Subversion Repositories HelenOS

Rev

Rev 2131 | Rev 2292 | Go to most recent revision | Only display areas with differences | Ignore whitespace | Details | Blame | Last modification | View Log | RSS feed

Rev 2131 Rev 2283
1
/*
1
/*
2
 * Copyright (c) 2001-2007 Jakub Jermar
2
 * Copyright (c) 2001-2007 Jakub Jermar
3
 * All rights reserved.
3
 * All rights reserved.
4
 *
4
 *
5
 * Redistribution and use in source and binary forms, with or without
5
 * Redistribution and use in source and binary forms, with or without
6
 * modification, are permitted provided that the following conditions
6
 * modification, are permitted provided that the following conditions
7
 * are met:
7
 * are met:
8
 *
8
 *
9
 * - Redistributions of source code must retain the above copyright
9
 * - Redistributions of source code must retain the above copyright
10
 *   notice, this list of conditions and the following disclaimer.
10
 *   notice, this list of conditions and the following disclaimer.
11
 * - Redistributions in binary form must reproduce the above copyright
11
 * - Redistributions in binary form must reproduce the above copyright
12
 *   notice, this list of conditions and the following disclaimer in the
12
 *   notice, this list of conditions and the following disclaimer in the
13
 *   documentation and/or other materials provided with the distribution.
13
 *   documentation and/or other materials provided with the distribution.
14
 * - The name of the author may not be used to endorse or promote products
14
 * - The name of the author may not be used to endorse or promote products
15
 *   derived from this software without specific prior written permission.
15
 *   derived from this software without specific prior written permission.
16
 *
16
 *
17
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
 */
27
 */
28
 
28
 
29
/** @addtogroup genericproc
29
/** @addtogroup genericproc
30
 * @{
30
 * @{
31
 */
31
 */
32
 
32
 
33
/**
33
/**
34
 * @file
34
 * @file
35
 * @brief   Scheduler and load balancing.
35
 * @brief   Scheduler and load balancing.
36
 *
36
 *
37
 * This file contains the scheduler and kcpulb kernel thread which
37
 * This file contains the scheduler and kcpulb kernel thread which
38
 * performs load-balancing of per-CPU run queues.
38
 * performs load-balancing of per-CPU run queues.
39
 */
39
 */
40
 
40
 
41
#include <proc/scheduler.h>
41
#include <proc/scheduler.h>
42
#include <proc/thread.h>
42
#include <proc/thread.h>
43
#include <proc/task.h>
43
#include <proc/task.h>
44
#include <mm/frame.h>
44
#include <mm/frame.h>
45
#include <mm/page.h>
45
#include <mm/page.h>
46
#include <mm/as.h>
46
#include <mm/as.h>
47
#include <time/timeout.h>
47
#include <time/timeout.h>
48
#include <time/delay.h>
48
#include <time/delay.h>
49
#include <arch/asm.h>
49
#include <arch/asm.h>
50
#include <arch/faddr.h>
50
#include <arch/faddr.h>
51
#include <arch/cycle.h>
51
#include <arch/cycle.h>
52
#include <atomic.h>
52
#include <atomic.h>
53
#include <synch/spinlock.h>
53
#include <synch/spinlock.h>
54
#include <config.h>
54
#include <config.h>
55
#include <context.h>
55
#include <context.h>
56
#include <fpu_context.h>
56
#include <fpu_context.h>
57
#include <func.h>
57
#include <func.h>
58
#include <arch.h>
58
#include <arch.h>
59
#include <adt/list.h>
59
#include <adt/list.h>
60
#include <panic.h>
60
#include <panic.h>
61
#include <cpu.h>
61
#include <cpu.h>
62
#include <print.h>
62
#include <print.h>
63
#include <debug.h>
63
#include <debug.h>
-
 
64
#include <proc/tasklet.h>
64
 
65
 
65
static void before_task_runs(void);
66
static void before_task_runs(void);
66
static void before_thread_runs(void);
67
static void before_thread_runs(void);
67
static void after_thread_ran(void);
68
static void after_thread_ran(void);
68
static void scheduler_separated_stack(void);
69
static void scheduler_separated_stack(void);
69
 
70
 
70
atomic_t nrdy;  /**< Number of ready threads in the system. */
71
atomic_t nrdy;  /**< Number of ready threads in the system. */
71
 
72
 
72
/** Carry out actions before new task runs. */
73
/** Carry out actions before new task runs. */
73
void before_task_runs(void)
74
void before_task_runs(void)
74
{
75
{
75
    before_task_runs_arch();
76
    before_task_runs_arch();
76
}
77
}
77
 
78
 
78
/** Take actions before new thread runs.
79
/** Take actions before new thread runs.
79
 *
80
 *
80
 * Perform actions that need to be
81
 * Perform actions that need to be
81
 * taken before the newly selected
82
 * taken before the newly selected
82
 * tread is passed control.
83
 * tread is passed control.
83
 *
84
 *
84
 * THREAD->lock is locked on entry
85
 * THREAD->lock is locked on entry
85
 *
86
 *
86
 */
87
 */
87
void before_thread_runs(void)
88
void before_thread_runs(void)
88
{
89
{
89
    before_thread_runs_arch();
90
    before_thread_runs_arch();
90
#ifdef CONFIG_FPU_LAZY
91
#ifdef CONFIG_FPU_LAZY
91
    if(THREAD == CPU->fpu_owner)
92
    if(THREAD == CPU->fpu_owner)
92
        fpu_enable();
93
        fpu_enable();
93
    else
94
    else
94
        fpu_disable();
95
        fpu_disable();
95
#else
96
#else
96
    fpu_enable();
97
    fpu_enable();
97
    if (THREAD->fpu_context_exists)
98
    if (THREAD->fpu_context_exists)
98
        fpu_context_restore(THREAD->saved_fpu_context);
99
        fpu_context_restore(THREAD->saved_fpu_context);
99
    else {
100
    else {
100
        fpu_init();
101
        fpu_init();
101
        THREAD->fpu_context_exists = 1;
102
        THREAD->fpu_context_exists = 1;
102
    }
103
    }
103
#endif
104
#endif
104
}
105
}
105
 
