
    /*
1360
    /*
1360
     * We don't want any area to have conflicts with NULL page.
1361
     * We don't want any area to have conflicts with NULL page.
1361
     */
1362
     */
1362
    if (overlaps(va, size, NULL, PAGE_SIZE))
1363
    if (overlaps(va, size, NULL, PAGE_SIZE))
1363
        return false;
1364
        return false;
1364
   
1365
   
1365
    /*
1366
    /*
1366
     * The leaf node is found in O(log n), where n is proportional to
1367
     * The leaf node is found in O(log n), where n is proportional to
1367
     * the number of address space areas belonging to as.
1368
     * the number of address space areas belonging to as.
1368
     * The check for conflicts is then attempted on the rightmost
1369
     * The check for conflicts is then attempted on the rightmost
1369
     * record in the left neighbour, the leftmost record in the right
1370
     * record in the left neighbour, the leftmost record in the right
1370
     * neighbour and all records in the leaf node itself.
1371
     * neighbour and all records in the leaf node itself.
1371
     */
1372
     */
1372
   
1373
   
1373
    if ((a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf))) {
1374
    if ((a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf))) {
1374
        if (a != avoid_area)
1375
        if (a != avoid_area)
1375
            return false;
1376
            return false;
1376
    }
1377
    }
1377
   
1378
   
1378
    /* First, check the two border cases. */
1379
    /* First, check the two border cases. */
1379
    if ((node = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf))) {
1380
    if ((node = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf))) {
1380
        a = (as_area_t *) node->value[node->keys - 1];
1381
        a = (as_area_t *) node->value[node->keys - 1];
1381
        mutex_lock(&a->lock);
1382
        mutex_lock(&a->lock);
1382
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1383
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1383
            mutex_unlock(&a->lock);
1384
            mutex_unlock(&a->lock);
1384
            return false;
1385
            return false;
1385
        }
1386
        }
1386
        mutex_unlock(&a->lock);
1387
        mutex_unlock(&a->lock);
1387
    }
1388
    }
1388
    node = btree_leaf_node_right_neighbour(&as->as_area_btree, leaf);
1389
    node = btree_leaf_node_right_neighbour(&as->as_area_btree, leaf);
1389
    if (node) {
1390
    if (node) {
1390
        a = (as_area_t *) node->value[0];
1391
        a = (as_area_t *) node->value[0];
1391
        mutex_lock(&a->lock);
1392
        mutex_lock(&a->lock);
1392
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1393
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1393
            mutex_unlock(&a->lock);
1394
            mutex_unlock(&a->lock);
1394
            return false;
1395
            return false;
1395
        }
1396
        }
1396
        mutex_unlock(&a->lock);
1397
        mutex_unlock(&a->lock);
1397
    }
1398
    }
1398
   
1399
   
1399
    /* Second, check the leaf node. */
1400
    /* Second, check the leaf node. */
1400
    for (i = 0; i < leaf->keys; i++) {
1401
    for (i = 0; i < leaf->keys; i++) {
1401
        a = (as_area_t *) leaf->value[i];
1402
        a = (as_area_t *) leaf->value[i];
1402
   
1403
   
1403
        if (a == avoid_area)
1404
        if (a == avoid_area)
1404
            continue;
1405
            continue;
1405
   
1406
   
1406
        mutex_lock(&a->lock);
1407
        mutex_lock(&a->lock);
1407
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1408
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1408
            mutex_unlock(&a->lock);
1409
            mutex_unlock(&a->lock);
1409
            return false;
1410
            return false;
1410
        }
1411
        }
1411
        mutex_unlock(&a->lock);
1412
        mutex_unlock(&a->lock);
1412
    }
1413
    }
1413
 
1414
 
1414
    /*
1415
    /*
1415
     * So far, the area does not conflict with other areas.
1416
     * So far, the area does not conflict with other areas.
1416
     * Check if it doesn't conflict with kernel address space.
1417
     * Check if it doesn't conflict with kernel address space.
1417
     */  
1418
     */  
1418
    if (!KERNEL_ADDRESS_SPACE_SHADOWED) {
1419
    if (!KERNEL_ADDRESS_SPACE_SHADOWED) {
1419
        return !overlaps(va, size,
1420
        return !overlaps(va, size,
1420
            KERNEL_ADDRESS_SPACE_START,
1421
            KERNEL_ADDRESS_SPACE_START,
1421
            KERNEL_ADDRESS_SPACE_END - KERNEL_ADDRESS_SPACE_START);
1422
            KERNEL_ADDRESS_SPACE_END - KERNEL_ADDRESS_SPACE_START);
1422
    }
1423
    }
1423
 
1424
 
1424
    return true;
1425
    return true;
1425
}
1426
}
1426
 
1427
 
1427
/** Return size of the address space area with given base.
1428
/** Return size of the address space area with given base.
1428
 *
1429
 *
1429
 * @param base      Arbitrary address insede the address space area.
1430
 * @param base      Arbitrary address insede the address space area.
1430
 *
1431
 *
1431
 * @return      Size of the address space area in bytes or zero if it
1432
 * @return      Size of the address space area in bytes or zero if it
1432
 *          does not exist.
1433
 *          does not exist.
1433
 */
1434
 */
1434
size_t as_area_get_size(uintptr_t base)
1435
size_t as_area_get_size(uintptr_t base)
1435
{
1436
{
1436
    ipl_t ipl;
1437
    ipl_t ipl;
1437
    as_area_t *src_area;
1438
    as_area_t *src_area;
1438
    size_t size;
1439
    size_t size;
1439
 
1440
 
1440
    ipl = interrupts_disable();
1441
    ipl = interrupts_disable();
1441
    src_area = find_area_and_lock(AS, base);
1442
    src_area = find_area_and_lock(AS, base);
1442
    if (src_area){
1443
    if (src_area){
1443
        size = src_area->pages * PAGE_SIZE;
1444
        size = src_area->pages * PAGE_SIZE;
1444
        mutex_unlock(&src_area->lock);
1445
        mutex_unlock(&src_area->lock);
1445
    } else {
1446
    } else {
1446
        size = 0;
1447
        size = 0;
1447
    }
1448
    }
1448
    interrupts_restore(ipl);
1449
    interrupts_restore(ipl);
1449
    return size;
1450
    return size;
1450
}
1451
}
1451
 
