Subversion Repositories HelenOS

Rev

Rev 3343 | Rev 3492 | Go to most recent revision | Only display areas with differences | Ignore whitespace | Details | Blame | Last modification | View Log | RSS feed

Rev 3343 Rev 3397
1
/*
1
/*
2
 * Copyright (c) 2001-2006 Jakub Jermar
2
 * Copyright (c) 2001-2006 Jakub Jermar
3
 * All rights reserved.
3
 * All rights reserved.
4
 *
4
 *
5
 * Redistribution and use in source and binary forms, with or without
5
 * Redistribution and use in source and binary forms, with or without
6
 * modification, are permitted provided that the following conditions
6
 * modification, are permitted provided that the following conditions
7
 * are met:
7
 * are met:
8
 *
8
 *
9
 * - Redistributions of source code must retain the above copyright
9
 * - Redistributions of source code must retain the above copyright
10
 *   notice, this list of conditions and the following disclaimer.
10
 *   notice, this list of conditions and the following disclaimer.
11
 * - Redistributions in binary form must reproduce the above copyright
11
 * - Redistributions in binary form must reproduce the above copyright
12
 *   notice, this list of conditions and the following disclaimer in the
12
 *   notice, this list of conditions and the following disclaimer in the
13
 *   documentation and/or other materials provided with the distribution.
13
 *   documentation and/or other materials provided with the distribution.
14
 * - The name of the author may not be used to endorse or promote products
14
 * - The name of the author may not be used to endorse or promote products
15
 *   derived from this software without specific prior written permission.
15
 *   derived from this software without specific prior written permission.
16
 *
16
 *
17
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
 */
27
 */
28
 
28
 
29
/** @addtogroup genericmm
29
/** @addtogroup genericmm
30
 * @{
30
 * @{
31
 */
31
 */
32
 
32
 
33
/**
33
/**
34
 * @file
34
 * @file
35
 * @brief   Address space related functions.
35
 * @brief   Address space related functions.
36
 *
36
 *
37
 * This file contains address space manipulation functions.
37
 * This file contains address space manipulation functions.
38
 * Roughly speaking, this is a higher-level client of
38
 * Roughly speaking, this is a higher-level client of
39
 * Virtual Address Translation (VAT) subsystem.
39
 * Virtual Address Translation (VAT) subsystem.
40
 *
40
 *
41
 * Functionality provided by this file allows one to
41
 * Functionality provided by this file allows one to
42
 * create address spaces and create, resize and share
42
 * create address spaces and create, resize and share
43
 * address space areas.
43
 * address space areas.
44
 *
44
 *
45
 * @see page.c
45
 * @see page.c
46
 *
46
 *
47
 */
47
 */
48
 
48
 
49
#include <mm/as.h>
49
#include <mm/as.h>
50
#include <arch/mm/as.h>
50
#include <arch/mm/as.h>
51
#include <mm/page.h>
51
#include <mm/page.h>
52
#include <mm/frame.h>
52
#include <mm/frame.h>
53
#include <mm/slab.h>
53
#include <mm/slab.h>
54
#include <mm/tlb.h>
54
#include <mm/tlb.h>
55
#include <arch/mm/page.h>
55
#include <arch/mm/page.h>
56
#include <genarch/mm/page_pt.h>
56
#include <genarch/mm/page_pt.h>
57
#include <genarch/mm/page_ht.h>
57
#include <genarch/mm/page_ht.h>
58
#include <mm/asid.h>
58
#include <mm/asid.h>
59
#include <arch/mm/asid.h>
59
#include <arch/mm/asid.h>
60
#include <preemption.h>
60
#include <preemption.h>
61
#include <synch/spinlock.h>
61
#include <synch/spinlock.h>
62
#include <synch/mutex.h>
62
#include <synch/mutex.h>
63
#include <adt/list.h>
63
#include <adt/list.h>
64
#include <adt/btree.h>
64
#include <adt/btree.h>
65
#include <proc/task.h>
65
#include <proc/task.h>
66
#include <proc/thread.h>
66
#include <proc/thread.h>
67
#include <arch/asm.h>
67
#include <arch/asm.h>
68
#include <panic.h>
68
#include <panic.h>
69
#include <debug.h>
69
#include <debug.h>
70
#include <print.h>
70
#include <print.h>
71
#include <memstr.h>
71
#include <memstr.h>
72
#include <macros.h>
72
#include <macros.h>
73
#include <arch.h>
73
#include <arch.h>
74
#include <errno.h>
74
#include <errno.h>
75
#include <config.h>
75
#include <config.h>
76
#include <align.h>
76
#include <align.h>
77
#include <arch/types.h>
77
#include <arch/types.h>
78
#include <syscall/copy.h>
78
#include <syscall/copy.h>
79
#include <arch/interrupt.h>
79
#include <arch/interrupt.h>
80
 
80
 
81
#ifdef CONFIG_VIRT_IDX_DCACHE
81
#ifdef CONFIG_VIRT_IDX_DCACHE
82
#include <arch/mm/cache.h>
82
#include <arch/mm/cache.h>
83
#endif /* CONFIG_VIRT_IDX_DCACHE */
83
#endif /* CONFIG_VIRT_IDX_DCACHE */
84
 
84
 
85
/**
85
/**
86
 * Each architecture decides what functions will be used to carry out
86
 * Each architecture decides what functions will be used to carry out
87
 * address space operations such as creating or locking page tables.
87
 * address space operations such as creating or locking page tables.
88
 */
88
 */
89
as_operations_t *as_operations = NULL;
89
as_operations_t *as_operations = NULL;
90
 
90
 
91
/**
91
/**
92
 * Slab for as_t objects.
92
 * Slab for as_t objects.
93
 */
93
 */
94
static slab_cache_t *as_slab;
94
static slab_cache_t *as_slab;
95
 
95
 
96
/**
96
/**
97
 * This lock serializes access to the ASID subsystem.
97
 * This lock serializes access to the ASID subsystem.
98
 * It protects:
98
 * It protects:
99
 * - inactive_as_with_asid_head list
99
 * - inactive_as_with_asid_head list
100
 * - as->asid for each as of the as_t type
100
 * - as->asid for each as of the as_t type
101
 * - asids_allocated counter
101
 * - asids_allocated counter
102
 */
102
 */
103
SPINLOCK_INITIALIZE(asidlock);
103
SPINLOCK_INITIALIZE(asidlock);
104
 
104
 
105
/**
105
/**
106
 * This list contains address spaces that are not active on any
106
 * This list contains address spaces that are not active on any
107
 * processor and that have valid ASID.
107
 * processor and that have valid ASID.
108
 */
108
 */
109
LIST_INITIALIZE(inactive_as_with_asid_head);
109
LIST_INITIALIZE(inactive_as_with_asid_head);
110
 
110
 
111
/** Kernel address space. */
111
/** Kernel address space. */
112
as_t *AS_KERNEL = NULL;
112
as_t *AS_KERNEL = NULL;
113
 
113
 
114
static int area_flags_to_page_flags(int aflags);
114
static int area_flags_to_page_flags(int);
115
static as_area_t *find_area_and_lock(as_t *as, uintptr_t va);
115
static as_area_t *find_area_and_lock(as_t *, uintptr_t);
116
static bool check_area_conflicts(as_t *as, uintptr_t va, size_t size,
116
static bool check_area_conflicts(as_t *, uintptr_t, size_t, as_area_t *);
117
    as_area_t *avoid_area);
-
 
118
static void sh_info_remove_reference(share_info_t *sh_info);
117
static void sh_info_remove_reference(share_info_t *);
119
 
118
 
120
static int as_constructor(void *obj, int flags)
119
static int as_constructor(void *obj, int flags)
121
{
120
{
122
    as_t *as = (as_t *) obj;
121
    as_t *as = (as_t *) obj;
123
    int rc;
122
    int rc;
124
 
123
 
125
    link_initialize(&as->inactive_as_with_asid_link);
124
    link_initialize(&as->inactive_as_with_asid_link);
126
    mutex_initialize(&as->lock, MUTEX_PASSIVE);
125
    mutex_initialize(&as->lock, MUTEX_PASSIVE);
127
   
126
   
128
    rc = as_constructor_arch(as, flags);
127
    rc = as_constructor_arch(as, flags);
129
   
128
   
130
    return rc;
129
    return rc;
131
}
130
}
132
 
131
 
133
static int as_destructor(void *obj)
132
static int as_destructor(void *obj)
134
{
133
{
135
    as_t *as = (as_t *) obj;
134
    as_t *as = (as_t *) obj;
136
 
135
 
137
    return as_destructor_arch(as);
136
    return as_destructor_arch(as);
138
}
137
}
139
 
138
 
140
/** Initialize address space subsystem. */
139
/** Initialize address space subsystem. */
141
void as_init(void)
140
void as_init(void)
142
{
141
{
143
    as_arch_init();
142
    as_arch_init();
144
 
143
 
145
    as_slab = slab_cache_create("as_slab", sizeof(as_t), 0,
144
    as_slab = slab_cache_create("as_slab", sizeof(as_t), 0,
146
        as_constructor, as_destructor, SLAB_CACHE_MAGDEFERRED);
145
        as_constructor, as_destructor, SLAB_CACHE_MAGDEFERRED);
147
   
146
   
148
    AS_KERNEL = as_create(FLAG_AS_KERNEL);
147
    AS_KERNEL = as_create(FLAG_AS_KERNEL);
149
    if (!AS_KERNEL)
148
    if (!AS_KERNEL)
150
        panic("can't create kernel address space\n");
149
        panic("can't create kernel address space\n");
151
   
150
   
152
}
151
}
153
 
152
 
154
/** Create address space.
153
/** Create address space.
155
 *
154
 *
156
 * @param flags Flags that influence way in wich the address space is created.
155
 * @param flags     Flags that influence the way in wich the address space
-
 
156
 *          is created.
157
 */
157
 */
158
as_t *as_create(int flags)
158
as_t *as_create(int flags)
159
{
159
{
160
    as_t *as;
160
    as_t *as;
161
 
161
 
162
    as = (as_t *) slab_alloc(as_slab, 0);
162
    as = (as_t *) slab_alloc(as_slab, 0);
163
    (void) as_create_arch(as, 0);
163
    (void) as_create_arch(as, 0);
164
   
164
   
165
    btree_create(&as->as_area_btree);
165
    btree_create(&as->as_area_btree);
166
   
166
   
167
    if (flags & FLAG_AS_KERNEL)
167
    if (flags & FLAG_AS_KERNEL)
168
        as->asid = ASID_KERNEL;
168
        as->asid = ASID_KERNEL;
169
    else
169
    else
170
        as->asid = ASID_INVALID;
170
        as->asid = ASID_INVALID;
171
   
171
   
172
    atomic_set(&as->refcount, 0);
172
    atomic_set(&as->refcount, 0);
173
    as->cpu_refcount = 0;
173
    as->cpu_refcount = 0;
174
#ifdef AS_PAGE_TABLE
174
#ifdef AS_PAGE_TABLE
175
    as->genarch.page_table = page_table_create(flags);
175
    as->genarch.page_table = page_table_create(flags);
176
#else
176
#else
177
    page_table_create(flags);
177
    page_table_create(flags);
178
#endif
178
#endif
179
 
179
 
180
    return as;
180
    return as;
181
}
181
}
182
 
182
 
183
/** Destroy adress space.
183
/** Destroy adress space.
184
 *
184
 *
185
 * When there are no tasks referencing this address space (i.e. its refcount is
185
 * When there are no tasks referencing this address space (i.e. its refcount is
186
 * zero), the address space can be destroyed.
186
 * zero), the address space can be destroyed.
187
 *
187
 *
188
 * We know that we don't hold any spinlock.
188
 * We know that we don't hold any spinlock.
-
 
189
 *
-
 
190
 * @param as        Address space to be destroyed.
189
 */
191
 */
190
void as_destroy(as_t *as)
192
void as_destroy(as_t *as)
191
{
193
{
192
    ipl_t ipl;
194
    ipl_t ipl;
193
    bool cond;
195
    bool cond;
194
    DEADLOCK_PROBE_INIT(p_asidlock);
196
    DEADLOCK_PROBE_INIT(p_asidlock);
195
 
197
 
196
    ASSERT(atomic_get(&as->refcount) == 0);
198
    ASSERT(atomic_get(&as->refcount) == 0);
197
   
199
   
198
    /*
200
    /*
199
     * Since there is no reference to this area,
201
     * Since there is no reference to this area,
200
     * it is safe not to lock its mutex.
202
     * it is safe not to lock its mutex.
201
     */
203
     */
202
 
204
 
203
    /*
205
    /*
204
     * We need to avoid deadlock between TLB shootdown and asidlock.
206
     * We need to avoid deadlock between TLB shootdown and asidlock.
205
     * We therefore try to take asid conditionally and if we don't succeed,
207
     * We therefore try to take asid conditionally and if we don't succeed,
206
     * we enable interrupts and try again. This is done while preemption is
208
     * we enable interrupts and try again. This is done while preemption is
207
     * disabled to prevent nested context switches. We also depend on the
209
     * disabled to prevent nested context switches. We also depend on the
208
     * fact that so far no spinlocks are held.
210
     * fact that so far no spinlocks are held.
209
     */
211
     */
210
    preemption_disable();
212
    preemption_disable();
211
    ipl = interrupts_read();
213
    ipl = interrupts_read();
212
retry:
214
retry:
213
    interrupts_disable();
215
    interrupts_disable();
214
    if (!spinlock_trylock(&asidlock)) {
216
    if (!spinlock_trylock(&asidlock)) {
215
        interrupts_enable();
217
        interrupts_enable();
216
        DEADLOCK_PROBE(p_asidlock, DEADLOCK_THRESHOLD);
218
        DEADLOCK_PROBE(p_asidlock, DEADLOCK_THRESHOLD);
217
        goto retry;
219
        goto retry;
218
    }
220
    }
219
    preemption_enable();    /* Interrupts disabled, enable preemption */
221
    preemption_enable();    /* Interrupts disabled, enable preemption */
220
    if (as->asid != ASID_INVALID && as != AS_KERNEL) {
222
    if (as->asid != ASID_INVALID && as != AS_KERNEL) {
221
        if (as != AS && as->cpu_refcount == 0)
223
        if (as != AS && as->cpu_refcount == 0)
222
            list_remove(&as->inactive_as_with_asid_link);
224
            list_remove(&as->inactive_as_with_asid_link);
223
        asid_put(as->asid);
225
        asid_put(as->asid);
224
    }
226
    }
225
    spinlock_unlock(&asidlock);
227
    spinlock_unlock(&asidlock);
226
 
228
 
227
    /*
229
    /*
228
     * Destroy address space areas of the address space.
230
     * Destroy address space areas of the address space.
229
     * The B+tree must be walked carefully because it is
231
     * The B+tree must be walked carefully because it is
230
     * also being destroyed.
232
     * also being destroyed.
231
     */
233
     */
232
    for (cond = true; cond; ) {
234
    for (cond = true; cond; ) {
233
        btree_node_t *node;
235
        btree_node_t *node;
234
 
236
 
235
        ASSERT(!list_empty(&as->as_area_btree.leaf_head));
237
        ASSERT(!list_empty(&as->as_area_btree.leaf_head));
236
        node = list_get_instance(as->as_area_btree.leaf_head.next,
238
        node = list_get_instance(as->as_area_btree.leaf_head.next,
237
            btree_node_t, leaf_link);
239
            btree_node_t, leaf_link);
238
 
240
 
239
        if ((cond = node->keys)) {
241
        if ((cond = node->keys)) {
240
            as_area_destroy(as, node->key[0]);
242
            as_area_destroy(as, node->key[0]);
241
        }
243
        }
242
    }
244
    }
243
 
245
 
244
    btree_destroy(&as->as_area_btree);
246
    btree_destroy(&as->as_area_btree);
245
#ifdef AS_PAGE_TABLE
247
#ifdef AS_PAGE_TABLE
246
    page_table_destroy(as->genarch.page_table);
248
    page_table_destroy(as->genarch.page_table);
247
#else
249
#else
248
    page_table_destroy(NULL);
250
    page_table_destroy(NULL);
249
#endif
251
#endif
250
 
