Rev 4153 | Go to most recent revision | Only display areas with differences | Ignore whitespace | Details | Blame | Last modification | View Log | RSS feed
Rev 4153 | Rev 4263 | ||
---|---|---|---|
1 | /* |
1 | /* |
2 | * Copyright (c) 2006 Ondrej Palkovsky |
2 | * Copyright (c) 2006 Ondrej Palkovsky |
3 | * All rights reserved. |
3 | * All rights reserved. |
4 | * |
4 | * |
5 | * Redistribution and use in source and binary forms, with or without |
5 | * Redistribution and use in source and binary forms, with or without |
6 | * modification, are permitted provided that the following conditions |
6 | * modification, are permitted provided that the following conditions |
7 | * are met: |
7 | * are met: |
8 | * |
8 | * |
9 | * - Redistributions of source code must retain the above copyright |
9 | * - Redistributions of source code must retain the above copyright |
10 | * notice, this list of conditions and the following disclaimer. |
10 | * notice, this list of conditions and the following disclaimer. |
11 | * - Redistributions in binary form must reproduce the above copyright |
11 | * - Redistributions in binary form must reproduce the above copyright |
12 | * notice, this list of conditions and the following disclaimer in the |
12 | * notice, this list of conditions and the following disclaimer in the |
13 | * documentation and/or other materials provided with the distribution. |
13 | * documentation and/or other materials provided with the distribution. |
14 | * - The name of the author may not be used to endorse or promote products |
14 | * - The name of the author may not be used to endorse or promote products |
15 | * derived from this software without specific prior written permission. |
15 | * derived from this software without specific prior written permission. |
16 | * |
16 | * |
17 | * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR |
17 | * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR |
18 | * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES |
18 | * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES |
19 | * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. |
19 | * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. |
20 | * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, |
20 | * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, |
21 | * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
21 | * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
22 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
22 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
23 | * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
23 | * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
24 | * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
24 | * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
25 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF |
25 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF |
26 | * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
26 | * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
27 | */ |
27 | */ |
28 | 28 | ||
29 | /** @addtogroup genericmm |
29 | /** @addtogroup genericmm |
30 | * @{ |
30 | * @{ |
31 | */ |
31 | */ |
32 | 32 | ||
33 | /** |
33 | /** |
34 | * @file |
34 | * @file |
35 | * @brief Slab allocator. |
35 | * @brief Slab allocator. |
36 | * |
36 | * |
37 | * The slab allocator is closely modelled after OpenSolaris slab allocator. |
37 | * The slab allocator is closely modelled after OpenSolaris slab allocator. |
38 | * @see http://www.usenix.org/events/usenix01/full_papers/bonwick/bonwick_html/ |
38 | * @see http://www.usenix.org/events/usenix01/full_papers/bonwick/bonwick_html/ |
39 | * |
39 | * |
40 | * with the following exceptions: |
40 | * with the following exceptions: |
41 | * @li empty slabs are deallocated immediately |
41 | * @li empty slabs are deallocated immediately |
42 | * (in Linux they are kept in linked list, in Solaris ???) |
42 | * (in Linux they are kept in linked list, in Solaris ???) |
43 | * @li empty magazines are deallocated when not needed |
43 | * @li empty magazines are deallocated when not needed |
44 | * (in Solaris they are held in linked list in slab cache) |
44 | * (in Solaris they are held in linked list in slab cache) |
45 | * |
45 | * |
46 | * Following features are not currently supported but would be easy to do: |
46 | * Following features are not currently supported but would be easy to do: |
47 | * @li cache coloring |
47 | * @li cache coloring |
48 | * @li dynamic magazine growing (different magazine sizes are already |
48 | * @li dynamic magazine growing (different magazine sizes are already |
49 | * supported, but we would need to adjust allocation strategy) |
49 | * supported, but we would need to adjust allocation strategy) |
50 | * |
50 | * |
51 | * The slab allocator supports per-CPU caches ('magazines') to facilitate |
51 | * The slab allocator supports per-CPU caches ('magazines') to facilitate |
52 | * good SMP scaling. |
52 | * good SMP scaling. |
53 | * |
53 | * |
54 | * When a new object is being allocated, it is first checked, if it is |
54 | * When a new object is being allocated, it is first checked, if it is |
55 | * available in a CPU-bound magazine. If it is not found there, it is |
55 | * available in a CPU-bound magazine. If it is not found there, it is |
56 | * allocated from a CPU-shared slab - if a partially full one is found, |
56 | * allocated from a CPU-shared slab - if a partially full one is found, |
57 | * it is used, otherwise a new one is allocated. |
57 | * it is used, otherwise a new one is allocated. |
58 | * |
58 | * |
59 | * When an object is being deallocated, it is put to a CPU-bound magazine. |
59 | * When an object is being deallocated, it is put to a CPU-bound magazine. |
60 | * If there is no such magazine, a new one is allocated (if this fails, |
60 | * If there is no such magazine, a new one is allocated (if this fails, |
61 | * the object is deallocated into slab). If the magazine is full, it is |
61 | * the object is deallocated into slab). If the magazine is full, it is |
62 | * put into cpu-shared list of magazines and a new one is allocated. |
62 | * put into cpu-shared list of magazines and a new one is allocated. |
63 | * |
63 | * |
64 | * The CPU-bound magazine is actually a pair of magazines in order to avoid |
64 | * The CPU-bound magazine is actually a pair of magazines in order to avoid |
65 | * thrashing when somebody is allocating/deallocating 1 item at the magazine |
65 | * thrashing when somebody is allocating/deallocating 1 item at the magazine |
66 | * size boundary. LIFO order is enforced, which should avoid fragmentation |
66 | * size boundary. LIFO order is enforced, which should avoid fragmentation |
67 | * as much as possible. |
67 | * as much as possible. |
68 | * |
68 | * |
69 | * Every cache contains list of full slabs and list of partially full slabs. |
69 | * Every cache contains list of full slabs and list of partially full slabs. |
70 | * Empty slabs are immediately freed (thrashing will be avoided because |
70 | * Empty slabs are immediately freed (thrashing will be avoided because |
71 | * of magazines). |
71 | * of magazines). |
72 | * |
72 | * |
73 | * The slab information structure is kept inside the data area, if possible. |
73 | * The slab information structure is kept inside the data area, if possible. |
74 | * The cache can be marked that it should not use magazines. This is used |
74 | * The cache can be marked that it should not use magazines. This is used |
75 | * only for slab related caches to avoid deadlocks and infinite recursion |
75 | * only for slab related caches to avoid deadlocks and infinite recursion |
76 | * (the slab allocator uses itself for allocating all it's control structures). |
76 | * (the slab allocator uses itself for allocating all it's control structures). |
77 | * |
77 | * |
78 | * The slab allocator allocates a lot of space and does not free it. When |
78 | * The slab allocator allocates a lot of space and does not free it. When |
79 | * the frame allocator fails to allocate a frame, it calls slab_reclaim(). |
79 | * the frame allocator fails to allocate a frame, it calls slab_reclaim(). |
