Subversion Repositories HelenOS

Rev

Rev 2131 | Go to most recent revision | Only display areas with differences | Ignore whitespace | Details | Blame | Last modification | View Log | RSS feed

Rev 2131 Rev 2422
1
/*
1
/*
2
 * Copyright (c) 2001-2006 Jakub Jermar
2
 * Copyright (c) 2001-2006 Jakub Jermar
3
 * All rights reserved.
3
 * All rights reserved.
4
 *
4
 *
5
 * Redistribution and use in source and binary forms, with or without
5
 * Redistribution and use in source and binary forms, with or without
6
 * modification, are permitted provided that the following conditions
6
 * modification, are permitted provided that the following conditions
7
 * are met:
7
 * are met:
8
 *
8
 *
9
 * - Redistributions of source code must retain the above copyright
9
 * - Redistributions of source code must retain the above copyright
10
 *   notice, this list of conditions and the following disclaimer.
10
 *   notice, this list of conditions and the following disclaimer.
11
 * - Redistributions in binary form must reproduce the above copyright
11
 * - Redistributions in binary form must reproduce the above copyright
12
 *   notice, this list of conditions and the following disclaimer in the
12
 *   notice, this list of conditions and the following disclaimer in the
13
 *   documentation and/or other materials provided with the distribution.
13
 *   documentation and/or other materials provided with the distribution.
14
 * - The name of the author may not be used to endorse or promote products
14
 * - The name of the author may not be used to endorse or promote products
15
 *   derived from this software without specific prior written permission.
15
 *   derived from this software without specific prior written permission.
16
 *
16
 *
17
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
 */
27
 */
28
 
28
 
29
/** @addtogroup genericmm
29
/** @addtogroup genericmm
30
 * @{
30
 * @{
31
 */
31
 */
32
 
32
 
33
/**
33
/**
34
 * @file
34
 * @file
35
 * @brief   Address space related functions.
35
 * @brief   Address space related functions.
36
 *
36
 *
37
 * This file contains address space manipulation functions.
37
 * This file contains address space manipulation functions.
38
 * Roughly speaking, this is a higher-level client of
38
 * Roughly speaking, this is a higher-level client of
39
 * Virtual Address Translation (VAT) subsystem.
39
 * Virtual Address Translation (VAT) subsystem.
40
 *
40
 *
41
 * Functionality provided by this file allows one to
41
 * Functionality provided by this file allows one to
42
 * create address spaces and create, resize and share
42
 * create address spaces and create, resize and share
43
 * address space areas.
43
 * address space areas.
44
 *
44
 *
45
 * @see page.c
45
 * @see page.c
46
 *
46
 *
47
 */
47
 */
48
 
48
 
49
#include <mm/as.h>
49
#include <mm/as.h>
50
#include <arch/mm/as.h>
50
#include <arch/mm/as.h>
51
#include <mm/page.h>
51
#include <mm/page.h>
52
#include <mm/frame.h>
52
#include <mm/frame.h>
53
#include <mm/slab.h>
53
#include <mm/slab.h>
54
#include <mm/tlb.h>
54
#include <mm/tlb.h>
55
#include <arch/mm/page.h>
55
#include <arch/mm/page.h>
56
#include <genarch/mm/page_pt.h>
56
#include <genarch/mm/page_pt.h>
57
#include <genarch/mm/page_ht.h>
57
#include <genarch/mm/page_ht.h>
58
#include <mm/asid.h>
58
#include <mm/asid.h>
59
#include <arch/mm/asid.h>
59
#include <arch/mm/asid.h>
-
 
60
#include <preemption.h>
60
#include <synch/spinlock.h>
61
#include <synch/spinlock.h>
61
#include <synch/mutex.h>
62
#include <synch/mutex.h>
62
#include <adt/list.h>
63
#include <adt/list.h>
63
#include <adt/btree.h>
64
#include <adt/btree.h>
64
#include <proc/task.h>
65
#include <proc/task.h>
65
#include <proc/thread.h>
66
#include <proc/thread.h>
66
#include <arch/asm.h>
67
#include <arch/asm.h>
67
#include <panic.h>
68
#include <panic.h>
68
#include <debug.h>
69
#include <debug.h>
69
#include <print.h>
70
#include <print.h>
70
#include <memstr.h>
71
#include <memstr.h>
71
#include <macros.h>
72
#include <macros.h>
72
#include <arch.h>
73
#include <arch.h>
73
#include <errno.h>
74
#include <errno.h>
74
#include <config.h>
75
#include <config.h>
75
#include <align.h>
76
#include <align.h>
76
#include <arch/types.h>
77
#include <arch/types.h>
77
#include <syscall/copy.h>
78
#include <syscall/copy.h>
78
#include <arch/interrupt.h>
79
#include <arch/interrupt.h>
79
 