1452
 
1452
/** Mark portion of address space area as used.
1453
/** Mark portion of address space area as used.
1453
 *
1454
 *
1454
 * The address space area must be already locked.
1455
 * The address space area must be already locked.
1455
 *
1456
 *
1456
 * @param a Address space area.
1457
 * @param a Address space area.
1457
 * @param page First page to be marked.
1458
 * @param page First page to be marked.
1458
 * @param count Number of page to be marked.
1459
 * @param count Number of page to be marked.
1459
 *
1460
 *
1460
 * @return 0 on failure and 1 on success.
1461
 * @return 0 on failure and 1 on success.
1461
 */
1462
 */
1462
int used_space_insert(as_area_t *a, uintptr_t page, count_t count)
1463
int used_space_insert(as_area_t *a, uintptr_t page, count_t count)
1463
{
1464
{
1464
    btree_node_t *leaf, *node;
1465
    btree_node_t *leaf, *node;
1465
    count_t pages;
1466
    count_t pages;
1466
    unsigned int i;
1467
    unsigned int i;
1467
 
1468
 
1468
    ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1469
    ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1469
    ASSERT(count);
1470
    ASSERT(count);
1470
 
1471
 
1471
    pages = (count_t) btree_search(&a->used_space, page, &leaf);
1472
    pages = (count_t) btree_search(&a->used_space, page, &leaf);
1472
    if (pages) {
1473
    if (pages) {
1473
        /*
1474
        /*
1474
         * We hit the beginning of some used space.
1475
         * We hit the beginning of some used space.
1475
         */
1476
         */
1476
        return 0;
1477
        return 0;
1477
    }
1478
    }
1478
 
1479
 
1479
    if (!leaf->keys) {
1480
    if (!leaf->keys) {
1480
        btree_insert(&a->used_space, page, (void *) count, leaf);
1481
        btree_insert(&a->used_space, page, (void *) count, leaf);
1481
        return 1;
1482
        return 1;
1482
    }
1483
    }
1483
 
1484
 
1484
    node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1485
    node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1485
    if (node) {
1486
    if (node) {
1486
        uintptr_t left_pg = node->key[node->keys - 1];
1487
        uintptr_t left_pg = node->key[node->keys - 1];
1487
        uintptr_t right_pg = leaf->key[0];
1488
        uintptr_t right_pg = leaf->key[0];
1488
        count_t left_cnt = (count_t) node->value[node->keys - 1];
1489
        count_t left_cnt = (count_t) node->value[node->keys - 1];
1489
        count_t right_cnt = (count_t) leaf->value[0];
1490
        count_t right_cnt = (count_t) leaf->value[0];
1490
       
1491
       
1491
        /*
1492
        /*
1492
         * Examine the possibility that the interval fits
1493
         * Examine the possibility that the interval fits
1493
         * somewhere between the rightmost interval of
1494
         * somewhere between the rightmost interval of
1494
         * the left neigbour and the first interval of the leaf.
1495
         * the left neigbour and the first interval of the leaf.
1495
         */
1496
         */
1496
         
1497
         
1497
        if (page >= right_pg) {
1498
        if (page >= right_pg) {
1498
            /* Do nothing. */
1499
            /* Do nothing. */
1499
        } else if (overlaps(page, count * PAGE_SIZE, left_pg,
1500
        } else if (overlaps(page, count * PAGE_SIZE, left_pg,
1500
            left_cnt * PAGE_SIZE)) {
1501
            left_cnt * PAGE_SIZE)) {
1501
            /* The interval intersects with the left interval. */
1502
            /* The interval intersects with the left interval. */
1502
            return 0;
1503
            return 0;
1503
        } else if (overlaps(page, count * PAGE_SIZE, right_pg,
1504
        } else if (overlaps(page, count * PAGE_SIZE, right_pg,
1504
            right_cnt * PAGE_SIZE)) {
1505
            right_cnt * PAGE_SIZE)) {
1505
            /* The interval intersects with the right interval. */
1506
            /* The interval intersects with the right interval. */
1506
            return 0;          
1507
            return 0;          
1507
        } else if ((page == left_pg + left_cnt * PAGE_SIZE) &&
1508
        } else if ((page == left_pg + left_cnt * PAGE_SIZE) &&
1508
            (page + count * PAGE_SIZE == right_pg)) {
1509
            (page + count * PAGE_SIZE == right_pg)) {
1509
            /*
1510
            /*
1510
             * The interval can be added by merging the two already
1511
             * The interval can be added by merging the two already
1511
             * present intervals.
1512
             * present intervals.
1512
             */
1513
             */
1513
            node->value[node->keys - 1] += count + right_cnt;
1514
            node->value[node->keys - 1] += count + right_cnt;
1514
            btree_remove(&a->used_space, right_pg, leaf);
1515
            btree_remove(&a->used_space, right_pg, leaf);
1515
            return 1;
1516
            return 1;
1516
        } else if (page == left_pg + left_cnt * PAGE_SIZE) {
1517
        } else if (page == left_pg + left_cnt * PAGE_SIZE) {
1517
            /*
1518
            /*
1518
             * The interval can be added by simply growing the left
1519
             * The interval can be added by simply growing the left
1519
             * interval.
1520
             * interval.
1520
             */
1521
             */
1521
            node->value[node->keys - 1] += count;
1522
            node->value[node->keys - 1] += count;
1522
            return 1;
1523
            return 1;
1523
        } else if (page + count * PAGE_SIZE == right_pg) {
1524
        } else if (page + count * PAGE_SIZE == right_pg) {
1524
            /*
1525
            /*
1525
             * The interval can be addded by simply moving base of
1526
             * The interval can be addded by simply moving base of
1526
             * the right interval down and increasing its size
1527
             * the right interval down and increasing its size
1527
             * accordingly.
1528
             * accordingly.
1528
             */
1529
             */
1529
            leaf->value[0] += count;
1530
            leaf->value[0] += count;
1530
            leaf->key[0] = page;
1531
            leaf->key[0] = page;
1531
            return 1;
1532
            return 1;
1532
        } else {
1533
        } else {
1533
            /*
1534
            /*
1534
             * The interval is between both neigbouring intervals,
1535
             * The interval is between both neigbouring intervals,
1535
             * but cannot be merged with any of them.
1536
             * but cannot be merged with any of them.
1536
             */
1537
             */
1537
            btree_insert(&a->used_space, page, (void *) count,
1538
            btree_insert(&a->used_space, page, (void *) count,
1538
                leaf);
1539
                leaf);
1539
            return 1;
1540
            return 1;
1540
        }
1541
        }
1541
    } else if (page < leaf->key[0]) {
1542
    } else if (page < leaf->key[0]) {
1542
        uintptr_t right_pg = leaf->key[0];
1543
        uintptr_t right_pg = leaf->key[0];
1543
        count_t right_cnt = (count_t) leaf->value[0];
1544
        count_t right_cnt = (count_t) leaf->value[0];
1544
   
