Subversion Repositories HelenOS

Rev

Rev 2416 | Rev 2450 | Go to most recent revision | Only display areas with differences | Ignore whitespace | Details | Blame | Last modification | View Log | RSS feed

Rev 2416 Rev 2421
1
/*
1
/*
2
 * Copyright (C) 2001-2004 Jakub Jermar
2
 * Copyright (C) 2001-2004 Jakub Jermar
3
 * All rights reserved.
3
 * All rights reserved.
4
 *
4
 *
5
 * Redistribution and use in source and binary forms, with or without
5
 * Redistribution and use in source and binary forms, with or without
6
 * modification, are permitted provided that the following conditions
6
 * modification, are permitted provided that the following conditions
7
 * are met:
7
 * are met:
8
 *
8
 *
9
 * - Redistributions of source code must retain the above copyright
9
 * - Redistributions of source code must retain the above copyright
10
 *   notice, this list of conditions and the following disclaimer.
10
 *   notice, this list of conditions and the following disclaimer.
11
 * - Redistributions in binary form must reproduce the above copyright
11
 * - Redistributions in binary form must reproduce the above copyright
12
 *   notice, this list of conditions and the following disclaimer in the
12
 *   notice, this list of conditions and the following disclaimer in the
13
 *   documentation and/or other materials provided with the distribution.
13
 *   documentation and/or other materials provided with the distribution.
14
 * - The name of the author may not be used to endorse or promote products
14
 * - The name of the author may not be used to endorse or promote products
15
 *   derived from this software without specific prior written permission.
15
 *   derived from this software without specific prior written permission.
16
 *
16
 *
17
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
 */
27
 */
28
 
28
 
29
/** @addtogroup time
29
/** @addtogroup time
30
 * @{
30
 * @{
31
 */
31
 */
32
 
32
 
33
/**
33
/**
34
 * @file
34
 * @file
35
 * @brief   High-level clock interrupt handler.
35
 * @brief   High-level clock interrupt handler.
36
 *
36
 *
37
 * This file contains the clock() function which is the source
37
 * This file contains the clock() function which is the source
38
 * of preemption. It is also responsible for executing expired
38
 * of preemption. It is also responsible for executing expired
39
 * timeouts.
39
 * timeouts.
40
 */
40
 */
41
 
41
 
42
#include <time/clock.h>
42
#include <time/clock.h>
43
#include <time/timeout.h>
43
#include <time/timeout.h>
44
#include <config.h>
44
#include <config.h>
45
#include <synch/spinlock.h>
45
#include <synch/spinlock.h>
46
#include <synch/waitq.h>
46
#include <synch/waitq.h>
47
#include <func.h>
47
#include <func.h>
48
#include <proc/scheduler.h>
48
#include <proc/scheduler.h>
49
#include <cpu.h>
49
#include <cpu.h>
50
#include <arch.h>
50
#include <arch.h>
51
#include <adt/list.h>
51
#include <adt/list.h>
52
#include <atomic.h>
52
#include <atomic.h>
53
#include <proc/thread.h>
53
#include <proc/thread.h>
54
#include <sysinfo/sysinfo.h>
54
#include <sysinfo/sysinfo.h>
55
#include <arch/barrier.h>
55
#include <arch/barrier.h>
56
#include <mm/frame.h>
56
#include <mm/frame.h>
57
#include <ddi/ddi.h>
57
#include <ddi/ddi.h>
58
 
58
 
59
/* Pointer to variable with uptime */
59
/* Pointer to variable with uptime */
60
uptime_t *uptime;
60
uptime_t *uptime;
61
 
61
 
62
/** Physical memory area of the real time clock */
62
/** Physical memory area of the real time clock */
63
static parea_t clock_parea;
63
static parea_t clock_parea;
64
 
64
 
65
/* Variable holding fragment of second, so that we would update
65
/* Variable holding fragment of second, so that we would update
66
 * seconds correctly
66
 * seconds correctly
67
 */
67
 */
68
static unative_t secfrag = 0;
68
static unative_t secfrag = 0;
69
 