80 | * It tries 'light reclaim' first, then brutal reclaim. The light reclaim |
80 | * It tries 'light reclaim' first, then brutal reclaim. The light reclaim |
81 | * releases slabs from cpu-shared magazine-list, until at least 1 slab |
81 | * releases slabs from cpu-shared magazine-list, until at least 1 slab |
82 | * is deallocated in each cache (this algorithm should probably change). |
82 | * is deallocated in each cache (this algorithm should probably change). |
83 | * The brutal reclaim removes all cached objects, even from CPU-bound |
83 | * The brutal reclaim removes all cached objects, even from CPU-bound |
84 | * magazines. |
84 | * magazines. |
85 | * |
85 | * |
86 | * @todo |
86 | * @todo |
87 | * For better CPU-scaling the magazine allocation strategy should |
87 | * For better CPU-scaling the magazine allocation strategy should |
88 | * be extended. Currently, if the cache does not have magazine, it asks |
88 | * be extended. Currently, if the cache does not have magazine, it asks |
89 | * for non-cpu cached magazine cache to provide one. It might be feasible |
89 | * for non-cpu cached magazine cache to provide one. It might be feasible |
90 | * to add cpu-cached magazine cache (which would allocate it's magazines |
90 | * to add cpu-cached magazine cache (which would allocate it's magazines |
91 | * from non-cpu-cached mag. cache). This would provide a nice per-cpu |
91 | * from non-cpu-cached mag. cache). This would provide a nice per-cpu |
92 | * buffer. The other possibility is to use the per-cache |
92 | * buffer. The other possibility is to use the per-cache |
93 | * 'empty-magazine-list', which decreases competing for 1 per-system |
93 | * 'empty-magazine-list', which decreases competing for 1 per-system |
94 | * magazine cache. |
94 | * magazine cache. |
95 | * |
95 | * |
96 | * @todo |
96 | * @todo |
97 | * it might be good to add granularity of locks even to slab level, |
97 | * it might be good to add granularity of locks even to slab level, |
98 | * we could then try_spinlock over all partial slabs and thus improve |
98 | * we could then try_spinlock over all partial slabs and thus improve |
99 | * scalability even on slab level |
99 | * scalability even on slab level |
100 | */ |
100 | */ |
101 | 101 | ||
102 | #include <synch/spinlock.h> |
102 | #include <synch/spinlock.h> |
103 | #include <mm/slab.h> |
103 | #include <mm/slab.h> |
104 | #include <adt/list.h> |
104 | #include <adt/list.h> |
105 | #include <memstr.h> |
105 | #include <memstr.h> |
106 | #include <align.h> |
106 | #include <align.h> |
107 | #include <mm/frame.h> |
107 | #include <mm/frame.h> |
108 | #include <config.h> |
108 | #include <config.h> |
109 | #include <print.h> |
109 | #include <print.h> |
110 | #include <arch.h> |
110 | #include <arch.h> |
111 | #include <panic.h> |
111 | #include <panic.h> |
112 | #include <debug.h> |
112 | #include <debug.h> |
113 | #include <bitops.h> |
113 | #include <bitops.h> |
114 | #include <macros.h> |
114 | #include <macros.h> |
115 | 115 | ||
116 | SPINLOCK_INITIALIZE(slab_cache_lock); |
116 | SPINLOCK_INITIALIZE(slab_cache_lock); |
117 | static LIST_INITIALIZE(slab_cache_list); |
117 | static LIST_INITIALIZE(slab_cache_list); |
118 | 118 | ||
119 | /** Magazine cache */ |
119 | /** Magazine cache */ |
120 | static slab_cache_t mag_cache; |
120 | static slab_cache_t mag_cache; |
121 | /** Cache for cache descriptors */ |
121 | /** Cache for cache descriptors */ |
122 | static slab_cache_t slab_cache_cache; |
122 | static slab_cache_t slab_cache_cache; |
123 | /** Cache for external slab descriptors |
123 | /** Cache for external slab descriptors |
124 | * This time we want per-cpu cache, so do not make it static |
124 | * This time we want per-cpu cache, so do not make it static |
125 | * - using slab for internal slab structures will not deadlock, |
125 | * - using slab for internal slab structures will not deadlock, |
126 | * as all slab structures are 'small' - control structures of |
126 | * as all slab structures are 'small' - control structures of |
127 | * their caches do not require further allocation |
127 | * their caches do not require further allocation |
128 | */ |
128 | */ |
129 | static slab_cache_t *slab_extern_cache; |
129 | static slab_cache_t *slab_extern_cache; |
130 | /** Caches for malloc */ |
130 | /** Caches for malloc */ |
131 | static slab_cache_t *malloc_caches[SLAB_MAX_MALLOC_W - SLAB_MIN_MALLOC_W + 1]; |
131 | static slab_cache_t *malloc_caches[SLAB_MAX_MALLOC_W - SLAB_MIN_MALLOC_W + 1]; |
132 | char *malloc_names[] = { |
132 | static char *malloc_names[] = { |
133 | "malloc-16", |
133 | "malloc-16", |
134 | "malloc-32", |
134 | "malloc-32", |
135 | "malloc-64", |
135 | "malloc-64", |
136 | "malloc-128", |
136 | "malloc-128", |
137 | "malloc-256", |
137 | "malloc-256", |
138 | "malloc-512", |
138 | "malloc-512", |
139 | "malloc-1K", |
139 | "malloc-1K", |
140 | "malloc-2K", |
140 | "malloc-2K", |
141 | "malloc-4K", |
141 | "malloc-4K", |
142 | "malloc-8K", |
142 | "malloc-8K", |
143 | "malloc-16K", |
143 | "malloc-16K", |
144 | "malloc-32K", |
144 | "malloc-32K", |
145 | "malloc-64K", |
145 | "malloc-64K", |
146 | "malloc-128K", |
146 | "malloc-128K", |
147 | "malloc-256K" |
147 | "malloc-256K", |
- | 148 | "malloc-512K", |
|
- | 149 | "malloc-1M", |
|
- | 150 | "malloc-2M", |
|
- | 151 | "malloc-4M" |
|
148 | }; |
152 | }; |
149 | 153 | ||
150 | /** Slab descriptor */ |
154 | /** Slab descriptor */ |
151 | typedef struct { |
155 | typedef struct { |
152 | slab_cache_t *cache; /**< Pointer to parent cache. */ |
156 | slab_cache_t *cache; /**< Pointer to parent cache. */ |
153 | link_t link; /**< List of full/partial slabs. */ |
157 | link_t link; /**< List of full/partial slabs. */ |
154 | void *start; /**< Start address of first available item. */ |
158 | void *start; /**< Start address of first available item. */ |
155 | count_t available; /**< Count of available items in this slab. */ |
159 | count_t available; /**< Count of available items in this slab. */ |
156 | index_t nextavail; /**< The index of next available item. */ |
160 | index_t nextavail; /**< The index of next available item. */ |
157 | } slab_t; |
161 | } slab_t; |
158 | 162 | ||
159 | #ifdef CONFIG_DEBUG |
163 | #ifdef CONFIG_DEBUG |
160 | static int _slab_initialized = 0; |
164 | static int _slab_initialized = 0; |
161 | #endif |
165 | #endif |
162 | 166 | ||
163 | /**************************************/ |
167 | /**************************************/ |
164 | /* Slab allocation functions */ |
168 | /* Slab allocation functions */ |
165 | 169 | ||
166 | /** |
170 | /** |
167 | * Allocate frames for slab space and initialize |
171 | * Allocate frames for slab space and initialize |
168 | * |
172 | * |
169 | */ |
173 | */ |
170 | static slab_t *slab_space_alloc(slab_cache_t *cache, int flags) |
174 | static slab_t *slab_space_alloc(slab_cache_t *cache, int flags) |
171 | { |
175 | { |
172 | void *data; |
176 | void *data; |
173 | slab_t *slab; |
177 | slab_t *slab; |
174 | size_t fsize; |
178 | size_t fsize; |
175 | unsigned int i; |
179 | unsigned int i; |
176 | count_t zone = 0; |
180 | count_t zone = 0; |
177 | 181 | ||
178 | data = frame_alloc_generic(cache->order, FRAME_KA | flags, &zone); |
182 | data = frame_alloc_generic(cache->order, FRAME_KA | flags, &zone); |
179 | if (!data) { |
183 | if (!data) { |
180 | return NULL; |
184 | return NULL; |
181 | } |
185 | } |
182 | if (!(cache->flags & SLAB_CACHE_SLINSIDE)) { |
186 | if (!(cache->flags & SLAB_CACHE_SLINSIDE)) { |
183 | slab = slab_alloc(slab_extern_cache, flags); |
187 | slab = slab_alloc(slab_extern_cache, flags); |
184 | if (!slab) { |
188 | if (!slab) { |
185 | frame_free(KA2PA(data)); |
189 | frame_free(KA2PA(data)); |
186 | return NULL; |
190 | return NULL; |
187 | } |
191 | } |
188 | } else { |
192 | } else { |
189 | fsize = (PAGE_SIZE << cache->order); |
193 | fsize = (PAGE_SIZE << cache->order); |
190 | slab = data + fsize - sizeof(*slab); |
194 | slab = data + fsize - sizeof(*slab); |
191 | } |
195 | } |
192 | 196 | ||
193 | /* Fill in slab structures */ |
197 | /* Fill in slab structures */ |
194 | for (i = 0; i < ((unsigned int) 1 << cache->order); i++) |