1545
   
1545
        /*
1546
        /*
1546
         * Investigate the border case in which the left neighbour does
1547
         * Investigate the border case in which the left neighbour does
1547
         * not exist but the interval fits from the left.
1548
         * not exist but the interval fits from the left.
1548
         */
1549
         */
1549
         
1550
         
1550
        if (overlaps(page, count * PAGE_SIZE, right_pg,
1551
        if (overlaps(page, count * PAGE_SIZE, right_pg,
1551
            right_cnt * PAGE_SIZE)) {
1552
            right_cnt * PAGE_SIZE)) {
1552
            /* The interval intersects with the right interval. */
1553
            /* The interval intersects with the right interval. */
1553
            return 0;
1554
            return 0;
1554
        } else if (page + count * PAGE_SIZE == right_pg) {
1555
        } else if (page + count * PAGE_SIZE == right_pg) {
1555
            /*
1556
            /*
1556
             * The interval can be added by moving the base of the
1557
             * The interval can be added by moving the base of the
1557
             * right interval down and increasing its size
1558
             * right interval down and increasing its size
1558
             * accordingly.
1559
             * accordingly.
1559
             */
1560
             */
1560
            leaf->key[0] = page;
1561
            leaf->key[0] = page;
1561
            leaf->value[0] += count;
1562
            leaf->value[0] += count;
1562
            return 1;
1563
            return 1;
1563
        } else {
1564
        } else {
1564
            /*
1565
            /*
1565
             * The interval doesn't adjoin with the right interval.
1566
             * The interval doesn't adjoin with the right interval.
1566
             * It must be added individually.
1567
             * It must be added individually.
1567
             */
1568
             */
1568
            btree_insert(&a->used_space, page, (void *) count,
1569
            btree_insert(&a->used_space, page, (void *) count,
1569
                leaf);
1570
                leaf);
1570
            return 1;
1571
            return 1;
1571
        }
1572
        }
1572
    }
1573
    }
1573
 
1574
 
1574
    node = btree_leaf_node_right_neighbour(&a->used_space, leaf);
1575
    node = btree_leaf_node_right_neighbour(&a->used_space, leaf);
1575
    if (node) {
1576
    if (node) {
1576
        uintptr_t left_pg = leaf->key[leaf->keys - 1];
1577
        uintptr_t left_pg = leaf->key[leaf->keys - 1];
1577
        uintptr_t right_pg = node->key[0];
1578
        uintptr_t right_pg = node->key[0];
1578
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1579
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1579
        count_t right_cnt = (count_t) node->value[0];
1580
        count_t right_cnt = (count_t) node->value[0];
1580
       
1581
       
1581
        /*
1582
        /*
1582
         * Examine the possibility that the interval fits
1583
         * Examine the possibility that the interval fits
1583
         * somewhere between the leftmost interval of
1584
         * somewhere between the leftmost interval of
1584
         * the right neigbour and the last interval of the leaf.
1585
         * the right neigbour and the last interval of the leaf.
1585
         */
1586
         */
1586
 