80
 
80
#ifdef CONFIG_VIRT_IDX_DCACHE
81
#ifdef CONFIG_VIRT_IDX_DCACHE
81
#include <arch/mm/cache.h>
82
#include <arch/mm/cache.h>
82
#endif /* CONFIG_VIRT_IDX_DCACHE */
83
#endif /* CONFIG_VIRT_IDX_DCACHE */
83
 
84
 
84
#ifndef __OBJC__
85
#ifndef __OBJC__
85
/**
86
/**
86
 * Each architecture decides what functions will be used to carry out
87
 * Each architecture decides what functions will be used to carry out
87
 * address space operations such as creating or locking page tables.
88
 * address space operations such as creating or locking page tables.
88
 */
89
 */
89
as_operations_t *as_operations = NULL;
90
as_operations_t *as_operations = NULL;
90
 
91
 
91
/**
92
/**
92
 * Slab for as_t objects.
93
 * Slab for as_t objects.
93
 */
94
 */
94
static slab_cache_t *as_slab;
95
static slab_cache_t *as_slab;
95
#endif
96
#endif
96
 
97
 
97
/**
98
/**
-
 
99
 * This lock serializes access to the ASID subsystem.
-
 
100
 * It protects:
98
 * This lock protects inactive_as_with_asid_head list. It must be acquired
101
 * - inactive_as_with_asid_head list
-
 
102
 * - as->asid for each as of the as_t type
99
 * before as_t mutex.
103
 * - asids_allocated counter
100
 */
104
 */
101
SPINLOCK_INITIALIZE(inactive_as_with_asid_lock);
105
SPINLOCK_INITIALIZE(asidlock);
102
 
106
 
103
/**
107
/**
104
 * This list contains address spaces that are not active on any
108
 * This list contains address spaces that are not active on any
105
 * processor and that have valid ASID.
109
 * processor and that have valid ASID.
106
 */
110
 */
107
LIST_INITIALIZE(inactive_as_with_asid_head);
111
LIST_INITIALIZE(inactive_as_with_asid_head);
108
 
112
 
109
/** Kernel address space. */
113
/** Kernel address space. */
110
as_t *AS_KERNEL = NULL;
114
as_t *AS_KERNEL = NULL;
111
 
115
 
112
static int area_flags_to_page_flags(int aflags);
116
static int area_flags_to_page_flags(int aflags);
113
static as_area_t *find_area_and_lock(as_t *as, uintptr_t va);
117
static as_area_t *find_area_and_lock(as_t *as, uintptr_t va);
114
static bool check_area_conflicts(as_t *as, uintptr_t va, size_t size,
118
static bool check_area_conflicts(as_t *as, uintptr_t va, size_t size,
115
    as_area_t *avoid_area);
119
    as_area_t *avoid_area);
116
static void sh_info_remove_reference(share_info_t *sh_info);
120
static void sh_info_remove_reference(share_info_t *sh_info);
117
 
121
 
118
#ifndef __OBJC__
122
#ifndef __OBJC__
119
static int as_constructor(void *obj, int flags)
123
static int as_constructor(void *obj, int flags)
120
{
124
{
121
    as_t *as = (as_t *) obj;
125
    as_t *as = (as_t *) obj;
122
    int rc;
126
    int rc;
123
 
127
 
124
    link_initialize(&as->inactive_as_with_asid_link);
128
    link_initialize(&as->inactive_as_with_asid_link);
125
    mutex_initialize(&as->lock);   
129
    mutex_initialize(&as->lock);   
126
   
130
   
127
    rc = as_constructor_arch(as, flags);
131
    rc = as_constructor_arch(as, flags);
128
   
132
   
129
    return rc;
133
    return rc;
130
}
134
}
131
 
135
 
132
static int as_destructor(void *obj)
136
static int as_destructor(void *obj)
133
{
137
{
134
    as_t *as = (as_t *) obj;
138
    as_t *as = (as_t *) obj;
135
 