69
 
70
/** Initialize realtime clock counter
70
/** Initialize realtime clock counter
71
 *
71
 *
72
 * The applications (and sometimes kernel) need to access accurate
72
 * The applications (and sometimes kernel) need to access accurate
73
 * information about realtime data. We allocate 1 page with these
73
 * information about realtime data. We allocate 1 page with these
74
 * data and update it periodically.
74
 * data and update it periodically.
75
 */
75
 */
76
void clock_counter_init(void)
76
void clock_counter_init(void)
77
{
77
{
78
    void *faddr;
78
    void *faddr;
79
 
79
 
80
    faddr = frame_alloc(ONE_FRAME, FRAME_ATOMIC);
80
    faddr = frame_alloc(ONE_FRAME, FRAME_ATOMIC);
81
    if (!faddr)
81
    if (!faddr)
82
        panic("Cannot allocate page for clock");
82
        panic("Cannot allocate page for clock");
83
   
83
   
84
    uptime = (uptime_t *) PA2KA(faddr);
84
    uptime = (uptime_t *) PA2KA(faddr);
85
   
85
   
86
    uptime->seconds1 = 0;
86
    uptime->seconds1 = 0;
87
    uptime->seconds2 = 0;
87
    uptime->seconds2 = 0;
88
    uptime->useconds = 0;
88
    uptime->useconds = 0;
89
 
89
 
90
    clock_parea.pbase = (uintptr_t) faddr;
90
    clock_parea.pbase = (uintptr_t) faddr;
91
    clock_parea.vbase = (uintptr_t) uptime;
91
    clock_parea.vbase = (uintptr_t) uptime;
92
    clock_parea.frames = 1;
92
    clock_parea.frames = 1;
93
    clock_parea.cacheable = true;
93
    clock_parea.cacheable = true;
94
    ddi_parea_register(&clock_parea);
94
    ddi_parea_register(&clock_parea);
95
 
95
 
96
    /*
96
    /*
97
     * Prepare information for the userspace so that it can successfully
97
     * Prepare information for the userspace so that it can successfully
98
     * physmem_map() the clock_parea.
98
     * physmem_map() the clock_parea.
99
     */
99
     */
100
    sysinfo_set_item_val("clock.cacheable", NULL, (unative_t) true);
100
    sysinfo_set_item_val("clock.cacheable", NULL, (unative_t) true);
101
    sysinfo_set_item_val("clock.faddr", NULL, (unative_t) faddr);
101
    sysinfo_set_item_val("clock.faddr", NULL, (unative_t) faddr);
102
}
102
}
103
 
103
 
104
 
104
 
105
/** Update public counters
105
/** Update public counters
106
 *
106
 *
107
 * Update it only on first processor
107
 * Update it only on first processor
108
 * TODO: Do we really need so many write barriers?
108
 * TODO: Do we really need so many write barriers?
109
 */
109
 */
110
static void clock_update_counters(void)
110
static void clock_update_counters(void)
111
{
111
{
112
    if (CPU->id == 0) {
112
    if (CPU->id == 0) {
113
        secfrag += 1000000 / HZ;
113
        secfrag += 1000000 / HZ;
114
        if (secfrag >= 1000000) {
114
        if (secfrag >= 1000000) {
115
            secfrag -= 1000000;
115
            secfrag -= 1000000;
116
            uptime->seconds1++;
116
            uptime->seconds1++;
117
            write_barrier();
117
            write_barrier();
118
            uptime->useconds = secfrag;
118
            uptime->useconds = secfrag;
119
            write_barrier();
119
            write_barrier();
120
            uptime->seconds2 = uptime->seconds1;
120
            uptime->seconds2 = uptime->seconds1;
121
        } else
121
        } else
122
            uptime->useconds += 1000000 / HZ;
122
            uptime->useconds += 1000000 / HZ;
123
    }
123
    }
124
}
124
}
125
 
125
 
126
#if defined CONFIG_TIMEOUT_AVL_TREE || \
126
#if defined CONFIG_TIMEOUT_AVL_TREE
127
    defined CONFIG_TIMEOUT_EXTAVL_TREE
-
 