252
 
251
    interrupts_restore(ipl);
253
    interrupts_restore(ipl);
252
 
254
 
253
    slab_free(as_slab, as);
255
    slab_free(as_slab, as);
254
}
256
}
255
 
257
 
256
/** Create address space area of common attributes.
258
/** Create address space area of common attributes.
257
 *
259
 *
258
 * The created address space area is added to the target address space.
260
 * The created address space area is added to the target address space.
259
 *
261
 *
260
 * @param as Target address space.
262
 * @param as        Target address space.
261
 * @param flags Flags of the area memory.
263
 * @param flags     Flags of the area memory.
262
 * @param size Size of area.
264
 * @param size      Size of area.
263
 * @param base Base address of area.
265
 * @param base      Base address of area.
264
 * @param attrs Attributes of the area.
266
 * @param attrs     Attributes of the area.
265
 * @param backend Address space area backend. NULL if no backend is used.
267
 * @param backend   Address space area backend. NULL if no backend is used.
266
 * @param backend_data NULL or a pointer to an array holding two void *.
268
 * @param backend_data  NULL or a pointer to an array holding two void *.
267
 *
269
 *
268
 * @return Address space area on success or NULL on failure.
270
 * @return      Address space area on success or NULL on failure.
269
 */
271
 */
270
as_area_t *
272
as_area_t *
271
as_area_create(as_t *as, int flags, size_t size, uintptr_t base, int attrs,
273
as_area_create(as_t *as, int flags, size_t size, uintptr_t base, int attrs,
272
           mem_backend_t *backend, mem_backend_data_t *backend_data)
274
    mem_backend_t *backend, mem_backend_data_t *backend_data)
273
{
275
{
274
    ipl_t ipl;
276
    ipl_t ipl;
275
    as_area_t *a;
277
    as_area_t *a;
276
   
278
   
277
    if (base % PAGE_SIZE)
279
    if (base % PAGE_SIZE)
278
        return NULL;
280
        return NULL;
279
 
281
 
280
    if (!size)
282
    if (!size)
281
        return NULL;
283
        return NULL;
282
 
284
 
283
    /* Writeable executable areas are not supported. */
285
    /* Writeable executable areas are not supported. */
284
    if ((flags & AS_AREA_EXEC) && (flags & AS_AREA_WRITE))
286
    if ((flags & AS_AREA_EXEC) && (flags & AS_AREA_WRITE))
285
        return NULL;
287
        return NULL;
286
   
288
   
287
    ipl = interrupts_disable();
289
    ipl = interrupts_disable();
288
    mutex_lock(&as->lock);
290
    mutex_lock(&as->lock);
289
   
291
   
290
    if (!check_area_conflicts(as, base, size, NULL)) {
292
    if (!check_area_conflicts(as, base, size, NULL)) {
291
        mutex_unlock(&as->lock);
293
        mutex_unlock(&as->lock);
292
        interrupts_restore(ipl);
294
        interrupts_restore(ipl);
293
        return NULL;
295
        return NULL;
294
    }
296
    }
295
   
297
   
296
    a = (as_area_t *) malloc(sizeof(as_area_t), 0);
298
    a = (as_area_t *) malloc(sizeof(as_area_t), 0);
297
 
299
 
298
    mutex_initialize(&a->lock, MUTEX_PASSIVE);
300
    mutex_initialize(&a->lock, MUTEX_PASSIVE);
299
   
301
   
300
    a->as = as;
302
    a->as = as;
301
    a->flags = flags;
303
    a->flags = flags;
302
    a->attributes = attrs;
304
    a->attributes = attrs;
303
    a->pages = SIZE2FRAMES(size);
305
    a->pages = SIZE2FRAMES(size);
304
    a->base = base;
306
    a->base = base;
305
    a->sh_info = NULL;
307
    a->sh_info = NULL;
306
    a->backend = backend;
308
    a->backend = backend;
307
    if (backend_data)
309
    if (backend_data)
308
        a->backend_data = *backend_data;
310
        a->backend_data = *backend_data;
309
    else
311
    else
310
        memsetb(&a->backend_data, sizeof(a->backend_data), 0);
312
        memsetb(&a->backend_data, sizeof(a->backend_data), 0);
311
 
313
 
312
    btree_create(&a->used_space);
314
    btree_create(&a->used_space);
313
   
315
   
314
    btree_insert(&as->as_area_btree, base, (void *) a, NULL);
316
    btree_insert(&as->as_area_btree, base, (void *) a, NULL);
315
 
317
 
316
    mutex_unlock(&as->lock);
318
    mutex_unlock(&as->lock);
317
    interrupts_restore(ipl);
319
    interrupts_restore(ipl);
318
 
320
 
319
    return a;
321
    return a;
320
}
322
}
321
 
323
 
322
/** Find address space area and change it.
324
/** Find address space area and change it.
323
 *
325
 *
324
 * @param as Address space.
326
 * @param as        Address space.
325
 * @param address Virtual address belonging to the area to be changed. Must be
327
 * @param address   Virtual address belonging to the area to be changed.
326
 *     page-aligned.
328
 *          Must be page-aligned.
327
 * @param size New size of the virtual memory block starting at address.
329
 * @param size      New size of the virtual memory block starting at
-
 
330
 *          address.
328
 * @param flags Flags influencing the remap operation. Currently unused.
331
 * @param flags     Flags influencing the remap operation. Currently unused.
329
 *
332
 *
330
 * @return Zero on success or a value from @ref errno.h otherwise.
333
 * @return      Zero on success or a value from @ref errno.h otherwise.
331
 */
334
 */
332
int as_area_resize(as_t *as, uintptr_t address, size_t size, int flags)
335
int as_area_resize(as_t *as, uintptr_t address, size_t size, int flags)
333
{
336
{
334
    as_area_t *area;
337
    as_area_t *area;
335
    ipl_t ipl;
338
    ipl_t ipl;
336
    size_t pages;
339
    size_t pages;
337
   
340
   
338
    ipl = interrupts_disable();
341
    ipl = interrupts_disable();
339
    mutex_lock(&as->lock);
342
    mutex_lock(&as->lock);
340
   
343
   
341
    /*
344
    /*
342
     * Locate the area.
345
     * Locate the area.
343
     */
346
     */
344
    area = find_area_and_lock(as, address);
347
    area = find_area_and_lock(as, address);
345
    if (!area) {
348
    if (!area) {
346
        mutex_unlock(&as->lock);
349
        mutex_unlock(&as->lock);
347
        interrupts_restore(ipl);
350
        interrupts_restore(ipl);
348
        return ENOENT;
351
        return ENOENT;
349
    }
352
    }
350
 
353
 
351
    if (area->backend == &phys_backend) {
354
    if (area->backend == &phys_backend) {
352
        /*
355
        /*
353
         * Remapping of address space areas associated
356
         * Remapping of address space areas associated
354
         * with memory mapped devices is not supported.
357
         * with memory mapped devices is not supported.
355
         */
358
         */
356
        mutex_unlock(&area->lock);
359
        mutex_unlock(&area->lock);
357
        mutex_unlock(&as->lock);
360
        mutex_unlock(&as->lock);
358
        interrupts_restore(ipl);
361
        interrupts_restore(ipl);
359
        return ENOTSUP;
362
        return ENOTSUP;
360
    }
363
    }
361
    if (area->sh_info) {
364
    if (area->sh_info) {
362
        /*
365
        /*
363
         * Remapping of shared address space areas
366
         * Remapping of shared address space areas
364
         * is not supported.
367
         * is not supported.
365
         */
368
         */
366
        mutex_unlock(&area->lock);
369
        mutex_unlock(&area->lock);
367
        mutex_unlock(&as->lock);
370
        mutex_unlock(&as->lock);
368
        interrupts_restore(ipl);
371
        interrupts_restore(ipl);
369
        return ENOTSUP;
372
        return ENOTSUP;
370
    }
373
    }
371
 
374
 
372
    pages = SIZE2FRAMES((address - area->base) + size);
375
    pages = SIZE2FRAMES((address - area->base) + size);
373
    if (!pages) {
376
    if (!pages) {
374
        /*
377
        /*
375
         * Zero size address space areas are not allowed.
378
         * Zero size address space areas are not allowed.
376
         */
379
         */
377
        mutex_unlock(&area->lock);
380
        mutex_unlock(&area->lock);
378
        mutex_unlock(&as->lock);
381
        mutex_unlock(&as->lock);
379
        interrupts_restore(ipl);
382
        interrupts_restore(ipl);
380
        return EPERM;
383
        return EPERM;
381
    }
384
    }
382
   
385
   
383
    if (pages < area->pages) {
386
    if (pages < area->pages) {
384
        bool cond;
387
        bool cond;
385
        uintptr_t start_free = area->base + pages*PAGE_SIZE;
388
        uintptr_t start_free = area->base + pages*PAGE_SIZE;
386
 
389
 
387
        /*
390
        /*
388
         * Shrinking the area.
391
         * Shrinking the area.
389
         * No need to check for overlaps.
392
         * No need to check for overlaps.
390
         */
393
         */
391
 
394
 
392
        /*
395
        /*
393
         * Start TLB shootdown sequence.
396
         * Start TLB shootdown sequence.
394
         */
397
         */
395
        tlb_shootdown_start(TLB_INVL_PAGES, AS->asid, area->base +
398
        tlb_shootdown_start(TLB_INVL_PAGES, AS->asid, area->base +
396
            pages * PAGE_SIZE, area->pages - pages);
399
            pages * PAGE_SIZE, area->pages - pages);
397
 
400
 
398
        /*
401
        /*
399
         * Remove frames belonging to used space starting from
402
         * Remove frames belonging to used space starting from
400
         * the highest addresses downwards until an overlap with
403
         * the highest addresses downwards until an overlap with
401
         * the resized address space area is found. Note that this
404
         * the resized address space area is found. Note that this
402
         * is also the right way to remove part of the used_space
405
         * is also the right way to remove part of the used_space
403
         * B+tree leaf list.
406
         * B+tree leaf list.
404
         */    
407
         */    
405
        for (cond = true; cond;) {
408
        for (cond = true; cond;) {
406
            btree_node_t *node;
409
            btree_node_t *node;
407
       
410
       
408
            ASSERT(!list_empty(&area->used_space.leaf_head));
411
            ASSERT(!list_empty(&area->used_space.leaf_head));
409
            node =
412
            node =
410
                list_get_instance(area->used_space.leaf_head.prev,
413
                list_get_instance(area->used_space.leaf_head.prev,
411
                btree_node_t, leaf_link);
414
                btree_node_t, leaf_link);
412
            if ((cond = (bool) node->keys)) {
415
            if ((cond = (bool) node->keys)) {
413
                uintptr_t b = node->key[node->keys - 1];
416
                uintptr_t b = node->key[node->keys - 1];
414
                count_t c =
417
                count_t c =
415
                    (count_t) node->value[node->keys - 1];
418
                    (count_t) node->value[node->keys - 1];
416
                unsigned int i = 0;
419
                unsigned int i = 0;
417
           
420
           
418
                if (overlaps(b, c * PAGE_SIZE, area->base,
421
                if (overlaps(b, c * PAGE_SIZE, area->base,
419
                    pages * PAGE_SIZE)) {
422
                    pages * PAGE_SIZE)) {
420
                   
423
                   
421
                    if (b + c * PAGE_SIZE <= start_free) {
424
                    if (b + c * PAGE_SIZE <= start_free) {
422
                        /*
425
                        /*
423
                         * The whole interval fits
426
                         * The whole interval fits
424
                         * completely in the resized
427
                         * completely in the resized
425
                         * address space area.
428
                         * address space area.
426
                         */
429
                         */
427
                        break;
430
                        break;
428
                    }
431
                    }
429
       
432
       
430
                    /*
433
                    /*
431
                     * Part of the interval corresponding
434
                     * Part of the interval corresponding
432
                     * to b and c overlaps with the resized
435
                     * to b and c overlaps with the resized
433
                     * address space area.
436
                     * address space area.
434
                     */
437
                     */
435
       
438
       
436
                    cond = false;   /* we are almost done */
439
                    cond = false;   /* we are almost done */
437
                    i = (start_free - b) >> PAGE_WIDTH;
440
                    i = (start_free - b) >> PAGE_WIDTH;
438
                    if (!used_space_remove(area, start_free, c - i))
441
                    if (!used_space_remove(area, start_free,
-
 
442
                        c - i))
439
                        panic("Could not remove used space.\n");
443
                        panic("Could not remove used "
-
 
444
                            "space.\n");
440
                } else {
445
                } else {
441
                    /*
446
                    /*
442
                     * The interval of used space can be
447
                     * The interval of used space can be
443
                     * completely removed.
448
                     * completely removed.
444
                     */
449
                     */
445
                    if (!used_space_remove(area, b, c))
450
                    if (!used_space_remove(area, b, c))
446
                        panic("Could not remove used space.\n");
451
                        panic("Could not remove used "
-
 
452
                            "space.\n");
447
                }
453
                }
448
           
454
           
449
                for (; i < c; i++) {
455
                for (; i < c; i++) {
450
                    pte_t *pte;
456
                    pte_t *pte;
451
           
457
           
452
                    page_table_lock(as, false);
458
                    page_table_lock(as, false);
453
                    pte = page_mapping_find(as, b +
459
                    pte = page_mapping_find(as, b +
454
                        i * PAGE_SIZE);
460
                        i * PAGE_SIZE);
455
                    ASSERT(pte && PTE_VALID(pte) &&
461
                    ASSERT(pte && PTE_VALID(pte) &&
456
                        PTE_PRESENT(pte));
462
                        PTE_PRESENT(pte));
457
                    if (area->backend &&
463
                    if (area->backend &&
458
                        area->backend->frame_free) {
464
                        area->backend->frame_free) {
459
                        area->backend->frame_free(area,
465
                        area->backend->frame_free(area,
460
                            b + i * PAGE_SIZE,
466
                            b + i * PAGE_SIZE,
461
                            PTE_GET_FRAME(pte));
467
                            PTE_GET_FRAME(pte));
462
                    }
468
                    }
463
                    page_mapping_remove(as, b +
469
                    page_mapping_remove(as, b +
464
                        i * PAGE_SIZE);
470
                        i * PAGE_SIZE);
465
                    page_table_unlock(as, false);
471
                    page_table_unlock(as, false);
466
                }
472
                }
467
            }
473
            }
468
        }
474
        }
469
 
475
 
470
        /*
476
        /*
471
         * Finish TLB shootdown sequence.
477
         * Finish TLB shootdown sequence.
472
         */
478
         */
473
 
479
 
474
        tlb_invalidate_pages(as->asid, area->base + pages * PAGE_SIZE,
480
        tlb_invalidate_pages(as->asid, area->base + pages * PAGE_SIZE,
475
            area->pages - pages);
481
            area->pages - pages);
476
        /*
482
        /*
477
         * Invalidate software translation caches (e.g. TSB on sparc64).
483
         * Invalidate software translation caches (e.g. TSB on sparc64).
478
         */
484
         */
479
        as_invalidate_translation_cache(as, area->base +
485
        as_invalidate_translation_cache(as, area->base +
480
            pages * PAGE_SIZE, area->pages - pages);
486
            pages * PAGE_SIZE, area->pages - pages);
481
        tlb_shootdown_finalize();
487
        tlb_shootdown_finalize();
482
       
488
       
483
    } else {
489
    } else {
484
        /*
490
        /*
485
         * Growing the area.
491
         * Growing the area.
486
         * Check for overlaps with other address space areas.
492
         * Check for overlaps with other address space areas.
487
         */
493
         */
488
        if (!check_area_conflicts(as, address, pages * PAGE_SIZE,
494
        if (!check_area_conflicts(as, address, pages * PAGE_SIZE,
489
            area)) {
495
            area)) {
490
            mutex_unlock(&area->lock);
496
            mutex_unlock(&area->lock);
491
            mutex_unlock(&as->lock);       
497
            mutex_unlock(&as->lock);       
492
            interrupts_restore(ipl);
498
            interrupts_restore(ipl);
493
            return EADDRNOTAVAIL;
499
            return EADDRNOTAVAIL;
494
        }
500
        }
495
    }
501
    }
496
 
502
 
497
    area->pages = pages;
503
    area->pages = pages;
498
   
504
   
499
    mutex_unlock(&area->lock);
505
    mutex_unlock(&area->lock);
500
    mutex_unlock(&as->lock);
506
    mutex_unlock(&as->lock);
501
    interrupts_restore(ipl);
507
    interrupts_restore(ipl);
502
 
508
 
503
    return 0;
509
    return 0;
504
}
510
}
505
 
511
 
506
/** Destroy address space area.
512
/** Destroy address space area.
507
 *
513
 *
508
 * @param as Address space.
514
 * @param as        Address space.
509
 * @param address Address withing the area to be deleted.
515
 * @param address   Address within the area to be deleted.
510
 *
516
 *
511
 * @return Zero on success or a value from @ref errno.h on failure.
517
 * @return      Zero on success or a value from @ref errno.h on failure.
512
 */
518
 */
513
int as_area_destroy(as_t *as, uintptr_t address)
519
int as_area_destroy(as_t *as, uintptr_t address)
514
{
520
{
515
    as_area_t *area;
521
    as_area_t *area;
516
    uintptr_t base;
522
    uintptr_t base;
517
    link_t *cur;
523
    link_t *cur;
518
    ipl_t ipl;
524
    ipl_t ipl;
519
 
525
 
520
    ipl = interrupts_disable();
526
    ipl = interrupts_disable();
521
    mutex_lock(&as->lock);
527
    mutex_lock(&as->lock);
522
 