1587
 
1587
        if (page < left_pg) {
1588
        if (page < left_pg) {
1588
            /* Do nothing. */
1589
            /* Do nothing. */
1589
        } else if (overlaps(page, count * PAGE_SIZE, left_pg,
1590
        } else if (overlaps(page, count * PAGE_SIZE, left_pg,
1590
            left_cnt * PAGE_SIZE)) {
1591
            left_cnt * PAGE_SIZE)) {
1591
            /* The interval intersects with the left interval. */
1592
            /* The interval intersects with the left interval. */
1592
            return 0;
1593
            return 0;
1593
        } else if (overlaps(page, count * PAGE_SIZE, right_pg,
1594
        } else if (overlaps(page, count * PAGE_SIZE, right_pg,
1594
            right_cnt * PAGE_SIZE)) {
1595
            right_cnt * PAGE_SIZE)) {
1595
            /* The interval intersects with the right interval. */
1596
            /* The interval intersects with the right interval. */
1596
            return 0;          
1597
            return 0;          
1597
        } else if ((page == left_pg + left_cnt * PAGE_SIZE) &&
1598
        } else if ((page == left_pg + left_cnt * PAGE_SIZE) &&
1598
            (page + count * PAGE_SIZE == right_pg)) {
1599
            (page + count * PAGE_SIZE == right_pg)) {
1599
            /*
1600
            /*
1600
             * The interval can be added by merging the two already
1601
             * The interval can be added by merging the two already
1601
             * present intervals.
1602
             * present intervals.
1602
             * */
1603
             * */
1603
            leaf->value[leaf->keys - 1] += count + right_cnt;
1604
            leaf->value[leaf->keys - 1] += count + right_cnt;
1604
            btree_remove(&a->used_space, right_pg, node);
1605
            btree_remove(&a->used_space, right_pg, node);
1605
            return 1;
1606
            return 1;
1606
        } else if (page == left_pg + left_cnt * PAGE_SIZE) {
1607
        } else if (page == left_pg + left_cnt * PAGE_SIZE) {
1607
            /*
1608
            /*
1608
             * The interval can be added by simply growing the left
1609
             * The interval can be added by simply growing the left
1609
             * interval.
1610
             * interval.
1610
             * */
1611
             * */
1611
            leaf->value[leaf->keys - 1] +=  count;
1612
            leaf->value[leaf->keys - 1] +=  count;
1612
            return 1;
1613
            return 1;
1613
        } else if (page + count * PAGE_SIZE == right_pg) {
1614
        } else if (page + count * PAGE_SIZE == right_pg) {
1614
            /*
1615
            /*
1615
             * The interval can be addded by simply moving base of
1616
             * The interval can be addded by simply moving base of
1616
             * the right interval down and increasing its size
1617
             * the right interval down and increasing its size
1617
             * accordingly.
1618
             * accordingly.
1618
             */
1619
             */
1619
            node->value[0] += count;
1620
            node->value[0] += count;
1620
            node->key[0] = page;
1621
            node->key[0] = page;
1621
            return 1;
1622
            return 1;
1622
        } else {
1623
        } else {
1623
            /*
1624
            /*
1624
             * The interval is between both neigbouring intervals,
1625
             * The interval is between both neigbouring intervals,
1625
             * but cannot be merged with any of them.
1626
             * but cannot be merged with any of them.
1626
             */
1627
             */
1627
            btree_insert(&a->used_space, page, (void *) count,
1628
            btree_insert(&a->used_space, page, (void *) count,
1628
                leaf);
1629
                leaf);
1629
            return 1;
1630
            return 1;
1630
        }
1631
        }
1631
    } else if (page >= leaf->key[leaf->keys - 1]) {
1632
    } else if (page >= leaf->key[leaf->keys - 1]) {
1632
        uintptr_t left_pg = leaf->key[leaf->keys - 1];
1633
        uintptr_t left_pg = leaf->key[leaf->keys - 1];
1633
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1634
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1634
   
1635
   
1635
        /*
1636
        /*
1636
         * Investigate the border case in which the right neighbour
1637
         * Investigate the border case in which the right neighbour
1637
         * does not exist but the interval fits from the right.
1638
         * does not exist but the interval fits from the right.
1638
         */
1639
         */
1639
         
1640
         
1640
        if (overlaps(page, count * PAGE_SIZE, left_pg,
1641
        if (overlaps(page, count * PAGE_SIZE, left_pg,
1641
            left_cnt * PAGE_SIZE)) {
1642
            left_cnt * PAGE_SIZE)) {
1642
            /* The interval intersects with the left interval. */
1643
            /* The interval intersects with the left interval. */
1643
            return 0;
1644
            return 0;
1644
        } else if (left_pg + left_cnt * PAGE_SIZE == page) {
1645
        } else if (left_pg + left_cnt * PAGE_SIZE == page) {
1645
            /*
1646
            /*
1646
             * The interval can be added by growing the left
1647
             * The interval can be added by growing the left
1647
             * interval.
1648
             * interval.
1648
             */
1649
             */
1649
            leaf->value[leaf->keys - 1] += count;
1650
            leaf->value[leaf->keys - 1] += count;
1650
            return 1;
1651
            return 1;
1651
        } else {
1652
        } else {
1652
            /*
1653
            /*
1653
             * The interval doesn't adjoin with the left interval.
1654
             * The interval doesn't adjoin with the left interval.
1654
             * It must be added individually.
1655
             * It must be added individually.
1655
             */
1656
             */
1656
            btree_insert(&a->used_space, page, (void *) count,
1657
            btree_insert(&a->used_space, page, (void *) count,
1657
                leaf);
1658
                leaf);
1658
            return 1;
1659
            return 1;
1659
        }
1660
        }
1660
    }
1661
    }
1661
   
1662
   
1662
    /*
1663
    /*
1663
     * Note that if the algorithm made it thus far, the interval can fit
1664
     * Note that if the algorithm made it thus far, the interval can fit
1664
     * only between two other intervals of the leaf. The two border cases
1665
     * only between two other intervals of the leaf. The two border cases
1665
     * were already resolved.
1666
     * were already resolved.
1666
     */
1667
     */
1667
    for (i = 1; i < leaf->keys; i++) {
1668
    for (i = 1; i < leaf->keys; i++) {
1668
        if (page < leaf->key[i]) {
1669
        if (page < leaf->key[i]) {
1669
            uintptr_t left_pg = leaf->key[i - 1];
1670
            uintptr_t left_pg = leaf->key[i - 1];
1670
            uintptr_t right_pg = leaf->key[i];
1671
            uintptr_t right_pg = leaf->key[i];
1671
            count_t left_cnt = (count_t) leaf->value[i - 1];
1672
            count_t left_cnt = (count_t) leaf->value[i - 1];
1672
            count_t right_cnt = (count_t) leaf->value[i];
1673
            count_t right_cnt = (count_t) leaf->value[i];
1673
 
1674
 
1674
            /*
1675
            /*
1675
             * The interval fits between left_pg and right_pg.
1676
             * The interval fits between left_pg and right_pg.
1676
             */
1677
             */
1677
 
