Subversion Repositories HelenOS

Rev

Rev 3582 | Rev 3664 | Go to most recent revision | Only display areas with differences | Ignore whitespace | Details | Blame | Last modification | View Log | RSS feed

Rev 3582 Rev 3618
1
/*
1
/*
2
 * Copyright (c) 2005 Martin Decky
2
 * Copyright (c) 2005 Martin Decky
3
 * Copyright (c) 2006 Jakub Jermar
3
 * Copyright (c) 2006 Jakub Jermar
4
 * All rights reserved.
4
 * All rights reserved.
5
 *
5
 *
6
 * Redistribution and use in source and binary forms, with or without
6
 * Redistribution and use in source and binary forms, with or without
7
 * modification, are permitted provided that the following conditions
7
 * modification, are permitted provided that the following conditions
8
 * are met:
8
 * are met:
9
 *
9
 *
10
 * - Redistributions of source code must retain the above copyright
10
 * - Redistributions of source code must retain the above copyright
11
 *   notice, this list of conditions and the following disclaimer.
11
 *   notice, this list of conditions and the following disclaimer.
12
 * - Redistributions in binary form must reproduce the above copyright
12
 * - Redistributions in binary form must reproduce the above copyright
13
 *   notice, this list of conditions and the following disclaimer in the
13
 *   notice, this list of conditions and the following disclaimer in the
14
 *   documentation and/or other materials provided with the distribution.
14
 *   documentation and/or other materials provided with the distribution.
15
 * - The name of the author may not be used to endorse or promote products
15
 * - The name of the author may not be used to endorse or promote products
16
 *   derived from this software without specific prior written permission.
16
 *   derived from this software without specific prior written permission.
17
 *
17
 *
18
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
23
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
27
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28
 */
28
 */
29
 
29
 
30
#include "main.h" 
30
#include "main.h" 
31
#include <printf.h>
31
#include <printf.h>
32
#include "asm.h"
32
#include "asm.h"
33
#include "_components.h"
33
#include "_components.h"
34
#include <balloc.h>
34
#include <balloc.h>
35
#include <ofw.h>
35
#include <ofw.h>
36
#include <ofw_tree.h>
36
#include <ofw_tree.h>
37
#include "ofwarch.h"
37
#include "ofwarch.h"
38
#include <align.h>
38
#include <align.h>
39
#include <string.h>
39
#include <string.h>
40
 
40
 
41
bootinfo_t bootinfo;
41
bootinfo_t bootinfo;
42
 
42
 
43
/** UltraSPARC subarchitecture - 1 for US, 3 for US3 */
43
/** UltraSPARC subarchitecture - 1 for US, 3 for US3 */
44
uint8_t subarchitecture;
44
uint8_t subarchitecture;
45
 
45
 
46
component_t components[COMPONENTS];
46
component_t components[COMPONENTS];
47
 
47
 
48
char *release = RELEASE;
48
char *release = RELEASE;
49
 
49
 
50
#ifdef REVISION
50
#ifdef REVISION
51
    char *revision = ", revision " REVISION;
51
    char *revision = ", revision " REVISION;
52
#else
52
#else
53
    char *revision = "";
53
    char *revision = "";
54
#endif
54
#endif
55
 
55
 
56
#ifdef TIMESTAMP
56
#ifdef TIMESTAMP
57
    char *timestamp = "\nBuilt on " TIMESTAMP;
57
    char *timestamp = "\nBuilt on " TIMESTAMP;
58
#else
58
#else
59
    char *timestamp = "";
59
    char *timestamp = "";
60
#endif
60
#endif
61
 
61
 
62
/** Print version information. */
62
/** Print version information. */
63
static void version_print(void)
63
static void version_print(void)
64
{
64
{
65
    printf("HelenOS SPARC64 Bootloader\nRelease %s%s%s\n"
65
    printf("HelenOS SPARC64 Bootloader\nRelease %s%s%s\n"
66
        "Copyright (c) 2006 HelenOS project\n",
66
        "Copyright (c) 2006 HelenOS project\n",
67
        release, revision, timestamp);
67
        release, revision, timestamp);
68
}
68
}
69
 