528
 
523
    area = find_area_and_lock(as, address);
529
    area = find_area_and_lock(as, address);
524
    if (!area) {
530
    if (!area) {
525
        mutex_unlock(&as->lock);
531
        mutex_unlock(&as->lock);
526
        interrupts_restore(ipl);
532
        interrupts_restore(ipl);
527
        return ENOENT;
533
        return ENOENT;
528
    }
534
    }
529
 
535
 
530
    base = area->base;
536
    base = area->base;
531
 
537
 
532
    /*
538
    /*
533
     * Start TLB shootdown sequence.
539
     * Start TLB shootdown sequence.
534
     */
540
     */
535
    tlb_shootdown_start(TLB_INVL_PAGES, as->asid, area->base, area->pages);
541
    tlb_shootdown_start(TLB_INVL_PAGES, as->asid, area->base, area->pages);
536
 
542
 
537
    /*
543
    /*
538
     * Visit only the pages mapped by used_space B+tree.
544
     * Visit only the pages mapped by used_space B+tree.
539
     */
545
     */
540
    for (cur = area->used_space.leaf_head.next;
546
    for (cur = area->used_space.leaf_head.next;
541
        cur != &area->used_space.leaf_head; cur = cur->next) {
547
        cur != &area->used_space.leaf_head; cur = cur->next) {
542
        btree_node_t *node;
548
        btree_node_t *node;
543
        unsigned int i;
549
        unsigned int i;
544
       
550
       
545
        node = list_get_instance(cur, btree_node_t, leaf_link);
551
        node = list_get_instance(cur, btree_node_t, leaf_link);
546
        for (i = 0; i < node->keys; i++) {
552
        for (i = 0; i < node->keys; i++) {
547
            uintptr_t b = node->key[i];
553
            uintptr_t b = node->key[i];
548
            count_t j;
554
            count_t j;
549
            pte_t *pte;
555
            pte_t *pte;
550
           
556
           
551
            for (j = 0; j < (count_t) node->value[i]; j++) {
557
            for (j = 0; j < (count_t) node->value[i]; j++) {
552
                page_table_lock(as, false);
558
                page_table_lock(as, false);
553
                pte = page_mapping_find(as, b + j * PAGE_SIZE);
559
                pte = page_mapping_find(as, b + j * PAGE_SIZE);
554
                ASSERT(pte && PTE_VALID(pte) &&
560
                ASSERT(pte && PTE_VALID(pte) &&
555
                    PTE_PRESENT(pte));
561
                    PTE_PRESENT(pte));
556
                if (area->backend &&
562
                if (area->backend &&
557
                    area->backend->frame_free) {
563
                    area->backend->frame_free) {
558
                    area->backend->frame_free(area, b +
564
                    area->backend->frame_free(area, b +
559
                        j * PAGE_SIZE, PTE_GET_FRAME(pte));
565
                        j * PAGE_SIZE, PTE_GET_FRAME(pte));
560
                }
566
                }
561
                page_mapping_remove(as, b + j * PAGE_SIZE);            
567
                page_mapping_remove(as, b + j * PAGE_SIZE);            
562
                page_table_unlock(as, false);
568
                page_table_unlock(as, false);
563
            }
569
            }
564
        }
570
        }
565
    }
571
    }
566
 
572
 
567
    /*
573
    /*
568
     * Finish TLB shootdown sequence.
574
     * Finish TLB shootdown sequence.
569
     */
575
     */
570
 
576
 
571
    tlb_invalidate_pages(as->asid, area->base, area->pages);
577
    tlb_invalidate_pages(as->asid, area->base, area->pages);
572
    /*
578
    /*
573
     * Invalidate potential software translation caches (e.g. TSB on
579
     * Invalidate potential software translation caches (e.g. TSB on
574
     * sparc64).
580
     * sparc64).
575
     */
581
     */
576
    as_invalidate_translation_cache(as, area->base, area->pages);
582
    as_invalidate_translation_cache(as, area->base, area->pages);
577
    tlb_shootdown_finalize();
583
    tlb_shootdown_finalize();
578
   
584
   
579
    btree_destroy(&area->used_space);
585
    btree_destroy(&area->used_space);
580
 
586
 
581
    area->attributes |= AS_AREA_ATTR_PARTIAL;
587
    area->attributes |= AS_AREA_ATTR_PARTIAL;
582
   
588
   
583
    if (area->sh_info)
589
    if (area->sh_info)
584
        sh_info_remove_reference(area->sh_info);
590
        sh_info_remove_reference(area->sh_info);
585
       
591
       
586
    mutex_unlock(&area->lock);
592
    mutex_unlock(&area->lock);
587
 
593
 
588
    /*
594
    /*
589
     * Remove the empty area from address space.
595
     * Remove the empty area from address space.
590
     */
596
     */
591
    btree_remove(&as->as_area_btree, base, NULL);
597
    btree_remove(&as->as_area_btree, base, NULL);
592
   
598
   
593
    free(area);
599
    free(area);
594
   
600
   
595
    mutex_unlock(&as->lock);
601
    mutex_unlock(&as->lock);
596
    interrupts_restore(ipl);
602
    interrupts_restore(ipl);
597
    return 0;
603
    return 0;
598
}
604
}
599
 
605
 
600
/** Share address space area with another or the same address space.
606
/** Share address space area with another or the same address space.
601
 *
607
 *
602
 * Address space area mapping is shared with a new address space area.
608
 * Address space area mapping is shared with a new address space area.
603
 * If the source address space area has not been shared so far,
609
 * If the source address space area has not been shared so far,
604
 * a new sh_info is created. The new address space area simply gets the
610
 * a new sh_info is created. The new address space area simply gets the
605
 * sh_info of the source area. The process of duplicating the
611
 * sh_info of the source area. The process of duplicating the
606
 * mapping is done through the backend share function.
612
 * mapping is done through the backend share function.
607
 *
613
 *
608
 * @param src_as Pointer to source address space.
614
 * @param src_as    Pointer to source address space.
609
 * @param src_base Base address of the source address space area.
615
 * @param src_base  Base address of the source address space area.
610
 * @param acc_size Expected size of the source area.
616
 * @param acc_size  Expected size of the source area.
611
 * @param dst_as Pointer to destination address space.
617
 * @param dst_as    Pointer to destination address space.
612
 * @param dst_base Target base address.
618
 * @param dst_base  Target base address.
613
 * @param dst_flags_mask Destination address space area flags mask.
619
 * @param dst_flags_mask Destination address space area flags mask.
614
 *
620
 *
615
 * @return Zero on success or ENOENT if there is no such task or if there is no
621
 * @return      Zero on success or ENOENT if there is no such task or if
616
 * such address space area, EPERM if there was a problem in accepting the area
622
 *          there is no such address space area, EPERM if there was
-
 
623
 *          a problem in accepting the area or ENOMEM if there was a
617
 * or ENOMEM if there was a problem in allocating destination address space
624
 *          problem in allocating destination address space area.
618
 * area. ENOTSUP is returned if the address space area backend does not support
625
 *          ENOTSUP is returned if the address space area backend
619
 * sharing.
626
 *          does not support sharing.
620
 */
627
 */
621
int as_area_share(as_t *src_as, uintptr_t src_base, size_t acc_size,
628
int as_area_share(as_t *src_as, uintptr_t src_base, size_t acc_size,
622
    as_t *dst_as, uintptr_t dst_base, int dst_flags_mask)
629
    as_t *dst_as, uintptr_t dst_base, int dst_flags_mask)
623
{
630
{
624
    ipl_t ipl;
631
    ipl_t ipl;
625
    int src_flags;
632
    int src_flags;
626
    size_t src_size;
633
    size_t src_size;
627
    as_area_t *src_area, *dst_area;
634
    as_area_t *src_area, *dst_area;
628
    share_info_t *sh_info;
635
    share_info_t *sh_info;
629
    mem_backend_t *src_backend;
636
    mem_backend_t *src_backend;
630
    mem_backend_data_t src_backend_data;
637
    mem_backend_data_t src_backend_data;
631
   
638
   
632
    ipl = interrupts_disable();
639
    ipl = interrupts_disable();
633
    mutex_lock(&src_as->lock);
640
    mutex_lock(&src_as->lock);
634
    src_area = find_area_and_lock(src_as, src_base);
641
    src_area = find_area_and_lock(src_as, src_base);
635
    if (!src_area) {
642
    if (!src_area) {
636
        /*
643
        /*
637
         * Could not find the source address space area.
644
         * Could not find the source address space area.
638
         */
645
         */
639
        mutex_unlock(&src_as->lock);
646
        mutex_unlock(&src_as->lock);
640
        interrupts_restore(ipl);
647
        interrupts_restore(ipl);
641
        return ENOENT;
648
        return ENOENT;
642
    }
649
    }
643
 
650
 
644
    if (!src_area->backend || !src_area->backend->share) {
651
    if (!src_area->backend || !src_area->backend->share) {
645
        /*
652
        /*
646
         * There is no backend or the backend does not
653
         * There is no backend or the backend does not
647
         * know how to share the area.
654
         * know how to share the area.
648
         */
655
         */
649
        mutex_unlock(&src_area->lock);
656
        mutex_unlock(&src_area->lock);
650
        mutex_unlock(&src_as->lock);
657
        mutex_unlock(&src_as->lock);
651
        interrupts_restore(ipl);
658
        interrupts_restore(ipl);
652
        return ENOTSUP;
659
        return ENOTSUP;
653
    }
660
    }
654
   
661
   
655
    src_size = src_area->pages * PAGE_SIZE;
662
    src_size = src_area->pages * PAGE_SIZE;
656
    src_flags = src_area->flags;
663
    src_flags = src_area->flags;
657
    src_backend = src_area->backend;
664
    src_backend = src_area->backend;
658
    src_backend_data = src_area->backend_data;
665
    src_backend_data = src_area->backend_data;
659
 
666
 
660
    /* Share the cacheable flag from the original mapping */
667
    /* Share the cacheable flag from the original mapping */
661
    if (src_flags & AS_AREA_CACHEABLE)
668
    if (src_flags & AS_AREA_CACHEABLE)
662
        dst_flags_mask |= AS_AREA_CACHEABLE;
669
        dst_flags_mask |= AS_AREA_CACHEABLE;
663
 
670
 
664
    if (src_size != acc_size ||
671
    if (src_size != acc_size ||
665
        (src_flags & dst_flags_mask) != dst_flags_mask) {
672
        (src_flags & dst_flags_mask) != dst_flags_mask) {
666
        mutex_unlock(&src_area->lock);
673
        mutex_unlock(&src_area->lock);
667
        mutex_unlock(&src_as->lock);
674
        mutex_unlock(&src_as->lock);
668
        interrupts_restore(ipl);
675
        interrupts_restore(ipl);
669
        return EPERM;
676
        return EPERM;
670
    }
677
    }
671
 
678
 
672
    /*
679
    /*
673
     * Now we are committed to sharing the area.
680
     * Now we are committed to sharing the area.
674
     * First, prepare the area for sharing.
681
     * First, prepare the area for sharing.
675
     * Then it will be safe to unlock it.
682
     * Then it will be safe to unlock it.
676
     */
683
     */
677
    sh_info = src_area->sh_info;
684
    sh_info = src_area->sh_info;
678
    if (!sh_info) {
685
    if (!sh_info) {
679
        sh_info = (share_info_t *) malloc(sizeof(share_info_t), 0);
686
        sh_info = (share_info_t *) malloc(sizeof(share_info_t), 0);
680
        mutex_initialize(&sh_info->lock, MUTEX_PASSIVE);
687
        mutex_initialize(&sh_info->lock, MUTEX_PASSIVE);
681
        sh_info->refcount = 2;
688
        sh_info->refcount = 2;
682
        btree_create(&sh_info->pagemap);
689
        btree_create(&sh_info->pagemap);
683
        src_area->sh_info = sh_info;
690
        src_area->sh_info = sh_info;
684
        /*
691
        /*
685
         * Call the backend to setup sharing.
692
         * Call the backend to setup sharing.
686
         */
693
         */
687
        src_area->backend->share(src_area);
694
        src_area->backend->share(src_area);
688
    } else {
695
    } else {
689
        mutex_lock(&sh_info->lock);
696
        mutex_lock(&sh_info->lock);
690
        sh_info->refcount++;
697
        sh_info->refcount++;
691
        mutex_unlock(&sh_info->lock);
698
        mutex_unlock(&sh_info->lock);
692
    }
699
    }
693
 
700
 
694
    mutex_unlock(&src_area->lock);
701
    mutex_unlock(&src_area->lock);
695
    mutex_unlock(&src_as->lock);
702
    mutex_unlock(&src_as->lock);
696
 
703
 
697
    /*
704
    /*
698
     * Create copy of the source address space area.
705
     * Create copy of the source address space area.
699
     * The destination area is created with AS_AREA_ATTR_PARTIAL
706
     * The destination area is created with AS_AREA_ATTR_PARTIAL
700
     * attribute set which prevents race condition with
707
     * attribute set which prevents race condition with
701
     * preliminary as_page_fault() calls.
708
     * preliminary as_page_fault() calls.
702
     * The flags of the source area are masked against dst_flags_mask
709
     * The flags of the source area are masked against dst_flags_mask
703
     * to support sharing in less privileged mode.
710
     * to support sharing in less privileged mode.
704
     */
711
     */
705
    dst_area = as_area_create(dst_as, dst_flags_mask, src_size, dst_base,
712
    dst_area = as_area_create(dst_as, dst_flags_mask, src_size, dst_base,
706
        AS_AREA_ATTR_PARTIAL, src_backend, &src_backend_data);
713
        AS_AREA_ATTR_PARTIAL, src_backend, &src_backend_data);
707
    if (!dst_area) {
714
    if (!dst_area) {
708
        /*
715
        /*
709
         * Destination address space area could not be created.
716
         * Destination address space area could not be created.
710
         */
717
         */
711
        sh_info_remove_reference(sh_info);
718
        sh_info_remove_reference(sh_info);
712
       
719
       
713
        interrupts_restore(ipl);
720
        interrupts_restore(ipl);
714
        return ENOMEM;
721
        return ENOMEM;
715
    }
722
    }
716
 
723
 
717
    /*
724
    /*
718
     * Now the destination address space area has been
725
     * Now the destination address space area has been
719
     * fully initialized. Clear the AS_AREA_ATTR_PARTIAL
726
     * fully initialized. Clear the AS_AREA_ATTR_PARTIAL
720
     * attribute and set the sh_info.
727
     * attribute and set the sh_info.
721
     */
728
     */
722
    mutex_lock(&dst_as->lock); 
729
    mutex_lock(&dst_as->lock); 
723
    mutex_lock(&dst_area->lock);
730
    mutex_lock(&dst_area->lock);
724
    dst_area->attributes &= ~AS_AREA_ATTR_PARTIAL;
731
    dst_area->attributes &= ~AS_AREA_ATTR_PARTIAL;
725
    dst_area->sh_info = sh_info;
732
    dst_area->sh_info = sh_info;
726
    mutex_unlock(&dst_area->lock);
733
    mutex_unlock(&dst_area->lock);
727
    mutex_unlock(&dst_as->lock);   
734
    mutex_unlock(&dst_as->lock);   
728
 
735
 
729
    interrupts_restore(ipl);
736
    interrupts_restore(ipl);
730
   
737
   
731
    return 0;
738
    return 0;
732
}
739
}
733
 
740
 
734
/** Check access mode for address space area.
741
/** Check access mode for address space area.
735
 *
742
 *
736
 * The address space area must be locked prior to this call.
743
 * The address space area must be locked prior to this call.
737
 *
744
 *
738
 * @param area Address space area.
745
 * @param area      Address space area.
739
 * @param access Access mode.
746
 * @param access    Access mode.
740
 *
747
 *
741
 * @return False if access violates area's permissions, true otherwise.
748
 * @return      False if access violates area's permissions, true
-
 
749
 *          otherwise.
742
 */
750
 */
743
bool as_area_check_access(as_area_t *area, pf_access_t access)
751
bool as_area_check_access(as_area_t *area, pf_access_t access)
744
{
752
{
745
    int flagmap[] = {
753
    int flagmap[] = {
746
        [PF_ACCESS_READ] = AS_AREA_READ,
754
        [PF_ACCESS_READ] = AS_AREA_READ,
747
        [PF_ACCESS_WRITE] = AS_AREA_WRITE,
755
        [PF_ACCESS_WRITE] = AS_AREA_WRITE,
748
        [PF_ACCESS_EXEC] = AS_AREA_EXEC
756
        [PF_ACCESS_EXEC] = AS_AREA_EXEC
749
    };
757
    };
750
 
758
 
751
    if (!(area->flags & flagmap[access]))
759
    if (!(area->flags & flagmap[access]))
752
        return false;
760
        return false;
753
   