198 | for (i = 0; i < ((unsigned int) 1 << cache->order); i++) |
195 | frame_set_parent(ADDR2PFN(KA2PA(data)) + i, slab, zone); |
199 | frame_set_parent(ADDR2PFN(KA2PA(data)) + i, slab, zone); |
196 | 200 | ||
197 | slab->start = data; |
201 | slab->start = data; |
198 | slab->available = cache->objects; |
202 | slab->available = cache->objects; |
199 | slab->nextavail = 0; |
203 | slab->nextavail = 0; |
200 | slab->cache = cache; |
204 | slab->cache = cache; |
201 | 205 | ||
202 | for (i = 0; i < cache->objects; i++) |
206 | for (i = 0; i < cache->objects; i++) |
203 | *((int *) (slab->start + i*cache->size)) = i + 1; |
207 | *((int *) (slab->start + i*cache->size)) = i + 1; |
204 | 208 | ||
205 | atomic_inc(&cache->allocated_slabs); |
209 | atomic_inc(&cache->allocated_slabs); |
206 | return slab; |
210 | return slab; |
207 | } |
211 | } |
208 | 212 | ||
209 | /** |
213 | /** |
210 | * Deallocate space associated with slab |
214 | * Deallocate space associated with slab |
211 | * |
215 | * |
212 | * @return number of freed frames |
216 | * @return number of freed frames |
213 | */ |
217 | */ |
214 | static count_t slab_space_free(slab_cache_t *cache, slab_t *slab) |
218 | static count_t slab_space_free(slab_cache_t *cache, slab_t *slab) |
215 | { |
219 | { |
216 | frame_free(KA2PA(slab->start)); |
220 | frame_free(KA2PA(slab->start)); |
217 | if (! (cache->flags & SLAB_CACHE_SLINSIDE)) |
221 | if (! (cache->flags & SLAB_CACHE_SLINSIDE)) |
218 | slab_free(slab_extern_cache, slab); |
222 | slab_free(slab_extern_cache, slab); |
219 | 223 | ||
220 | atomic_dec(&cache->allocated_slabs); |
224 | atomic_dec(&cache->allocated_slabs); |
221 | 225 | ||
222 | return 1 << cache->order; |
226 | return 1 << cache->order; |
223 | } |
227 | } |
224 | 228 | ||
225 | /** Map object to slab structure */ |
229 | /** Map object to slab structure */ |
226 | static slab_t * obj2slab(void *obj) |
230 | static slab_t * obj2slab(void *obj) |
227 | { |
231 | { |
228 | return (slab_t *) frame_get_parent(ADDR2PFN(KA2PA(obj)), 0); |
232 | return (slab_t *) frame_get_parent(ADDR2PFN(KA2PA(obj)), 0); |
229 | } |
233 | } |
230 | 234 | ||
231 | /**************************************/ |
235 | /**************************************/ |
232 | /* Slab functions */ |
236 | /* Slab functions */ |
233 | 237 | ||
234 | 238 | ||
235 | /** |
239 | /** |
236 | * Return object to slab and call a destructor |
240 | * Return object to slab and call a destructor |
237 | * |
241 | * |
238 | * @param slab If the caller knows directly slab of the object, otherwise NULL |
242 | * @param slab If the caller knows directly slab of the object, otherwise NULL |
239 | * |
243 | * |
240 | * @return Number of freed pages |
244 | * @return Number of freed pages |
241 | */ |
245 | */ |
242 | static count_t slab_obj_destroy(slab_cache_t *cache, void *obj, slab_t *slab) |
246 | static count_t slab_obj_destroy(slab_cache_t *cache, void *obj, slab_t *slab) |
243 | { |
247 | { |
244 | int freed = 0; |
248 | int freed = 0; |
245 | 249 | ||
246 | if (!slab) |
250 | if (!slab) |
247 | slab = obj2slab(obj); |
251 | slab = obj2slab(obj); |
248 | 252 | ||
249 | ASSERT(slab->cache == cache); |
253 | ASSERT(slab->cache == cache); |
250 | 254 | ||
251 | if (cache->destructor) |
255 | if (cache->destructor) |
252 | freed = cache->destructor(obj); |
256 | freed = cache->destructor(obj); |
253 | 257 | ||
254 | spinlock_lock(&cache->slablock); |
258 | spinlock_lock(&cache->slablock); |
255 | ASSERT(slab->available < cache->objects); |
259 | ASSERT(slab->available < cache->objects); |
256 | 260 | ||
257 | *((int *)obj) = slab->nextavail; |
261 | *((int *)obj) = slab->nextavail; |
258 | slab->nextavail = (obj - slab->start) / cache->size; |
262 | slab->nextavail = (obj - slab->start) / cache->size; |
259 | slab->available++; |
263 | slab->available++; |
260 | 264 | ||
261 | /* Move it to correct list */ |
265 | /* Move it to correct list */ |
262 | if (slab->available == cache->objects) { |
266 | if (slab->available == cache->objects) { |
263 | /* Free associated memory */ |
267 | /* Free associated memory */ |
264 | list_remove(&slab->link); |
268 | list_remove(&slab->link); |
265 | spinlock_unlock(&cache->slablock); |
269 | spinlock_unlock(&cache->slablock); |
266 | 270 | ||
267 | return freed + slab_space_free(cache, slab); |
271 | return freed + slab_space_free(cache, slab); |
268 | 272 | ||
269 | } else if (slab->available == 1) { |
273 | } else if (slab->available == 1) { |
270 | /* It was in full, move to partial */ |
274 | /* It was in full, move to partial */ |
271 | list_remove(&slab->link); |
275 | list_remove(&slab->link); |
272 | list_prepend(&slab->link, &cache->partial_slabs); |
276 | list_prepend(&slab->link, &cache->partial_slabs); |
273 | } |
277 | } |
274 | spinlock_unlock(&cache->slablock); |
278 | spinlock_unlock(&cache->slablock); |
275 | return freed; |
279 | return freed; |
276 | } |
280 | } |
277 | 281 | ||
278 | /** |
282 | /** |
279 | * Take new object from slab or create new if needed |
283 | * Take new object from slab or create new if needed |
280 | * |
284 | * |
281 | * @return Object address or null |
285 | * @return Object address or null |
282 | */ |
286 | */ |
283 | static void *slab_obj_create(slab_cache_t *cache, int flags) |
287 | static void *slab_obj_create(slab_cache_t *cache, int flags) |
284 | { |
288 | { |
285 | slab_t *slab; |
289 | slab_t *slab; |
286 | void *obj; |
290 | void *obj; |
287 | 291 | ||
288 | spinlock_lock(&cache->slablock); |
292 | spinlock_lock(&cache->slablock); |
289 | 293 | ||
290 | if (list_empty(&cache->partial_slabs)) { |
294 | if (list_empty(&cache->partial_slabs)) { |
291 | /* Allow recursion and reclaiming |
295 | /* Allow recursion and reclaiming |
292 | * - this should work, as the slab control structures |
296 | * - this should work, as the slab control structures |
293 | * are small and do not need to allocate with anything |
297 | * are small and do not need to allocate with anything |
294 | * other than frame_alloc when they are allocating, |
298 | * other than frame_alloc when they are allocating, |
295 | * that's why we should get recursion at most 1-level deep |
299 | * that's why we should get recursion at most 1-level deep |
296 | */ |
300 | */ |
297 | spinlock_unlock(&cache->slablock); |
301 | spinlock_unlock(&cache->slablock); |
298 | slab = slab_space_alloc(cache, flags); |
302 | slab = slab_space_alloc(cache, flags); |
299 | if (!slab) |
303 | if (!slab) |
300 | return NULL; |
304 | return NULL; |
301 | spinlock_lock(&cache->slablock); |
305 | spinlock_lock(&cache->slablock); |
302 | } else { |
306 | } else { |
303 | slab = list_get_instance(cache->partial_slabs.next, slab_t, |
307 | slab = list_get_instance(cache->partial_slabs.next, slab_t, |
304 | link); |
308 | link); |
305 | list_remove(&slab->link); |
309 | list_remove(&slab->link); |
306 | } |
310 | } |
307 | obj = slab->start + slab->nextavail * cache->size; |
311 | obj = slab->start + slab->nextavail * cache->size; |
308 | slab->nextavail = *((int *)obj); |
312 | slab->nextavail = *((int *)obj); |
309 | slab->available--; |
313 | slab->available--; |
310 | 314 | ||
311 | if (!slab->available) |
315 | if (!slab->available) |
312 | list_prepend(&slab->link, &cache->full_slabs); |
316 | list_prepend(&slab->link, &cache->full_slabs); |
313 | else |
317 | else |
314 | list_prepend(&slab->link, &cache->partial_slabs); |
318 | list_prepend(&slab->link, &cache->partial_slabs); |
315 | 319 | ||
316 | spinlock_unlock(&cache->slablock); |
320 | spinlock_unlock(&cache->slablock); |
317 | 321 | ||
318 | if (cache->constructor && cache->constructor(obj, flags)) { |
322 | if (cache->constructor && cache->constructor(obj, flags)) { |
319 | /* Bad, bad, construction failed */ |
323 | /* Bad, bad, construction failed */ |
320 | slab_obj_destroy(cache, obj, slab); |
324 | slab_obj_destroy(cache, obj, slab); |
321 | return NULL; |
325 | return NULL; |
322 | } |
326 | } |
323 | return obj; |
327 | return obj; |
324 | } |
328 | } |
325 | 329 | ||
326 | /**************************************/ |
330 | /**************************************/ |
327 | /* CPU-Cache slab functions */ |