106
 
106
/** Take actions after THREAD had run.
107
/** Take actions after THREAD had run.
107
 *
108
 *
108
 * Perform actions that need to be
109
 * Perform actions that need to be
109
 * taken after the running thread
110
 * taken after the running thread
110
 * had been preempted by the scheduler.
111
 * had been preempted by the scheduler.
111
 *
112
 *
112
 * THREAD->lock is locked on entry
113
 * THREAD->lock is locked on entry
113
 *
114
 *
114
 */
115
 */
115
void after_thread_ran(void)
116
void after_thread_ran(void)
116
{
117
{
117
    after_thread_ran_arch();
118
    after_thread_ran_arch();
118
}
119
}
119
 
120
 
120
#ifdef CONFIG_FPU_LAZY
121
#ifdef CONFIG_FPU_LAZY
121
void scheduler_fpu_lazy_request(void)
122
void scheduler_fpu_lazy_request(void)
122
{
123
{
123
restart:
124
restart:
124
    fpu_enable();
125
    fpu_enable();
125
    spinlock_lock(&CPU->lock);
126
    spinlock_lock(&CPU->lock);
126
 
127
 
127
    /* Save old context */
128
    /* Save old context */
128
    if (CPU->fpu_owner != NULL) {  
129
    if (CPU->fpu_owner != NULL) {  
129
        spinlock_lock(&CPU->fpu_owner->lock);
130
        spinlock_lock(&CPU->fpu_owner->lock);
130
        fpu_context_save(CPU->fpu_owner->saved_fpu_context);
131
        fpu_context_save(CPU->fpu_owner->saved_fpu_context);
131
        /* don't prevent migration */
132
        /* don't prevent migration */
132
        CPU->fpu_owner->fpu_context_engaged = 0;
133
        CPU->fpu_owner->fpu_context_engaged = 0;
133
        spinlock_unlock(&CPU->fpu_owner->lock);
134
        spinlock_unlock(&CPU->fpu_owner->lock);
134
        CPU->fpu_owner = NULL;
135
        CPU->fpu_owner = NULL;
135
    }
136
    }
136
 
137
 
137
    spinlock_lock(&THREAD->lock);
138
    spinlock_lock(&THREAD->lock);
138
    if (THREAD->fpu_context_exists) {
139
    if (THREAD->fpu_context_exists) {
139
        fpu_context_restore(THREAD->saved_fpu_context);
140
        fpu_context_restore(THREAD->saved_fpu_context);
140
    } else {
141
    } else {
141
        /* Allocate FPU context */
142
        /* Allocate FPU context */
142
        if (!THREAD->saved_fpu_context) {
143
        if (!THREAD->saved_fpu_context) {
143
            /* Might sleep */
144
            /* Might sleep */
144
            spinlock_unlock(&THREAD->lock);
145
            spinlock_unlock(&THREAD->lock);
145
            spinlock_unlock(&CPU->lock);
146
            spinlock_unlock(&CPU->lock);
146
            THREAD->saved_fpu_context =
147
            THREAD->saved_fpu_context =
147
                (fpu_context_t *) slab_alloc(fpu_context_slab, 0);
148
                (fpu_context_t *) slab_alloc(fpu_context_slab, 0);
148
            /* We may have switched CPUs during slab_alloc */
149
            /* We may have switched CPUs during slab_alloc */
149
            goto restart;
150
            goto restart;
150
        }
151
        }
151
        fpu_init();
152
        fpu_init();
152
        THREAD->fpu_context_exists = 1;
153
        THREAD->fpu_context_exists = 1;
153
    }
154
    }
154
    CPU->fpu_owner = THREAD;
155
    CPU->fpu_owner = THREAD;
155
    THREAD->fpu_context_engaged = 1;
156
    THREAD->fpu_context_engaged = 1;
156
    spinlock_unlock(&THREAD->lock);
157
    spinlock_unlock(&THREAD->lock);
157
 
158
 
158
    spinlock_unlock(&CPU->lock);
159
    spinlock_unlock(&CPU->lock);
159
}
160
}
160
#endif
161
#endif
161
 
162
 
162
/** Initialize scheduler
163
/** Initialize scheduler
163
 *
164
 *
164
 * Initialize kernel scheduler.
165
 * Initialize kernel scheduler.
165
 *
166
 *
166
 */
167
 */
167
void scheduler_init(void)
168
void scheduler_init(void)
168
{
169
{
169
}
170
}
170
 
171
 
171
/** Get thread to be scheduled
172
/** Get thread to be scheduled
172
 *
173
 *
173
 * Get the optimal thread to be scheduled
174
 * Get the optimal thread to be scheduled
174
 * according to thread accounting and scheduler
175
 * according to thread accounting and scheduler
175
 * policy.
176
 * policy.
176
 *
177
 *
177
 * @return Thread to be scheduled.
178
 * @return Thread to be scheduled.
178
 *
179
 *
179
 */
180
 */
180
static thread_t *find_best_thread(void)
181
static thread_t *find_best_thread(void)
181
{
182
{
182
    thread_t *t;
183
    thread_t *t;
183
    runq_t *r;
184
    runq_t *r;
184
    int i;
185
    int i;
185
 
186
 
186
    ASSERT(CPU != NULL);
187
    ASSERT(CPU != NULL);
187
 
188
 
188
loop:
189
loop:
189
    interrupts_enable();
190
    interrupts_enable();
190
   
191
   
191
    if (atomic_get(&CPU->nrdy) == 0) {
192
    if (atomic_get(&CPU->nrdy) == 0) {
192
        /*
193
        /*
193
         * For there was nothing to run, the CPU goes to sleep
194
         * For there was nothing to run, the CPU goes to sleep
194
         * until a hardware interrupt or an IPI comes.
195
         * until a hardware interrupt or an IPI comes.
195
         * This improves energy saving and hyperthreading.
196
         * This improves energy saving and hyperthreading.
196
         */
197
         */
197
 