128
 
127
 
129
/** Clock routine
128
/** Clock routine
130
 *
129
 *
131
 * Clock routine executed from clock interrupt handler
130
 * Clock routine executed from clock interrupt handler
132
 * (assuming interrupts_disable()'d). Runs expired timeouts
131
 * (assuming interrupts_disable()'d). Runs expired timeouts
133
 * and preemptive scheduling.
132
 * and preemptive scheduling.
134
 *
133
 *
135
 */
134
 */
136
void clock(void)
135
void clock(void)
137
{
136
{
138
    timeout_t *h;
137
    timeout_t *h;
139
    timeout_handler_t f;
138
    timeout_handler_t f;
140
    void *arg;
139
    void *arg;
141
    count_t missed_clock_ticks = CPU->missed_clock_ticks;
140
    count_t missed_clock_ticks = CPU->missed_clock_ticks;
142
    uint64_t *i = &(CPU->timeout_active_tree.base);
141
    uint64_t *i = &(CPU->timeout_active_tree.base);
143
    uint64_t absolute_clock_ticks = *i + missed_clock_ticks;
142
    uint64_t absolute_clock_ticks = *i + missed_clock_ticks;
144
#if defined CONFIG TIMEOUT_AVL_TREE
-
 
145
    avltree_node_t *expnode;
143
    avltree_node_t *expnode;
-
 
144
 
-
 
145
    /*
-
 
146
     * To avoid lock ordering problems,
-
 
147
     * run all expired timeouts as you visit them.
-
 
148
     */
-
 
149
 
-
 
150
    for (; *i <= absolute_clock_ticks; (*i)++) {
-
 
151
        /*
-
 
152
         * Basetime is encreased by missed clock ticks + 1 !!
-
 
153
         */
-
 
154
       
-
 
155
        clock_update_counters();
-
 
156
        spinlock_lock(&CPU->timeoutlock);
-
 
157
   
-
 
158
   
-
 
159
        /*
-
 
160
         * Check whether first timeout (with the smallest key in the tree) time out. If so perform
-
 
161
         * callback function and try next timeout (more timeouts can have same timeout).
-
 
162
         */
-
 
163
        while ((expnode = avltree_find_min(&CPU->timeout_active_tree)) != NULL) {
-
 
164
            h = avltree_get_instance(expnode,timeout_t,node);
-
 
165
            spinlock_lock(&h->lock);
-
 
166
            if (expnode->key != *i) {
-
 
167
                spinlock_unlock(&h->lock);
-
 
168
                break;
-
 
169
            }
-
 
170
           
-
 
171
            /*
-
 
172
             * Delete minimal key from the tree and repair tree structure in
-
 
173
             * logarithmic time.
-
 
174
             */
-
 
175
            avltree_delete_min(&CPU->timeout_active_tree);
-
 
176
 
-
 
177
            f = h->handler;
-
 
178
            arg = h->arg;
-
 
179
            timeout_reinitialize(h);
-
 
180
            spinlock_unlock(&h->lock); 
-
 
181
            spinlock_unlock(&CPU->timeoutlock);
-
 
182
 
-
 
183
            f(arg);
-
 
184
 
-
 
185
            spinlock_lock(&CPU->timeoutlock);
-
 
186
        }
-
 
187
        spinlock_unlock(&CPU->timeoutlock);
-
 
188
    }
-
 
189
 
-
 
190
    CPU->missed_clock_ticks = 0;
-
 
191
 
-
 
192
    /*
-
 
193
     * Do CPU usage accounting and find out whether to preempt THREAD.
-
 
194
     */
-
 
195
    if (THREAD) {
-
 
196
        uint64_t ticks;
-
 
197
       
-
 
198
        spinlock_lock(&CPU->lock);
-
 
199
        CPU->needs_relink += 1 + missed_clock_ticks;
-
 
200
        spinlock_unlock(&CPU->lock);   
-
 
201
   
-
 
202
        spinlock_lock(&THREAD->lock);
-
 
203
        if ((ticks = THREAD->ticks)) {
-
 
204
            if (ticks >= 1 + missed_clock_ticks)
-
 
205
                THREAD->ticks -= 1 + missed_clock_ticks;
-
 
206
            else
-
 
207
                THREAD->ticks = 0;
-
 
208
        }
-
 
209
        spinlock_unlock(&THREAD->lock);
-
 
210
       
-
 
211
        if (!ticks && !PREEMPTION_DISABLED) {
-
 
212
            scheduler();
-
 
213
        }
-
 
214
    }
-
 
215
}
-
 
216
 
146
#elif defined CONFIG_TIMEOUT_EXTAVL_TREE
217
#elif defined CONFIG_TIMEOUT_EXTAVL_TREE
-
 