331 | /* CPU-Cache slab functions */ |
328 | 332 | ||
329 | /** |
333 | /** |
330 | * Finds a full magazine in cache, takes it from list |
334 | * Finds a full magazine in cache, takes it from list |
331 | * and returns it |
335 | * and returns it |
332 | * |
336 | * |
333 | * @param first If true, return first, else last mag |
337 | * @param first If true, return first, else last mag |
334 | */ |
338 | */ |
335 | static slab_magazine_t *get_mag_from_cache(slab_cache_t *cache, int first) |
339 | static slab_magazine_t *get_mag_from_cache(slab_cache_t *cache, int first) |
336 | { |
340 | { |
337 | slab_magazine_t *mag = NULL; |
341 | slab_magazine_t *mag = NULL; |
338 | link_t *cur; |
342 | link_t *cur; |
339 | 343 | ||
340 | spinlock_lock(&cache->maglock); |
344 | spinlock_lock(&cache->maglock); |
341 | if (!list_empty(&cache->magazines)) { |
345 | if (!list_empty(&cache->magazines)) { |
342 | if (first) |
346 | if (first) |
343 | cur = cache->magazines.next; |
347 | cur = cache->magazines.next; |
344 | else |
348 | else |
345 | cur = cache->magazines.prev; |
349 | cur = cache->magazines.prev; |
346 | mag = list_get_instance(cur, slab_magazine_t, link); |
350 | mag = list_get_instance(cur, slab_magazine_t, link); |
347 | list_remove(&mag->link); |
351 | list_remove(&mag->link); |
348 | atomic_dec(&cache->magazine_counter); |
352 | atomic_dec(&cache->magazine_counter); |
349 | } |
353 | } |
350 | spinlock_unlock(&cache->maglock); |
354 | spinlock_unlock(&cache->maglock); |
351 | return mag; |
355 | return mag; |
352 | } |
356 | } |
353 | 357 | ||
354 | /** Prepend magazine to magazine list in cache */ |
358 | /** Prepend magazine to magazine list in cache */ |
355 | static void put_mag_to_cache(slab_cache_t *cache, slab_magazine_t *mag) |
359 | static void put_mag_to_cache(slab_cache_t *cache, slab_magazine_t *mag) |
356 | { |
360 | { |
357 | spinlock_lock(&cache->maglock); |
361 | spinlock_lock(&cache->maglock); |
358 | 362 | ||
359 | list_prepend(&mag->link, &cache->magazines); |
363 | list_prepend(&mag->link, &cache->magazines); |
360 | atomic_inc(&cache->magazine_counter); |
364 | atomic_inc(&cache->magazine_counter); |
361 | 365 | ||
362 | spinlock_unlock(&cache->maglock); |
366 | spinlock_unlock(&cache->maglock); |
363 | } |
367 | } |
364 | 368 | ||
365 | /** |
369 | /** |
366 | * Free all objects in magazine and free memory associated with magazine |
370 | * Free all objects in magazine and free memory associated with magazine |
367 | * |
371 | * |
368 | * @return Number of freed pages |
372 | * @return Number of freed pages |
369 | */ |
373 | */ |
370 | static count_t magazine_destroy(slab_cache_t *cache, slab_magazine_t *mag) |
374 | static count_t magazine_destroy(slab_cache_t *cache, slab_magazine_t *mag) |
371 | { |
375 | { |
372 | unsigned int i; |
376 | unsigned int i; |
373 | count_t frames = 0; |
377 | count_t frames = 0; |
374 | 378 | ||
375 | for (i = 0; i < mag->busy; i++) { |
379 | for (i = 0; i < mag->busy; i++) { |
376 | frames += slab_obj_destroy(cache, mag->objs[i], NULL); |
380 | frames += slab_obj_destroy(cache, mag->objs[i], NULL); |
377 | atomic_dec(&cache->cached_objs); |
381 | atomic_dec(&cache->cached_objs); |
378 | } |
382 | } |
379 | 383 | ||
380 | slab_free(&mag_cache, mag); |
384 | slab_free(&mag_cache, mag); |
381 | 385 | ||
382 | return frames; |
386 | return frames; |
383 | } |
387 | } |
384 | 388 | ||
385 | /** |
389 | /** |
386 | * Find full magazine, set it as current and return it |
390 | * Find full magazine, set it as current and return it |
387 | * |
391 | * |
388 | * Assume cpu_magazine lock is held |
392 | * Assume cpu_magazine lock is held |
389 | */ |
393 | */ |
390 | static slab_magazine_t *get_full_current_mag(slab_cache_t *cache) |
394 | static slab_magazine_t *get_full_current_mag(slab_cache_t *cache) |
391 | { |
395 | { |
392 | slab_magazine_t *cmag, *lastmag, *newmag; |
396 | slab_magazine_t *cmag, *lastmag, *newmag; |
393 | 397 | ||
394 | cmag = cache->mag_cache[CPU->id].current; |
398 | cmag = cache->mag_cache[CPU->id].current; |
395 | lastmag = cache->mag_cache[CPU->id].last; |
399 | lastmag = cache->mag_cache[CPU->id].last; |
396 | if (cmag) { /* First try local CPU magazines */ |
400 | if (cmag) { /* First try local CPU magazines */ |
397 | if (cmag->busy) |
401 | if (cmag->busy) |
398 | return cmag; |
402 | return cmag; |
399 | 403 | ||
400 | if (lastmag && lastmag->busy) { |
404 | if (lastmag && lastmag->busy) { |
401 | cache->mag_cache[CPU->id].current = lastmag; |
405 | cache->mag_cache[CPU->id].current = lastmag; |
402 | cache->mag_cache[CPU->id].last = cmag; |
406 | cache->mag_cache[CPU->id].last = cmag; |
403 | return lastmag; |
407 | return lastmag; |
404 | } |
408 | } |
405 | } |
409 | } |
406 | /* Local magazines are empty, import one from magazine list */ |
410 | /* Local magazines are empty, import one from magazine list */ |
407 | newmag = get_mag_from_cache(cache, 1); |
411 | newmag = get_mag_from_cache(cache, 1); |
408 | if (!newmag) |
412 | if (!newmag) |
409 | return NULL; |
413 | return NULL; |
410 | 414 | ||
411 | if (lastmag) |
415 | if (lastmag) |
412 | magazine_destroy(cache, lastmag); |
416 | magazine_destroy(cache, lastmag); |
413 | 417 | ||
414 | cache->mag_cache[CPU->id].last = cmag; |
418 | cache->mag_cache[CPU->id].last = cmag; |
415 | cache->mag_cache[CPU->id].current = newmag; |
419 | cache->mag_cache[CPU->id].current = newmag; |
416 | return newmag; |
420 | return newmag; |
417 | } |
421 | } |
418 | 422 | ||
419 | /** |
423 | /** |
420 | * Try to find object in CPU-cache magazines |
424 | * Try to find object in CPU-cache magazines |
421 | * |
425 | * |
422 | * @return Pointer to object or NULL if not available |
426 | * @return Pointer to object or NULL if not available |
423 | */ |
427 | */ |
424 | static void *magazine_obj_get(slab_cache_t *cache) |
428 | static void *magazine_obj_get(slab_cache_t *cache) |
425 | { |
429 | { |
426 | slab_magazine_t *mag; |
430 | slab_magazine_t *mag; |
427 | void *obj; |
431 | void *obj; |
428 | 432 | ||
429 | if (!CPU) |
433 | if (!CPU) |
430 | return NULL; |
434 | return NULL; |
431 | 435 | ||
432 | spinlock_lock(&cache->mag_cache[CPU->id].lock); |
436 | spinlock_lock(&cache->mag_cache[CPU->id].lock); |
433 | 437 | ||
434 | mag = get_full_current_mag(cache); |
438 | mag = get_full_current_mag(cache); |
435 | if (!mag) { |
439 | if (!mag) { |
436 | spinlock_unlock(&cache->mag_cache[CPU->id].lock); |
440 | spinlock_unlock(&cache->mag_cache[CPU->id].lock); |
437 | return NULL; |
441 | return NULL; |
438 | } |
442 | } |
439 | obj = mag->objs[--mag->busy]; |
443 | obj = mag->objs[--mag->busy]; |
440 | spinlock_unlock(&cache->mag_cache[CPU->id].lock); |
444 | spinlock_unlock(&cache->mag_cache[CPU->id].lock); |
441 | atomic_dec(&cache->cached_objs); |
445 | atomic_dec(&cache->cached_objs); |
442 | 446 | ||
443 | return obj; |
447 | return obj; |
444 | } |
448 | } |
445 | 449 | ||
446 | /** |
450 | /** |
447 | * Assure that the current magazine is empty, return pointer to it, or NULL if |
451 | * Assure that the current magazine is empty, return pointer to it, or NULL if |
448 | * no empty magazine is available and cannot be allocated |
452 | * no empty magazine is available and cannot be allocated |
449 | * |
453 | * |
450 | * Assume mag_cache[CPU->id].lock is held |
454 | * Assume mag_cache[CPU->id].lock is held |
451 | * |
455 | * |
452 | * We have 2 magazines bound to processor. |
456 | * We have 2 magazines bound to processor. |
453 | * First try the current. |
457 | * First try the current. |
454 | * If full, try the last. |
458 | * If full, try the last. |
455 | * If full, put to magazines list. |
459 | * If full, put to magazines list. |
456 | * allocate new, exchange last & current |
460 | * allocate new, exchange last & current |
457 | * |
461 | * |
458 | */ |
462 | */ |
459 | static slab_magazine_t *make_empty_current_mag(slab_cache_t *cache) |
463 | static slab_magazine_t *make_empty_current_mag(slab_cache_t *cache) |
460 | { |
464 | { |
461 | slab_magazine_t *cmag,*lastmag,*newmag; |
465 | slab_magazine_t *cmag,*lastmag,*newmag; |
462 | 466 | ||
463 | cmag = cache->mag_cache[CPU->id].current; |