1678
 
1678
            if (overlaps(page, count * PAGE_SIZE, left_pg,
1679
            if (overlaps(page, count * PAGE_SIZE, left_pg,
1679
                left_cnt * PAGE_SIZE)) {
1680
                left_cnt * PAGE_SIZE)) {
1680
                /*
1681
                /*
1681
                 * The interval intersects with the left
1682
                 * The interval intersects with the left
1682
                 * interval.
1683
                 * interval.
1683
                 */
1684
                 */
1684
                return 0;
1685
                return 0;
1685
            } else if (overlaps(page, count * PAGE_SIZE, right_pg,
1686
            } else if (overlaps(page, count * PAGE_SIZE, right_pg,
1686
                right_cnt * PAGE_SIZE)) {
1687
                right_cnt * PAGE_SIZE)) {
1687
                /*
1688
                /*
1688
                 * The interval intersects with the right
1689
                 * The interval intersects with the right
1689
                 * interval.
1690
                 * interval.
1690
                 */
1691
                 */
1691
                return 0;          
1692
                return 0;          
1692
            } else if ((page == left_pg + left_cnt * PAGE_SIZE) &&
1693
            } else if ((page == left_pg + left_cnt * PAGE_SIZE) &&
1693
                (page + count * PAGE_SIZE == right_pg)) {
1694
                (page + count * PAGE_SIZE == right_pg)) {
1694
                /*
1695
                /*
1695
                 * The interval can be added by merging the two
1696
                 * The interval can be added by merging the two
1696
                 * already present intervals.
1697
                 * already present intervals.
1697
                 */
1698
                 */
1698
                leaf->value[i - 1] += count + right_cnt;
1699
                leaf->value[i - 1] += count + right_cnt;
1699
                btree_remove(&a->used_space, right_pg, leaf);
1700
                btree_remove(&a->used_space, right_pg, leaf);
1700
                return 1;
1701
                return 1;
1701
            } else if (page == left_pg + left_cnt * PAGE_SIZE) {
1702
            } else if (page == left_pg + left_cnt * PAGE_SIZE) {
1702
                /*
1703
                /*
1703
                 * The interval can be added by simply growing
1704
                 * The interval can be added by simply growing
1704
                 * the left interval.
1705
                 * the left interval.
1705
                 */
1706
                 */
1706
                leaf->value[i - 1] += count;
1707
                leaf->value[i - 1] += count;
1707
                return 1;
1708
                return 1;
1708
            } else if (page + count * PAGE_SIZE == right_pg) {
1709
            } else if (page + count * PAGE_SIZE == right_pg) {
1709
                /*
1710
                /*
1710
                     * The interval can be addded by simply moving
1711
                     * The interval can be addded by simply moving
1711
                 * base of the right interval down and
1712
                 * base of the right interval down and
1712
                 * increasing its size accordingly.
1713
                 * increasing its size accordingly.
1713
                 */
1714
                 */
1714
                leaf->value[i] += count;
1715
                leaf->value[i] += count;
1715
                leaf->key[i] = page;
1716
                leaf->key[i] = page;
1716
                return 1;
1717
                return 1;
1717
            } else {
1718
            } else {
1718
                /*
1719
                /*
1719
                 * The interval is between both neigbouring
1720
                 * The interval is between both neigbouring
1720
                 * intervals, but cannot be merged with any of
1721
                 * intervals, but cannot be merged with any of
1721
                 * them.
1722
                 * them.
1722
                 */
1723
                 */
1723
                btree_insert(&a->used_space, page,
1724
                btree_insert(&a->used_space, page,
1724
                    (void *) count, leaf);
1725
                    (void *) count, leaf);
1725
                return 1;
1726
                return 1;
1726
            }
1727
            }
1727
        }
1728
        }
1728
    }
1729
    }
1729
 
1730
 
1730
    panic("Inconsistency detected while adding %d pages of used space at "
1731
    panic("Inconsistency detected while adding %d pages of used space at "
1731
        "%p.\n", count, page);
1732
        "%p.\n", count, page);
1732
}
1733
}
1733
 
1734
 
1734
/** Mark portion of address space area as unused.
1735
/** Mark portion of address space area as unused.
1735
 *
1736
 *
1736
 * The address space area must be already locked.
1737
 * The address space area must be already locked.
1737
 *
1738
 *
1738
 * @param a Address space area.
1739
 * @param a Address space area.
1739
 * @param page First page to be marked.
1740
 * @param page First page to be marked.
1740
 * @param count Number of page to be marked.
1741
 * @param count Number of page to be marked.
1741
 *
1742
 *
1742
 * @return 0 on failure and 1 on success.
1743
 * @return 0 on failure and 1 on success.
1743
 */
1744
 */
1744
int used_space_remove(as_area_t *a, uintptr_t page, count_t count)
1745
int used_space_remove(as_area_t *a, uintptr_t page, count_t count)
1745
{
1746
{
1746
    btree_node_t *leaf, *node;
1747
    btree_node_t *leaf, *node;
1747
    count_t pages;
1748
    count_t pages;
1748
    unsigned int i;
1749
    unsigned int i;
1749
 
1750
 
1750
    ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1751
    ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1751
    ASSERT(count);
1752
    ASSERT(count);
1752
 
1753
 
1753
    pages = (count_t) btree_search(&a->used_space, page, &leaf);
1754
    pages = (count_t) btree_search(&a->used_space, page, &leaf);
1754
    if (pages) {
1755
    if (pages) {
1755
        /*
1756
        /*
1756
         * We are lucky, page is the beginning of some interval.
1757
         * We are lucky, page is the beginning of some interval.
1757
         */
1758
         */
1758
        if (count > pages) {
1759
        if (count > pages) {
1759
            return 0;
1760
            return 0;
1760
        } else if (count == pages) {
1761
        } else if (count == pages) {
1761
            btree_remove(&a->used_space, page, leaf);
1762
            btree_remove(&a->used_space, page, leaf);
1762
            return 1;
1763
            return 1;
1763
        } else {
1764
        } else {
1764
            /*
1765
            /*
1765
             * Find the respective interval.
1766
             * Find the respective interval.
1766
             * Decrease its size and relocate its start address.
1767
             * Decrease its size and relocate its start address.
1767
             */
1768
             */
1768
            for (i = 0; i < leaf->keys; i++) {
1769
            for (i = 0; i < leaf->keys; i++) {
1769
                if (leaf->key[i] == page) {
1770
                if (leaf->key[i] == page) {
1770
                    leaf->key[i] += count * PAGE_SIZE;
1771
                    leaf->key[i] += count * PAGE_SIZE;
1771
                    leaf->value[i] -= count;
1772
                    leaf->value[i] -= count;
1772
                    return 1;
1773
                    return 1;
1773
                }
1774
                }
1774
            }
1775
            }
1775
            goto error;
1776
            goto error;
1776
        }
1777
        }
1777
    }
1778
    }
1778
 