218
 
-
 
219
/** Clock routine
-
 
220
 *
-
 
221
 * Clock routine executed from clock interrupt handler
-
 
222
 * (assuming interrupts_disable()'d). Runs expired timeouts
-
 
223
 * and preemptive scheduling.
-
 
224
 *
-
 
225
 */
-
 
226
void clock(void)
-
 
227
{
-
 
228
    timeout_t *h;
-
 
229
    timeout_handler_t f;
-
 
230
    void *arg;
-
 
231
    count_t missed_clock_ticks = CPU->missed_clock_ticks;
-
 
232
    uint64_t *i = &(CPU->timeout_active_tree.base);
-
 
233
    uint64_t absolute_clock_ticks = *i + missed_clock_ticks;
147
    extavltree_node_t *expnode;
234
    extavltree_node_t *expnode;
148
#endif
-
 
149
 
235
 
150
    /*
236
    /*
151
     * To avoid lock ordering problems,
237
     * To avoid lock ordering problems,
152
     * run all expired timeouts as you visit them.
238
     * run all expired timeouts as you visit them.
153
     */
239
     */
154
 
240
 
155
    for (; *i <= absolute_clock_ticks; (*i)++) {
241
    for (; *i <= absolute_clock_ticks; (*i)++) {
156
        /*
242
        /*
157
         * Basetime is encreased by missed clock ticks + 1 !!
243
         * Basetime is encreased by missed clock ticks + 1 !!
158
         */
244
         */
159
       
245
       
160
        clock_update_counters();
246
        clock_update_counters();
161
        spinlock_lock(&CPU->timeoutlock);
247
        spinlock_lock(&CPU->timeoutlock);
162
       
248
       
163
        /*
249
        /*
164
         * Check whether first timeout in list time out. If so perform callback function and try
250
         * Check whether first timeout in list time out. If so perform callback function and try
165
         * next timeout (more timeouts can have same timeout).
251
         * next timeout (more timeouts can have same timeout).
166
         */
252
         */
167
        while ((expnode = CPU->timeout_active_tree.head.next) != &(CPU->timeout_active_tree.head)) {
253
        while ((expnode = CPU->timeout_active_tree.head.next) != &(CPU->timeout_active_tree.head)) {
168
            h = extavltree_get_instance(expnode,timeout_t,node);
254
            h = extavltree_get_instance(expnode,timeout_t,node);
169
            spinlock_lock(&h->lock);
255
            spinlock_lock(&h->lock);
170
            if (expnode->key != *i) {
256
            if (expnode->key != *i) {
171
                spinlock_unlock(&h->lock);
257
                spinlock_unlock(&h->lock);
172
                break;
258
                break;
173
            }
259
            }
174
           
260
           
175
            /*
261
            /*
176
             * Delete first node in the list and repair tree structure in
262
             * Delete first node in the list and repair tree structure in
177
             * constant time.
263
             * constant time.
178
             */
264
             */
179
#if defined CONFIG TIMEOUT_AVL_TREE
-
 
180
            avltree_delete_min(&CPU->timeout_active_tree);
-
 
181
#elif defined CONFIG_TIMEOUT_EXTAVL_TREE
-
 
182
            extavltree_delete_min(&CPU->timeout_active_tree);
265
            extavltree_delete_min(&CPU->timeout_active_tree);
183
#endif
-
 
184
 
266
 
185
            f = h->handler;
267
            f = h->handler;
186
            arg = h->arg;
268
            arg = h->arg;
187
            timeout_reinitialize(h);
269
            timeout_reinitialize(h);
188
            spinlock_unlock(&h->lock); 
270
            spinlock_unlock(&h->lock); 
189
            spinlock_unlock(&CPU->timeoutlock);
271
            spinlock_unlock(&CPU->timeoutlock);
190
 
272
 
191
            f(arg);
273
            f(arg);
192
 
274
 
193
            spinlock_lock(&CPU->timeoutlock);
275
            spinlock_lock(&CPU->timeoutlock);
194
        }
276
        }
195
        spinlock_unlock(&CPU->timeoutlock);
277
        spinlock_unlock(&CPU->timeoutlock);
196
    }
278
    }
197
 