761
   
754
    return true;
762
    return true;
755
}
763
}
756
 
764
 
757
/** Change adress area flags.
765
/** Change adress space area flags.
758
 *
766
 *
759
 * The idea is to have the same data, but with a different access mode.
767
 * The idea is to have the same data, but with a different access mode.
760
 * This is needed e.g. for writing code into memory and then executing it.
768
 * This is needed e.g. for writing code into memory and then executing it.
761
 * In order for this to work properly, this may copy the data
769
 * In order for this to work properly, this may copy the data
762
 * into private anonymous memory (unless it's already there).
770
 * into private anonymous memory (unless it's already there).
763
 *
771
 *
764
 * @param as Address space.
772
 * @param as        Address space.
765
 * @param flags Flags of the area memory.
773
 * @param flags     Flags of the area memory.
766
 * @param address Address withing the area to be changed.
774
 * @param address   Address withing the area to be changed.
767
 *
775
 *
768
 * @return Zero on success or a value from @ref errno.h on failure.
776
 * @return      Zero on success or a value from @ref errno.h on failure.
769
 */
777
 */
770
int as_area_change_flags(as_t *as, int flags, uintptr_t address)
778
int as_area_change_flags(as_t *as, int flags, uintptr_t address)
771
{
779
{
772
    as_area_t *area;
780
    as_area_t *area;
773
    uintptr_t base;
781
    uintptr_t base;
774
    link_t *cur;
782
    link_t *cur;
775
    ipl_t ipl;
783
    ipl_t ipl;
776
    int page_flags;
784
    int page_flags;
777
    uintptr_t *old_frame;
785
    uintptr_t *old_frame;
778
    index_t frame_idx;
786
    index_t frame_idx;
779
    count_t used_pages;
787
    count_t used_pages;
780
 
788
 
781
    /* Flags for the new memory mapping */
789
    /* Flags for the new memory mapping */
782
    page_flags = area_flags_to_page_flags(flags);
790
    page_flags = area_flags_to_page_flags(flags);
783
 
791
 
784
    ipl = interrupts_disable();
792
    ipl = interrupts_disable();
785
    mutex_lock(&as->lock);
793
    mutex_lock(&as->lock);
786
 
794
 
787
    area = find_area_and_lock(as, address);
795
    area = find_area_and_lock(as, address);
788
    if (!area) {
796
    if (!area) {
789
        mutex_unlock(&as->lock);
797
        mutex_unlock(&as->lock);
790
        interrupts_restore(ipl);
798
        interrupts_restore(ipl);
791
        return ENOENT;
799
        return ENOENT;
792
    }
800
    }
793
 
801
 
794
    if (area->sh_info || area->backend != &anon_backend) {
802
    if (area->sh_info || area->backend != &anon_backend) {
795
        /* Copying shared areas not supported yet */
803
        /* Copying shared areas not supported yet */
796
        /* Copying non-anonymous memory not supported yet */
804
        /* Copying non-anonymous memory not supported yet */
797
        mutex_unlock(&area->lock);
805
        mutex_unlock(&area->lock);
798
        mutex_unlock(&as->lock);
806
        mutex_unlock(&as->lock);
799
        interrupts_restore(ipl);
807
        interrupts_restore(ipl);
800
        return ENOTSUP;
808
        return ENOTSUP;
801
    }
809
    }
802
 
810
 
803
    base = area->base;
811
    base = area->base;
804
 
812
 
805
    /*
813
    /*
806
     * Compute total number of used pages in the used_space B+tree
814
     * Compute total number of used pages in the used_space B+tree
807
     */
815
     */
808
    used_pages = 0;
816
    used_pages = 0;
809
 
817
 
810
    for (cur = area->used_space.leaf_head.next;
818
    for (cur = area->used_space.leaf_head.next;
811
        cur != &area->used_space.leaf_head; cur = cur->next) {
819
        cur != &area->used_space.leaf_head; cur = cur->next) {
812
        btree_node_t *node;
820
        btree_node_t *node;
813
        unsigned int i;
821
        unsigned int i;
814
       
822
       
815
        node = list_get_instance(cur, btree_node_t, leaf_link);
823
        node = list_get_instance(cur, btree_node_t, leaf_link);
816
        for (i = 0; i < node->keys; i++) {
824
        for (i = 0; i < node->keys; i++) {
817
            used_pages += (count_t) node->value[i];
825
            used_pages += (count_t) node->value[i];
818
        }
826
        }
819
    }
827
    }
820
 
828
 
821
    /* An array for storing frame numbers */
829
    /* An array for storing frame numbers */
822
    old_frame = malloc(used_pages * sizeof(uintptr_t), 0);
830
    old_frame = malloc(used_pages * sizeof(uintptr_t), 0);
823
 
831
 
824
    /*
832
    /*
825
     * Start TLB shootdown sequence.
833
     * Start TLB shootdown sequence.
826
     */
834
     */
827
    tlb_shootdown_start(TLB_INVL_PAGES, as->asid, area->base, area->pages);
835
    tlb_shootdown_start(TLB_INVL_PAGES, as->asid, area->base, area->pages);
828
 
836
 
829
    /*
837
    /*
830
     * Remove used pages from page tables and remember their frame
838
     * Remove used pages from page tables and remember their frame
831
     * numbers.
839
     * numbers.
832
     */
840
     */
833
    frame_idx = 0;
841
    frame_idx = 0;
834
 
842
 
835
    for (cur = area->used_space.leaf_head.next;
843
    for (cur = area->used_space.leaf_head.next;
836
        cur != &area->used_space.leaf_head; cur = cur->next) {
844
        cur != &area->used_space.leaf_head; cur = cur->next) {
837
        btree_node_t *node;
845
        btree_node_t *node;
838
        unsigned int i;
846
        unsigned int i;
839
       
847
       
840
        node = list_get_instance(cur, btree_node_t, leaf_link);
848
        node = list_get_instance(cur, btree_node_t, leaf_link);
841
        for (i = 0; i < node->keys; i++) {
849
        for (i = 0; i < node->keys; i++) {
842
            uintptr_t b = node->key[i];
850
            uintptr_t b = node->key[i];
843
            count_t j;
851
            count_t j;
844
            pte_t *pte;
852
            pte_t *pte;
845
           
853
           
846
            for (j = 0; j < (count_t) node->value[i]; j++) {
854
            for (j = 0; j < (count_t) node->value[i]; j++) {
847
                page_table_lock(as, false);
855
                page_table_lock(as, false);
848
                pte = page_mapping_find(as, b + j * PAGE_SIZE);
856
                pte = page_mapping_find(as, b + j * PAGE_SIZE);
849
                ASSERT(pte && PTE_VALID(pte) &&
857
                ASSERT(pte && PTE_VALID(pte) &&
850
                    PTE_PRESENT(pte));
858
                    PTE_PRESENT(pte));
851
                old_frame[frame_idx++] = PTE_GET_FRAME(pte);
859
                old_frame[frame_idx++] = PTE_GET_FRAME(pte);
852
 
860
 
853
                /* Remove old mapping */
861
                /* Remove old mapping */
854
                page_mapping_remove(as, b + j * PAGE_SIZE);
862
                page_mapping_remove(as, b + j * PAGE_SIZE);
855
                page_table_unlock(as, false);
863
                page_table_unlock(as, false);
856
            }
864
            }
857
        }
865
        }
858
    }
866
    }
859
 
867
 
860
    /*
868
    /*
861
     * Finish TLB shootdown sequence.
869
     * Finish TLB shootdown sequence.
862
     */
870
     */
863
 
871
 
864
    tlb_invalidate_pages(as->asid, area->base, area->pages);
872
    tlb_invalidate_pages(as->asid, area->base, area->pages);
865
    /*
873
    /*
866
     * Invalidate potential software translation caches (e.g. TSB on
874
     * Invalidate potential software translation caches (e.g. TSB on
867
     * sparc64).
875
     * sparc64).
868
     */
876
     */
869
    as_invalidate_translation_cache(as, area->base, area->pages);
877
    as_invalidate_translation_cache(as, area->base, area->pages);
870
    tlb_shootdown_finalize();
878
    tlb_shootdown_finalize();
871
 
879
 
872
    /*
880
    /*
-
 
881
     * Set the new flags.
-
 
882
     */
-
 
883
    area->flags = flags;
-
 
884
 
-
 
885
    /*
873
     * Map pages back in with new flags. This step is kept separate
886
     * Map pages back in with new flags. This step is kept separate
874
     * so that there's no instant when the memory area could be
887
     * so that the memory area could not be accesed with both the old and
875
     * accesed with both the old and the new flags at once.
888
     * the new flags at once.
876
     */
889
     */
877
    frame_idx = 0;
890
    frame_idx = 0;
878
 
891
 
879
    for (cur = area->used_space.leaf_head.next;
892
    for (cur = area->used_space.leaf_head.next;
880
        cur != &area->used_space.leaf_head; cur = cur->next) {
893
        cur != &area->used_space.leaf_head; cur = cur->next) {
881
        btree_node_t *node;
894
        btree_node_t *node;
882
        unsigned int i;
895
        unsigned int i;
883
       
896
       
884
        node = list_get_instance(cur, btree_node_t, leaf_link);
897
        node = list_get_instance(cur, btree_node_t, leaf_link);
885
        for (i = 0; i < node->keys; i++) {
898
        for (i = 0; i < node->keys; i++) {
886
            uintptr_t b = node->key[i];
899
            uintptr_t b = node->key[i];
887
            count_t j;
900
            count_t j;
888
           
901
           
889
            for (j = 0; j < (count_t) node->value[i]; j++) {
902
            for (j = 0; j < (count_t) node->value[i]; j++) {
890
                page_table_lock(as, false);
903
                page_table_lock(as, false);
891
 
904
 
892
                /* Insert the new mapping */
905
                /* Insert the new mapping */
893
                page_mapping_insert(as, b + j * PAGE_SIZE,
906
                page_mapping_insert(as, b + j * PAGE_SIZE,
894
                    old_frame[frame_idx++], page_flags);
907
                    old_frame[frame_idx++], page_flags);
895
 
908
 
896
                page_table_unlock(as, false);
909
                page_table_unlock(as, false);
897
            }
910
            }
898
        }
911
        }
899
    }
912
    }
900
 
913
 
901
    free(old_frame);
914
    free(old_frame);
902
 
915
 
903
    mutex_unlock(&area->lock);
916
    mutex_unlock(&area->lock);
904
    mutex_unlock(&as->lock);
917
    mutex_unlock(&as->lock);
905
    interrupts_restore(ipl);
918
    interrupts_restore(ipl);
906
 
919
 
907
    return 0;
920
    return 0;
908
}
921
}
909
 
922
 
910
 
923
 
911
/** Handle page fault within the current address space.
924
/** Handle page fault within the current address space.
912
 *
925
 *
913
 * This is the high-level page fault handler. It decides
926
 * This is the high-level page fault handler. It decides whether the page fault
914
 * whether the page fault can be resolved by any backend
-
 
915
 * and if so, it invokes the backend to resolve the page
927
 * can be resolved by any backend and if so, it invokes the backend to resolve
916
 * fault.
928
 * the page fault.
917
 *
929
 *
918
 * Interrupts are assumed disabled.
930
 * Interrupts are assumed disabled.
919
 *
931
 *
920
 * @param page Faulting page.
932
 * @param page      Faulting page.
921
 * @param access Access mode that caused the fault (i.e. read/write/exec).
933
 * @param access    Access mode that caused the page fault (i.e.
-
 
934
 *          read/write/exec).
922
 * @param istate Pointer to interrupted state.
935
 * @param istate    Pointer to the interrupted state.
923
 *
936
 *
924
 * @return AS_PF_FAULT on page fault, AS_PF_OK on success or AS_PF_DEFER if the
937
 * @return      AS_PF_FAULT on page fault, AS_PF_OK on success or
925
 *     fault was caused by copy_to_uspace() or copy_from_uspace().
938
 *          AS_PF_DEFER if the fault was caused by copy_to_uspace()
-
 
939
 *          or copy_from_uspace().
926
 */
940
 */
927
int as_page_fault(uintptr_t page, pf_access_t access, istate_t *istate)
941
int as_page_fault(uintptr_t page, pf_access_t access, istate_t *istate)
928
{
942
{
929
    pte_t *pte;
943
    pte_t *pte;
930
    as_area_t *area;
944
    as_area_t *area;
931
   
945
   
932
    if (!THREAD)
946
    if (!THREAD)
933
        return AS_PF_FAULT;
947
        return AS_PF_FAULT;
934
       
948
       
935
    ASSERT(AS);
949
    ASSERT(AS);
936
 
950
 
937
    mutex_lock(&AS->lock);
951
    mutex_lock(&AS->lock);
938
    area = find_area_and_lock(AS, page);   
952
    area = find_area_and_lock(AS, page);   
939
    if (!area) {
953
    if (!area) {
940
        /*
954
        /*
941
         * No area contained mapping for 'page'.
955
         * No area contained mapping for 'page'.
942
         * Signal page fault to low-level handler.
956
         * Signal page fault to low-level handler.
943
         */
957
         */
944
        mutex_unlock(&AS->lock);
958
        mutex_unlock(&AS->lock);
945
        goto page_fault;
959
        goto page_fault;
946
    }
960
    }
947
 
961
 
948
    if (area->attributes & AS_AREA_ATTR_PARTIAL) {
962
    if (area->attributes & AS_AREA_ATTR_PARTIAL) {
949
        /*
963
        /*
950
         * The address space area is not fully initialized.
964
         * The address space area is not fully initialized.
951
         * Avoid possible race by returning error.
965
         * Avoid possible race by returning error.
952
         */
966
         */
953
        mutex_unlock(&area->lock);
967
        mutex_unlock(&area->lock);
954
        mutex_unlock(&AS->lock);
968
        mutex_unlock(&AS->lock);
955
        goto page_fault;       
969
        goto page_fault;       
956
    }
970
    }
957
 
971
 
958
    if (!area->backend || !area->backend->page_fault) {
972
    if (!area->backend || !area->backend->page_fault) {
959
        /*
973
        /*
960
         * The address space area is not backed by any backend
974
         * The address space area is not backed by any backend
961
         * or the backend cannot handle page faults.
975
         * or the backend cannot handle page faults.
962
         */
976
         */
963
        mutex_unlock(&area->lock);
977
        mutex_unlock(&area->lock);
964
        mutex_unlock(&AS->lock);
978
        mutex_unlock(&AS->lock);
965
        goto page_fault;       
979
        goto page_fault;       
966
    }
980
    }
967
 
981
 
968
    page_table_lock(AS, false);
982
    page_table_lock(AS, false);
969
   
983
   
970
    /*
984
    /*
971
     * To avoid race condition between two page faults
985
     * To avoid race condition between two page faults on the same address,
972
     * on the same address, we need to make sure
-
 
973
     * the mapping has not been already inserted.
986
     * we need to make sure the mapping has not been already inserted.
974
     */
987
     */
975
    if ((pte = page_mapping_find(AS, page))) {
988
    if ((pte = page_mapping_find(AS, page))) {
976
        if (PTE_PRESENT(pte)) {
989
        if (PTE_PRESENT(pte)) {
977
            if (((access == PF_ACCESS_READ) && PTE_READABLE(pte)) ||
990
            if (((access == PF_ACCESS_READ) && PTE_READABLE(pte)) ||
978
                (access == PF_ACCESS_WRITE && PTE_WRITABLE(pte)) ||
991
                (access == PF_ACCESS_WRITE && PTE_WRITABLE(pte)) ||
979
                (access == PF_ACCESS_EXEC && PTE_EXECUTABLE(pte))) {
992
                (access == PF_ACCESS_EXEC && PTE_EXECUTABLE(pte))) {
980
                page_table_unlock(AS, false);
993
                page_table_unlock(AS, false);
981
                mutex_unlock(&area->lock);
994
                mutex_unlock(&area->lock);
982
                mutex_unlock(&AS->lock);
995
                mutex_unlock(&AS->lock);
983
                return AS_PF_OK;
996
                return AS_PF_OK;
984
            }
997
            }
985
        }
998
        }
986
    }
999
    }
987
   
1000
   
988
    /*
1001
    /*
989
     * Resort to the backend page fault handler.
1002
     * Resort to the backend page fault handler.
990
     */
1003
     */
991
    if (area->backend->page_fault(area, page, access) != AS_PF_OK) {
1004
    if (area->backend->page_fault(area, page, access) != AS_PF_OK) {
992
        page_table_unlock(AS, false);
1005
        page_table_unlock(AS, false);
993
        mutex_unlock(&area->lock);
1006
        mutex_unlock(&area->lock);
994
        mutex_unlock(&AS->lock);
1007
        mutex_unlock(&AS->lock);
995
        goto page_fault;
1008
        goto page_fault;
996
    }
1009
    }
997
   