1779
 
1779
    node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1780
    node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1780
    if (node && page < leaf->key[0]) {
1781
    if (node && page < leaf->key[0]) {
1781
        uintptr_t left_pg = node->key[node->keys - 1];
1782
        uintptr_t left_pg = node->key[node->keys - 1];
1782
        count_t left_cnt = (count_t) node->value[node->keys - 1];
1783
        count_t left_cnt = (count_t) node->value[node->keys - 1];
1783
 
1784
 
1784
        if (overlaps(left_pg, left_cnt * PAGE_SIZE, page,
1785
        if (overlaps(left_pg, left_cnt * PAGE_SIZE, page,
1785
            count * PAGE_SIZE)) {
1786
            count * PAGE_SIZE)) {
1786
            if (page + count * PAGE_SIZE ==
1787
            if (page + count * PAGE_SIZE ==
1787
                left_pg + left_cnt * PAGE_SIZE) {
1788
                left_pg + left_cnt * PAGE_SIZE) {
1788
                /*
1789
                /*
1789
                 * The interval is contained in the rightmost
1790
                 * The interval is contained in the rightmost
1790
                 * interval of the left neighbour and can be
1791
                 * interval of the left neighbour and can be
1791
                 * removed by updating the size of the bigger
1792
                 * removed by updating the size of the bigger
1792
                 * interval.
1793
                 * interval.
1793
                 */
1794
                 */
1794
                node->value[node->keys - 1] -= count;
1795
                node->value[node->keys - 1] -= count;
1795
                return 1;
1796
                return 1;
1796
            } else if (page + count * PAGE_SIZE <
1797
            } else if (page + count * PAGE_SIZE <
1797
                left_pg + left_cnt*PAGE_SIZE) {
1798
                left_pg + left_cnt*PAGE_SIZE) {
1798
                count_t new_cnt;
1799
                count_t new_cnt;
1799
               
1800
               
1800
                /*
1801
                /*
1801
                 * The interval is contained in the rightmost
1802
                 * The interval is contained in the rightmost
1802
                 * interval of the left neighbour but its
1803
                 * interval of the left neighbour but its
1803
                 * removal requires both updating the size of
1804
                 * removal requires both updating the size of
1804
                 * the original interval and also inserting a
1805
                 * the original interval and also inserting a
1805
                 * new interval.
1806
                 * new interval.
1806
                 */
1807
                 */
1807
                new_cnt = ((left_pg + left_cnt * PAGE_SIZE) -
1808
                new_cnt = ((left_pg + left_cnt * PAGE_SIZE) -
1808
                    (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1809
                    (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1809
                node->value[node->keys - 1] -= count + new_cnt;
1810
                node->value[node->keys - 1] -= count + new_cnt;
1810
                btree_insert(&a->used_space, page +
1811
                btree_insert(&a->used_space, page +
1811
                    count * PAGE_SIZE, (void *) new_cnt, leaf);
1812
                    count * PAGE_SIZE, (void *) new_cnt, leaf);
1812
                return 1;
1813
                return 1;
1813
            }
1814
            }
1814
        }
1815
        }
1815
        return 0;
1816
        return 0;
1816
    } else if (page < leaf->key[0]) {
1817
    } else if (page < leaf->key[0]) {
1817
        return 0;
1818
        return 0;
1818
    }
1819
    }
1819
   
1820
   
1820
    if (page > leaf->key[leaf->keys - 1]) {
1821
    if (page > leaf->key[leaf->keys - 1]) {
1821
        uintptr_t left_pg = leaf->key[leaf->keys - 1];
1822
        uintptr_t left_pg = leaf->key[leaf->keys - 1];
1822
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1823
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1823
 
1824
 
1824
        if (overlaps(left_pg, left_cnt * PAGE_SIZE, page,
1825
        if (overlaps(left_pg, left_cnt * PAGE_SIZE, page,
1825
            count * PAGE_SIZE)) {
1826
            count * PAGE_SIZE)) {
1826
            if (page + count * PAGE_SIZE ==
1827
            if (page + count * PAGE_SIZE ==
1827
                left_pg + left_cnt * PAGE_SIZE) {
1828
                left_pg + left_cnt * PAGE_SIZE) {
1828
                /*
1829
                /*
1829
                 * The interval is contained in the rightmost
1830
                 * The interval is contained in the rightmost
1830
                 * interval of the leaf and can be removed by
1831
                 * interval of the leaf and can be removed by
1831
                 * updating the size of the bigger interval.
1832
                 * updating the size of the bigger interval.
1832
                 */
1833
                 */
1833
                leaf->value[leaf->keys - 1] -= count;
1834
                leaf->value[leaf->keys - 1] -= count;
1834
                return 1;
1835
                return 1;
1835
            } else if (page + count * PAGE_SIZE < left_pg +
1836
            } else if (page + count * PAGE_SIZE < left_pg +
1836
                left_cnt * PAGE_SIZE) {
1837
                left_cnt * PAGE_SIZE) {
1837
                count_t new_cnt;
1838
                count_t new_cnt;
1838
               
1839
               
1839
                /*
1840
                /*
1840
                 * The interval is contained in the rightmost
1841
                 * The interval is contained in the rightmost
1841
                 * interval of the leaf but its removal
1842
                 * interval of the leaf but its removal
1842
                 * requires both updating the size of the
1843
                 * requires both updating the size of the
1843
                 * original interval and also inserting a new
1844
                 * original interval and also inserting a new
1844
                 * interval.
1845
                 * interval.
1845
                 */
1846
                 */
1846
                new_cnt = ((left_pg + left_cnt * PAGE_SIZE) -
1847
                new_cnt = ((left_pg + left_cnt * PAGE_SIZE) -
1847
                    (page + count * PAGE_SIZE)) >> PAGE_WIDTH;
1848
                    (page + count * PAGE_SIZE)) >> PAGE_WIDTH;
1848
                leaf->value[leaf->keys - 1] -= count + new_cnt;
1849
                leaf->value[leaf->keys - 1] -= count + new_cnt;
1849
                btree_insert(&a->used_space, page +
1850
                btree_insert(&a->used_space, page +
1850
                    count * PAGE_SIZE, (void *) new_cnt, leaf);
1851
                    count * PAGE_SIZE, (void *) new_cnt, leaf);
1851
                return 1;
1852
                return 1;
1852
            }
1853
            }
1853
        }
1854
        }
1854
        return 0;
1855
        return 0;
1855
    }  
1856
    }  
1856
   