69
 
-
 
70
/* the lowest ID (read from the VER register) of some US3 CPU model */
70
#define FIRST_US3_CPU 0x14
71
#define FIRST_US3_CPU 0x14
-
 
72
 
-
 
73
/* the greatest ID (read from the VER register) of some US3 CPU model */
71
#define LAST_US3_CPU 0x19
74
#define LAST_US3_CPU 0x19
-
 
75
 
-
 
76
/**
-
 
77
 * Sets the global variable "subarchitecture" to the correct value.
-
 
78
 */
72
static void detect_subarchitecture(void)
79
static void detect_subarchitecture(void)
73
{
80
{
74
    uint64_t v;
81
    uint64_t v;
75
    asm volatile ("rdpr %%ver, %0\n" : "=r" (v));
82
    asm volatile ("rdpr %%ver, %0\n" : "=r" (v));
76
   
83
   
77
    v = (v << 16) >> 48;
84
    v = (v << 16) >> 48;
78
    if ((v >= FIRST_US3_CPU) && (v <= LAST_US3_CPU)) {
85
    if ((v >= FIRST_US3_CPU) && (v <= LAST_US3_CPU)) {
79
        subarchitecture = SUBARCH_US3;
86
        subarchitecture = SUBARCH_US3;
80
    } else if (v < FIRST_US3_CPU) {
87
    } else if (v < FIRST_US3_CPU) {
81
        subarchitecture = SUBARCH_US;
88
        subarchitecture = SUBARCH_US;
82
    }
89
    }
83
}
90
}
84
 
91
 
85
void bootstrap(void)
92
void bootstrap(void)
86
{
93
{
87
    void *base = (void *) KERNEL_VIRTUAL_ADDRESS;
94
    void *base = (void *) KERNEL_VIRTUAL_ADDRESS;
88
    void *balloc_base;
95
    void *balloc_base;
89
    unsigned int top = 0;
96
    unsigned int top = 0;
90
    int i, j;
97
    int i, j;
91
 
98
 
92
    version_print();
99
    version_print();
93
   
100
   
94
    detect_subarchitecture();
101
    detect_subarchitecture();
95
    init_components(components);
102
    init_components(components);
96
 
103
 
97
    if (!ofw_get_physmem_start(&bootinfo.physmem_start)) {
104
    if (!ofw_get_physmem_start(&bootinfo.physmem_start)) {
98
        printf("Error: unable to get start of physical memory.\n");
105
        printf("Error: unable to get start of physical memory.\n");
99
        halt();
106
        halt();
100
    }
107
    }
101
 
108
 
102
    if (!ofw_memmap(&bootinfo.memmap)) {
109
    if (!ofw_memmap(&bootinfo.memmap)) {
103
        printf("Error: unable to get memory map, halting.\n");
110
        printf("Error: unable to get memory map, halting.\n");
104
        halt();
111
        halt();
105
    }
112
    }
106
 
113
 
107
    if (bootinfo.memmap.total == 0) {
114
    if (bootinfo.memmap.total == 0) {
108
        printf("Error: no memory detected, halting.\n");
115
        printf("Error: no memory detected, halting.\n");
109
        halt();
116
        halt();
110
    }
117
    }
111
 