139
 
136
    return as_destructor_arch(as);
140
    return as_destructor_arch(as);
137
}
141
}
138
#endif
142
#endif
139
 
143
 
140
/** Initialize address space subsystem. */
144
/** Initialize address space subsystem. */
141
void as_init(void)
145
void as_init(void)
142
{
146
{
143
    as_arch_init();
147
    as_arch_init();
144
 
148
 
145
#ifndef __OBJC__
149
#ifndef __OBJC__
146
    as_slab = slab_cache_create("as_slab", sizeof(as_t), 0,
150
    as_slab = slab_cache_create("as_slab", sizeof(as_t), 0,
147
        as_constructor, as_destructor, SLAB_CACHE_MAGDEFERRED);
151
        as_constructor, as_destructor, SLAB_CACHE_MAGDEFERRED);
148
#endif
152
#endif
149
   
153
   
150
    AS_KERNEL = as_create(FLAG_AS_KERNEL);
154
    AS_KERNEL = as_create(FLAG_AS_KERNEL);
151
    if (!AS_KERNEL)
155
    if (!AS_KERNEL)
152
        panic("can't create kernel address space\n");
156
        panic("can't create kernel address space\n");
153
   
157
   
154
}
158
}
155
 
159
 
156
/** Create address space.
160
/** Create address space.
157
 *
161
 *
158
 * @param flags Flags that influence way in wich the address space is created.
162
 * @param flags Flags that influence way in wich the address space is created.
159
 */
163
 */
160
as_t *as_create(int flags)
164
as_t *as_create(int flags)
161
{
165
{
162
    as_t *as;
166
    as_t *as;
163
 
167
 
164
#ifdef __OBJC__
168
#ifdef __OBJC__
165
    as = [as_t new];
169
    as = [as_t new];
166
    link_initialize(&as->inactive_as_with_asid_link);
170
    link_initialize(&as->inactive_as_with_asid_link);
167
    mutex_initialize(&as->lock);   
171
    mutex_initialize(&as->lock);   
168
    (void) as_constructor_arch(as, flags);
172
    (void) as_constructor_arch(as, flags);
169
#else
173
#else
170
    as = (as_t *) slab_alloc(as_slab, 0);
174
    as = (as_t *) slab_alloc(as_slab, 0);
171
#endif
175
#endif
172
    (void) as_create_arch(as, 0);
176
    (void) as_create_arch(as, 0);
173
   
177
   
174
    btree_create(&as->as_area_btree);
178
    btree_create(&as->as_area_btree);
175
   
179
   
176
    if (flags & FLAG_AS_KERNEL)
180
    if (flags & FLAG_AS_KERNEL)
177
        as->asid = ASID_KERNEL;
181
        as->asid = ASID_KERNEL;
178
    else
182
    else
179
        as->asid = ASID_INVALID;
183
        as->asid = ASID_INVALID;
180
   
184
   
181
    as->refcount = 0;
185
    atomic_set(&as->refcount, 0);
182
    as->cpu_refcount = 0;
186
    as->cpu_refcount = 0;
183
#ifdef AS_PAGE_TABLE
187
#ifdef AS_PAGE_TABLE
184
    as->genarch.page_table = page_table_create(flags);
188
    as->genarch.page_table = page_table_create(flags);
185
#else
189
#else
186
    page_table_create(flags);
190
    page_table_create(flags);
187
#endif
191
#endif
188
 
192
 
189
    return as;
193
    return as;
190
}
194
}
191
 
195
 
192
/** Destroy adress space.
196
/** Destroy adress space.
193
 *
197
 *
194
 * When there are no tasks referencing this address space (i.e. its refcount is
198
 * When there are no tasks referencing this address space (i.e. its refcount is
195
 * zero), the address space can be destroyed.
199
 * zero), the address space can be destroyed.
-
 
200
 *
-
 
201
 * We know that we don't hold any spinlock.
196
 */
202
 */
197
void as_destroy(as_t *as)
203
void as_destroy(as_t *as)
198
{
204
{
199
    ipl_t ipl;
205
    ipl_t ipl;
200
    bool cond;
206
    bool cond;
-
 