1857
   
1857
    /*
1858
    /*
1858
     * The border cases have been already resolved.
1859
     * The border cases have been already resolved.
1859
     * Now the interval can be only between intervals of the leaf.
1860
     * Now the interval can be only between intervals of the leaf.
1860
     */
1861
     */
1861
    for (i = 1; i < leaf->keys - 1; i++) {
1862
    for (i = 1; i < leaf->keys - 1; i++) {
1862
        if (page < leaf->key[i]) {
1863
        if (page < leaf->key[i]) {
1863
            uintptr_t left_pg = leaf->key[i - 1];
1864
            uintptr_t left_pg = leaf->key[i - 1];
1864
            count_t left_cnt = (count_t) leaf->value[i - 1];
1865
            count_t left_cnt = (count_t) leaf->value[i - 1];
1865
 
1866
 
1866
            /*
1867
            /*
1867
             * Now the interval is between intervals corresponding
1868
             * Now the interval is between intervals corresponding
1868
             * to (i - 1) and i.
1869
             * to (i - 1) and i.
1869
             */
1870
             */
1870
            if (overlaps(left_pg, left_cnt * PAGE_SIZE, page,
1871
            if (overlaps(left_pg, left_cnt * PAGE_SIZE, page,
1871
                count * PAGE_SIZE)) {
1872
                count * PAGE_SIZE)) {
1872
                if (page + count * PAGE_SIZE ==
1873
                if (page + count * PAGE_SIZE ==
1873
                    left_pg + left_cnt*PAGE_SIZE) {
1874
                    left_pg + left_cnt*PAGE_SIZE) {
1874
                    /*
1875
                    /*
1875
                     * The interval is contained in the
1876
                     * The interval is contained in the
1876
                     * interval (i - 1) of the leaf and can
1877
                     * interval (i - 1) of the leaf and can
1877
                     * be removed by updating the size of
1878
                     * be removed by updating the size of
1878
                     * the bigger interval.
1879
                     * the bigger interval.
1879
                     */
1880
                     */
1880
                    leaf->value[i - 1] -= count;
1881
                    leaf->value[i - 1] -= count;
1881
                    return 1;
1882
                    return 1;
1882
                } else if (page + count * PAGE_SIZE <
1883
                } else if (page + count * PAGE_SIZE <
1883
                    left_pg + left_cnt * PAGE_SIZE) {
1884
                    left_pg + left_cnt * PAGE_SIZE) {
1884
                    count_t new_cnt;
1885
                    count_t new_cnt;
1885
               
1886
               
1886
                    /*
1887
                    /*
1887
                     * The interval is contained in the
1888
                     * The interval is contained in the
1888
                     * interval (i - 1) of the leaf but its
1889
                     * interval (i - 1) of the leaf but its
1889
                     * removal requires both updating the
1890
                     * removal requires both updating the
1890
                     * size of the original interval and
1891
                     * size of the original interval and
1891
                     * also inserting a new interval.
1892
                     * also inserting a new interval.
1892
                     */
1893
                     */
1893
                    new_cnt = ((left_pg +
1894
                    new_cnt = ((left_pg +
1894
                        left_cnt * PAGE_SIZE) -
1895
                        left_cnt * PAGE_SIZE) -
1895
                        (page + count * PAGE_SIZE)) >>
1896
                        (page + count * PAGE_SIZE)) >>
1896
                        PAGE_WIDTH;
1897
                        PAGE_WIDTH;
1897
                    leaf->value[i - 1] -= count + new_cnt;
1898
                    leaf->value[i - 1] -= count + new_cnt;
1898
                    btree_insert(&a->used_space, page +
1899
                    btree_insert(&a->used_space, page +
1899
                        count * PAGE_SIZE, (void *) new_cnt,
1900
                        count * PAGE_SIZE, (void *) new_cnt,
1900
                        leaf);
1901
                        leaf);
1901
                    return 1;
1902
                    return 1;
1902
                }
1903
                }
1903
            }
1904
            }
1904
            return 0;
1905
            return 0;
1905
        }
1906
        }
1906
    }
1907
    }
1907
 
1908
 
1908
error:
1909
error:
1909
    panic("Inconsistency detected while removing %d pages of used space "
1910
    panic("Inconsistency detected while removing %d pages of used space "
1910
        "from %p.\n", count, page);
1911
        "from %p.\n", count, page);
1911
}
1912
}
1912
 
1913
 
1913
/** Remove reference to address space area share info.
1914
/** Remove reference to address space area share info.
1914
 *
1915
 *
1915
 * If the reference count drops to 0, the sh_info is deallocated.
1916
 * If the reference count drops to 0, the sh_info is deallocated.
1916
 *
1917
 *
1917
 * @param sh_info Pointer to address space area share info.
1918
 * @param sh_info Pointer to address space area share info.
1918
 */
1919
 */
1919
void sh_info_remove_reference(share_info_t *sh_info)
1920
void sh_info_remove_reference(share_info_t *sh_info)
1920
{
1921
{
1921
    bool dealloc = false;
1922
    bool dealloc = false;
1922
 
1923
 
1923
    mutex_lock(&sh_info->lock);
1924
    mutex_lock(&sh_info->lock);
1924
    ASSERT(sh_info->refcount);
1925
    ASSERT(sh_info->refcount);
1925
    if (--sh_info->refcount == 0) {
1926
    if (--sh_info->refcount == 0) {
1926
        dealloc = true;
1927
        dealloc = true;
1927
        link_t *cur;
1928
        link_t *cur;
1928
       