1010
   
998
    page_table_unlock(AS, false);
1011
    page_table_unlock(AS, false);
999
    mutex_unlock(&area->lock);
1012
    mutex_unlock(&area->lock);
1000
    mutex_unlock(&AS->lock);
1013
    mutex_unlock(&AS->lock);
1001
    return AS_PF_OK;
1014
    return AS_PF_OK;
1002
 
1015
 
1003
page_fault:
1016
page_fault:
1004
    if (THREAD->in_copy_from_uspace) {
1017
    if (THREAD->in_copy_from_uspace) {
1005
        THREAD->in_copy_from_uspace = false;
1018
        THREAD->in_copy_from_uspace = false;
1006
        istate_set_retaddr(istate,
1019
        istate_set_retaddr(istate,
1007
            (uintptr_t) &memcpy_from_uspace_failover_address);
1020
            (uintptr_t) &memcpy_from_uspace_failover_address);
1008
    } else if (THREAD->in_copy_to_uspace) {
1021
    } else if (THREAD->in_copy_to_uspace) {
1009
        THREAD->in_copy_to_uspace = false;
1022
        THREAD->in_copy_to_uspace = false;
1010
        istate_set_retaddr(istate,
1023
        istate_set_retaddr(istate,
1011
            (uintptr_t) &memcpy_to_uspace_failover_address);
1024
            (uintptr_t) &memcpy_to_uspace_failover_address);
1012
    } else {
1025
    } else {
1013
        return AS_PF_FAULT;
1026
        return AS_PF_FAULT;
1014
    }
1027
    }
1015
 
1028
 
1016
    return AS_PF_DEFER;
1029
    return AS_PF_DEFER;
1017
}
1030
}
1018
 
1031
 
1019
/** Switch address spaces.
1032
/** Switch address spaces.
1020
 *
1033
 *
1021
 * Note that this function cannot sleep as it is essentially a part of
1034
 * Note that this function cannot sleep as it is essentially a part of
1022
 * scheduling. Sleeping here would lead to deadlock on wakeup. Another
1035
 * scheduling. Sleeping here would lead to deadlock on wakeup. Another
1023
 * thing which is forbidden in this context is locking the address space.
1036
 * thing which is forbidden in this context is locking the address space.
1024
 *
1037
 *
1025
 * When this function is enetered, no spinlocks may be held.
1038
 * When this function is enetered, no spinlocks may be held.
1026
 *
1039
 *
1027
 * @param old Old address space or NULL.
1040
 * @param old       Old address space or NULL.
1028
 * @param new New address space.
1041
 * @param new       New address space.
1029
 */
1042
 */
1030
void as_switch(as_t *old_as, as_t *new_as)
1043
void as_switch(as_t *old_as, as_t *new_as)
1031
{
1044
{
1032
    DEADLOCK_PROBE_INIT(p_asidlock);
1045
    DEADLOCK_PROBE_INIT(p_asidlock);
1033
    preemption_disable();
1046
    preemption_disable();
1034
retry:
1047
retry:
1035
    (void) interrupts_disable();
1048
    (void) interrupts_disable();
1036
    if (!spinlock_trylock(&asidlock)) {
1049
    if (!spinlock_trylock(&asidlock)) {
1037
        /*
1050
        /*
1038
         * Avoid deadlock with TLB shootdown.
1051
         * Avoid deadlock with TLB shootdown.
1039
         * We can enable interrupts here because
1052
         * We can enable interrupts here because
1040
         * preemption is disabled. We should not be
1053
         * preemption is disabled. We should not be
1041
         * holding any other lock.
1054
         * holding any other lock.
1042
         */
1055
         */
1043
        (void) interrupts_enable();
1056
        (void) interrupts_enable();
1044
        DEADLOCK_PROBE(p_asidlock, DEADLOCK_THRESHOLD);
1057
        DEADLOCK_PROBE(p_asidlock, DEADLOCK_THRESHOLD);
1045
        goto retry;
1058
        goto retry;
1046
    }
1059
    }
1047
    preemption_enable();
1060
    preemption_enable();
1048
 
1061
 
1049
    /*
1062
    /*
1050
     * First, take care of the old address space.
1063
     * First, take care of the old address space.
1051
     */
1064
     */
1052
    if (old_as) {
1065
    if (old_as) {
1053
        ASSERT(old_as->cpu_refcount);
1066
        ASSERT(old_as->cpu_refcount);
1054
        if((--old_as->cpu_refcount == 0) && (old_as != AS_KERNEL)) {
1067
        if((--old_as->cpu_refcount == 0) && (old_as != AS_KERNEL)) {
1055
            /*
1068
            /*
1056
             * The old address space is no longer active on
1069
             * The old address space is no longer active on
1057
             * any processor. It can be appended to the
1070
             * any processor. It can be appended to the
1058
             * list of inactive address spaces with assigned
1071
             * list of inactive address spaces with assigned
1059
             * ASID.
1072
             * ASID.
1060
             */
1073
             */
1061
            ASSERT(old_as->asid != ASID_INVALID);
1074
            ASSERT(old_as->asid != ASID_INVALID);
1062
            list_append(&old_as->inactive_as_with_asid_link,
1075
            list_append(&old_as->inactive_as_with_asid_link,
1063
                &inactive_as_with_asid_head);
1076
                &inactive_as_with_asid_head);
1064
        }
1077
        }
1065
 
1078
 
1066
        /*
1079
        /*
1067
         * Perform architecture-specific tasks when the address space
1080
         * Perform architecture-specific tasks when the address space
1068
         * is being removed from the CPU.
1081
         * is being removed from the CPU.
1069
         */
1082
         */
1070
        as_deinstall_arch(old_as);
1083
        as_deinstall_arch(old_as);
1071
    }
1084
    }
1072
 
1085
 
1073
    /*
1086
    /*
1074
     * Second, prepare the new address space.
1087
     * Second, prepare the new address space.
1075
     */
1088
     */
1076
    if ((new_as->cpu_refcount++ == 0) && (new_as != AS_KERNEL)) {
1089
    if ((new_as->cpu_refcount++ == 0) && (new_as != AS_KERNEL)) {
1077
        if (new_as->asid != ASID_INVALID)
1090
        if (new_as->asid != ASID_INVALID)
1078
            list_remove(&new_as->inactive_as_with_asid_link);
1091
            list_remove(&new_as->inactive_as_with_asid_link);
1079
        else
1092
        else
1080
            new_as->asid = asid_get();
1093
            new_as->asid = asid_get();
1081
    }
1094
    }
1082
#ifdef AS_PAGE_TABLE
1095
#ifdef AS_PAGE_TABLE
1083
    SET_PTL0_ADDRESS(new_as->genarch.page_table);
1096
    SET_PTL0_ADDRESS(new_as->genarch.page_table);
1084
#endif
1097
#endif
1085
   
1098
   
1086
    /*
1099
    /*
1087
     * Perform architecture-specific steps.
1100
     * Perform architecture-specific steps.
1088
     * (e.g. write ASID to hardware register etc.)
1101
     * (e.g. write ASID to hardware register etc.)
1089
     */
1102
     */
1090
    as_install_arch(new_as);
1103
    as_install_arch(new_as);
1091
 
1104
 
1092
    spinlock_unlock(&asidlock);
1105
    spinlock_unlock(&asidlock);
1093
   
1106
   
1094
    AS = new_as;
1107
    AS = new_as;
1095
}
1108
}
1096
 
1109
 
1097
/** Convert address space area flags to page flags.
1110
/** Convert address space area flags to page flags.
1098
 *
1111
 *
1099
 * @param aflags Flags of some address space area.
1112
 * @param aflags    Flags of some address space area.
1100
 *
1113
 *
1101
 * @return Flags to be passed to page_mapping_insert().
1114
 * @return      Flags to be passed to page_mapping_insert().
1102
 */
1115
 */
1103
int area_flags_to_page_flags(int aflags)
1116
int area_flags_to_page_flags(int aflags)
1104
{
1117
{
1105
    int flags;
1118
    int flags;
1106
 
1119
 
1107
    flags = PAGE_USER | PAGE_PRESENT;
1120
    flags = PAGE_USER | PAGE_PRESENT;
1108
   
1121
   
1109
    if (aflags & AS_AREA_READ)
1122
    if (aflags & AS_AREA_READ)
1110
        flags |= PAGE_READ;
1123
        flags |= PAGE_READ;
1111
       
1124
       
1112
    if (aflags & AS_AREA_WRITE)
1125
    if (aflags & AS_AREA_WRITE)
1113
        flags |= PAGE_WRITE;
1126
        flags |= PAGE_WRITE;
1114
   
1127
   
1115
    if (aflags & AS_AREA_EXEC)
1128
    if (aflags & AS_AREA_EXEC)
1116
        flags |= PAGE_EXEC;
1129
        flags |= PAGE_EXEC;
1117
   
1130
   
1118
    if (aflags & AS_AREA_CACHEABLE)
1131
    if (aflags & AS_AREA_CACHEABLE)
1119
        flags |= PAGE_CACHEABLE;
1132
        flags |= PAGE_CACHEABLE;
1120
       
1133
       
1121
    return flags;
1134
    return flags;
1122
}
1135
}
1123
 
1136
 
1124
/** Compute flags for virtual address translation subsytem.
1137
/** Compute flags for virtual address translation subsytem.
1125
 *
1138
 *
1126
 * The address space area must be locked.
1139
 * The address space area must be locked.
1127
 * Interrupts must be disabled.
1140
 * Interrupts must be disabled.
1128
 *
1141
 *
1129
 * @param a Address space area.
1142
 * @param a     Address space area.
1130
 *
1143
 *
1131
 * @return Flags to be used in page_mapping_insert().
1144
 * @return      Flags to be used in page_mapping_insert().
1132
 */
1145
 */
1133
int as_area_get_flags(as_area_t *a)
1146
int as_area_get_flags(as_area_t *a)
1134
{
1147
{
1135
    return area_flags_to_page_flags(a->flags);
1148
    return area_flags_to_page_flags(a->flags);
1136
}
1149
}
1137
 
1150
 
1138
/** Create page table.
1151
/** Create page table.
1139
 *
1152
 *
1140
 * Depending on architecture, create either address space
1153
 * Depending on architecture, create either address space private or global page
1141
 * private or global page table.
1154
 * table.
1142
 *
1155
 *
1143
 * @param flags Flags saying whether the page table is for kernel address space.
1156
 * @param flags     Flags saying whether the page table is for the kernel
-
 
1157
 *          address space.
1144
 *
1158
 *
1145
 * @return First entry of the page table.
1159
 * @return      First entry of the page table.
1146
 */
1160
 */
1147
pte_t *page_table_create(int flags)
1161
pte_t *page_table_create(int flags)
1148
{
1162
{
1149
    ASSERT(as_operations);
1163
    ASSERT(as_operations);
1150
    ASSERT(as_operations->page_table_create);
1164
    ASSERT(as_operations->page_table_create);
1151
   
1165
   
1152
    return as_operations->page_table_create(flags);
1166
    return as_operations->page_table_create(flags);
1153
}
1167
}
1154
 
1168
 
1155
/** Destroy page table.
1169
/** Destroy page table.
1156
 *
1170
 *
1157
 * Destroy page table in architecture specific way.
1171
 * Destroy page table in architecture specific way.
1158
 *
1172
 *
1159
 * @param page_table Physical address of PTL0.
1173
 * @param page_table    Physical address of PTL0.
1160
 */
1174
 */
1161
void page_table_destroy(pte_t *page_table)
1175
void page_table_destroy(pte_t *page_table)
1162
{
1176
{
1163
    ASSERT(as_operations);
1177
    ASSERT(as_operations);
1164
    ASSERT(as_operations->page_table_destroy);
1178
    ASSERT(as_operations->page_table_destroy);
1165
   
1179
   
1166
    as_operations->page_table_destroy(page_table);
1180
    as_operations->page_table_destroy(page_table);
1167
}
1181
}
1168
 
1182
 
1169
/** Lock page table.
1183
/** Lock page table.
1170
 *
1184
 *
1171
 * This function should be called before any page_mapping_insert(),
1185
 * This function should be called before any page_mapping_insert(),
1172
 * page_mapping_remove() and page_mapping_find().
1186
 * page_mapping_remove() and page_mapping_find().
1173
 *
1187
 *
1174
 * Locking order is such that address space areas must be locked
1188
 * Locking order is such that address space areas must be locked
1175
 * prior to this call. Address space can be locked prior to this
1189
 * prior to this call. Address space can be locked prior to this
1176
 * call in which case the lock argument is false.
1190
 * call in which case the lock argument is false.
1177
 *
1191
 *
1178
 * @param as Address space.
1192
 * @param as        Address space.
1179
 * @param lock If false, do not attempt to lock as->lock.
1193
 * @param lock      If false, do not attempt to lock as->lock.
1180
 */
1194
 */
1181
void page_table_lock(as_t *as, bool lock)
1195
void page_table_lock(as_t *as, bool lock)
1182
{
1196
{
1183
    ASSERT(as_operations);
1197
    ASSERT(as_operations);
1184
    ASSERT(as_operations->page_table_lock);
1198
    ASSERT(as_operations->page_table_lock);
1185
   
1199
   
1186
    as_operations->page_table_lock(as, lock);
1200
    as_operations->page_table_lock(as, lock);
1187
}
1201
}
1188
 
1202
 
1189
/** Unlock page table.
1203
/** Unlock page table.
1190
 *
1204
 *
1191
 * @param as Address space.
1205
 * @param as        Address space.
1192
 * @param unlock If false, do not attempt to unlock as->lock.
1206
 * @param unlock    If false, do not attempt to unlock as->lock.
1193
 */
1207
 */
1194
void page_table_unlock(as_t *as, bool unlock)
1208
void page_table_unlock(as_t *as, bool unlock)
1195
{
1209
{
1196
    ASSERT(as_operations);
1210
    ASSERT(as_operations);
1197
    ASSERT(as_operations->page_table_unlock);
1211
    ASSERT(as_operations->page_table_unlock);
1198
   
1212
   
1199
    as_operations->page_table_unlock(as, unlock);
1213
    as_operations->page_table_unlock(as, unlock);
1200
}
1214
}
1201
 
1215
 
1202
 
1216
 
1203
/** Find address space area and lock it.
1217
/** Find address space area and lock it.
1204
 *
1218
 *
1205
 * The address space must be locked and interrupts must be disabled.
1219
 * The address space must be locked and interrupts must be disabled.
1206
 *
1220
 *
1207
 * @param as Address space.
1221
 * @param as        Address space.
1208
 * @param va Virtual address.
1222
 * @param va        Virtual address.
1209
 *
1223
 *
1210
 * @return Locked address space area containing va on success or NULL on
1224
 * @return      Locked address space area containing va on success or
1211
 *     failure.
1225
 *          NULL on failure.
1212
 */
1226
 */
1213
as_area_t *find_area_and_lock(as_t *as, uintptr_t va)
1227
as_area_t *find_area_and_lock(as_t *as, uintptr_t va)
1214
{
1228
{
1215
    as_area_t *a;
1229
    as_area_t *a;
1216
    btree_node_t *leaf, *lnode;
1230
    btree_node_t *leaf, *lnode;
1217
    unsigned int i;
1231
    unsigned int i;
1218
   
1232
   
1219
    a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf);
1233
    a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf);
1220
    if (a) {
1234
    if (a) {
1221
        /* va is the base address of an address space area */
1235
        /* va is the base address of an address space area */
1222
        mutex_lock(&a->lock);
1236
        mutex_lock(&a->lock);
1223
        return a;
1237
        return a;
1224
    }
1238
    }
1225
   
1239
   
1226
    /*
1240
    /*
1227
     * Search the leaf node and the righmost record of its left neighbour
1241
     * Search the leaf node and the righmost record of its left neighbour
1228
     * to find out whether this is a miss or va belongs to an address
1242
     * to find out whether this is a miss or va belongs to an address
1229
     * space area found there.
1243
     * space area found there.
1230
     */
1244
     */
1231
   
1245
   
1232
    /* First, search the leaf node itself. */
1246
    /* First, search the leaf node itself. */
1233
    for (i = 0; i < leaf->keys; i++) {
1247
    for (i = 0; i < leaf->keys; i++) {
1234
        a = (as_area_t *) leaf->value[i];
1248
        a = (as_area_t *) leaf->value[i];
1235
        mutex_lock(&a->lock);
1249
        mutex_lock(&a->lock);
1236
        if ((a->base <= va) && (va < a->base + a->pages * PAGE_SIZE)) {
1250
        if ((a->base <= va) && (va < a->base + a->pages * PAGE_SIZE)) {
1237
            return a;
1251
            return a;
1238
        }
1252
        }
1239
        mutex_unlock(&a->lock);
1253
        mutex_unlock(&a->lock);
1240
    }
1254
    }
1241
 