207
    DEADLOCK_PROBE_INIT(p_asidlock);
201
 
208
 
202
    ASSERT(as->refcount == 0);
209
    ASSERT(atomic_get(&as->refcount) == 0);
203
   
210
   
204
    /*
211
    /*
205
     * Since there is no reference to this area,
212
     * Since there is no reference to this area,
206
     * it is safe not to lock its mutex.
213
     * it is safe not to lock its mutex.
207
     */
214
     */
-
 
215
 
-
 
216
    /*
-
 
217
     * We need to avoid deadlock between TLB shootdown and asidlock.
-
 
218
     * We therefore try to take asid conditionally and if we don't succeed,
-
 
219
     * we enable interrupts and try again. This is done while preemption is
-
 
220
     * disabled to prevent nested context switches. We also depend on the
-
 
221
     * fact that so far no spinlocks are held.
-
 
222
     */
-
 
223
    preemption_disable();
208
    ipl = interrupts_disable();
224
    ipl = interrupts_read();
-
 
225
retry:
-
 
226
    interrupts_disable();
209
    spinlock_lock(&inactive_as_with_asid_lock);
227
    if (!spinlock_trylock(&asidlock)) {
-
 
228
        interrupts_enable();
-
 
229
        DEADLOCK_PROBE(p_asidlock, DEADLOCK_THRESHOLD);
-
 
230
        goto retry;
-
 
231
    }
-
 
232
    preemption_enable();    /* Interrupts disabled, enable preemption */
210
    if (as->asid != ASID_INVALID && as != AS_KERNEL) {
233
    if (as->asid != ASID_INVALID && as != AS_KERNEL) {
211
        if (as != AS && as->cpu_refcount == 0)
234
        if (as != AS && as->cpu_refcount == 0)
212
            list_remove(&as->inactive_as_with_asid_link);
235
            list_remove(&as->inactive_as_with_asid_link);
213
        asid_put(as->asid);
236
        asid_put(as->asid);
214
    }
237
    }
215
    spinlock_unlock(&inactive_as_with_asid_lock);
238
    spinlock_unlock(&asidlock);
216
 
239
 
217
    /*
240
    /*
218
     * Destroy address space areas of the address space.
241
     * Destroy address space areas of the address space.
219
     * The B+tree must be walked carefully because it is
242
     * The B+tree must be walked carefully because it is
220
     * also being destroyed.
243
     * also being destroyed.
221
     */
244
     */
222
    for (cond = true; cond; ) {
245
    for (cond = true; cond; ) {
223
        btree_node_t *node;
246
        btree_node_t *node;
224
 
247
 
225
        ASSERT(!list_empty(&as->as_area_btree.leaf_head));
248
        ASSERT(!list_empty(&as->as_area_btree.leaf_head));
226
        node = list_get_instance(as->as_area_btree.leaf_head.next,
249
        node = list_get_instance(as->as_area_btree.leaf_head.next,
227
            btree_node_t, leaf_link);
250
            btree_node_t, leaf_link);
228
 
251
 
229
        if ((cond = node->keys)) {
252
        if ((cond = node->keys)) {
230
            as_area_destroy(as, node->key[0]);
253
            as_area_destroy(as, node->key[0]);
231
        }
254
        }
232
    }
255
    }
233
 
256
 
234
    btree_destroy(&as->as_area_btree);
257
    btree_destroy(&as->as_area_btree);
235
#ifdef AS_PAGE_TABLE
258
#ifdef AS_PAGE_TABLE
236
    page_table_destroy(as->genarch.page_table);
259
    page_table_destroy(as->genarch.page_table);
237
#else
260
#else
238
    page_table_destroy(NULL);
261
    page_table_destroy(NULL);
239
#endif
262
#endif
240
 
263
 
241
    interrupts_restore(ipl);
264
    interrupts_restore(ipl);
242
 
265
 
243
#ifdef __OBJC__
266
#ifdef __OBJC__
244
    [as free];
267
    [as free];
245
#else
268
#else
246
    slab_free(as_slab, as);
269
    slab_free(as_slab, as);
247
#endif
270
#endif
248
}
271
}
249
 