467 | cmag = cache->mag_cache[CPU->id].current; |
464 | lastmag = cache->mag_cache[CPU->id].last; |
468 | lastmag = cache->mag_cache[CPU->id].last; |
465 | 469 | ||
466 | if (cmag) { |
470 | if (cmag) { |
467 | if (cmag->busy < cmag->size) |
471 | if (cmag->busy < cmag->size) |
468 | return cmag; |
472 | return cmag; |
469 | if (lastmag && lastmag->busy < lastmag->size) { |
473 | if (lastmag && lastmag->busy < lastmag->size) { |
470 | cache->mag_cache[CPU->id].last = cmag; |
474 | cache->mag_cache[CPU->id].last = cmag; |
471 | cache->mag_cache[CPU->id].current = lastmag; |
475 | cache->mag_cache[CPU->id].current = lastmag; |
472 | return lastmag; |
476 | return lastmag; |
473 | } |
477 | } |
474 | } |
478 | } |
475 | /* current | last are full | nonexistent, allocate new */ |
479 | /* current | last are full | nonexistent, allocate new */ |
476 | /* We do not want to sleep just because of caching */ |
480 | /* We do not want to sleep just because of caching */ |
477 | /* Especially we do not want reclaiming to start, as |
481 | /* Especially we do not want reclaiming to start, as |
478 | * this would deadlock */ |
482 | * this would deadlock */ |
479 | newmag = slab_alloc(&mag_cache, FRAME_ATOMIC | FRAME_NO_RECLAIM); |
483 | newmag = slab_alloc(&mag_cache, FRAME_ATOMIC | FRAME_NO_RECLAIM); |
480 | if (!newmag) |
484 | if (!newmag) |
481 | return NULL; |
485 | return NULL; |
482 | newmag->size = SLAB_MAG_SIZE; |
486 | newmag->size = SLAB_MAG_SIZE; |
483 | newmag->busy = 0; |
487 | newmag->busy = 0; |
484 | 488 | ||
485 | /* Flush last to magazine list */ |
489 | /* Flush last to magazine list */ |
486 | if (lastmag) |
490 | if (lastmag) |
487 | put_mag_to_cache(cache, lastmag); |
491 | put_mag_to_cache(cache, lastmag); |
488 | 492 | ||
489 | /* Move current as last, save new as current */ |
493 | /* Move current as last, save new as current */ |
490 | cache->mag_cache[CPU->id].last = cmag; |
494 | cache->mag_cache[CPU->id].last = cmag; |
491 | cache->mag_cache[CPU->id].current = newmag; |
495 | cache->mag_cache[CPU->id].current = newmag; |
492 | 496 | ||
493 | return newmag; |
497 | return newmag; |
494 | } |
498 | } |
495 | 499 | ||
496 | /** |
500 | /** |
497 | * Put object into CPU-cache magazine |
501 | * Put object into CPU-cache magazine |
498 | * |
502 | * |
499 | * @return 0 - success, -1 - could not get memory |
503 | * @return 0 - success, -1 - could not get memory |
500 | */ |
504 | */ |
501 | static int magazine_obj_put(slab_cache_t *cache, void *obj) |
505 | static int magazine_obj_put(slab_cache_t *cache, void *obj) |
502 | { |
506 | { |
503 | slab_magazine_t *mag; |
507 | slab_magazine_t *mag; |
504 | 508 | ||
505 | if (!CPU) |
509 | if (!CPU) |
506 | return -1; |
510 | return -1; |
507 | 511 | ||
508 | spinlock_lock(&cache->mag_cache[CPU->id].lock); |
512 | spinlock_lock(&cache->mag_cache[CPU->id].lock); |
509 | 513 | ||
510 | mag = make_empty_current_mag(cache); |
514 | mag = make_empty_current_mag(cache); |
511 | if (!mag) { |
515 | if (!mag) { |
512 | spinlock_unlock(&cache->mag_cache[CPU->id].lock); |
516 | spinlock_unlock(&cache->mag_cache[CPU->id].lock); |
513 | return -1; |
517 | return -1; |
514 | } |
518 | } |
515 | 519 | ||
516 | mag->objs[mag->busy++] = obj; |
520 | mag->objs[mag->busy++] = obj; |
517 | 521 | ||
518 | spinlock_unlock(&cache->mag_cache[CPU->id].lock); |
522 | spinlock_unlock(&cache->mag_cache[CPU->id].lock); |
519 | atomic_inc(&cache->cached_objs); |
523 | atomic_inc(&cache->cached_objs); |
520 | return 0; |
524 | return 0; |
521 | } |
525 | } |
522 | 526 | ||
523 | 527 | ||
524 | /**************************************/ |
528 | /**************************************/ |
525 | /* Slab cache functions */ |
529 | /* Slab cache functions */ |
526 | 530 | ||
527 | /** Return number of objects that fit in certain cache size */ |
531 | /** Return number of objects that fit in certain cache size */ |
528 | static unsigned int comp_objects(slab_cache_t *cache) |
532 | static unsigned int comp_objects(slab_cache_t *cache) |
529 | { |
533 | { |
530 | if (cache->flags & SLAB_CACHE_SLINSIDE) |
534 | if (cache->flags & SLAB_CACHE_SLINSIDE) |
531 | return ((PAGE_SIZE << cache->order) - sizeof(slab_t)) / |
535 | return ((PAGE_SIZE << cache->order) - sizeof(slab_t)) / |
532 | cache->size; |
536 | cache->size; |
533 | else |
537 | else |
534 | return (PAGE_SIZE << cache->order) / cache->size; |
538 | return (PAGE_SIZE << cache->order) / cache->size; |
535 | } |
539 | } |
536 | 540 | ||
537 | /** Return wasted space in slab */ |
541 | /** Return wasted space in slab */ |
538 | static unsigned int badness(slab_cache_t *cache) |
542 | static unsigned int badness(slab_cache_t *cache) |
539 | { |
543 | { |
540 | unsigned int objects; |
544 | unsigned int objects; |
541 | unsigned int ssize; |
545 | unsigned int ssize; |
542 | 546 | ||
543 | objects = comp_objects(cache); |
547 | objects = comp_objects(cache); |
544 | ssize = PAGE_SIZE << cache->order; |
548 | ssize = PAGE_SIZE << cache->order; |
545 | if (cache->flags & SLAB_CACHE_SLINSIDE) |
549 | if (cache->flags & SLAB_CACHE_SLINSIDE) |
546 | ssize -= sizeof(slab_t); |
550 | ssize -= sizeof(slab_t); |
547 | return ssize - objects * cache->size; |
551 | return ssize - objects * cache->size; |
548 | } |
552 | } |
549 | 553 | ||
550 | /** |
554 | /** |
551 | * Initialize mag_cache structure in slab cache |
555 | * Initialize mag_cache structure in slab cache |
552 | */ |
556 | */ |
553 | static void make_magcache(slab_cache_t *cache) |
557 | static void make_magcache(slab_cache_t *cache) |
554 | { |
558 | { |
555 | unsigned int i; |
559 | unsigned int i; |
556 | 560 | ||
557 | ASSERT(_slab_initialized >= 2); |
561 | ASSERT(_slab_initialized >= 2); |
558 | 562 | ||
559 | cache->mag_cache = malloc(sizeof(slab_mag_cache_t) * config.cpu_count, |
563 | cache->mag_cache = malloc(sizeof(slab_mag_cache_t) * config.cpu_count, |
560 | 0); |
564 | 0); |
561 | for (i = 0; i < config.cpu_count; i++) { |
565 | for (i = 0; i < config.cpu_count; i++) { |
562 | memsetb(&cache->mag_cache[i], sizeof(cache->mag_cache[i]), 0); |
566 | memsetb(&cache->mag_cache[i], sizeof(cache->mag_cache[i]), 0); |
563 | spinlock_initialize(&cache->mag_cache[i].lock, |
567 | spinlock_initialize(&cache->mag_cache[i].lock, |
564 | "slab_maglock_cpu"); |
568 | "slab_maglock_cpu"); |
565 | } |
569 | } |
566 | } |
570 | } |
567 | 571 | ||
568 | /** Initialize allocated memory as a slab cache */ |
572 | /** Initialize allocated memory as a slab cache */ |
569 | static void |
573 | static void |
570 | _slab_cache_create(slab_cache_t *cache, char *name, size_t size, size_t align, |
574 | _slab_cache_create(slab_cache_t *cache, char *name, size_t size, size_t align, |
571 | int (*constructor)(void *obj, int kmflag), int (*destructor)(void *obj), |
575 | int (*constructor)(void *obj, int kmflag), int (*destructor)(void *obj), |
572 | int flags) |
576 | int flags) |
573 | { |
577 | { |
574 | int pages; |
578 | int pages; |
575 | ipl_t ipl; |
579 | ipl_t ipl; |
576 | 580 | ||
577 | memsetb(cache, sizeof(*cache), 0); |
581 | memsetb(cache, sizeof(*cache), 0); |
578 | cache->name = name; |
582 | cache->name = name; |
579 | 583 | ||
580 | if (align < sizeof(unative_t)) |
584 | if (align < sizeof(unative_t)) |
581 | align = sizeof(unative_t); |
585 | align = sizeof(unative_t); |
582 | size = ALIGN_UP(size, align); |
586 | size = ALIGN_UP(size, align); |
583 | 587 | ||
584 | cache->size = size; |
588 | cache->size = size; |
585 | 589 | ||
586 | cache->constructor = constructor; |
590 | cache->constructor = constructor; |
587 | cache->destructor = destructor; |
591 | cache->destructor = destructor; |
588 | cache->flags = flags; |
592 | cache->flags = flags; |
589 | 593 | ||
590 | list_initialize(&cache->full_slabs); |
594 | list_initialize(&cache->full_slabs); |
591 | list_initialize(&cache->partial_slabs); |
595 | list_initialize(&cache->partial_slabs); |
592 | list_initialize(&cache->magazines); |
596 | list_initialize(&cache->magazines); |
593 | spinlock_initialize(&cache->slablock, "slab_lock"); |
597 | spinlock_initialize(&cache->slablock, "slab_lock"); |
594 | spinlock_initialize(&cache->maglock, "slab_maglock"); |