118
 
112
    /*
119
    /*
113
     * SILO for some reason adds 0x400000 and subtracts
120
     * SILO for some reason adds 0x400000 and subtracts
114
     * bootinfo.physmem_start to/from silo_ramdisk_image.
121
     * bootinfo.physmem_start to/from silo_ramdisk_image.
115
     * We just need plain physical address so we fix it up.
122
     * We just need plain physical address so we fix it up.
116
     */
123
     */
117
    if (silo_ramdisk_image) {
124
    if (silo_ramdisk_image) {
118
        silo_ramdisk_image += bootinfo.physmem_start;
125
        silo_ramdisk_image += bootinfo.physmem_start;
119
        silo_ramdisk_image -= 0x400000;
126
        silo_ramdisk_image -= 0x400000;
120
        /* Install 1:1 mapping for the ramdisk. */
127
        /* Install 1:1 mapping for the ramdisk. */
121
        if (ofw_map((void *)((uintptr_t)silo_ramdisk_image),
128
        if (ofw_map((void *)((uintptr_t)silo_ramdisk_image),
122
            (void *)((uintptr_t)silo_ramdisk_image),
129
            (void *)((uintptr_t)silo_ramdisk_image),
123
            silo_ramdisk_size, -1) != 0) {
130
            silo_ramdisk_size, -1) != 0) {
124
            printf("Failed to map ramdisk.\n");
131
            printf("Failed to map ramdisk.\n");
125
            halt();
132
            halt();
126
        }
133
        }
127
    }
134
    }
128
   
135
   
129
    printf("\nSystem info\n");
136
    printf("\nSystem info\n");
130
    printf(" memory: %dM starting at %P\n",
137
    printf(" memory: %dM starting at %P\n",
131
        bootinfo.memmap.total >> 20, bootinfo.physmem_start);
138
        bootinfo.memmap.total >> 20, bootinfo.physmem_start);
132
 
139
 
133
    printf("\nMemory statistics\n");
140
    printf("\nMemory statistics\n");
134
    printf(" kernel entry point at %P\n", KERNEL_VIRTUAL_ADDRESS);
141
    printf(" kernel entry point at %P\n", KERNEL_VIRTUAL_ADDRESS);
135
    printf(" %P: boot info structure\n", &bootinfo);
142
    printf(" %P: boot info structure\n", &bootinfo);
136
   
143
   
137
    /*
144
    /*
138
     * Figure out destination address for each component.
145
     * Figure out destination address for each component.
139
     * In this phase, we don't copy the components yet because we want to
146
     * In this phase, we don't copy the components yet because we want to
140
     * to be careful not to overwrite anything, especially the components
147
     * to be careful not to overwrite anything, especially the components
141
     * which haven't been copied yet.
148
     * which haven't been copied yet.
142
     */
149
     */
143
    bootinfo.taskmap.count = 0;
150
    bootinfo.taskmap.count = 0;
144
    for (i = 0; i < COMPONENTS; i++) {
151
    for (i = 0; i < COMPONENTS; i++) {
145
        printf(" %P: %s image (size %d bytes)\n", components[i].start,
152
        printf(" %P: %s image (size %d bytes)\n", components[i].start,
146
            components[i].name, components[i].size);
153
            components[i].name, components[i].size);
147
        top = ALIGN_UP(top, PAGE_SIZE);
154
        top = ALIGN_UP(top, PAGE_SIZE);
148
        if (i > 0) {
155
        if (i > 0) {
149
            if (bootinfo.taskmap.count == TASKMAP_MAX_RECORDS) {
156
            if (bootinfo.taskmap.count == TASKMAP_MAX_RECORDS) {
150
                printf("Skipping superfluous components.\n");
157
                printf("Skipping superfluous components.\n");
151
                break;
158
                break;
152
            }
159
            }
153
            bootinfo.taskmap.tasks[bootinfo.taskmap.count].addr =
160
            bootinfo.taskmap.tasks[bootinfo.taskmap.count].addr =
154
                base + top;
161
                base + top;
155
            bootinfo.taskmap.tasks[bootinfo.taskmap.count].size =
162
            bootinfo.taskmap.tasks[bootinfo.taskmap.count].size =
156
                components[i].size;
163
                components[i].size;
157
            bootinfo.taskmap.count++;
164
            bootinfo.taskmap.count++;
158
        }
165
        }
159
        top += components[i].size;
166
        top += components[i].size;
160
    }
167
    }
161
 
168
 
162
    j = bootinfo.taskmap.count - 1; /* do not consider ramdisk */
169
    j = bootinfo.taskmap.count - 1; /* do not consider ramdisk */
163
 