279
 
198
    CPU->missed_clock_ticks = 0;
280
    CPU->missed_clock_ticks = 0;
199
 
281
 
200
    /*
282
    /*
201
     * Do CPU usage accounting and find out whether to preempt THREAD.
283
     * Do CPU usage accounting and find out whether to preempt THREAD.
202
     */
284
     */
203
    if (THREAD) {
285
    if (THREAD) {
204
        uint64_t ticks;
286
        uint64_t ticks;
205
       
287
       
206
        spinlock_lock(&CPU->lock);
288
        spinlock_lock(&CPU->lock);
207
        CPU->needs_relink += 1 + missed_clock_ticks;
289
        CPU->needs_relink += 1 + missed_clock_ticks;
208
        spinlock_unlock(&CPU->lock);   
290
        spinlock_unlock(&CPU->lock);   
209
   
291
   
210
        spinlock_lock(&THREAD->lock);
292
        spinlock_lock(&THREAD->lock);
211
        if ((ticks = THREAD->ticks)) {
293
        if ((ticks = THREAD->ticks)) {
212
            if (ticks >= 1 + missed_clock_ticks)
294
            if (ticks >= 1 + missed_clock_ticks)
213
                THREAD->ticks -= 1 + missed_clock_ticks;
295
                THREAD->ticks -= 1 + missed_clock_ticks;
214
            else
296
            else
215
                THREAD->ticks = 0;
297
                THREAD->ticks = 0;
216
        }
298
        }
217
        spinlock_unlock(&THREAD->lock);
299
        spinlock_unlock(&THREAD->lock);
218
       
300
       
219
        if (!ticks && !PREEMPTION_DISABLED) {
301
        if (!ticks && !PREEMPTION_DISABLED) {
220
            scheduler();
302
            scheduler();
221
        }
303
        }
222
    }
304
    }
223
}
305
}
224
 
306
 
225
#elif defined CONFIG_TIMEOUT_EXTAVLREL_TREE
307
#elif defined CONFIG_TIMEOUT_EXTAVLREL_TREE
226
 
308
 
227
/** Clock routine
309
/** Clock routine
228
 *
310
 *
229
 * Clock routine executed from clock interrupt handler
311
 * Clock routine executed from clock interrupt handler
230
 * (assuming interrupts_disable()'d). Runs expired timeouts
312
 * (assuming interrupts_disable()'d). Runs expired timeouts
231
 * and preemptive scheduling.
313
 * and preemptive scheduling.
232
 *
314
 *
233
 */
315
 */
234
void clock(void)
316
void clock(void)
235
{
317
{
236
    extavltree_node_t *expnode;
318
    extavlreltree_node_t *expnode;
237
    timeout_t *h;
319
    timeout_t *h;
238
    timeout_handler_t f;
320
    timeout_handler_t f;
239
    void *arg;
321
    void *arg;
240
    count_t missed_clock_ticks = CPU->missed_clock_ticks;
322
    count_t missed_clock_ticks = CPU->missed_clock_ticks;
241
    int i;
323
    int i;
242
 
324
 
243
    /*
325
    /*
244
     * To avoid lock ordering problems,
326
     * To avoid lock ordering problems,
245
     * run all expired timeouts as you visit them.
327
     * run all expired timeouts as you visit them.
246
     */
328
     */
247
    for (i = 0; i <= missed_clock_ticks; i++) {
329
    for (i = 0; i <= missed_clock_ticks; i++) {
248
        clock_update_counters();
330
        clock_update_counters();
249
        spinlock_lock(&CPU->timeoutlock);
331
        spinlock_lock(&CPU->timeoutlock);
250
 
332
 
251
        /*
333
        /*
252
         * Check whether first timeout in list time out. If so perform callback function and try
334
         * Check whether first timeout in list time out. If so perform callback function and try
253
         * next timeout (more timeouts can have same timeout).
335
         * next timeout (more timeouts can have same timeout).
254
         */
336
         */
255
        while ((expnode = CPU->timeout_active_tree.head.next) != &(CPU->timeout_active_tree.head)) {
337
        while ((expnode = CPU->timeout_active_tree.head.next) != &(CPU->timeout_active_tree.head)) {
256
            h = list_get_instance(l, timeout_t, link);
338
            h = extavlreltree_get_instance(expnode,timeout_t,node);
257
            spinlock_lock(&h->lock);
339
            spinlock_lock(&h->lock);
258
            if (expnode->key != 0) {
340
            if (expnode->key != 0) {
259
                expnode->key--;
341
                expnode->key--;
260
                spinlock_unlock(&h->lock);
342
                spinlock_unlock(&h->lock);
261
                break;
343
                break;
262
            }
344
            }
263
           