598 | spinlock_initialize(&cache->maglock, "slab_maglock"); |
595 | if (!(cache->flags & SLAB_CACHE_NOMAGAZINE)) |
599 | if (!(cache->flags & SLAB_CACHE_NOMAGAZINE)) |
596 | make_magcache(cache); |
600 | make_magcache(cache); |
597 | 601 | ||
598 | /* Compute slab sizes, object counts in slabs etc. */ |
602 | /* Compute slab sizes, object counts in slabs etc. */ |
599 | if (cache->size < SLAB_INSIDE_SIZE) |
603 | if (cache->size < SLAB_INSIDE_SIZE) |
600 | cache->flags |= SLAB_CACHE_SLINSIDE; |
604 | cache->flags |= SLAB_CACHE_SLINSIDE; |
601 | 605 | ||
602 | /* Minimum slab order */ |
606 | /* Minimum slab order */ |
603 | pages = SIZE2FRAMES(cache->size); |
607 | pages = SIZE2FRAMES(cache->size); |
604 | /* We need the 2^order >= pages */ |
608 | /* We need the 2^order >= pages */ |
605 | if (pages == 1) |
609 | if (pages == 1) |
606 | cache->order = 0; |
610 | cache->order = 0; |
607 | else |
611 | else |
608 | cache->order = fnzb(pages - 1) + 1; |
612 | cache->order = fnzb(pages - 1) + 1; |
609 | 613 | ||
610 | while (badness(cache) > SLAB_MAX_BADNESS(cache)) { |
614 | while (badness(cache) > SLAB_MAX_BADNESS(cache)) { |
611 | cache->order += 1; |
615 | cache->order += 1; |
612 | } |
616 | } |
613 | cache->objects = comp_objects(cache); |
617 | cache->objects = comp_objects(cache); |
614 | /* If info fits in, put it inside */ |
618 | /* If info fits in, put it inside */ |
615 | if (badness(cache) > sizeof(slab_t)) |
619 | if (badness(cache) > sizeof(slab_t)) |
616 | cache->flags |= SLAB_CACHE_SLINSIDE; |
620 | cache->flags |= SLAB_CACHE_SLINSIDE; |
617 | 621 | ||
618 | /* Add cache to cache list */ |
622 | /* Add cache to cache list */ |
619 | ipl = interrupts_disable(); |
623 | ipl = interrupts_disable(); |
620 | spinlock_lock(&slab_cache_lock); |
624 | spinlock_lock(&slab_cache_lock); |
621 | 625 | ||
622 | list_append(&cache->link, &slab_cache_list); |
626 | list_append(&cache->link, &slab_cache_list); |
623 | 627 | ||
624 | spinlock_unlock(&slab_cache_lock); |
628 | spinlock_unlock(&slab_cache_lock); |
625 | interrupts_restore(ipl); |
629 | interrupts_restore(ipl); |
626 | } |
630 | } |
627 | 631 | ||
628 | /** Create slab cache */ |
632 | /** Create slab cache */ |
629 | slab_cache_t * |
633 | slab_cache_t * |
630 | slab_cache_create(char *name, size_t size, size_t align, |
634 | slab_cache_create(char *name, size_t size, size_t align, |
631 | int (*constructor)(void *obj, int kmflag), int (*destructor)(void *obj), |
635 | int (*constructor)(void *obj, int kmflag), int (*destructor)(void *obj), |
632 | int flags) |
636 | int flags) |
633 | { |
637 | { |
634 | slab_cache_t *cache; |
638 | slab_cache_t *cache; |
635 | 639 | ||
636 | cache = slab_alloc(&slab_cache_cache, 0); |
640 | cache = slab_alloc(&slab_cache_cache, 0); |
637 | _slab_cache_create(cache, name, size, align, constructor, destructor, |
641 | _slab_cache_create(cache, name, size, align, constructor, destructor, |
638 | flags); |
642 | flags); |
639 | return cache; |
643 | return cache; |
640 | } |
644 | } |
641 | 645 | ||
642 | /** |
646 | /** |
643 | * Reclaim space occupied by objects that are already free |
647 | * Reclaim space occupied by objects that are already free |
644 | * |
648 | * |
645 | * @param flags If contains SLAB_RECLAIM_ALL, do aggressive freeing |
649 | * @param flags If contains SLAB_RECLAIM_ALL, do aggressive freeing |
646 | * @return Number of freed pages |
650 | * @return Number of freed pages |
647 | */ |
651 | */ |
648 | static count_t _slab_reclaim(slab_cache_t *cache, int flags) |
652 | static count_t _slab_reclaim(slab_cache_t *cache, int flags) |
649 | { |
653 | { |
650 | unsigned int i; |
654 | unsigned int i; |
651 | slab_magazine_t *mag; |
655 | slab_magazine_t *mag; |
652 | count_t frames = 0; |
656 | count_t frames = 0; |
653 | int magcount; |
657 | int magcount; |
654 | 658 | ||
655 | if (cache->flags & SLAB_CACHE_NOMAGAZINE) |
659 | if (cache->flags & SLAB_CACHE_NOMAGAZINE) |
656 | return 0; /* Nothing to do */ |
660 | return 0; /* Nothing to do */ |
657 | 661 | ||
658 | /* We count up to original magazine count to avoid |
662 | /* We count up to original magazine count to avoid |
659 | * endless loop |
663 | * endless loop |
660 | */ |
664 | */ |
661 | magcount = atomic_get(&cache->magazine_counter); |
665 | magcount = atomic_get(&cache->magazine_counter); |
662 | while (magcount-- && (mag=get_mag_from_cache(cache, 0))) { |
666 | while (magcount-- && (mag=get_mag_from_cache(cache, 0))) { |
663 | frames += magazine_destroy(cache,mag); |
667 | frames += magazine_destroy(cache,mag); |
664 | if (!(flags & SLAB_RECLAIM_ALL) && frames) |
668 | if (!(flags & SLAB_RECLAIM_ALL) && frames) |
665 | break; |
669 | break; |
666 | } |
670 | } |
667 | 671 | ||
668 | if (flags & SLAB_RECLAIM_ALL) { |
672 | if (flags & SLAB_RECLAIM_ALL) { |
669 | /* Free cpu-bound magazines */ |
673 | /* Free cpu-bound magazines */ |
670 | /* Destroy CPU magazines */ |
674 | /* Destroy CPU magazines */ |
671 | for (i = 0; i < config.cpu_count; i++) { |
675 | for (i = 0; i < config.cpu_count; i++) { |
672 | spinlock_lock(&cache->mag_cache[i].lock); |
676 | spinlock_lock(&cache->mag_cache[i].lock); |
673 | 677 | ||
674 | mag = cache->mag_cache[i].current; |
678 | mag = cache->mag_cache[i].current; |
675 | if (mag) |
679 | if (mag) |
676 | frames += magazine_destroy(cache, mag); |
680 | frames += magazine_destroy(cache, mag); |
677 | cache->mag_cache[i].current = NULL; |
681 | cache->mag_cache[i].current = NULL; |
678 | 682 | ||
679 | mag = cache->mag_cache[i].last; |
683 | mag = cache->mag_cache[i].last; |
680 | if (mag) |
684 | if (mag) |
681 | frames += magazine_destroy(cache, mag); |
685 | frames += magazine_destroy(cache, mag); |
682 | cache->mag_cache[i].last = NULL; |
686 | cache->mag_cache[i].last = NULL; |
683 | 687 | ||
684 | spinlock_unlock(&cache->mag_cache[i].lock); |
688 | spinlock_unlock(&cache->mag_cache[i].lock); |
685 | } |
689 | } |
686 | } |
690 | } |
687 | 691 | ||
688 | return frames; |
692 | return frames; |
689 | } |
693 | } |
690 | 694 | ||
691 | /** Check that there are no slabs and remove cache from system */ |
695 | /** Check that there are no slabs and remove cache from system */ |
692 | void slab_cache_destroy(slab_cache_t *cache) |
696 | void slab_cache_destroy(slab_cache_t *cache) |
693 | { |
697 | { |
694 | ipl_t ipl; |
698 | ipl_t ipl; |
695 | 699 | ||
696 | /* First remove cache from link, so that we don't need |
700 | /* First remove cache from link, so that we don't need |
697 | * to disable interrupts later |
701 | * to disable interrupts later |
698 | */ |
702 | */ |
699 | 703 | ||
700 | ipl = interrupts_disable(); |
704 | ipl = interrupts_disable(); |
701 | spinlock_lock(&slab_cache_lock); |
705 | spinlock_lock(&slab_cache_lock); |
702 | 706 | ||
703 | list_remove(&cache->link); |
707 | list_remove(&cache->link); |
704 | 708 | ||
705 | spinlock_unlock(&slab_cache_lock); |
709 | spinlock_unlock(&slab_cache_lock); |
706 | interrupts_restore(ipl); |
710 | interrupts_restore(ipl); |
707 | 711 | ||
708 | /* Do not lock anything, we assume the software is correct and |
712 | /* Do not lock anything, we assume the software is correct and |
709 | * does not touch the cache when it decides to destroy it */ |
713 | * does not touch the cache when it decides to destroy it */ |
710 | 714 | ||
711 | /* Destroy all magazines */ |
715 | /* Destroy all magazines */ |
712 | _slab_reclaim(cache, SLAB_RECLAIM_ALL); |
716 | _slab_reclaim(cache, SLAB_RECLAIM_ALL); |
713 | 717 | ||
714 | /* All slabs must be empty */ |
718 | /* All slabs must be empty */ |
715 | if (!list_empty(&cache->full_slabs) || |
719 | if (!list_empty(&cache->full_slabs) || |
716 | !list_empty(&cache->partial_slabs)) |
720 | !list_empty(&cache->partial_slabs)) |
717 | panic("Destroying cache that is not empty."); |
721 | panic("Destroying cache that is not empty."); |
718 | 722 | ||
719 | if (!(cache->flags & SLAB_CACHE_NOMAGAZINE)) |
723 | if (!(cache->flags & SLAB_CACHE_NOMAGAZINE)) |
720 | free(cache->mag_cache); |
724 | free(cache->mag_cache); |
721 | slab_free(&slab_cache_cache, cache); |
725 | slab_free(&slab_cache_cache, cache); |
722 | } |
726 | } |
723 | 727 | ||