1255
 
1242
    /*
1256
    /*
1243
     * Second, locate the left neighbour and test its last record.
1257
     * Second, locate the left neighbour and test its last record.
1244
     * Because of its position in the B+tree, it must have base < va.
1258
     * Because of its position in the B+tree, it must have base < va.
1245
     */
1259
     */
1246
    lnode = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf);
1260
    lnode = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf);
1247
    if (lnode) {
1261
    if (lnode) {
1248
        a = (as_area_t *) lnode->value[lnode->keys - 1];
1262
        a = (as_area_t *) lnode->value[lnode->keys - 1];
1249
        mutex_lock(&a->lock);
1263
        mutex_lock(&a->lock);
1250
        if (va < a->base + a->pages * PAGE_SIZE) {
1264
        if (va < a->base + a->pages * PAGE_SIZE) {
1251
            return a;
1265
            return a;
1252
        }
1266
        }
1253
        mutex_unlock(&a->lock);
1267
        mutex_unlock(&a->lock);
1254
    }
1268
    }
1255
 
1269
 
1256
    return NULL;
1270
    return NULL;
1257
}
1271
}
1258
 
1272
 
1259
/** Check area conflicts with other areas.
1273
/** Check area conflicts with other areas.
1260
 *
1274
 *
1261
 * The address space must be locked and interrupts must be disabled.
1275
 * The address space must be locked and interrupts must be disabled.
1262
 *
1276
 *
1263
 * @param as Address space.
1277
 * @param as        Address space.
1264
 * @param va Starting virtual address of the area being tested.
1278
 * @param va        Starting virtual address of the area being tested.
1265
 * @param size Size of the area being tested.
1279
 * @param size      Size of the area being tested.
1266
 * @param avoid_area Do not touch this area.
1280
 * @param avoid_area    Do not touch this area.
1267
 *
1281
 *
1268
 * @return True if there is no conflict, false otherwise.
1282
 * @return      True if there is no conflict, false otherwise.
1269
 */
1283
 */
-
 
1284
bool
1270
bool check_area_conflicts(as_t *as, uintptr_t va, size_t size,
1285
check_area_conflicts(as_t *as, uintptr_t va, size_t size, as_area_t *avoid_area)
1271
              as_area_t *avoid_area)
-
 
1272
{
1286
{
1273
    as_area_t *a;
1287
    as_area_t *a;
1274
    btree_node_t *leaf, *node;
1288
    btree_node_t *leaf, *node;
1275
    unsigned int i;
1289
    unsigned int i;
1276
   
1290
   
1277
    /*
1291
    /*
1278
     * We don't want any area to have conflicts with NULL page.
1292
     * We don't want any area to have conflicts with NULL page.
1279
     */
1293
     */
1280
    if (overlaps(va, size, NULL, PAGE_SIZE))
1294
    if (overlaps(va, size, NULL, PAGE_SIZE))
1281
        return false;
1295
        return false;
1282
   
1296
   
1283
    /*
1297
    /*
1284
     * The leaf node is found in O(log n), where n is proportional to
1298
     * The leaf node is found in O(log n), where n is proportional to
1285
     * the number of address space areas belonging to as.
1299
     * the number of address space areas belonging to as.
1286
     * The check for conflicts is then attempted on the rightmost
1300
     * The check for conflicts is then attempted on the rightmost
1287
     * record in the left neighbour, the leftmost record in the right
1301
     * record in the left neighbour, the leftmost record in the right
1288
     * neighbour and all records in the leaf node itself.
1302
     * neighbour and all records in the leaf node itself.
1289
     */
1303
     */
1290
   
1304
   
1291
    if ((a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf))) {
1305
    if ((a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf))) {
1292
        if (a != avoid_area)
1306
        if (a != avoid_area)
1293
            return false;
1307
            return false;
1294
    }
1308
    }
1295
   
1309
   
1296
    /* First, check the two border cases. */
1310
    /* First, check the two border cases. */
1297
    if ((node = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf))) {
1311
    if ((node = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf))) {
1298
        a = (as_area_t *) node->value[node->keys - 1];
1312
        a = (as_area_t *) node->value[node->keys - 1];
1299
        mutex_lock(&a->lock);
1313
        mutex_lock(&a->lock);
1300
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1314
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1301
            mutex_unlock(&a->lock);
1315
            mutex_unlock(&a->lock);
1302
            return false;
1316
            return false;
1303
        }
1317
        }
1304
        mutex_unlock(&a->lock);
1318
        mutex_unlock(&a->lock);
1305
    }
1319
    }
1306
    node = btree_leaf_node_right_neighbour(&as->as_area_btree, leaf);
1320
    node = btree_leaf_node_right_neighbour(&as->as_area_btree, leaf);
1307
    if (node) {
1321
    if (node) {
1308
        a = (as_area_t *) node->value[0];
1322
        a = (as_area_t *) node->value[0];
1309
        mutex_lock(&a->lock);
1323
        mutex_lock(&a->lock);
1310
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1324
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1311
            mutex_unlock(&a->lock);
1325
            mutex_unlock(&a->lock);
1312
            return false;
1326
            return false;
1313
        }
1327
        }
1314
        mutex_unlock(&a->lock);
1328
        mutex_unlock(&a->lock);
1315
    }
1329
    }
1316
   
1330
   
1317
    /* Second, check the leaf node. */
1331
    /* Second, check the leaf node. */
1318
    for (i = 0; i < leaf->keys; i++) {
1332
    for (i = 0; i < leaf->keys; i++) {
1319
        a = (as_area_t *) leaf->value[i];
1333
        a = (as_area_t *) leaf->value[i];
1320
   
1334
   
1321
        if (a == avoid_area)
1335
        if (a == avoid_area)
1322
            continue;
1336
            continue;
1323
   
1337
   
1324
        mutex_lock(&a->lock);
1338
        mutex_lock(&a->lock);
1325
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1339
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1326
            mutex_unlock(&a->lock);
1340
            mutex_unlock(&a->lock);
1327
            return false;
1341
            return false;
1328
        }
1342
        }
1329
        mutex_unlock(&a->lock);
1343
        mutex_unlock(&a->lock);
1330
    }
1344
    }
1331
 
1345
 
1332
    /*
1346
    /*
1333
     * So far, the area does not conflict with other areas.
1347
     * So far, the area does not conflict with other areas.
1334
     * Check if it doesn't conflict with kernel address space.
1348
     * Check if it doesn't conflict with kernel address space.
1335
     */  
1349
     */  
1336
    if (!KERNEL_ADDRESS_SPACE_SHADOWED) {
1350
    if (!KERNEL_ADDRESS_SPACE_SHADOWED) {
1337
        return !overlaps(va, size,
1351
        return !overlaps(va, size,
1338
            KERNEL_ADDRESS_SPACE_START,
1352
            KERNEL_ADDRESS_SPACE_START,
1339
            KERNEL_ADDRESS_SPACE_END - KERNEL_ADDRESS_SPACE_START);
1353
            KERNEL_ADDRESS_SPACE_END - KERNEL_ADDRESS_SPACE_START);
1340
    }
1354
    }
1341
 
1355
 
1342
    return true;
1356
    return true;
1343
}
1357
}
1344
 
1358
 
1345
/** Return size of the address space area with given base.
1359
/** Return size of the address space area with given base.
1346
 *
1360
 *
1347
 * @param base      Arbitrary address insede the address space area.
1361
 * @param base      Arbitrary address insede the address space area.
1348
 *
1362
 *
1349
 * @return      Size of the address space area in bytes or zero if it
1363
 * @return      Size of the address space area in bytes or zero if it
1350
 *          does not exist.
1364
 *          does not exist.
1351
 */
1365
 */
1352
size_t as_area_get_size(uintptr_t base)
1366
size_t as_area_get_size(uintptr_t base)
1353
{
1367
{
1354
    ipl_t ipl;
1368
    ipl_t ipl;
1355
    as_area_t *src_area;
1369
    as_area_t *src_area;
1356
    size_t size;
1370
    size_t size;
1357
 
1371
 
1358
    ipl = interrupts_disable();
1372
    ipl = interrupts_disable();
1359
    src_area = find_area_and_lock(AS, base);
1373
    src_area = find_area_and_lock(AS, base);
1360
    if (src_area){
1374
    if (src_area) {
1361
        size = src_area->pages * PAGE_SIZE;
1375
        size = src_area->pages * PAGE_SIZE;
1362
        mutex_unlock(&src_area->lock);
1376
        mutex_unlock(&src_area->lock);
1363
    } else {
1377
    } else {
1364
        size = 0;
1378
        size = 0;
1365
    }
1379
    }
1366
    interrupts_restore(ipl);
1380
    interrupts_restore(ipl);
1367
    return size;
1381
    return size;
1368
}
1382
}
1369
 
1383
 
1370
/** Mark portion of address space area as used.
1384
/** Mark portion of address space area as used.
1371
 *
1385
 *
1372
 * The address space area must be already locked.
1386
 * The address space area must be already locked.
1373
 *
1387
 *
1374
 * @param a Address space area.
1388
 * @param a     Address space area.
1375
 * @param page First page to be marked.
1389
 * @param page      First page to be marked.
1376
 * @param count Number of page to be marked.
1390
 * @param count     Number of page to be marked.
1377
 *
1391
 *
1378
 * @return 0 on failure and 1 on success.
1392
 * @return      Zero on failure and non-zero on success.
1379
 */
1393
 */
1380
int used_space_insert(as_area_t *a, uintptr_t page, count_t count)
1394
int used_space_insert(as_area_t *a, uintptr_t page, count_t count)
1381
{
1395
{
1382
    btree_node_t *leaf, *node;
1396
    btree_node_t *leaf, *node;
1383
    count_t pages;
1397
    count_t pages;
1384
    unsigned int i;
1398
    unsigned int i;
1385
 
1399
 
1386
    ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1400
    ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1387
    ASSERT(count);
1401
    ASSERT(count);
1388
 
1402
 
1389
    pages = (count_t) btree_search(&a->used_space, page, &leaf);
1403
    pages = (count_t) btree_search(&a->used_space, page, &leaf);
1390
    if (pages) {
1404
    if (pages) {
1391
        /*
1405
        /*
1392
         * We hit the beginning of some used space.
1406
         * We hit the beginning of some used space.
1393
         */
1407
         */
1394
        return 0;
1408
        return 0;
1395
    }
1409
    }
1396
 
1410
 
1397
    if (!leaf->keys) {
1411
    if (!leaf->keys) {
1398
        btree_insert(&a->used_space, page, (void *) count, leaf);
1412
        btree_insert(&a->used_space, page, (void *) count, leaf);
1399
        return 1;
1413
        return 1;
1400
    }
1414
    }
1401
 
1415
 
1402
    node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1416
    node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1403
    if (node) {
1417
    if (node) {
1404
        uintptr_t left_pg = node->key[node->keys - 1];
1418
        uintptr_t left_pg = node->key[node->keys - 1];
1405
        uintptr_t right_pg = leaf->key[0];
1419
        uintptr_t right_pg = leaf->key[0];
1406
        count_t left_cnt = (count_t) node->value[node->keys - 1];
1420
        count_t left_cnt = (count_t) node->value[node->keys - 1];
1407
        count_t right_cnt = (count_t) leaf->value[0];
1421
        count_t right_cnt = (count_t) leaf->value[0];
1408
       
1422
       
1409
        /*
1423
        /*
1410
         * Examine the possibility that the interval fits
1424
         * Examine the possibility that the interval fits
1411
         * somewhere between the rightmost interval of
1425
         * somewhere between the rightmost interval of
1412
         * the left neigbour and the first interval of the leaf.
1426
         * the left neigbour and the first interval of the leaf.
1413
         */
1427
         */
1414
         
1428
         
1415
        if (page >= right_pg) {
1429
        if (page >= right_pg) {
1416
            /* Do nothing. */
1430
            /* Do nothing. */
1417
        } else if (overlaps(page, count * PAGE_SIZE, left_pg,
1431
        } else if (overlaps(page, count * PAGE_SIZE, left_pg,
1418
            left_cnt * PAGE_SIZE)) {
1432
            left_cnt * PAGE_SIZE)) {
1419
            /* The interval intersects with the left interval. */
1433
            /* The interval intersects with the left interval. */
1420
            return 0;
1434
            return 0;
1421
        } else if (overlaps(page, count * PAGE_SIZE, right_pg,
1435
        } else if (overlaps(page, count * PAGE_SIZE, right_pg,
1422
            right_cnt * PAGE_SIZE)) {
1436
            right_cnt * PAGE_SIZE)) {
1423
            /* The interval intersects with the right interval. */
1437
            /* The interval intersects with the right interval. */
1424
            return 0;          
1438
            return 0;          
1425
        } else if ((page == left_pg + left_cnt * PAGE_SIZE) &&
1439
        } else if ((page == left_pg + left_cnt * PAGE_SIZE) &&
1426
            (page + count * PAGE_SIZE == right_pg)) {
1440
            (page + count * PAGE_SIZE == right_pg)) {
1427
            /*
1441
            /*
1428
             * The interval can be added by merging the two already
1442
             * The interval can be added by merging the two already
1429
             * present intervals.
1443
             * present intervals.
1430
             */
1444
             */
1431
            node->value[node->keys - 1] += count + right_cnt;
1445
            node->value[node->keys - 1] += count + right_cnt;
1432
            btree_remove(&a->used_space, right_pg, leaf);
1446
            btree_remove(&a->used_space, right_pg, leaf);
1433
            return 1;
1447
            return 1;
1434
        } else if (page == left_pg + left_cnt * PAGE_SIZE) {
1448
        } else if (page == left_pg + left_cnt * PAGE_SIZE) {
1435
            /*
1449
            /*
1436
             * The interval can be added by simply growing the left
1450
             * The interval can be added by simply growing the left
1437
             * interval.
1451
             * interval.
1438
             */
1452
             */
1439
            node->value[node->keys - 1] += count;
1453
            node->value[node->keys - 1] += count;
1440
            return 1;
1454
            return 1;
1441
        } else if (page + count * PAGE_SIZE == right_pg) {
1455
        } else if (page + count * PAGE_SIZE == right_pg) {
1442
            /*
1456
            /*
1443
             * The interval can be addded by simply moving base of
1457
             * The interval can be addded by simply moving base of
1444
             * the right interval down and increasing its size
1458
             * the right interval down and increasing its size
1445
             * accordingly.
1459
             * accordingly.
1446
             */
1460
             */
1447
            leaf->value[0] += count;
1461
            leaf->value[0] += count;
1448
            leaf->key[0] = page;
1462
            leaf->key[0] = page;
1449
            return 1;
1463
            return 1;
1450
        } else {
1464
        } else {
1451
            /*
1465
            /*
1452
             * The interval is between both neigbouring intervals,
1466
             * The interval is between both neigbouring intervals,
1453
             * but cannot be merged with any of them.
1467
             * but cannot be merged with any of them.
1454
             */
1468
             */
1455
            btree_insert(&a->used_space, page, (void *) count,
1469
            btree_insert(&a->used_space, page, (void *) count,
1456
                leaf);
1470
                leaf);
1457
            return 1;
1471
            return 1;
1458
        }
1472
        }
1459
    } else if (page < leaf->key[0]) {
1473
    } else if (page < leaf->key[0]) {
1460
        uintptr_t right_pg = leaf->key[0];
1474
        uintptr_t right_pg = leaf->key[0];
1461
        count_t right_cnt = (count_t) leaf->value[0];
1475
        count_t right_cnt = (count_t) leaf->value[0];
1462
   
1476
   
1463
        /*
1477
        /*
1464
         * Investigate the border case in which the left neighbour does
1478
         * Investigate the border case in which the left neighbour does
1465
         * not exist but the interval fits from the left.
1479
         * not exist but the interval fits from the left.
1466
         */
1480
         */
1467
         
1481
         
1468
        if (overlaps(page, count * PAGE_SIZE, right_pg,
1482
        if (overlaps(page, count * PAGE_SIZE, right_pg,
1469
            right_cnt * PAGE_SIZE)) {
1483
            right_cnt * PAGE_SIZE)) {
1470
            /* The interval intersects with the right interval. */
1484
            /* The interval intersects with the right interval. */
1471
            return 0;
1485
            return 0;
1472
        } else if (page + count * PAGE_SIZE == right_pg) {
1486
        } else if (page + count * PAGE_SIZE == right_pg) {
1473
            /*
1487
            /*
1474
             * The interval can be added by moving the base of the
1488
             * The interval can be added by moving the base of the
1475
             * right interval down and increasing its size
1489
             * right interval down and increasing its size
1476
             * accordingly.
1490
             * accordingly.
1477
             */
1491
             */
1478
            leaf->key[0] = page;
1492
            leaf->key[0] = page;
1479
            leaf->value[0] += count;
1493
            leaf->value[0] += count;
1480
            return 1;
1494
            return 1;
1481
        } else {
1495
        } else {
1482
            /*
1496
            /*
1483
             * The interval doesn't adjoin with the right interval.
1497
             * The interval doesn't adjoin with the right interval.
1484
             * It must be added individually.
1498
             * It must be added individually.
1485
             */
1499
             */
1486
            btree_insert(&a->used_space, page, (void *) count,
1500
            btree_insert(&a->used_space, page, (void *) count,
1487
                leaf);
1501
                leaf);
1488
            return 1;
1502
            return 1;
1489
        }
1503
        }
1490
    }
1504
    }
1491
 