1929
       
1929
        /*
1930
        /*
1930
         * Now walk carefully the pagemap B+tree and free/remove
1931
         * Now walk carefully the pagemap B+tree and free/remove
1931
         * reference from all frames found there.
1932
         * reference from all frames found there.
1932
         */
1933
         */
1933
        for (cur = sh_info->pagemap.leaf_head.next;
1934
        for (cur = sh_info->pagemap.leaf_head.next;
1934
            cur != &sh_info->pagemap.leaf_head; cur = cur->next) {
1935
            cur != &sh_info->pagemap.leaf_head; cur = cur->next) {
1935
            btree_node_t *node;
1936
            btree_node_t *node;
1936
            unsigned int i;
1937
            unsigned int i;
1937
           
1938
           
1938
            node = list_get_instance(cur, btree_node_t, leaf_link);
1939
            node = list_get_instance(cur, btree_node_t, leaf_link);
1939
            for (i = 0; i < node->keys; i++)
1940
            for (i = 0; i < node->keys; i++)
1940
                frame_free((uintptr_t) node->value[i]);
1941
                frame_free((uintptr_t) node->value[i]);
1941
        }
1942
        }
1942
       
1943
       
1943
    }
1944
    }
1944
    mutex_unlock(&sh_info->lock);
1945
    mutex_unlock(&sh_info->lock);
1945
   
1946
   
1946
    if (dealloc) {
1947
    if (dealloc) {
1947
        btree_destroy(&sh_info->pagemap);
1948
        btree_destroy(&sh_info->pagemap);
1948
        free(sh_info);
1949
        free(sh_info);
1949
    }
1950
    }
1950
}
1951
}
1951
 
1952
 
1952
/*
1953
/*
1953
 * Address space related syscalls.
1954
 * Address space related syscalls.
1954
 */
1955
 */
1955
 
1956
 
1956
/** Wrapper for as_area_create(). */
1957
/** Wrapper for as_area_create(). */
1957
unative_t sys_as_area_create(uintptr_t address, size_t size, int flags)
1958
unative_t sys_as_area_create(uintptr_t address, size_t size, int flags)
1958
{
1959
{
1959
    if (as_area_create(AS, flags | AS_AREA_CACHEABLE, size, address,
1960
    if (as_area_create(AS, flags | AS_AREA_CACHEABLE, size, address,
1960
        AS_AREA_ATTR_NONE, &anon_backend, NULL))
1961
        AS_AREA_ATTR_NONE, &anon_backend, NULL))
1961
        return (unative_t) address;
1962
        return (unative_t) address;
1962
    else
1963
    else
1963
        return (unative_t) -1;
1964
        return (unative_t) -1;
1964
}
1965
}
1965
 
1966
 
1966
/** Wrapper for as_area_resize(). */
1967
/** Wrapper for as_area_resize(). */
1967
unative_t sys_as_area_resize(uintptr_t address, size_t size, int flags)
1968
unative_t sys_as_area_resize(uintptr_t address, size_t size, int flags)
1968
{
1969
{
1969
    return (unative_t) as_area_resize(AS, address, size, 0);
1970
    return (unative_t) as_area_resize(AS, address, size, 0);
1970
}
1971
}
1971
 
1972
 
1972
/** Wrapper for as_area_destroy(). */
1973
/** Wrapper for as_area_destroy(). */
1973
unative_t sys_as_area_destroy(uintptr_t address)
1974
unative_t sys_as_area_destroy(uintptr_t address)
1974
{
1975
{
1975
    return (unative_t) as_area_destroy(AS, address);
1976
    return (unative_t) as_area_destroy(AS, address);
1976
}
1977
}
1977
 
1978
 
1978
/** Print out information about address space.
1979
/** Print out information about address space.
1979
 *
1980
 *
1980
 * @param as Address space.
1981
 * @param as Address space.
1981
 */
1982
 */
1982
void as_print(as_t *as)
1983
void as_print(as_t *as)
1983
{
1984
{
1984
    ipl_t ipl;
1985
    ipl_t ipl;
1985
   
1986
   
1986
    ipl = interrupts_disable();
1987
    ipl = interrupts_disable();
1987
    mutex_lock(&as->lock);
1988
    mutex_lock(&as->lock);
1988
   
1989
   
1989
    /* print out info about address space areas */
1990
    /* print out info about address space areas */
1990
    link_t *cur;
1991
    link_t *cur;
1991
    for (cur = as->as_area_btree.leaf_head.next;
1992
    for (cur = as->as_area_btree.leaf_head.next;
1992
        cur != &as->as_area_btree.leaf_head; cur = cur->next) {
1993
        cur != &as->as_area_btree.leaf_head; cur = cur->next) {
1993
        btree_node_t *node;
1994
        btree_node_t *node;
1994
       
1995
       
1995
        node = list_get_instance(cur, btree_node_t, leaf_link);
1996
        node = list_get_instance(cur, btree_node_t, leaf_link);
1996
       
1997
       
1997
        unsigned int i;
1998
        unsigned int i;
1998
        for (i = 0; i < node->keys; i++) {
1999
        for (i = 0; i < node->keys; i++) {
1999
            as_area_t *area = node->value[i];
2000
            as_area_t *area = node->value[i];
2000
       
2001
       
2001
            mutex_lock(&area->lock);
2002
            mutex_lock(&area->lock);
2002
            printf("as_area: %p, base=%p, pages=%d (%p - %p)\n",
2003
            printf("as_area: %p, base=%p, pages=%d (%p - %p)\n",
2003
                area, area->base, area->pages, area->base,
2004
                area, area->base, area->pages, area->base,
2004
                area->base + area->pages*PAGE_SIZE);
2005
                area->base + area->pages*PAGE_SIZE);
2005
            mutex_unlock(&area->lock);
2006
            mutex_unlock(&area->lock);
2006
        }
2007
        }
2007
    }
2008
    }
2008
   
2009
   
2009
    mutex_unlock(&as->lock);
2010
    mutex_unlock(&as->lock);
2010
    interrupts_restore(ipl);
2011
    interrupts_restore(ipl);
2011
}
2012
}
2012
 
2013
 
2013
/** @}
2014
/** @}
2014
 */
2015
 */
2015
 
2016