170
 
164
    if (silo_ramdisk_image) {
171
    if (silo_ramdisk_image) {
165
        /* Treat the ramdisk as the last bootinfo task. */
172
        /* Treat the ramdisk as the last bootinfo task. */
166
        if (bootinfo.taskmap.count == TASKMAP_MAX_RECORDS) {
173
        if (bootinfo.taskmap.count == TASKMAP_MAX_RECORDS) {
167
            printf("Skipping ramdisk.\n");
174
            printf("Skipping ramdisk.\n");
168
            goto skip_ramdisk;
175
            goto skip_ramdisk;
169
        }
176
        }
170
        top = ALIGN_UP(top, PAGE_SIZE);
177
        top = ALIGN_UP(top, PAGE_SIZE);
171
        bootinfo.taskmap.tasks[bootinfo.taskmap.count].addr =
178
        bootinfo.taskmap.tasks[bootinfo.taskmap.count].addr =
172
            base + top;
179
            base + top;
173
        bootinfo.taskmap.tasks[bootinfo.taskmap.count].size =
180
        bootinfo.taskmap.tasks[bootinfo.taskmap.count].size =
174
            silo_ramdisk_size;
181
            silo_ramdisk_size;
175
        bootinfo.taskmap.count++;
182
        bootinfo.taskmap.count++;
176
        printf("\nCopying ramdisk...");
183
        printf("\nCopying ramdisk...");
177
        /*
184
        /*
178
         * Claim and map the whole ramdisk as it may exceed the area
185
         * Claim and map the whole ramdisk as it may exceed the area
179
         * given to us by SILO.
186
         * given to us by SILO.
180
         */
187
         */
181
        (void) ofw_claim_phys(base + top, silo_ramdisk_size);
188
        (void) ofw_claim_phys(base + top, silo_ramdisk_size);
182
        (void) ofw_map(base + top, base + top, silo_ramdisk_size, -1);
189
        (void) ofw_map(base + top, base + top, silo_ramdisk_size, -1);
183
        memmove(base + top, (void *)((uintptr_t)silo_ramdisk_image),
190
        memmove(base + top, (void *)((uintptr_t)silo_ramdisk_image),
184
            silo_ramdisk_size);
191
            silo_ramdisk_size);
185
        printf("done.\n");
192
        printf("done.\n");
186
        top += silo_ramdisk_size;
193
        top += silo_ramdisk_size;
187
    }
194
    }
188
skip_ramdisk:
195
skip_ramdisk:
189
 
196
 
190
    /*
197
    /*
191
     * Now we can proceed to copy the components. We do it in reverse order
198
     * Now we can proceed to copy the components. We do it in reverse order
192
     * so that we don't overwrite anything even if the components overlap
199
     * so that we don't overwrite anything even if the components overlap
193
     * with base.
200
     * with base.
194
     */
201
     */
195
    printf("\nCopying bootinfo tasks\n");
202
    printf("\nCopying bootinfo tasks\n");
196
    for (i = COMPONENTS - 1; i > 0; i--, j--) {
203
    for (i = COMPONENTS - 1; i > 0; i--, j--) {
197
        printf(" %s...", components[i].name);
204
        printf(" %s...", components[i].name);
198
 
205
 
199
        /*
206
        /*
200
         * At this point, we claim the physical memory that we are
207
         * At this point, we claim the physical memory that we are
201
         * going to use. We should be safe in case of the virtual
208
         * going to use. We should be safe in case of the virtual
202
         * address space because the OpenFirmware, according to its
209
         * address space because the OpenFirmware, according to its
203
         * SPARC binding, should restrict its use of virtual memory
210
         * SPARC binding, should restrict its use of virtual memory
204
         * to addresses from [0xffd00000; 0xffefffff] and
211
         * to addresses from [0xffd00000; 0xffefffff] and
205
         * [0xfe000000; 0xfeffffff].
212
         * [0xfe000000; 0xfeffffff].
206
         *
213
         *
207
         * XXX We don't map this piece of memory. We simply rely on
214
         * XXX We don't map this piece of memory. We simply rely on
208
         *     SILO to have it done for us already in this case.
215
         *     SILO to have it done for us already in this case.
209
         */
216
         */
210
        (void) ofw_claim_phys(bootinfo.physmem_start +
217
        (void) ofw_claim_phys(bootinfo.physmem_start +
211
            bootinfo.taskmap.tasks[j].addr,
218
            bootinfo.taskmap.tasks[j].addr,
212
            ALIGN_UP(components[i].size, PAGE_SIZE));
219
            ALIGN_UP(components[i].size, PAGE_SIZE));
213
           