724 | /** Allocate new object from cache - if no flags given, always returns memory */ |
728 | /** Allocate new object from cache - if no flags given, always returns memory */ |
725 | void *slab_alloc(slab_cache_t *cache, int flags) |
729 | void *slab_alloc(slab_cache_t *cache, int flags) |
726 | { |
730 | { |
727 | ipl_t ipl; |
731 | ipl_t ipl; |
728 | void *result = NULL; |
732 | void *result = NULL; |
729 | 733 | ||
730 | /* Disable interrupts to avoid deadlocks with interrupt handlers */ |
734 | /* Disable interrupts to avoid deadlocks with interrupt handlers */ |
731 | ipl = interrupts_disable(); |
735 | ipl = interrupts_disable(); |
732 | 736 | ||
733 | if (!(cache->flags & SLAB_CACHE_NOMAGAZINE)) { |
737 | if (!(cache->flags & SLAB_CACHE_NOMAGAZINE)) { |
734 | result = magazine_obj_get(cache); |
738 | result = magazine_obj_get(cache); |
735 | } |
739 | } |
736 | if (!result) |
740 | if (!result) |
737 | result = slab_obj_create(cache, flags); |
741 | result = slab_obj_create(cache, flags); |
738 | 742 | ||
739 | interrupts_restore(ipl); |
743 | interrupts_restore(ipl); |
740 | 744 | ||
741 | if (result) |
745 | if (result) |
742 | atomic_inc(&cache->allocated_objs); |
746 | atomic_inc(&cache->allocated_objs); |
743 | 747 | ||
744 | return result; |
748 | return result; |
745 | } |
749 | } |
746 | 750 | ||
747 | /** Return object to cache, use slab if known */ |
751 | /** Return object to cache, use slab if known */ |
748 | static void _slab_free(slab_cache_t *cache, void *obj, slab_t *slab) |
752 | static void _slab_free(slab_cache_t *cache, void *obj, slab_t *slab) |
749 | { |
753 | { |
750 | ipl_t ipl; |
754 | ipl_t ipl; |
751 | 755 | ||
752 | ipl = interrupts_disable(); |
756 | ipl = interrupts_disable(); |
753 | 757 | ||
754 | if ((cache->flags & SLAB_CACHE_NOMAGAZINE) || |
758 | if ((cache->flags & SLAB_CACHE_NOMAGAZINE) || |
755 | magazine_obj_put(cache, obj)) { |
759 | magazine_obj_put(cache, obj)) { |
756 | slab_obj_destroy(cache, obj, slab); |
760 | slab_obj_destroy(cache, obj, slab); |
757 | 761 | ||
758 | } |
762 | } |
759 | interrupts_restore(ipl); |
763 | interrupts_restore(ipl); |
760 | atomic_dec(&cache->allocated_objs); |
764 | atomic_dec(&cache->allocated_objs); |
761 | } |
765 | } |
762 | 766 | ||
763 | /** Return slab object to cache */ |
767 | /** Return slab object to cache */ |
764 | void slab_free(slab_cache_t *cache, void *obj) |
768 | void slab_free(slab_cache_t *cache, void *obj) |
765 | { |
769 | { |
766 | _slab_free(cache, obj, NULL); |
770 | _slab_free(cache, obj, NULL); |
767 | } |
771 | } |
768 | 772 | ||
769 | /* Go through all caches and reclaim what is possible */ |
773 | /* Go through all caches and reclaim what is possible */ |
770 | count_t slab_reclaim(int flags) |
774 | count_t slab_reclaim(int flags) |
771 | { |
775 | { |
772 | slab_cache_t *cache; |
776 | slab_cache_t *cache; |
773 | link_t *cur; |
777 | link_t *cur; |
774 | count_t frames = 0; |
778 | count_t frames = 0; |
775 | 779 | ||
776 | spinlock_lock(&slab_cache_lock); |
780 | spinlock_lock(&slab_cache_lock); |
777 | 781 | ||
778 | /* TODO: Add assert, that interrupts are disabled, otherwise |
782 | /* TODO: Add assert, that interrupts are disabled, otherwise |
779 | * memory allocation from interrupts can deadlock. |
783 | * memory allocation from interrupts can deadlock. |
780 | */ |
784 | */ |
781 | 785 | ||
782 | for (cur = slab_cache_list.next; cur != &slab_cache_list; |
786 | for (cur = slab_cache_list.next; cur != &slab_cache_list; |
783 | cur = cur->next) { |
787 | cur = cur->next) { |
784 | cache = list_get_instance(cur, slab_cache_t, link); |
788 | cache = list_get_instance(cur, slab_cache_t, link); |
785 | frames += _slab_reclaim(cache, flags); |
789 | frames += _slab_reclaim(cache, flags); |
786 | } |
790 | } |
787 | 791 | ||
788 | spinlock_unlock(&slab_cache_lock); |
792 | spinlock_unlock(&slab_cache_lock); |
789 | 793 | ||
790 | return frames; |
794 | return frames; |
791 | } |
795 | } |
792 | 796 | ||
793 | 797 | ||
794 | /* Print list of slabs */ |
798 | /* Print list of slabs */ |
795 | void slab_print_list(void) |
799 | void slab_print_list(void) |
796 | { |
800 | { |
797 | int skip = 0; |
801 | int skip = 0; |
798 | 802 | ||
799 | printf("slab name size pages obj/pg slabs cached allocated" |
803 | printf("slab name size pages obj/pg slabs cached allocated" |
800 | " ctl\n"); |
804 | " ctl\n"); |
801 | printf("---------------- -------- ------ ------ ------ ------ ---------" |
805 | printf("---------------- -------- ------ ------ ------ ------ ---------" |
802 | " ---\n"); |
806 | " ---\n"); |
803 | 807 | ||
804 | while (true) { |
808 | while (true) { |
805 | slab_cache_t *cache; |
809 | slab_cache_t *cache; |
806 | link_t *cur; |
810 | link_t *cur; |
807 | ipl_t ipl; |
811 | ipl_t ipl; |
808 | int i; |
812 | int i; |
809 | 813 | ||
810 | /* |
814 | /* |
811 | * We must not hold the slab_cache_lock spinlock when printing |
815 | * We must not hold the slab_cache_lock spinlock when printing |
812 | * the statistics. Otherwise we can easily deadlock if the print |
816 | * the statistics. Otherwise we can easily deadlock if the print |
813 | * needs to allocate memory. |
817 | * needs to allocate memory. |
814 | * |
818 | * |
815 | * Therefore, we walk through the slab cache list, skipping some |
819 | * Therefore, we walk through the slab cache list, skipping some |
816 | * amount of already processed caches during each iteration and |
820 | * amount of already processed caches during each iteration and |
817 | * gathering statistics about the first unprocessed cache. For |
821 | * gathering statistics about the first unprocessed cache. For |
818 | * the sake of printing the statistics, we realese the |
822 | * the sake of printing the statistics, we realese the |
819 | * slab_cache_lock and reacquire it afterwards. Then the walk |
823 | * slab_cache_lock and reacquire it afterwards. Then the walk |
820 | * starts again. |
824 | * starts again. |
821 | * |
825 | * |
822 | * This limits both the efficiency and also accuracy of the |
826 | * This limits both the efficiency and also accuracy of the |
823 | * obtained statistics. The efficiency is decreased because the |
827 | * obtained statistics. The efficiency is decreased because the |
824 | * time complexity of the algorithm is quadratic instead of |
828 | * time complexity of the algorithm is quadratic instead of |
825 | * linear. The accuracy is impacted because we drop the lock |
829 | * linear. The accuracy is impacted because we drop the lock |
826 | * after processing one cache. If there is someone else |
830 | * after processing one cache. If there is someone else |
827 | * manipulating the cache list, we might omit an arbitrary |
831 | * manipulating the cache list, we might omit an arbitrary |
828 | * number of caches or process one cache multiple times. |
832 | * number of caches or process one cache multiple times. |
829 | * However, we don't bleed for this algorithm for it is only |
833 | * However, we don't bleed for this algorithm for it is only |
830 | * statistics. |
834 | * statistics. |
831 | */ |
835 | */ |
832 | 836 | ||
833 | ipl = interrupts_disable(); |
837 | ipl = interrupts_disable(); |
834 | spinlock_lock(&slab_cache_lock); |
838 | spinlock_lock(&slab_cache_lock); |
835 | 839 | ||
836 | for (i = 0, cur = slab_cache_list.next; |
840 | for (i = 0, cur = slab_cache_list.next; |
837 | i < skip && cur != &slab_cache_list; |
841 | i < skip && cur != &slab_cache_list; |
838 | i++, cur = cur->next) |
842 | i++, cur = cur->next) |
839 | ; |
843 | ; |
840 | 844 | ||
841 | if (cur == &slab_cache_list) { |
845 | if (cur == &slab_cache_list) { |
842 | spinlock_unlock(&slab_cache_lock); |
846 | spinlock_unlock(&slab_cache_lock); |
843 | interrupts_restore(ipl); |
847 | interrupts_restore(ipl); |
844 | break; |
848 | break; |
845 | } |
849 | } |
846 | 850 | ||
847 | skip++; |
851 | skip++; |
848 | 852 | ||
849 | cache = list_get_instance(cur, slab_cache_t, link); |
853 | cache = list_get_instance(cur, slab_cache_t, link); |
850 | 854 | ||
851 | char *name = cache->name; |
855 | char *name = cache->name; |
852 | uint8_t order = cache->order; |
856 | uint8_t order = cache->order; |