345
           
264
            /*
346
            /*
265
             * Delete first node in the list and repair tree structure in
347
             * Delete first node in the list and repair tree structure in
266
             * constant time. Be careful of expnode's key, it must be 0!
348
             * constant time. Be careful of expnode's key, it must be 0!
267
             */
349
             */
268
            extavltree_delete_min(&CPU->timeout_active_tree);
350
            extavlreltree_delete_min(&CPU->timeout_active_tree);
269
           
351
           
270
            f = h->handler;
352
            f = h->handler;
271
            arg = h->arg;
353
            arg = h->arg;
272
            timeout_reinitialize(h);
354
            timeout_reinitialize(h);
273
            spinlock_unlock(&h->lock); 
355
            spinlock_unlock(&h->lock); 
274
            spinlock_unlock(&CPU->timeoutlock);
356
            spinlock_unlock(&CPU->timeoutlock);
275
 
357
 
276
            f(arg);
358
            f(arg);
277
 
359
 
278
            spinlock_lock(&CPU->timeoutlock);
360
            spinlock_lock(&CPU->timeoutlock);
279
        }
361
        }
280
        spinlock_unlock(&CPU->timeoutlock);
362
        spinlock_unlock(&CPU->timeoutlock);
281
    }
363
    }
282
    CPU->missed_clock_ticks = 0;
364
    CPU->missed_clock_ticks = 0;
283
 
365
 
284
    /*
366
    /*
285
     * Do CPU usage accounting and find out whether to preempt THREAD.
367
     * Do CPU usage accounting and find out whether to preempt THREAD.
286
     */
368
     */
287
 
369
 
288
    if (THREAD) {
370
    if (THREAD) {
289
        uint64_t ticks;
371
        uint64_t ticks;
290
       
372
       
291
        spinlock_lock(&CPU->lock);
373
        spinlock_lock(&CPU->lock);
292
        CPU->needs_relink += 1 + missed_clock_ticks;
374
        CPU->needs_relink += 1 + missed_clock_ticks;
293
        spinlock_unlock(&CPU->lock);   
375
        spinlock_unlock(&CPU->lock);   
294
   
376
   
295
        spinlock_lock(&THREAD->lock);
377
        spinlock_lock(&THREAD->lock);
296
        if ((ticks = THREAD->ticks)) {
378
        if ((ticks = THREAD->ticks)) {
297
            if (ticks >= 1 + missed_clock_ticks)
379
            if (ticks >= 1 + missed_clock_ticks)
298
                THREAD->ticks -= 1 + missed_clock_ticks;
380
                THREAD->ticks -= 1 + missed_clock_ticks;
299
            else
381
            else
300
                THREAD->ticks = 0;
382
                THREAD->ticks = 0;
301
        }
383
        }
302
        spinlock_unlock(&THREAD->lock);
384
        spinlock_unlock(&THREAD->lock);
303
       
385
       
304
        if (!ticks && !PREEMPTION_DISABLED) {
386
        if (!ticks && !PREEMPTION_DISABLED) {
305
            scheduler();
387
            scheduler();
306
        }
388
        }
307
    }
389
    }
308
}
390
}
309
 
391
 
310
 
392
 
311
 
393
 
312
#else
394
#else
313
 
395
 
314
 
396
 
315
/** Clock routine
397
/** Clock routine
316
 *
398
 *
317
 * Clock routine executed from clock interrupt handler
399
 * Clock routine executed from clock interrupt handler
318
 * (assuming interrupts_disable()'d). Runs expired timeouts
400
 * (assuming interrupts_disable()'d). Runs expired timeouts
319
 * and preemptive scheduling.
401
 * and preemptive scheduling.
320
 *
402
 *
321
 */
403
 */
322
void clock(void)
404
void clock(void)
323
{
405
{
324
    link_t *l;
406
    link_t *l;
325
    timeout_t *h;
407
    timeout_t *h;
326
    timeout_handler_t f;
408
    timeout_handler_t f;
327
    void *arg;
409
    void *arg;
328
    count_t missed_clock_ticks = CPU->missed_clock_ticks;
410
    count_t missed_clock_ticks = CPU->missed_clock_ticks;
329
    int i;
411
    int i;
330
 