272
 
250
/** Create address space area of common attributes.
273
/** Create address space area of common attributes.
251
 *
274
 *
252
 * The created address space area is added to the target address space.
275
 * The created address space area is added to the target address space.
253
 *
276
 *
254
 * @param as Target address space.
277
 * @param as Target address space.
255
 * @param flags Flags of the area memory.
278
 * @param flags Flags of the area memory.
256
 * @param size Size of area.
279
 * @param size Size of area.
257
 * @param base Base address of area.
280
 * @param base Base address of area.
258
 * @param attrs Attributes of the area.
281
 * @param attrs Attributes of the area.
259
 * @param backend Address space area backend. NULL if no backend is used.
282
 * @param backend Address space area backend. NULL if no backend is used.
260
 * @param backend_data NULL or a pointer to an array holding two void *.
283
 * @param backend_data NULL or a pointer to an array holding two void *.
261
 *
284
 *
262
 * @return Address space area on success or NULL on failure.
285
 * @return Address space area on success or NULL on failure.
263
 */
286
 */
264
as_area_t *
287
as_area_t *
265
as_area_create(as_t *as, int flags, size_t size, uintptr_t base, int attrs,
288
as_area_create(as_t *as, int flags, size_t size, uintptr_t base, int attrs,
266
           mem_backend_t *backend, mem_backend_data_t *backend_data)
289
           mem_backend_t *backend, mem_backend_data_t *backend_data)
267
{
290
{
268
    ipl_t ipl;
291
    ipl_t ipl;
269
    as_area_t *a;
292
    as_area_t *a;
270
   
293
   
271
    if (base % PAGE_SIZE)
294
    if (base % PAGE_SIZE)
272
        return NULL;
295
        return NULL;
273
 
296
 
274
    if (!size)
297
    if (!size)
275
        return NULL;
298
        return NULL;
276
 
299
 
277
    /* Writeable executable areas are not supported. */
300
    /* Writeable executable areas are not supported. */
278
    if ((flags & AS_AREA_EXEC) && (flags & AS_AREA_WRITE))
301
    if ((flags & AS_AREA_EXEC) && (flags & AS_AREA_WRITE))
279
        return NULL;
302
        return NULL;
280
   
303
   
281
    ipl = interrupts_disable();
304
    ipl = interrupts_disable();
282
    mutex_lock(&as->lock);
305
    mutex_lock(&as->lock);
283
   
306
   
284
    if (!check_area_conflicts(as, base, size, NULL)) {
307
    if (!check_area_conflicts(as, base, size, NULL)) {
285
        mutex_unlock(&as->lock);
308
        mutex_unlock(&as->lock);
286
        interrupts_restore(ipl);
309
        interrupts_restore(ipl);
287
        return NULL;
310
        return NULL;
288
    }
311
    }
289
   
312
   
290
    a = (as_area_t *) malloc(sizeof(as_area_t), 0);
313
    a = (as_area_t *) malloc(sizeof(as_area_t), 0);
291
 
314
 
292
    mutex_initialize(&a->lock);
315
    mutex_initialize(&a->lock);
293
   
316
   
294
    a->as = as;
317
    a->as = as;
295
    a->flags = flags;
318
    a->flags = flags;
296
    a->attributes = attrs;
319
    a->attributes = attrs;
297
    a->pages = SIZE2FRAMES(size);
320
    a->pages = SIZE2FRAMES(size);
298
    a->base = base;
321
    a->base = base;
299
    a->sh_info = NULL;
322
    a->sh_info = NULL;
300
    a->backend = backend;
323
    a->backend = backend;
301
    if (backend_data)
324
    if (backend_data)
302
        a->backend_data = *backend_data;
325
        a->backend_data = *backend_data;
303
    else
326
    else
304
        memsetb((uintptr_t) &a->backend_data, sizeof(a->backend_data),
327
        memsetb((uintptr_t) &a->backend_data, sizeof(a->backend_data),
305
            0);
328
            0);
306
 
329
 
307
    btree_create(&a->used_space);
330
    btree_create(&a->used_space);
308
   
331
   
309
    btree_insert(&as->as_area_btree, base, (void *) a, NULL);
332
    btree_insert(&as->as_area_btree, base, (void *) a, NULL);
310
 
333
 
311
    mutex_unlock(&as->lock);
334
    mutex_unlock(&as->lock);
312
    interrupts_restore(ipl);
335
    interrupts_restore(ipl);
313
 