853 | size_t size = cache->size; |
857 | size_t size = cache->size; |
854 | unsigned int objects = cache->objects; |
858 | unsigned int objects = cache->objects; |
855 | long allocated_slabs = atomic_get(&cache->allocated_slabs); |
859 | long allocated_slabs = atomic_get(&cache->allocated_slabs); |
856 | long cached_objs = atomic_get(&cache->cached_objs); |
860 | long cached_objs = atomic_get(&cache->cached_objs); |
857 | long allocated_objs = atomic_get(&cache->allocated_objs); |
861 | long allocated_objs = atomic_get(&cache->allocated_objs); |
858 | int flags = cache->flags; |
862 | int flags = cache->flags; |
859 | 863 | ||
860 | spinlock_unlock(&slab_cache_lock); |
864 | spinlock_unlock(&slab_cache_lock); |
861 | interrupts_restore(ipl); |
865 | interrupts_restore(ipl); |
862 | 866 | ||
863 | printf("%-16s %8" PRIs " %6d %6u %6ld %6ld %9ld %-3s\n", |
867 | printf("%-16s %8" PRIs " %6d %6u %6ld %6ld %9ld %-3s\n", |
864 | name, size, (1 << order), objects, allocated_slabs, |
868 | name, size, (1 << order), objects, allocated_slabs, |
865 | cached_objs, allocated_objs, |
869 | cached_objs, allocated_objs, |
866 | flags & SLAB_CACHE_SLINSIDE ? "in" : "out"); |
870 | flags & SLAB_CACHE_SLINSIDE ? "in" : "out"); |
867 | } |
871 | } |
868 | } |
872 | } |
869 | 873 | ||
870 | void slab_cache_init(void) |
874 | void slab_cache_init(void) |
871 | { |
875 | { |
872 | int i, size; |
876 | int i, size; |
873 | 877 | ||
874 | /* Initialize magazine cache */ |
878 | /* Initialize magazine cache */ |
875 | _slab_cache_create(&mag_cache, "slab_magazine", |
879 | _slab_cache_create(&mag_cache, "slab_magazine", |
876 | sizeof(slab_magazine_t) + SLAB_MAG_SIZE * sizeof(void*), |
880 | sizeof(slab_magazine_t) + SLAB_MAG_SIZE * sizeof(void*), |
877 | sizeof(uintptr_t), NULL, NULL, SLAB_CACHE_NOMAGAZINE | |
881 | sizeof(uintptr_t), NULL, NULL, SLAB_CACHE_NOMAGAZINE | |
878 | SLAB_CACHE_SLINSIDE); |
882 | SLAB_CACHE_SLINSIDE); |
879 | /* Initialize slab_cache cache */ |
883 | /* Initialize slab_cache cache */ |
880 | _slab_cache_create(&slab_cache_cache, "slab_cache", |
884 | _slab_cache_create(&slab_cache_cache, "slab_cache", |
881 | sizeof(slab_cache_cache), sizeof(uintptr_t), NULL, NULL, |
885 | sizeof(slab_cache_cache), sizeof(uintptr_t), NULL, NULL, |
882 | SLAB_CACHE_NOMAGAZINE | SLAB_CACHE_SLINSIDE); |
886 | SLAB_CACHE_NOMAGAZINE | SLAB_CACHE_SLINSIDE); |
883 | /* Initialize external slab cache */ |
887 | /* Initialize external slab cache */ |
884 | slab_extern_cache = slab_cache_create("slab_extern", sizeof(slab_t), 0, |
888 | slab_extern_cache = slab_cache_create("slab_extern", sizeof(slab_t), 0, |
885 | NULL, NULL, SLAB_CACHE_SLINSIDE | SLAB_CACHE_MAGDEFERRED); |
889 | NULL, NULL, SLAB_CACHE_SLINSIDE | SLAB_CACHE_MAGDEFERRED); |
886 | 890 | ||
887 | /* Initialize structures for malloc */ |
891 | /* Initialize structures for malloc */ |
888 | for (i = 0, size = (1 << SLAB_MIN_MALLOC_W); |
892 | for (i = 0, size = (1 << SLAB_MIN_MALLOC_W); |
889 | i < (SLAB_MAX_MALLOC_W - SLAB_MIN_MALLOC_W + 1); |
893 | i < (SLAB_MAX_MALLOC_W - SLAB_MIN_MALLOC_W + 1); |
890 | i++, size <<= 1) { |
894 | i++, size <<= 1) { |
891 | malloc_caches[i] = slab_cache_create(malloc_names[i], size, 0, |
895 | malloc_caches[i] = slab_cache_create(malloc_names[i], size, 0, |
892 | NULL, NULL, SLAB_CACHE_MAGDEFERRED); |
896 | NULL, NULL, SLAB_CACHE_MAGDEFERRED); |
893 | } |
897 | } |
894 | #ifdef CONFIG_DEBUG |
898 | #ifdef CONFIG_DEBUG |
895 | _slab_initialized = 1; |
899 | _slab_initialized = 1; |
896 | #endif |
900 | #endif |
897 | } |
901 | } |
898 | 902 | ||
899 | /** Enable cpu_cache |
903 | /** Enable cpu_cache |
900 | * |
904 | * |
901 | * Kernel calls this function, when it knows the real number of |
905 | * Kernel calls this function, when it knows the real number of |
902 | * processors. |
906 | * processors. |
903 | * Allocate slab for cpucache and enable it on all existing |
907 | * Allocate slab for cpucache and enable it on all existing |
904 | * slabs that are SLAB_CACHE_MAGDEFERRED |
908 | * slabs that are SLAB_CACHE_MAGDEFERRED |
905 | */ |
909 | */ |
906 | void slab_enable_cpucache(void) |
910 | void slab_enable_cpucache(void) |
907 | { |
911 | { |
908 | link_t *cur; |
912 | link_t *cur; |
909 | slab_cache_t *s; |
913 | slab_cache_t *s; |
910 | 914 | ||
911 | #ifdef CONFIG_DEBUG |
915 | #ifdef CONFIG_DEBUG |
912 | _slab_initialized = 2; |
916 | _slab_initialized = 2; |
913 | #endif |
917 | #endif |
914 | 918 | ||
915 | spinlock_lock(&slab_cache_lock); |
919 | spinlock_lock(&slab_cache_lock); |
916 | 920 | ||
917 | for (cur = slab_cache_list.next; cur != &slab_cache_list; |
921 | for (cur = slab_cache_list.next; cur != &slab_cache_list; |
918 | cur = cur->next){ |
922 | cur = cur->next){ |
919 | s = list_get_instance(cur, slab_cache_t, link); |
923 | s = list_get_instance(cur, slab_cache_t, link); |
920 | if ((s->flags & SLAB_CACHE_MAGDEFERRED) != |
924 | if ((s->flags & SLAB_CACHE_MAGDEFERRED) != |
921 | SLAB_CACHE_MAGDEFERRED) |
925 | SLAB_CACHE_MAGDEFERRED) |
922 | continue; |
926 | continue; |
923 | make_magcache(s); |
927 | make_magcache(s); |
924 | s->flags &= ~SLAB_CACHE_MAGDEFERRED; |
928 | s->flags &= ~SLAB_CACHE_MAGDEFERRED; |
925 | } |
929 | } |
926 | 930 | ||
927 | spinlock_unlock(&slab_cache_lock); |
931 | spinlock_unlock(&slab_cache_lock); |
928 | } |
932 | } |
929 | 933 | ||
930 | /**************************************/ |
934 | /**************************************/ |
931 | /* kalloc/kfree functions */ |
935 | /* kalloc/kfree functions */ |
932 | void *malloc(unsigned int size, int flags) |
936 | void *malloc(unsigned int size, int flags) |
933 | { |
937 | { |
934 | ASSERT(_slab_initialized); |
938 | ASSERT(_slab_initialized); |
935 | ASSERT(size && size <= (1 << SLAB_MAX_MALLOC_W)); |
939 | ASSERT(size && size <= (1 << SLAB_MAX_MALLOC_W)); |
936 | 940 | ||
937 | if (size < (1 << SLAB_MIN_MALLOC_W)) |
941 | if (size < (1 << SLAB_MIN_MALLOC_W)) |
938 | size = (1 << SLAB_MIN_MALLOC_W); |
942 | size = (1 << SLAB_MIN_MALLOC_W); |
939 | 943 | ||
940 | int idx = fnzb(size - 1) - SLAB_MIN_MALLOC_W + 1; |
944 | int idx = fnzb(size - 1) - SLAB_MIN_MALLOC_W + 1; |
941 | 945 | ||
942 | return slab_alloc(malloc_caches[idx], flags); |
946 | return slab_alloc(malloc_caches[idx], flags); |
943 | } |
947 | } |
944 | 948 | ||
945 | void *realloc(void *ptr, unsigned int size, int flags) |
949 | void *realloc(void *ptr, unsigned int size, int flags) |
946 | { |
950 | { |
947 | ASSERT(_slab_initialized); |
951 | ASSERT(_slab_initialized); |
948 | ASSERT(size <= (1 << SLAB_MAX_MALLOC_W)); |
952 | ASSERT(size <= (1 << SLAB_MAX_MALLOC_W)); |
949 | 953 | ||
950 | void *new_ptr; |
954 | void *new_ptr; |
951 | 955 | ||
952 | if (size > 0) { |
956 | if (size > 0) { |
953 | if (size < (1 << SLAB_MIN_MALLOC_W)) |
957 | if (size < (1 << SLAB_MIN_MALLOC_W)) |
954 | size = (1 << SLAB_MIN_MALLOC_W); |
958 | size = (1 << SLAB_MIN_MALLOC_W); |
955 | int idx = fnzb(size - 1) - SLAB_MIN_MALLOC_W + 1; |
959 | int idx = fnzb(size - 1) - SLAB_MIN_MALLOC_W + 1; |
956 | 960 | ||
957 | new_ptr = slab_alloc(malloc_caches[idx], flags); |
961 | new_ptr = slab_alloc(malloc_caches[idx], flags); |
958 | } else |
962 | } else |
959 | new_ptr = NULL; |
963 | new_ptr = NULL; |
960 | 964 | ||
961 | if ((new_ptr != NULL) && (ptr != NULL)) { |
965 | if ((new_ptr != NULL) && (ptr != NULL)) { |
962 | slab_t *slab = obj2slab(ptr); |
966 | slab_t *slab = obj2slab(ptr); |
963 | memcpy(new_ptr, ptr, min(size, slab->cache->size)); |
967 | memcpy(new_ptr, ptr, min(size, slab->cache->size)); |
964 | } |
968 | } |
965 | 969 | ||
966 | if (ptr != NULL) |
970 | if (ptr != NULL) |
967 | free(ptr); |
971 | free(ptr); |
968 | 972 | ||
969 | return new_ptr; |
973 | return new_ptr; |
970 | } |
974 | } |
971 | 975 | ||
972 | void free(void *ptr) |
976 | void free(void *ptr) |
973 | { |
977 | { |
974 | if (!ptr) |
978 | if (!ptr) |
975 | return; |
979 | return; |
976 | 980 | ||
977 | slab_t *slab = obj2slab(ptr); |
981 | slab_t *slab = obj2slab(ptr); |
978 | _slab_free(slab->cache, ptr, slab); |
982 | _slab_free(slab->cache, ptr, slab); |
979 | } |
983 | } |
980 | 984 | ||
981 | /** @} |
985 | /** @} |
982 | */ |
986 | */ |
983 | 987 |