198
 
198
        /*
199
        /*
199
         * An interrupt might occur right now and wake up a thread.
200
         * An interrupt might occur right now and wake up a thread.
200
         * In such case, the CPU will continue to go to sleep
201
         * In such case, the CPU will continue to go to sleep
201
         * even though there is a runnable thread.
202
         * even though there is a runnable thread.
202
         */
203
         */
203
 
204
 
204
         cpu_sleep();
205
         cpu_sleep();
205
         goto loop;
206
         goto loop;
206
    }
207
    }
207
 
208
 
208
    interrupts_disable();
209
    interrupts_disable();
209
   
210
   
210
    for (i = 0; i<RQ_COUNT; i++) {
211
    for (i = 0; i<RQ_COUNT; i++) {
211
        r = &CPU->rq[i];
212
        r = &CPU->rq[i];
212
        spinlock_lock(&r->lock);
213
        spinlock_lock(&r->lock);
213
        if (r->n == 0) {
214
        if (r->n == 0) {
214
            /*
215
            /*
215
             * If this queue is empty, try a lower-priority queue.
216
             * If this queue is empty, try a lower-priority queue.
216
             */
217
             */
217
            spinlock_unlock(&r->lock);
218
            spinlock_unlock(&r->lock);
218
            continue;
219
            continue;
219
        }
220
        }
220
 
221
 
221
        atomic_dec(&CPU->nrdy);
222
        atomic_dec(&CPU->nrdy);
222
        atomic_dec(&nrdy);
223
        atomic_dec(&nrdy);
223
        r->n--;
224
        r->n--;
224
 
225
 
225
        /*
226
        /*
226
         * Take the first thread from the queue.
227
         * Take the first thread from the queue.
227
         */
228
         */
228
        t = list_get_instance(r->rq_head.next, thread_t, rq_link);
229
        t = list_get_instance(r->rq_head.next, thread_t, rq_link);
-
 
230
        if (verbose)
-
 
231
            printf("cpu%d removing, rq_head %x, t: %x, next: %x, link: %x \n",CPU->id, r->rq_head, t, r->rq_head.next, t->rq_link);
229
        list_remove(&t->rq_link);
232
        list_remove(&t->rq_link);
-
 
233
        if (verbose)
-
 
234
            printf("cpu%d  removed, rq_head %x, t: %x, next: %x, link: %x \n",CPU->id, r->rq_head, t, r->rq_head.next, t->rq_link);
230
 
235
 
231
        spinlock_unlock(&r->lock);
236
        spinlock_unlock(&r->lock);
232
 
237
 
233
        spinlock_lock(&t->lock);
238
        spinlock_lock(&t->lock);
234
        t->cpu = CPU;
239
        t->cpu = CPU;
235
 
240
 
236
        t->ticks = us2ticks((i + 1) * 10000);
241
        t->ticks = us2ticks((i + 1) * 10000);
237
        t->priority = i;    /* correct rq index */
242
        t->priority = i;    /* correct rq index */
238
 
243
 
239
        /*
244
        /*
240
         * Clear the THREAD_FLAG_STOLEN flag so that t can be migrated
245
         * Clear the THREAD_FLAG_STOLEN flag so that t can be migrated
241
         * when load balancing needs emerge.
246
         * when load balancing needs emerge.
242
         */
247
         */
243
        t->flags &= ~THREAD_FLAG_STOLEN;
248
        t->flags &= ~THREAD_FLAG_STOLEN;
244
        spinlock_unlock(&t->lock);
249
        spinlock_unlock(&t->lock);
245
 
250
 
246
        return t;
251
        return t;
247
    }
252
    }
248
    goto loop;
253
    goto loop;
249
 
254
 
250
}
255
}
251
 
256
 
252
/** Prevent rq starvation
257
/** Prevent rq starvation
253
 *
258
 *
254
 * Prevent low priority threads from starving in rq's.
259
 * Prevent low priority threads from starving in rq's.
255
 *
260
 *
256
 * When the function decides to relink rq's, it reconnects
261
 * When the function decides to relink rq's, it reconnects
257
 * respective pointers so that in result threads with 'pri'
262
 * respective pointers so that in result threads with 'pri'
258
 * greater or equal start are moved to a higher-priority queue.
263
 * greater or equal start are moved to a higher-priority queue.
259
 *
264
 *
260
 * @param start Threshold priority.
265
 * @param start Threshold priority.
261
 *
266
 *
262
 */
267
 */
263
static void relink_rq(int start)
268
static void relink_rq(int start)
264
{
269
{
265
    link_t head;
270
    link_t head;
266
    runq_t *r;
271
    runq_t *r;
267
    int i, n;
272
    int i, n;
268
 
273
 
269
    list_initialize(&head);
274
    list_initialize(&head);
270
    spinlock_lock(&CPU->lock);
275
    spinlock_lock(&CPU->lock);
271
    if (CPU->needs_relink > NEEDS_RELINK_MAX) {
276
    if (CPU->needs_relink > NEEDS_RELINK_MAX) {
272
        for (i = start; i < RQ_COUNT - 1; i++) {
277
        for (i = start; i < RQ_COUNT - 1; i++) {
273
            /* remember and empty rq[i + 1] */
278
            /* remember and empty rq[i + 1] */
274
            r = &CPU->rq[i + 1];
279
            r = &CPU->rq[i + 1];
275
            spinlock_lock(&r->lock);
280
            spinlock_lock(&r->lock);
276
            list_concat(&head, &r->rq_head);
281
            list_concat(&head, &r->rq_head);
277
            n = r->n;
282
            n = r->n;
278
            r->n = 0;
283
            r->n = 0;
279
            spinlock_unlock(&r->lock);
284
            spinlock_unlock(&r->lock);
280
       