1505
 
1492
    node = btree_leaf_node_right_neighbour(&a->used_space, leaf);
1506
    node = btree_leaf_node_right_neighbour(&a->used_space, leaf);
1493
    if (node) {
1507
    if (node) {
1494
        uintptr_t left_pg = leaf->key[leaf->keys - 1];
1508
        uintptr_t left_pg = leaf->key[leaf->keys - 1];
1495
        uintptr_t right_pg = node->key[0];
1509
        uintptr_t right_pg = node->key[0];
1496
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1510
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1497
        count_t right_cnt = (count_t) node->value[0];
1511
        count_t right_cnt = (count_t) node->value[0];
1498
       
1512
       
1499
        /*
1513
        /*
1500
         * Examine the possibility that the interval fits
1514
         * Examine the possibility that the interval fits
1501
         * somewhere between the leftmost interval of
1515
         * somewhere between the leftmost interval of
1502
         * the right neigbour and the last interval of the leaf.
1516
         * the right neigbour and the last interval of the leaf.
1503
         */
1517
         */
1504
 
1518
 
1505
        if (page < left_pg) {
1519
        if (page < left_pg) {
1506
            /* Do nothing. */
1520
            /* Do nothing. */
1507
        } else if (overlaps(page, count * PAGE_SIZE, left_pg,
1521
        } else if (overlaps(page, count * PAGE_SIZE, left_pg,
1508
            left_cnt * PAGE_SIZE)) {
1522
            left_cnt * PAGE_SIZE)) {
1509
            /* The interval intersects with the left interval. */
1523
            /* The interval intersects with the left interval. */
1510
            return 0;
1524
            return 0;
1511
        } else if (overlaps(page, count * PAGE_SIZE, right_pg,
1525
        } else if (overlaps(page, count * PAGE_SIZE, right_pg,
1512
            right_cnt * PAGE_SIZE)) {
1526
            right_cnt * PAGE_SIZE)) {
1513
            /* The interval intersects with the right interval. */
1527
            /* The interval intersects with the right interval. */
1514
            return 0;          
1528
            return 0;          
1515
        } else if ((page == left_pg + left_cnt * PAGE_SIZE) &&
1529
        } else if ((page == left_pg + left_cnt * PAGE_SIZE) &&
1516
            (page + count * PAGE_SIZE == right_pg)) {
1530
            (page + count * PAGE_SIZE == right_pg)) {
1517
            /*
1531
            /*
1518
             * The interval can be added by merging the two already
1532
             * The interval can be added by merging the two already
1519
             * present intervals.
1533
             * present intervals.
1520
             * */
1534
             * */
1521
            leaf->value[leaf->keys - 1] += count + right_cnt;
1535
            leaf->value[leaf->keys - 1] += count + right_cnt;
1522
            btree_remove(&a->used_space, right_pg, node);
1536
            btree_remove(&a->used_space, right_pg, node);
1523
            return 1;
1537
            return 1;
1524
        } else if (page == left_pg + left_cnt * PAGE_SIZE) {
1538
        } else if (page == left_pg + left_cnt * PAGE_SIZE) {
1525
            /*
1539
            /*
1526
             * The interval can be added by simply growing the left
1540
             * The interval can be added by simply growing the left
1527
             * interval.
1541
             * interval.
1528
             * */
1542
             * */
1529
            leaf->value[leaf->keys - 1] +=  count;
1543
            leaf->value[leaf->keys - 1] +=  count;
1530
            return 1;
1544
            return 1;
1531
        } else if (page + count * PAGE_SIZE == right_pg) {
1545
        } else if (page + count * PAGE_SIZE == right_pg) {
1532
            /*
1546
            /*
1533
             * The interval can be addded by simply moving base of
1547
             * The interval can be addded by simply moving base of
1534
             * the right interval down and increasing its size
1548
             * the right interval down and increasing its size
1535
             * accordingly.
1549
             * accordingly.
1536
             */
1550
             */
1537
            node->value[0] += count;
1551
            node->value[0] += count;
1538
            node->key[0] = page;
1552
            node->key[0] = page;
1539
            return 1;
1553
            return 1;
1540
        } else {
1554
        } else {
1541
            /*
1555
            /*
1542
             * The interval is between both neigbouring intervals,
1556
             * The interval is between both neigbouring intervals,
1543
             * but cannot be merged with any of them.
1557
             * but cannot be merged with any of them.
1544
             */
1558
             */
1545
            btree_insert(&a->used_space, page, (void *) count,
1559
            btree_insert(&a->used_space, page, (void *) count,
1546
                leaf);
1560
                leaf);
1547
            return 1;
1561
            return 1;
1548
        }
1562
        }
1549
    } else if (page >= leaf->key[leaf->keys - 1]) {
1563
    } else if (page >= leaf->key[leaf->keys - 1]) {
1550
        uintptr_t left_pg = leaf->key[leaf->keys - 1];
1564
        uintptr_t left_pg = leaf->key[leaf->keys - 1];
1551
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1565
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1552
   
1566
   
1553
        /*
1567
        /*
1554
         * Investigate the border case in which the right neighbour
1568
         * Investigate the border case in which the right neighbour
1555
         * does not exist but the interval fits from the right.
1569
         * does not exist but the interval fits from the right.
1556
         */
1570
         */
1557
         
1571
         
1558
        if (overlaps(page, count * PAGE_SIZE, left_pg,
1572
        if (overlaps(page, count * PAGE_SIZE, left_pg,
1559
            left_cnt * PAGE_SIZE)) {
1573
            left_cnt * PAGE_SIZE)) {
1560
            /* The interval intersects with the left interval. */
1574
            /* The interval intersects with the left interval. */
1561
            return 0;
1575
            return 0;
1562
        } else if (left_pg + left_cnt * PAGE_SIZE == page) {
1576
        } else if (left_pg + left_cnt * PAGE_SIZE == page) {
1563
            /*
1577
            /*
1564
             * The interval can be added by growing the left
1578
             * The interval can be added by growing the left
1565
             * interval.
1579
             * interval.
1566
             */
1580
             */
1567
            leaf->value[leaf->keys - 1] += count;
1581
            leaf->value[leaf->keys - 1] += count;
1568
            return 1;
1582
            return 1;
1569
        } else {
1583
        } else {
1570
            /*
1584
            /*
1571
             * The interval doesn't adjoin with the left interval.
1585
             * The interval doesn't adjoin with the left interval.
1572
             * It must be added individually.
1586
             * It must be added individually.
1573
             */
1587
             */
1574
            btree_insert(&a->used_space, page, (void *) count,
1588
            btree_insert(&a->used_space, page, (void *) count,
1575
                leaf);
1589
                leaf);
1576
            return 1;
1590
            return 1;
1577
        }
1591
        }
1578
    }
1592
    }
1579
   
1593
   
1580
    /*
1594
    /*
1581
     * Note that if the algorithm made it thus far, the interval can fit
1595
     * Note that if the algorithm made it thus far, the interval can fit
1582
     * only between two other intervals of the leaf. The two border cases
1596
     * only between two other intervals of the leaf. The two border cases
1583
     * were already resolved.
1597
     * were already resolved.
1584
     */
1598
     */
1585
    for (i = 1; i < leaf->keys; i++) {
1599
    for (i = 1; i < leaf->keys; i++) {
1586
        if (page < leaf->key[i]) {
1600
        if (page < leaf->key[i]) {
1587
            uintptr_t left_pg = leaf->key[i - 1];
1601
            uintptr_t left_pg = leaf->key[i - 1];
1588
            uintptr_t right_pg = leaf->key[i];
1602
            uintptr_t right_pg = leaf->key[i];
1589
            count_t left_cnt = (count_t) leaf->value[i - 1];
1603
            count_t left_cnt = (count_t) leaf->value[i - 1];
1590
            count_t right_cnt = (count_t) leaf->value[i];
1604
            count_t right_cnt = (count_t) leaf->value[i];
1591
 
1605
 
1592
            /*
1606
            /*
1593
             * The interval fits between left_pg and right_pg.
1607
             * The interval fits between left_pg and right_pg.
1594
             */
1608
             */
1595
 
1609
 
1596
            if (overlaps(page, count * PAGE_SIZE, left_pg,
1610
            if (overlaps(page, count * PAGE_SIZE, left_pg,
1597
                left_cnt * PAGE_SIZE)) {
1611
                left_cnt * PAGE_SIZE)) {
1598
                /*
1612
                /*
1599
                 * The interval intersects with the left
1613
                 * The interval intersects with the left
1600
                 * interval.
1614
                 * interval.
1601
                 */
1615
                 */
1602
                return 0;
1616
                return 0;
1603
            } else if (overlaps(page, count * PAGE_SIZE, right_pg,
1617
            } else if (overlaps(page, count * PAGE_SIZE, right_pg,
1604
                right_cnt * PAGE_SIZE)) {
1618
                right_cnt * PAGE_SIZE)) {
1605
                /*
1619
                /*
1606
                 * The interval intersects with the right
1620
                 * The interval intersects with the right
1607
                 * interval.
1621
                 * interval.
1608
                 */
1622
                 */
1609
                return 0;          
1623
                return 0;          
1610
            } else if ((page == left_pg + left_cnt * PAGE_SIZE) &&
1624
            } else if ((page == left_pg + left_cnt * PAGE_SIZE) &&
1611
                (page + count * PAGE_SIZE == right_pg)) {
1625
                (page + count * PAGE_SIZE == right_pg)) {
1612
                /*
1626
                /*
1613
                 * The interval can be added by merging the two
1627
                 * The interval can be added by merging the two
1614
                 * already present intervals.
1628
                 * already present intervals.
1615
                 */
1629
                 */
1616
                leaf->value[i - 1] += count + right_cnt;
1630
                leaf->value[i - 1] += count + right_cnt;
1617
                btree_remove(&a->used_space, right_pg, leaf);
1631
                btree_remove(&a->used_space, right_pg, leaf);
1618
                return 1;
1632
                return 1;
1619
            } else if (page == left_pg + left_cnt * PAGE_SIZE) {
1633
            } else if (page == left_pg + left_cnt * PAGE_SIZE) {
1620
                /*
1634
                /*
1621
                 * The interval can be added by simply growing
1635
                 * The interval can be added by simply growing
1622
                 * the left interval.
1636
                 * the left interval.
1623
                 */
1637
                 */
1624
                leaf->value[i - 1] += count;
1638
                leaf->value[i - 1] += count;
1625
                return 1;
1639
                return 1;
1626
            } else if (page + count * PAGE_SIZE == right_pg) {
1640
            } else if (page + count * PAGE_SIZE == right_pg) {
1627
                /*
1641
                /*
1628
                     * The interval can be addded by simply moving
1642
                     * The interval can be addded by simply moving
1629
                 * base of the right interval down and
1643
                 * base of the right interval down and
1630
                 * increasing its size accordingly.
1644
                 * increasing its size accordingly.
1631
                 */
1645
                 */
1632
                leaf->value[i] += count;
1646
                leaf->value[i] += count;
1633
                leaf->key[i] = page;
1647
                leaf->key[i] = page;
1634
                return 1;
1648
                return 1;
1635
            } else {
1649
            } else {
1636
                /*
1650
                /*
1637
                 * The interval is between both neigbouring
1651
                 * The interval is between both neigbouring
1638
                 * intervals, but cannot be merged with any of
1652
                 * intervals, but cannot be merged with any of
1639
                 * them.
1653
                 * them.
1640
                 */
1654
                 */
1641
                btree_insert(&a->used_space, page,
1655
                btree_insert(&a->used_space, page,
1642
                    (void *) count, leaf);
1656
                    (void *) count, leaf);
1643
                return 1;
1657
                return 1;
1644
            }
1658
            }
1645
        }
1659
        }
1646
    }
1660
    }
1647
 
1661
 
1648
    panic("Inconsistency detected while adding %" PRIc " pages of used space at "
1662
    panic("Inconsistency detected while adding %" PRIc " pages of used "
1649
        "%p.\n", count, page);
1663
        "space at %p.\n", count, page);
1650
}
1664
}
1651
 
1665
 
1652
/** Mark portion of address space area as unused.
1666
/** Mark portion of address space area as unused.
1653
 *
1667
 *
1654
 * The address space area must be already locked.
1668
 * The address space area must be already locked.
1655
 *
1669
 *
1656
 * @param a Address space area.
1670
 * @param a     Address space area.
1657
 * @param page First page to be marked.
1671
 * @param page      First page to be marked.
1658
 * @param count Number of page to be marked.
1672
 * @param count     Number of page to be marked.
1659
 *
1673
 *
1660
 * @return 0 on failure and 1 on success.
1674
 * @return      Zero on failure and non-zero on success.
1661
 */
1675
 */
1662
int used_space_remove(as_area_t *a, uintptr_t page, count_t count)
1676
int used_space_remove(as_area_t *a, uintptr_t page, count_t count)
1663
{
1677
{
1664
    btree_node_t *leaf, *node;
1678
    btree_node_t *leaf, *node;
1665
    count_t pages;
1679
    count_t pages;
1666
    unsigned int i;
1680
    unsigned int i;
1667
 
1681
 
1668
    ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1682
    ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1669
    ASSERT(count);
1683
    ASSERT(count);
1670
 
1684
 
1671
    pages = (count_t) btree_search(&a->used_space, page, &leaf);
1685
    pages = (count_t) btree_search(&a->used_space, page, &leaf);
1672
    if (pages) {
1686
    if (pages) {
1673
        /*
1687
        /*
1674
         * We are lucky, page is the beginning of some interval.
1688
         * We are lucky, page is the beginning of some interval.
1675
         */
1689
         */
1676
        if (count > pages) {
1690
        if (count > pages) {
1677
            return 0;
1691
            return 0;
1678
        } else if (count == pages) {
1692
        } else if (count == pages) {
1679
            btree_remove(&a->used_space, page, leaf);
1693
            btree_remove(&a->used_space, page, leaf);
1680
            return 1;
1694
            return 1;
1681
        } else {
1695
        } else {
1682
            /*
1696
            /*
1683
             * Find the respective interval.
1697
             * Find the respective interval.
1684
             * Decrease its size and relocate its start address.
1698
             * Decrease its size and relocate its start address.
1685
             */
1699
             */
1686
            for (i = 0; i < leaf->keys; i++) {
1700
            for (i = 0; i < leaf->keys; i++) {
1687
                if (leaf->key[i] == page) {
1701
                if (leaf->key[i] == page) {
1688
                    leaf->key[i] += count * PAGE_SIZE;
1702
                    leaf->key[i] += count * PAGE_SIZE;
1689
                    leaf->value[i] -= count;
1703
                    leaf->value[i] -= count;
1690
                    return 1;
1704
                    return 1;
1691
                }
1705
                }
1692
            }
1706
            }
1693
            goto error;
1707
            goto error;
1694
        }
1708
        }
1695
    }
1709
    }
1696
 
1710
 
1697
    node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1711
    node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1698
    if (node && page < leaf->key[0]) {
1712
    if (node && page < leaf->key[0]) {
1699
        uintptr_t left_pg = node->key[node->keys - 1];
1713
        uintptr_t left_pg = node->key[node->keys - 1];
1700
        count_t left_cnt = (count_t) node->value[node->keys - 1];
1714
        count_t left_cnt = (count_t) node->value[node->keys - 1];
1701
 
1715
 
1702
        if (overlaps(left_pg, left_cnt * PAGE_SIZE, page,
1716
        if (overlaps(left_pg, left_cnt * PAGE_SIZE, page,
1703
            count * PAGE_SIZE)) {
1717
            count * PAGE_SIZE)) {
1704
            if (page + count * PAGE_SIZE ==
1718
            if (page + count * PAGE_SIZE ==
1705
                left_pg + left_cnt * PAGE_SIZE) {
1719
                left_pg + left_cnt * PAGE_SIZE) {
1706
                /*
1720
                /*
1707
                 * The interval is contained in the rightmost
1721
                 * The interval is contained in the rightmost
1708
                 * interval of the left neighbour and can be
1722
                 * interval of the left neighbour and can be
1709
                 * removed by updating the size of the bigger
1723
                 * removed by updating the size of the bigger
1710
                 * interval.
1724
                 * interval.
1711
                 */
1725
                 */
1712
                node->value[node->keys - 1] -= count;
1726
                node->value[node->keys - 1] -= count;
1713
                return 1;
1727
                return 1;
1714
            } else if (page + count * PAGE_SIZE <
1728
            } else if (page + count * PAGE_SIZE <
1715
                left_pg + left_cnt*PAGE_SIZE) {
1729
                left_pg + left_cnt*PAGE_SIZE) {
1716
                count_t new_cnt;
1730
                count_t new_cnt;
1717
               