412
 
331
    /*
413
    /*
332
     * To avoid lock ordering problems,
414
     * To avoid lock ordering problems,
333
     * run all expired timeouts as you visit them.
415
     * run all expired timeouts as you visit them.
334
     */
416
     */
335
    for (i = 0; i <= missed_clock_ticks; i++) {
417
    for (i = 0; i <= missed_clock_ticks; i++) {
336
        clock_update_counters();
418
        clock_update_counters();
337
        spinlock_lock(&CPU->timeoutlock);
419
        spinlock_lock(&CPU->timeoutlock);
338
        while ((l = CPU->timeout_active_head.next) != &CPU->timeout_active_head) {
420
        while ((l = CPU->timeout_active_head.next) != &CPU->timeout_active_head) {
339
            h = list_get_instance(l, timeout_t, link);
421
            h = list_get_instance(l, timeout_t, link);
340
            spinlock_lock(&h->lock);
422
            spinlock_lock(&h->lock);
341
            if (h->ticks-- != 0) {
423
            if (h->ticks-- != 0) {
342
                spinlock_unlock(&h->lock);
424
                spinlock_unlock(&h->lock);
343
                break;
425
                break;
344
            }
426
            }
345
            list_remove(l);
427
            list_remove(l);
346
            f = h->handler;
428
            f = h->handler;
347
            arg = h->arg;
429
            arg = h->arg;
348
            timeout_reinitialize(h);
430
            timeout_reinitialize(h);
349
            spinlock_unlock(&h->lock); 
431
            spinlock_unlock(&h->lock); 
350
            spinlock_unlock(&CPU->timeoutlock);
432
            spinlock_unlock(&CPU->timeoutlock);
351
 
433
 
352
            f(arg);
434
            f(arg);
353
 
435
 
354
            spinlock_lock(&CPU->timeoutlock);
436
            spinlock_lock(&CPU->timeoutlock);
355
        }
437
        }
356
        spinlock_unlock(&CPU->timeoutlock);
438
        spinlock_unlock(&CPU->timeoutlock);
357
    }
439
    }
358
    CPU->missed_clock_ticks = 0;
440
    CPU->missed_clock_ticks = 0;
359
 
441
 
360
    /*
442
    /*
361
     * Do CPU usage accounting and find out whether to preempt THREAD.
443
     * Do CPU usage accounting and find out whether to preempt THREAD.
362
     */
444
     */
363
 
445
 
364
    if (THREAD) {
446
    if (THREAD) {
365
        uint64_t ticks;
447
        uint64_t ticks;
366
       
448
       
367
        spinlock_lock(&CPU->lock);
449
        spinlock_lock(&CPU->lock);
368
        CPU->needs_relink += 1 + missed_clock_ticks;
450
        CPU->needs_relink += 1 + missed_clock_ticks;
369
        spinlock_unlock(&CPU->lock);   
451
        spinlock_unlock(&CPU->lock);   
370
   
452
   
371
        spinlock_lock(&THREAD->lock);
453
        spinlock_lock(&THREAD->lock);
372
        if ((ticks = THREAD->ticks)) {
454
        if ((ticks = THREAD->ticks)) {
373
            if (ticks >= 1 + missed_clock_ticks)
455
            if (ticks >= 1 + missed_clock_ticks)
374
                THREAD->ticks -= 1 + missed_clock_ticks;
456
                THREAD->ticks -= 1 + missed_clock_ticks;
375
            else
457
            else
376
                THREAD->ticks = 0;
458
                THREAD->ticks = 0;
377
        }
459
        }
378
        spinlock_unlock(&THREAD->lock);
460
        spinlock_unlock(&THREAD->lock);
379
       
461
       
380
        if (!ticks && !PREEMPTION_DISABLED) {
462
        if (!ticks && !PREEMPTION_DISABLED) {
381
            scheduler();
463
            scheduler();
382
        }
464
        }
383
    }
465
    }
384
}
466
}
385
 
467
 
386
#endif
468
#endif
387
/** @}
469
/** @}
388
 */
470
 */
389
 
471