285
       
281
            /* append rq[i + 1] to rq[i] */
286
            /* append rq[i + 1] to rq[i] */
282
            r = &CPU->rq[i];
287
            r = &CPU->rq[i];
283
            spinlock_lock(&r->lock);
288
            spinlock_lock(&r->lock);
284
            list_concat(&r->rq_head, &head);
289
            list_concat(&r->rq_head, &head);
285
            r->n += n;
290
            r->n += n;
286
            spinlock_unlock(&r->lock);
291
            spinlock_unlock(&r->lock);
287
        }
292
        }
288
        CPU->needs_relink = 0;
293
        CPU->needs_relink = 0;
289
    }
294
    }
290
    spinlock_unlock(&CPU->lock);
295
    spinlock_unlock(&CPU->lock);
291
 
296
 
292
}
297
}
293
 
298
 
294
/** The scheduler
299
/** The scheduler
295
 *
300
 *
296
 * The thread scheduling procedure.
301
 * The thread scheduling procedure.
297
 * Passes control directly to
302
 * Passes control directly to
298
 * scheduler_separated_stack().
303
 * scheduler_separated_stack().
299
 *
304
 *
300
 */
305
 */
301
void scheduler(void)
306
void scheduler(void)
302
{
307
{
303
    volatile ipl_t ipl;
308
    volatile ipl_t ipl;
304
 
309
 
305
    ASSERT(CPU != NULL);
310
    ASSERT(CPU != NULL);
306
 
311
 
307
    ipl = interrupts_disable();
312
    ipl = interrupts_disable();
308
 
313
 
309
    if (atomic_get(&haltstate))
314
    if (atomic_get(&haltstate))
310
        halt();
315
        halt();
311
   
316
   
312
    if (THREAD) {
317
    if (THREAD) {
313
        spinlock_lock(&THREAD->lock);
318
        spinlock_lock(&THREAD->lock);
314
       
319
       
315
        /* Update thread accounting */
320
        /* Update thread accounting */
316
        THREAD->cycles += get_cycle() - THREAD->last_cycle;
321
        THREAD->cycles += get_cycle() - THREAD->last_cycle;
317
       
322
       
318
#ifndef CONFIG_FPU_LAZY
323
#ifndef CONFIG_FPU_LAZY
319
        fpu_context_save(THREAD->saved_fpu_context);
324
        fpu_context_save(THREAD->saved_fpu_context);
320
#endif
325
#endif
321
        if (!context_save(&THREAD->saved_context)) {
326
        if (!context_save(&THREAD->saved_context)) {
322
            /*
327
            /*
323
             * This is the place where threads leave scheduler();
328
             * This is the place where threads leave scheduler();
324
             */
329
             */
325
           
330
           
326
            /* Save current CPU cycle */
331
            /* Save current CPU cycle */
327
            THREAD->last_cycle = get_cycle();
332
            THREAD->last_cycle = get_cycle();
328
           
333
           
329
            spinlock_unlock(&THREAD->lock);
334
            spinlock_unlock(&THREAD->lock);
330
            interrupts_restore(THREAD->saved_context.ipl);
335
            interrupts_restore(THREAD->saved_context.ipl);
331
           
336
           
332
            return;
337
            return;
333
        }
338
        }
334
 
339
 
335
        /*
340
        /*
336
         * Interrupt priority level of preempted thread is recorded
341
         * Interrupt priority level of preempted thread is recorded
337
         * here to facilitate scheduler() invocations from
342
         * here to facilitate scheduler() invocations from
338
         * interrupts_disable()'d code (e.g. waitq_sleep_timeout()).
343
         * interrupts_disable()'d code (e.g. waitq_sleep_timeout()).
339
         */
344
         */
340
        THREAD->saved_context.ipl = ipl;
345
        THREAD->saved_context.ipl = ipl;
341
    }
346
    }
342
 
347
 
343
    /*
348
    /*
344
     * Through the 'THE' structure, we keep track of THREAD, TASK, CPU, VM
349
     * Through the 'THE' structure, we keep track of THREAD, TASK, CPU, VM
345
     * and preemption counter. At this point THE could be coming either
350
     * and preemption counter. At this point THE could be coming either
346
     * from THREAD's or CPU's stack.
351
     * from THREAD's or CPU's stack.
347
     */
352
     */
348
    the_copy(THE, (the_t *) CPU->stack);
353
    the_copy(THE, (the_t *) CPU->stack);
349
 
354
 
350
    /*
355
    /*
351
     * We may not keep the old stack.
356
     * We may not keep the old stack.
352
     * Reason: If we kept the old stack and got blocked, for instance, in
357
     * Reason: If we kept the old stack and got blocked, for instance, in
353
     * find_best_thread(), the old thread could get rescheduled by another
358
     * find_best_thread(), the old thread could get rescheduled by another
354
     * CPU and overwrite the part of its own stack that was also used by
359
     * CPU and overwrite the part of its own stack that was also used by
355
     * the scheduler on this CPU.
360
     * the scheduler on this CPU.
356
     *
361
     *
357
     * Moreover, we have to bypass the compiler-generated POP sequence
362
     * Moreover, we have to bypass the compiler-generated POP sequence
358
     * which is fooled by SP being set to the very top of the stack.
363
     * which is fooled by SP being set to the very top of the stack.
359
     * Therefore the scheduler() function continues in
364
     * Therefore the scheduler() function continues in
360
     * scheduler_separated_stack().
365
     * scheduler_separated_stack().
361
     */
366
     */
362
    context_save(&CPU->saved_context);
367
    context_save(&CPU->saved_context);
363
    context_set(&CPU->saved_context, FADDR(scheduler_separated_stack),
368
    context_set(&CPU->saved_context, FADDR(scheduler_separated_stack),
364
        (uintptr_t) CPU->stack, CPU_STACK_SIZE);
369
        (uintptr_t) CPU->stack, CPU_STACK_SIZE);
365
    context_restore(&CPU->saved_context);
370
    context_restore(&CPU->saved_context);
366
    /* not reached */
371
    /* not reached */
367
}
372
}
368
 