1731
               
1718
                /*
1732
                /*
1719
                 * The interval is contained in the rightmost
1733
                 * The interval is contained in the rightmost
1720
                 * interval of the left neighbour but its
1734
                 * interval of the left neighbour but its
1721
                 * removal requires both updating the size of
1735
                 * removal requires both updating the size of
1722
                 * the original interval and also inserting a
1736
                 * the original interval and also inserting a
1723
                 * new interval.
1737
                 * new interval.
1724
                 */
1738
                 */
1725
                new_cnt = ((left_pg + left_cnt * PAGE_SIZE) -
1739
                new_cnt = ((left_pg + left_cnt * PAGE_SIZE) -
1726
                    (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1740
                    (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1727
                node->value[node->keys - 1] -= count + new_cnt;
1741
                node->value[node->keys - 1] -= count + new_cnt;
1728
                btree_insert(&a->used_space, page +
1742
                btree_insert(&a->used_space, page +
1729
                    count * PAGE_SIZE, (void *) new_cnt, leaf);
1743
                    count * PAGE_SIZE, (void *) new_cnt, leaf);
1730
                return 1;
1744
                return 1;
1731
            }
1745
            }
1732
        }
1746
        }
1733
        return 0;
1747
        return 0;
1734
    } else if (page < leaf->key[0]) {
1748
    } else if (page < leaf->key[0]) {
1735
        return 0;
1749
        return 0;
1736
    }
1750
    }
1737
   
1751
   
1738
    if (page > leaf->key[leaf->keys - 1]) {
1752
    if (page > leaf->key[leaf->keys - 1]) {
1739
        uintptr_t left_pg = leaf->key[leaf->keys - 1];
1753
        uintptr_t left_pg = leaf->key[leaf->keys - 1];
1740
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1754
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1741
 
1755
 
1742
        if (overlaps(left_pg, left_cnt * PAGE_SIZE, page,
1756
        if (overlaps(left_pg, left_cnt * PAGE_SIZE, page,
1743
            count * PAGE_SIZE)) {
1757
            count * PAGE_SIZE)) {
1744
            if (page + count * PAGE_SIZE ==
1758
            if (page + count * PAGE_SIZE ==
1745
                left_pg + left_cnt * PAGE_SIZE) {
1759
                left_pg + left_cnt * PAGE_SIZE) {
1746
                /*
1760
                /*
1747
                 * The interval is contained in the rightmost
1761
                 * The interval is contained in the rightmost
1748
                 * interval of the leaf and can be removed by
1762
                 * interval of the leaf and can be removed by
1749
                 * updating the size of the bigger interval.
1763
                 * updating the size of the bigger interval.
1750
                 */
1764
                 */
1751
                leaf->value[leaf->keys - 1] -= count;
1765
                leaf->value[leaf->keys - 1] -= count;
1752
                return 1;
1766
                return 1;
1753
            } else if (page + count * PAGE_SIZE < left_pg +
1767
            } else if (page + count * PAGE_SIZE < left_pg +
1754
                left_cnt * PAGE_SIZE) {
1768
                left_cnt * PAGE_SIZE) {
1755
                count_t new_cnt;
1769
                count_t new_cnt;
1756
               
1770
               
1757
                /*
1771
                /*
1758
                 * The interval is contained in the rightmost
1772
                 * The interval is contained in the rightmost
1759
                 * interval of the leaf but its removal
1773
                 * interval of the leaf but its removal
1760
                 * requires both updating the size of the
1774
                 * requires both updating the size of the
1761
                 * original interval and also inserting a new
1775
                 * original interval and also inserting a new
1762
                 * interval.
1776
                 * interval.
1763
                 */
1777
                 */
1764
                new_cnt = ((left_pg + left_cnt * PAGE_SIZE) -
1778
                new_cnt = ((left_pg + left_cnt * PAGE_SIZE) -
1765
                    (page + count * PAGE_SIZE)) >> PAGE_WIDTH;
1779
                    (page + count * PAGE_SIZE)) >> PAGE_WIDTH;
1766
                leaf->value[leaf->keys - 1] -= count + new_cnt;
1780
                leaf->value[leaf->keys - 1] -= count + new_cnt;
1767
                btree_insert(&a->used_space, page +
1781
                btree_insert(&a->used_space, page +
1768
                    count * PAGE_SIZE, (void *) new_cnt, leaf);
1782
                    count * PAGE_SIZE, (void *) new_cnt, leaf);
1769
                return 1;
1783
                return 1;
1770
            }
1784
            }
1771
        }
1785
        }
1772
        return 0;
1786
        return 0;
1773
    }  
1787
    }  
1774
   
1788
   
1775
    /*
1789
    /*
1776
     * The border cases have been already resolved.
1790
     * The border cases have been already resolved.
1777
     * Now the interval can be only between intervals of the leaf.
1791
     * Now the interval can be only between intervals of the leaf.
1778
     */
1792
     */
1779
    for (i = 1; i < leaf->keys - 1; i++) {
1793
    for (i = 1; i < leaf->keys - 1; i++) {
1780
        if (page < leaf->key[i]) {
1794
        if (page < leaf->key[i]) {
1781
            uintptr_t left_pg = leaf->key[i - 1];
1795
            uintptr_t left_pg = leaf->key[i - 1];
1782
            count_t left_cnt = (count_t) leaf->value[i - 1];
1796
            count_t left_cnt = (count_t) leaf->value[i - 1];
1783
 
1797
 
1784
            /*
1798
            /*
1785
             * Now the interval is between intervals corresponding
1799
             * Now the interval is between intervals corresponding
1786
             * to (i - 1) and i.
1800
             * to (i - 1) and i.
1787
             */
1801
             */
1788
            if (overlaps(left_pg, left_cnt * PAGE_SIZE, page,
1802
            if (overlaps(left_pg, left_cnt * PAGE_SIZE, page,
1789
                count * PAGE_SIZE)) {
1803
                count * PAGE_SIZE)) {
1790
                if (page + count * PAGE_SIZE ==
1804
                if (page + count * PAGE_SIZE ==
1791
                    left_pg + left_cnt*PAGE_SIZE) {
1805
                    left_pg + left_cnt*PAGE_SIZE) {
1792
                    /*
1806
                    /*
1793
                     * The interval is contained in the
1807
                     * The interval is contained in the
1794
                     * interval (i - 1) of the leaf and can
1808
                     * interval (i - 1) of the leaf and can
1795
                     * be removed by updating the size of
1809
                     * be removed by updating the size of
1796
                     * the bigger interval.
1810
                     * the bigger interval.
1797
                     */
1811
                     */
1798
                    leaf->value[i - 1] -= count;
1812
                    leaf->value[i - 1] -= count;
1799
                    return 1;
1813
                    return 1;
1800
                } else if (page + count * PAGE_SIZE <
1814
                } else if (page + count * PAGE_SIZE <
1801
                    left_pg + left_cnt * PAGE_SIZE) {
1815
                    left_pg + left_cnt * PAGE_SIZE) {
1802
                    count_t new_cnt;
1816
                    count_t new_cnt;
1803
               
1817
               
1804
                    /*
1818
                    /*
1805
                     * The interval is contained in the
1819
                     * The interval is contained in the
1806
                     * interval (i - 1) of the leaf but its
1820
                     * interval (i - 1) of the leaf but its
1807
                     * removal requires both updating the
1821
                     * removal requires both updating the
1808
                     * size of the original interval and
1822
                     * size of the original interval and
1809
                     * also inserting a new interval.
1823
                     * also inserting a new interval.
1810
                     */
1824
                     */
1811
                    new_cnt = ((left_pg +
1825
                    new_cnt = ((left_pg +
1812
                        left_cnt * PAGE_SIZE) -
1826
                        left_cnt * PAGE_SIZE) -
1813
                        (page + count * PAGE_SIZE)) >>
1827
                        (page + count * PAGE_SIZE)) >>
1814
                        PAGE_WIDTH;
1828
                        PAGE_WIDTH;
1815
                    leaf->value[i - 1] -= count + new_cnt;
1829
                    leaf->value[i - 1] -= count + new_cnt;
1816
                    btree_insert(&a->used_space, page +
1830
                    btree_insert(&a->used_space, page +
1817
                        count * PAGE_SIZE, (void *) new_cnt,
1831
                        count * PAGE_SIZE, (void *) new_cnt,
1818
                        leaf);
1832
                        leaf);
1819
                    return 1;
1833
                    return 1;
1820
                }
1834
                }
1821
            }
1835
            }
1822
            return 0;
1836
            return 0;
1823
        }
1837
        }
1824
    }
1838
    }
1825
 
1839
 
1826
error:
1840
error:
1827
    panic("Inconsistency detected while removing %" PRIc " pages of used space "
1841
    panic("Inconsistency detected while removing %" PRIc " pages of used "
1828
        "from %p.\n", count, page);
1842
        "space from %p.\n", count, page);
1829
}
1843
}
1830
 
1844
 
1831
/** Remove reference to address space area share info.
1845
/** Remove reference to address space area share info.
1832
 *
1846
 *
1833
 * If the reference count drops to 0, the sh_info is deallocated.
1847
 * If the reference count drops to 0, the sh_info is deallocated.
1834
 *
1848
 *
1835
 * @param sh_info Pointer to address space area share info.
1849
 * @param sh_info   Pointer to address space area share info.
1836
 */
1850
 */
1837
void sh_info_remove_reference(share_info_t *sh_info)
1851
void sh_info_remove_reference(share_info_t *sh_info)
1838
{
1852
{
1839
    bool dealloc = false;
1853
    bool dealloc = false;
1840
 
1854
 
1841
    mutex_lock(&sh_info->lock);
1855
    mutex_lock(&sh_info->lock);
1842
    ASSERT(sh_info->refcount);
1856
    ASSERT(sh_info->refcount);
1843
    if (--sh_info->refcount == 0) {
1857
    if (--sh_info->refcount == 0) {
1844
        dealloc = true;
1858
        dealloc = true;
1845
        link_t *cur;
1859
        link_t *cur;
1846
       
1860
       
1847
        /*
1861
        /*
1848
         * Now walk carefully the pagemap B+tree and free/remove
1862
         * Now walk carefully the pagemap B+tree and free/remove
1849
         * reference from all frames found there.
1863
         * reference from all frames found there.
1850
         */
1864
         */
1851
        for (cur = sh_info->pagemap.leaf_head.next;
1865
        for (cur = sh_info->pagemap.leaf_head.next;
1852
            cur != &sh_info->pagemap.leaf_head; cur = cur->next) {
1866
            cur != &sh_info->pagemap.leaf_head; cur = cur->next) {
1853
            btree_node_t *node;
1867
            btree_node_t *node;
1854
            unsigned int i;
1868
            unsigned int i;
1855
           
1869
           
1856
            node = list_get_instance(cur, btree_node_t, leaf_link);
1870
            node = list_get_instance(cur, btree_node_t, leaf_link);
1857
            for (i = 0; i < node->keys; i++)
1871
            for (i = 0; i < node->keys; i++)
1858
                frame_free((uintptr_t) node->value[i]);
1872
                frame_free((uintptr_t) node->value[i]);
1859
        }
1873
        }
1860
       
1874
       
1861
    }
1875
    }
1862
    mutex_unlock(&sh_info->lock);
1876
    mutex_unlock(&sh_info->lock);
1863
   
1877
   
1864
    if (dealloc) {
1878
    if (dealloc) {
1865
        btree_destroy(&sh_info->pagemap);
1879
        btree_destroy(&sh_info->pagemap);
1866
        free(sh_info);
1880
        free(sh_info);
1867
    }
1881
    }
1868
}
1882
}
1869
 
1883
 
1870
/*
1884
/*
1871
 * Address space related syscalls.
1885
 * Address space related syscalls.
1872
 */
1886
 */
1873
 
1887
 
1874
/** Wrapper for as_area_create(). */
1888
/** Wrapper for as_area_create(). */
1875
unative_t sys_as_area_create(uintptr_t address, size_t size, int flags)
1889
unative_t sys_as_area_create(uintptr_t address, size_t size, int flags)
1876
{
1890
{
1877
    if (as_area_create(AS, flags | AS_AREA_CACHEABLE, size, address,
1891
    if (as_area_create(AS, flags | AS_AREA_CACHEABLE, size, address,
1878
        AS_AREA_ATTR_NONE, &anon_backend, NULL))
1892
        AS_AREA_ATTR_NONE, &anon_backend, NULL))
1879
        return (unative_t) address;
1893
        return (unative_t) address;
1880
    else
1894
    else
1881
        return (unative_t) -1;
1895
        return (unative_t) -1;
1882
}
1896
}
1883
 
1897
 
1884
/** Wrapper for as_area_resize(). */
1898
/** Wrapper for as_area_resize(). */
1885
unative_t sys_as_area_resize(uintptr_t address, size_t size, int flags)
1899
unative_t sys_as_area_resize(uintptr_t address, size_t size, int flags)
1886
{
1900
{
1887
    return (unative_t) as_area_resize(AS, address, size, 0);
1901
    return (unative_t) as_area_resize(AS, address, size, 0);
1888
}
1902
}
1889
 
1903
 
1890
/** Wrapper for as_area_change_flags(). */
1904
/** Wrapper for as_area_change_flags(). */
1891
unative_t sys_as_area_change_flags(uintptr_t address, int flags)
1905
unative_t sys_as_area_change_flags(uintptr_t address, int flags)
1892
{
1906
{
1893
    return (unative_t) as_area_change_flags(AS, flags, address);
1907
    return (unative_t) as_area_change_flags(AS, flags, address);
1894
}
1908
}
1895
 
1909
 
1896
/** Wrapper for as_area_destroy(). */
1910
/** Wrapper for as_area_destroy(). */
1897
unative_t sys_as_area_destroy(uintptr_t address)
1911
unative_t sys_as_area_destroy(uintptr_t address)
1898
{
1912
{
1899
    return (unative_t) as_area_destroy(AS, address);
1913
    return (unative_t) as_area_destroy(AS, address);
1900
}
1914
}
1901
 
1915
 
1902
/** Print out information about address space.
1916
/** Print out information about address space.
1903
 *
1917
 *
1904
 * @param as Address space.
1918
 * @param as        Address space.
1905
 */
1919
 */
1906
void as_print(as_t *as)
1920
void as_print(as_t *as)
1907
{
1921
{
1908
    ipl_t ipl;
1922
    ipl_t ipl;
1909
   
1923
   
1910
    ipl = interrupts_disable();
1924
    ipl = interrupts_disable();
1911
    mutex_lock(&as->lock);
1925
    mutex_lock(&as->lock);
1912
   
1926
   
1913
    /* print out info about address space areas */
1927
    /* print out info about address space areas */
1914
    link_t *cur;
1928
    link_t *cur;
1915
    for (cur = as->as_area_btree.leaf_head.next;
1929
    for (cur = as->as_area_btree.leaf_head.next;
1916
        cur != &as->as_area_btree.leaf_head; cur = cur->next) {
1930
        cur != &as->as_area_btree.leaf_head; cur = cur->next) {
1917
        btree_node_t *node;
1931
        btree_node_t *node;
1918
       
1932
       
1919
        node = list_get_instance(cur, btree_node_t, leaf_link);
1933
        node = list_get_instance(cur, btree_node_t, leaf_link);
1920
       
1934
       
1921
        unsigned int i;
1935
        unsigned int i;
1922
        for (i = 0; i < node->keys; i++) {
1936
        for (i = 0; i < node->keys; i++) {
1923
            as_area_t *area = node->value[i];
1937
            as_area_t *area = node->value[i];
1924
       
1938
       
1925
            mutex_lock(&area->lock);
1939
            mutex_lock(&area->lock);
1926
            printf("as_area: %p, base=%p, pages=%" PRIc " (%p - %p)\n",
1940
            printf("as_area: %p, base=%p, pages=%" PRIc
1927
                area, area->base, area->pages, area->base,
1941
                " (%p - %p)\n", area, area->base, area->pages,
1928
                area->base + FRAMES2SIZE(area->pages));
1942
                area->base, area->base + FRAMES2SIZE(area->pages));
1929
            mutex_unlock(&area->lock);
1943
            mutex_unlock(&area->lock);
1930
        }
1944
        }
1931
    }
1945
    }
1932
   
1946
   
1933
    mutex_unlock(&as->lock);
1947
    mutex_unlock(&as->lock);
1934
    interrupts_restore(ipl);
1948
    interrupts_restore(ipl);
1935
}
1949
}
1936
 
1950
 
1937
/** @}
1951
/** @}
1938
 */
1952
 */
1939
 
1953