220
           
214
        memcpy((void *)bootinfo.taskmap.tasks[j].addr,
221
        memcpy((void *)bootinfo.taskmap.tasks[j].addr,
215
            components[i].start, components[i].size);
222
            components[i].start, components[i].size);
216
        printf("done.\n");
223
        printf("done.\n");
217
    }
224
    }
218
 
225
 
219
    printf("\nCopying kernel...");
226
    printf("\nCopying kernel...");
220
    (void) ofw_claim_phys(bootinfo.physmem_start + base,
227
    (void) ofw_claim_phys(bootinfo.physmem_start + base,
221
        ALIGN_UP(components[0].size, PAGE_SIZE));
228
        ALIGN_UP(components[0].size, PAGE_SIZE));
222
    memcpy(base, components[0].start, components[0].size);
229
    memcpy(base, components[0].start, components[0].size);
223
    printf("done.\n");
230
    printf("done.\n");
224
 
231
 
225
    /*
232
    /*
226
     * Claim and map the physical memory for the boot allocator.
233
     * Claim and map the physical memory for the boot allocator.
227
     * Initialize the boot allocator.
234
     * Initialize the boot allocator.
228
     */
235
     */
229
    balloc_base = base + ALIGN_UP(top, PAGE_SIZE);
236
    balloc_base = base + ALIGN_UP(top, PAGE_SIZE);
230
    (void) ofw_claim_phys(bootinfo.physmem_start + balloc_base,
237
    (void) ofw_claim_phys(bootinfo.physmem_start + balloc_base,
231
        BALLOC_MAX_SIZE);
238
        BALLOC_MAX_SIZE);
232
    (void) ofw_map(balloc_base, balloc_base, BALLOC_MAX_SIZE, -1);
239
    (void) ofw_map(balloc_base, balloc_base, BALLOC_MAX_SIZE, -1);
233
    balloc_init(&bootinfo.ballocs, (uintptr_t)balloc_base);
240
    balloc_init(&bootinfo.ballocs, (uintptr_t)balloc_base);
234
 
241
 
235
    printf("\nCanonizing OpenFirmware device tree...");
242
    printf("\nCanonizing OpenFirmware device tree...");
236
    bootinfo.ofw_root = ofw_tree_build();
243
    bootinfo.ofw_root = ofw_tree_build();
237
    printf("done.\n");
244
    printf("done.\n");
238
 
245
 
239
#ifdef CONFIG_SMP
246
#ifdef CONFIG_SMP
240
    printf("\nChecking for secondary processors...");
247
    printf("\nChecking for secondary processors...");
241
    if (!ofw_cpu())
248
    if (!ofw_cpu())
242
        printf("Error: unable to get CPU properties\n");
249
        printf("Error: unable to get CPU properties\n");
243
    printf("done.\n");
250
    printf("done.\n");
244
#endif
251
#endif
245
 
252
 
246
    printf("\nBooting the kernel...\n");
253
    printf("\nBooting the kernel...\n");
247
    jump_to_kernel((void *) KERNEL_VIRTUAL_ADDRESS,
254
    jump_to_kernel((void *) KERNEL_VIRTUAL_ADDRESS,
248
        bootinfo.physmem_start | BSP_PROCESSOR, &bootinfo,
255
        bootinfo.physmem_start | BSP_PROCESSOR, &bootinfo,
249
        sizeof(bootinfo));
256
        sizeof(bootinfo));
250
}
257
}
251
 
258
 
252
 
259