373
 
369
/** Scheduler stack switch wrapper
374
/** Scheduler stack switch wrapper
370
 *
375
 *
371
 * Second part of the scheduler() function
376
 * Second part of the scheduler() function
372
 * using new stack. Handling the actual context
377
 * using new stack. Handling the actual context
373
 * switch to a new thread.
378
 * switch to a new thread.
374
 *
379
 *
375
 * Assume THREAD->lock is held.
380
 * Assume THREAD->lock is held.
376
 */
381
 */
377
void scheduler_separated_stack(void)
382
void scheduler_separated_stack(void)
378
{
383
{
379
    int priority;
384
    int priority;
380
   
385
   
381
    ASSERT(CPU != NULL);
386
    ASSERT(CPU != NULL);
382
   
387
   
383
    if (THREAD) {
388
    if (THREAD) {
384
        /* must be run after the switch to scheduler stack */
389
        /* must be run after the switch to scheduler stack */
385
        after_thread_ran();
390
        after_thread_ran();
386
 
391
 
387
        switch (THREAD->state) {
392
        switch (THREAD->state) {
388
        case Running:
393
        case Running:
389
            spinlock_unlock(&THREAD->lock);
394
            spinlock_unlock(&THREAD->lock);
390
            thread_ready(THREAD);
395
            thread_ready(THREAD);
391
            break;
396
            break;
392
 
397
 
393
        case Exiting:
398
        case Exiting:
394
repeat:
399
repeat:
395
            if (THREAD->detached) {
400
            if (THREAD->detached) {
396
                thread_destroy(THREAD);
401
                thread_destroy(THREAD);
397
            } else {
402
            } else {
398
                /*
403
                /*
399
                 * The thread structure is kept allocated until
404
                 * The thread structure is kept allocated until
400
                 * somebody calls thread_detach() on it.
405
                 * somebody calls thread_detach() on it.
401
                 */
406
                 */
402
                if (!spinlock_trylock(&THREAD->join_wq.lock)) {
407
                if (!spinlock_trylock(&THREAD->join_wq.lock)) {
403
                    /*
408
                    /*
404
                     * Avoid deadlock.
409
                     * Avoid deadlock.
405
                     */
410
                     */
406
                    spinlock_unlock(&THREAD->lock);
411
                    spinlock_unlock(&THREAD->lock);
407
                    delay(10);
412
                    delay(10);
408
                    spinlock_lock(&THREAD->lock);
413
                    spinlock_lock(&THREAD->lock);
409
                    goto repeat;
414
                    goto repeat;
410
                }
415
                }
411
                _waitq_wakeup_unsafe(&THREAD->join_wq, false);
416
                _waitq_wakeup_unsafe(&THREAD->join_wq, false);
412
                spinlock_unlock(&THREAD->join_wq.lock);
417
                spinlock_unlock(&THREAD->join_wq.lock);
413
               
418
               
414
                THREAD->state = Undead;
419
                THREAD->state = Undead;
415
                spinlock_unlock(&THREAD->lock);
420
                spinlock_unlock(&THREAD->lock);
416
            }
421
            }
417
            break;
422
            break;
418
           
423
           
419
        case Sleeping:
424
        case Sleeping:
420
            /*
425
            /*
421
             * Prefer the thread after it's woken up.
426
             * Prefer the thread after it's woken up.
422
             */
427
             */
423
            THREAD->priority = -1;
428
            THREAD->priority = -1;
424
 
429
 
425
            /*
430
            /*
426
             * We need to release wq->lock which we locked in
431
             * We need to release wq->lock which we locked in
427
             * waitq_sleep(). Address of wq->lock is kept in
432
             * waitq_sleep(). Address of wq->lock is kept in
428
             * THREAD->sleep_queue.
433
             * THREAD->sleep_queue.
429
             */
434
             */
430
            spinlock_unlock(&THREAD->sleep_queue->lock);
435
            spinlock_unlock(&THREAD->sleep_queue->lock);
431
 
436
 
432
            /*
437
            /*
433
             * Check for possible requests for out-of-context
438
             * Check for possible requests for out-of-context
434
             * invocation.
439
             * invocation.
435
             */
440
             */
436
            if (THREAD->call_me) {
441
            if (THREAD->call_me) {
437
                THREAD->call_me(THREAD->call_me_with);
442
                THREAD->call_me(THREAD->call_me_with);
438
                THREAD->call_me = NULL;
443
                THREAD->call_me = NULL;
439
                THREAD->call_me_with = NULL;
444
                THREAD->call_me_with = NULL;
440
            }
445
            }
441
 
446
            if (verbose)
-
 
447
                printf("cpu%d, Sleeping unlocking \n", CPU->id);
442
            spinlock_unlock(&THREAD->lock);
448
            spinlock_unlock(&THREAD->lock);
443
 
449
 
444
            break;
450
            break;
445
 
451
 
446
        default:
452
        default:
447
            /*
453
            /*
448
             * Entering state is unexpected.
454
             * Entering state is unexpected.
449
             */
455
             */
450
            panic("tid%d: unexpected state %s\n", THREAD->tid,
456
            panic("tid%d: unexpected state %s\n", THREAD->tid,
451
                thread_states[THREAD->state]);
457
                thread_states[THREAD->state]);
452
            break;
458
            break;
453
        }
459
        }
454
 
460
 
455
        THREAD = NULL;
461
        THREAD = NULL;
456
    }
462
    }
457
 
463
    if (verbose)
-
 
464
        printf("cpu%d looking for next thread\n", CPU->id);
458
    THREAD = find_best_thread();
465
    THREAD = find_best_thread();
459
   
466
   
-
 
467
    if (verbose)
-
 
468
        printf("cpu%d t locking  THREAD:%x \n", CPU->id, THREAD);
460
    spinlock_lock(&THREAD->lock);
469
    spinlock_lock(&THREAD->lock);
461
    priority = THREAD->priority;
470
    priority = THREAD->priority;
462
    spinlock_unlock(&THREAD->lock);
471
    spinlock_unlock(&THREAD->lock);
-
 
472
    if (verbose)
-
 
473
        printf("cpu%d t unlocked after priority THREAD:%x \n", CPU->id, THREAD);
463
 
474
 
464
    relink_rq(priority);       
475
    relink_rq(priority);       
465
 
476
 
466
    /*
477
    /*
467
     * If both the old and the new task are the same, lots of work is
478
     * If both the old and the new task are the same, lots of work is
468
     * avoided.
479
     * avoided.
469
     */
480
     */
470
    if (TASK != THREAD->task) {
481
    if (TASK != THREAD->task) {
471
        as_t *as1 = NULL;
482
        as_t *as1 = NULL;
472
        as_t *as2;
483
        as_t *as2;
473
 
484
 
474
        if (TASK) {
485
        if (TASK) {
475
            spinlock_lock(&TASK->lock);
486
            spinlock_lock(&TASK->lock);
476
            as1 = TASK->as;
487
            as1 = TASK->as;
477
            spinlock_unlock(&TASK->lock);
488
            spinlock_unlock(&TASK->lock);
478
        }
489
        }
479
 
490
 
480
        spinlock_lock(&THREAD->task->lock);
491
        spinlock_lock(&THREAD->task->lock);
481
        as2 = THREAD->task->as;
492
        as2 = THREAD->task->as;
482
        spinlock_unlock(&THREAD->task->lock);
493
        spinlock_unlock(&THREAD->task->lock);
483
       
494
       
484
        /*
495
        /*
485
         * Note that it is possible for two tasks to share one address
496
         * Note that it is possible for two tasks to share one address
486
         * space.
497
         * space.
487
         */
498
         */
488
        if (as1 != as2) {
499
        if (as1 != as2) {
489
            /*
500
            /*
490
             * Both tasks and address spaces are different.
501
             * Both tasks and address spaces are different.
491
             * Replace the old one with the new one.
502
             * Replace the old one with the new one.
492
             */
503
             */
493
            as_switch(as1, as2);
504
            as_switch(as1, as2);
494
        }
505
        }
495
        TASK = THREAD->task;
506
        TASK = THREAD->task;
496
        before_task_runs();
507
        before_task_runs();
497
    }
508
    }
498
 
509
 
499
    spinlock_lock(&THREAD->lock);  
510
    spinlock_lock(&THREAD->lock);  
500
    THREAD->state = Running;
511
    THREAD->state = Running;
501
 
512
 
502
#ifdef SCHEDULER_VERBOSE
513
#ifdef SCHEDULER_VERBOSE
503
    printf("cpu%d: tid %d (priority=%d, ticks=%lld, nrdy=%ld)\n",
514
    printf("cpu%d: tid %d (priority=%d, ticks=%lld, nrdy=%ld)\n",
504
        CPU->id, THREAD->tid, THREAD->priority, THREAD->ticks,
515
        CPU->id, THREAD->tid, THREAD->priority, THREAD->ticks,
505
        atomic_get(&CPU->nrdy));
516
        atomic_get(&CPU->nrdy));
506
#endif  
517
#endif  
507
 
518
 
508
    /*
519
    /*
509
     * Some architectures provide late kernel PA2KA(identity)
520
     * Some architectures provide late kernel PA2KA(identity)
510
     * mapping in a page fault handler. However, the page fault
521
     * mapping in a page fault handler. However, the page fault
511
     * handler uses the kernel stack of the running thread and
522
     * handler uses the kernel stack of the running thread and
512
     * therefore cannot be used to map it. The kernel stack, if
523
     * therefore cannot be used to map it. The kernel stack, if
513
     * necessary, is to be mapped in before_thread_runs(). This
524
     * necessary, is to be mapped in before_thread_runs(). This
514
     * function must be executed before the switch to the new stack.
525
     * function must be executed before the switch to the new stack.
515
     */
526
     */
516
    before_thread_runs();
527
    before_thread_runs();
517
 
528
 
518
    /*
529
    /*
519
     * Copy the knowledge of CPU, TASK, THREAD and preemption counter to
530
     * Copy the knowledge of CPU, TASK, THREAD and preemption counter to
520
     * thread's stack.
531
     * thread's stack.
521
     */
532
     */
522
    the_copy(THE, (the_t *) THREAD->kstack);
533
    the_copy(THE, (the_t *) THREAD->kstack);
523
   
534
   
524
    context_restore(&THREAD->saved_context);
535
    context_restore(&THREAD->saved_context);
525
    /* not reached */
536
    /* not reached */
526
}
537
}
527
 
538
 
528
#ifdef CONFIG_SMP
539
#ifdef CONFIG_SMP
529
/** Load balancing thread
540
/** Load balancing thread
530
 *
541
 *
531
 * SMP load balancing thread, supervising thread supplies
542
 * SMP load balancing thread, supervising thread supplies
532
 * for the CPU it's wired to.
543
 * for the CPU it's wired to.
533
 *
544
 *
534
 * @param arg Generic thread argument (unused).
545
 * @param arg Generic thread argument (unused).
535
 *
546
 *
536
 */
547
 */
537
void kcpulb(void *arg)
548
void kcpulb(void *arg)
538
{
549
{
539
    thread_t *t;
550
    thread_t *t;
540
    int count, average, j, k = 0;
551
    int count, average, j, k = 0;
541
    unsigned int i;
552
    unsigned int i;
542
    ipl_t ipl;
553
    ipl_t ipl;
543
 
554
 
544
    /*
555
    /*
545
     * Detach kcpulb as nobody will call thread_join_timeout() on it.
556
     * Detach kcpulb as nobody will call thread_join_timeout() on it.
546
     */
557
     */
547
    thread_detach(THREAD);
558
    thread_detach(THREAD);
548
   
559
   
549
loop:
560
loop:
550
    /*
561
    /*
551
     * Work in 1s intervals.
562
     * Work in 1s intervals.
552
     */
563
     */
553
    thread_sleep(1);
564
    thread_sleep(1);
554
 
565
 
555
not_satisfied:
566
not_satisfied:
556
    /*
567
    /*
557
     * Calculate the number of threads that will be migrated/stolen from
568
     * Calculate the number of threads that will be migrated/stolen from
558
     * other CPU's. Note that situation can have changed between two
569
     * other CPU's. Note that situation can have changed between two
559
     * passes. Each time get the most up to date counts.
570
     * passes. Each time get the most up to date counts.
560
     */
571
     */
561
    average = atomic_get(&nrdy) / config.cpu_active + 1;
572
    average = atomic_get(&nrdy) / config.cpu_active + 1;
562
    count = average - atomic_get(&CPU->nrdy);
573
    count = average - atomic_get(&CPU->nrdy);
563
 
574
 
564
    if (count <= 0)
575
    if (count <= 0)
565
        goto satisfied;
576
        goto satisfied;
566
 
577
 
567
    /*
578
    /*
568
     * Searching least priority queues on all CPU's first and most priority
579
     * Searching least priority queues on all CPU's first and most priority
569
     * queues on all CPU's last.
580
     * queues on all CPU's last.
570
     */
581
     */
571
    for (j= RQ_COUNT - 1; j >= 0; j--) {
582
    for (j= RQ_COUNT - 1; j >= 0; j--) {
572
        for (i = 0; i < config.cpu_active; i++) {
583
        for (i = 0; i < config.cpu_active; i++) {
573
            link_t *l;
584
            link_t *l;
574
            runq_t *r;
585
            runq_t *r;
575
            cpu_t *cpu;
586
            cpu_t *cpu;
576
 
587
 
577
            cpu = &cpus[(i + k) % config.cpu_active];
588
            cpu = &cpus[(i + k) % config.cpu_active];
578
 
589
 
579
            /*
590
            /*
580
             * Not interested in ourselves.
591
             * Not interested in ourselves.
581
             * Doesn't require interrupt disabling for kcpulb has
592
             * Doesn't require interrupt disabling for kcpulb has
582
             * THREAD_FLAG_WIRED.
593
             * THREAD_FLAG_WIRED.
583
             */
594
             */
584
            if (CPU == cpu)
595
            if (CPU == cpu)
585
                continue;
596
                continue;
586
            if (atomic_get(&cpu->nrdy) <= average)
597
            if (atomic_get(&cpu->nrdy) <= average)
587
                continue;
598
                continue;
588
 
599
 
589
            ipl = interrupts_disable();
600
            ipl = interrupts_disable();
590
            r = &cpu->rq[j];
601
            r = &cpu->rq[j];
591
            spinlock_lock(&r->lock);
602
            spinlock_lock(&r->lock);
592
            if (r->n == 0) {
603
            if (r->n == 0) {
593
                spinlock_unlock(&r->lock);
604
                spinlock_unlock(&r->lock);
594
                interrupts_restore(ipl);
605
                interrupts_restore(ipl);
595
                continue;
606
                continue;
596
            }
607
            }
597
       
608
       
598
            t = NULL;
609
            t = NULL;
599
            l = r->rq_head.prev;    /* search rq from the back */
610
            l = r->rq_head.prev;    /* search rq from the back */
600
            while (l != &r->rq_head) {
611
            while (l != &r->rq_head) {
601
                t = list_get_instance(l, thread_t, rq_link);
612
                t = list_get_instance(l, thread_t, rq_link);
602
                /*
613
                /*
603
                 * We don't want to steal CPU-wired threads
614
                 * We don't want to steal CPU-wired threads
604
                 * neither threads already stolen. The latter
615
                 * neither threads already stolen. The latter
605
                 * prevents threads from migrating between CPU's
616
                 * prevents threads from migrating between CPU's
606
                 * without ever being run. We don't want to
617
                 * without ever being run. We don't want to
607
                 * steal threads whose FPU context is still in
618
                 * steal threads whose FPU context is still in
608
                 * CPU.
619
                 * CPU.
609
                 */
620
                 */
610
                spinlock_lock(&t->lock);
621
                spinlock_lock(&t->lock);
611
                if ((!(t->flags & (THREAD_FLAG_WIRED |
622
                if ((!(t->flags & (THREAD_FLAG_WIRED |
612
                    THREAD_FLAG_STOLEN))) &&
623
                    THREAD_FLAG_STOLEN))) &&
613
                    (!(t->fpu_context_engaged)) ) {
624
                    (!(t->fpu_context_engaged)) ) {
614
                    /*
625
                    /*
615
                     * Remove t from r.
626
                     * Remove t from r.
616
                     */
627
                     */
617
                    spinlock_unlock(&t->lock);
628
                    spinlock_unlock(&t->lock);
618
                   
629
                   
619
                    atomic_dec(&cpu->nrdy);
630
                    atomic_dec(&cpu->nrdy);
620
                    atomic_dec(&nrdy);
631
                    atomic_dec(&nrdy);
621
 
632
 
622
                    r->n--;
633
                    r->n--;
623
                    list_remove(&t->rq_link);
634
                    list_remove(&t->rq_link);
624
 
635
 
625
                    break;
636
                    break;
626
                }
637
                }
627
                spinlock_unlock(&t->lock);
638
                spinlock_unlock(&t->lock);
628
                l = l->prev;
639
                l = l->prev;
629
                t = NULL;
640
                t = NULL;
630
            }
641
            }
631
            spinlock_unlock(&r->lock);
642
            spinlock_unlock(&r->lock);
632
 
643
 
633
            if (t) {
644
            if (t) {
634
                /*
645
                /*
635
                 * Ready t on local CPU
646
                 * Ready t on local CPU
636
                 */
647
                 */
637
                spinlock_lock(&t->lock);
648
                spinlock_lock(&t->lock);
638
#ifdef KCPULB_VERBOSE
649
#ifdef KCPULB_VERBOSE
639
                printf("kcpulb%d: TID %d -> cpu%d, nrdy=%ld, "
650
                printf("kcpulb%d: TID %d -> cpu%d, nrdy=%ld, "
640
                    "avg=%nd\n", CPU->id, t->tid, CPU->id,
651
                    "avg=%nd\n", CPU->id, t->tid, CPU->id,
641
                    atomic_get(&CPU->nrdy),
652
                    atomic_get(&CPU->nrdy),
642
                    atomic_get(&nrdy) / config.cpu_active);
653
                    atomic_get(&nrdy) / config.cpu_active);
643
#endif
654
#endif
644
                t->flags |= THREAD_FLAG_STOLEN;
655
                t->flags |= THREAD_FLAG_STOLEN;
645
                t->state = Entering;
656
                t->state = Entering;
646
                spinlock_unlock(&t->lock);
657
                spinlock_unlock(&t->lock);
647
   
658
   
648
                thread_ready(t);
659
                thread_ready(t);
649
 
660
 
650
                interrupts_restore(ipl);
661
                interrupts_restore(ipl);
651
   
662
   
652
                if (--count == 0)
663
                if (--count == 0)
653
                    goto satisfied;
664
                    goto satisfied;
654
                   
665
                   
655
                /*
666
                /*
656
                 * We are not satisfied yet, focus on another
667
                 * We are not satisfied yet, focus on another
657
                 * CPU next time.
668
                 * CPU next time.
658
                 */
669
                 */
659
                k++;
670
                k++;
660
               
671
               
661
                continue;
672
                continue;
662
            }
673
            }
663
            interrupts_restore(ipl);
674
            interrupts_restore(ipl);
664
        }
675
        }
665
    }
676
    }
666
 
677
 
667
    if (atomic_get(&CPU->nrdy)) {
678
    if (atomic_get(&CPU->nrdy)) {
668
        /*
679
        /*
669
         * Be a little bit light-weight and let migrated threads run.
680
         * Be a little bit light-weight and let migrated threads run.
670
         */
681
         */
671
        scheduler();
682
        scheduler();
672
    } else {
683
    } else {
673
        /*
684
        /*
674
         * We failed to migrate a single thread.
685
         * We failed to migrate a single thread.
675
         * Give up this turn.
686
         * Give up this turn.
676
         */
687
         */
677
        goto loop;
688
        goto loop;
678
    }
689
    }
679
       
690
       
680
    goto not_satisfied;
691
    goto not_satisfied;
681
 
692
 
682
satisfied:
693
satisfied:
683
    goto loop;
694
    goto loop;
684
}
695
}
685
 
696
 
686
#endif /* CONFIG_SMP */
697
#endif /* CONFIG_SMP */
687
 
698
 
688
 
699
 
689
/** Print information about threads & scheduler queues */
700
/** Print information about threads & scheduler queues */
690
void sched_print_list(void)
701
void sched_print_list(void)
691
{
702
{
692
    ipl_t ipl;
703
    ipl_t ipl;
693
    unsigned int cpu, i;
704
    unsigned int cpu, i;
694
    runq_t *r;
705
    runq_t *r;
695
    thread_t *t;
706
    thread_t *t;
696
    link_t *cur;
707
    link_t *cur;
697
 
708
 
698
    /* We are going to mess with scheduler structures,
709
    /* We are going to mess with scheduler structures,
699
     * let's not be interrupted */
710
     * let's not be interrupted */
700
    ipl = interrupts_disable();
711
    ipl = interrupts_disable();
701
    for (cpu = 0; cpu < config.cpu_count; cpu++) {
712
    for (cpu = 0; cpu < config.cpu_count; cpu++) {
702
 
713
 
703
        if (!cpus[cpu].active)
714
        if (!cpus[cpu].active)
704
            continue;
715
            continue;
705
 
716
 
706
        spinlock_lock(&cpus[cpu].lock);
717
        spinlock_lock(&cpus[cpu].lock);
707
        printf("cpu%d: address=%p, nrdy=%ld, needs_relink=%ld\n",
718
        printf("cpu%d: address=%p, nrdy=%ld, needs_relink=%ld\n",
708
            cpus[cpu].id, &cpus[cpu], atomic_get(&cpus[cpu].nrdy),
719
            cpus[cpu].id, &cpus[cpu], atomic_get(&cpus[cpu].nrdy),
709
            cpus[cpu].needs_relink);
720
            cpus[cpu].needs_relink);
710
       
721
       
711
        for (i = 0; i < RQ_COUNT; i++) {
722
        for (i = 0; i < RQ_COUNT; i++) {
712
            r = &cpus[cpu].rq[i];
723
            r = &cpus[cpu].rq[i];
713
            spinlock_lock(&r->lock);
724
            spinlock_lock(&r->lock);
714
            if (!r->n) {
725
            if (!r->n) {
715
                spinlock_unlock(&r->lock);
726
                spinlock_unlock(&r->lock);
716
                continue;
727
                continue;
717
            }
728
            }
718
            printf("\trq[%d]: ", i);
729
            printf("\trq[%d]: ", i);
719
            for (cur = r->rq_head.next; cur != &r->rq_head;
730
            for (cur = r->rq_head.next; cur != &r->rq_head;
720
                cur = cur->next) {
731
                cur = cur->next) {
721
                t = list_get_instance(cur, thread_t, rq_link);
732
                t = list_get_instance(cur, thread_t, rq_link);
722
                printf("%d(%s) ", t->tid,
733
                printf("%d(%s) ", t->tid,
723
                    thread_states[t->state]);
734
                    thread_states[t->state]);
724
            }
735
            }
725
            printf("\n");
736
            printf("\n");
726
            spinlock_unlock(&r->lock);
737
            spinlock_unlock(&r->lock);
727
        }
738
        }
728
        spinlock_unlock(&cpus[cpu].lock);
739
        spinlock_unlock(&cpus[cpu].lock);
729
    }
740
    }
730
   
741
   
731
    interrupts_restore(ipl);
742
    interrupts_restore(ipl);
732
}
743
}
733
 
744
 
734
/** @}
745
/** @}
735
 */
746
 */
736
 
747