336
 
314
    return a;
337
    return a;
315
}
338
}
316
 
339
 
317
/** Find address space area and change it.
340
/** Find address space area and change it.
318
 *
341
 *
319
 * @param as Address space.
342
 * @param as Address space.
320
 * @param address Virtual address belonging to the area to be changed. Must be
343
 * @param address Virtual address belonging to the area to be changed. Must be
321
 *     page-aligned.
344
 *     page-aligned.
322
 * @param size New size of the virtual memory block starting at address.
345
 * @param size New size of the virtual memory block starting at address.
323
 * @param flags Flags influencing the remap operation. Currently unused.
346
 * @param flags Flags influencing the remap operation. Currently unused.
324
 *
347
 *
325
 * @return Zero on success or a value from @ref errno.h otherwise.
348
 * @return Zero on success or a value from @ref errno.h otherwise.
326
 */
349
 */
327
int as_area_resize(as_t *as, uintptr_t address, size_t size, int flags)
350
int as_area_resize(as_t *as, uintptr_t address, size_t size, int flags)
328
{
351
{
329
    as_area_t *area;
352
    as_area_t *area;
330
    ipl_t ipl;
353
    ipl_t ipl;
331
    size_t pages;
354
    size_t pages;
332
   
355
   
333
    ipl = interrupts_disable();
356
    ipl = interrupts_disable();
334
    mutex_lock(&as->lock);
357
    mutex_lock(&as->lock);
335
   
358
   
336
    /*
359
    /*
337
     * Locate the area.
360
     * Locate the area.
338
     */
361
     */
339
    area = find_area_and_lock(as, address);
362
    area = find_area_and_lock(as, address);
340
    if (!area) {
363
    if (!area) {
341
        mutex_unlock(&as->lock);
364
        mutex_unlock(&as->lock);
342
        interrupts_restore(ipl);
365
        interrupts_restore(ipl);
343
        return ENOENT;
366
        return ENOENT;
344
    }
367
    }
345
 
368
 
346
    if (area->backend == &phys_backend) {
369
    if (area->backend == &phys_backend) {
347
        /*
370
        /*
348
         * Remapping of address space areas associated
371
         * Remapping of address space areas associated
349
         * with memory mapped devices is not supported.
372
         * with memory mapped devices is not supported.
350
         */
373
         */
351
        mutex_unlock(&area->lock);
374
        mutex_unlock(&area->lock);
352
        mutex_unlock(&as->lock);
375
        mutex_unlock(&as->lock);
353
        interrupts_restore(ipl);
376
        interrupts_restore(ipl);
354
        return ENOTSUP;
377
        return ENOTSUP;
355
    }
378
    }
356
    if (area->sh_info) {
379
    if (area->sh_info) {
357
        /*
380
        /*
358
         * Remapping of shared address space areas
381
         * Remapping of shared address space areas
359
         * is not supported.
382
         * is not supported.
360
         */
383
         */
361
        mutex_unlock(&area->lock);
384
        mutex_unlock(&area->lock);
362
        mutex_unlock(&as->lock);
385
        mutex_unlock(&as->lock);
363
        interrupts_restore(ipl);
386
        interrupts_restore(ipl);
364
        return ENOTSUP;
387
        return ENOTSUP;
365
    }
388
    }
366
 
389
 
367
    pages = SIZE2FRAMES((address - area->base) + size);
390
    pages = SIZE2FRAMES((address - area->base) + size);
368
    if (!pages) {
391
    if (!pages) {
369
        /*
392
        /*
370
         * Zero size address space areas are not allowed.
393
         * Zero size address space areas are not allowed.
371
         */
394
         */
372
        mutex_unlock(&area->lock);
395
        mutex_unlock(&area->lock);
373
        mutex_unlock(&as->lock);
396
        mutex_unlock(&as->lock);
374
        interrupts_restore(ipl);
397
        interrupts_restore(ipl);
375
        return EPERM;
398
        return EPERM;
376
    }
399
    }
377
   
400
   
378
    if (pages < area->pages) {
401
    if (pages < area->pages) {
379
        bool cond;
402
        bool cond;
380
        uintptr_t start_free = area->base + pages*PAGE_SIZE;
403
        uintptr_t start_free = area->base + pages*PAGE_SIZE;
381
 
404
 
382
        /*
405
        /*
383
         * Shrinking the area.
406
         * Shrinking the area.
384
         * No need to check for overlaps.
407
         * No need to check for overlaps.
385
         */
408
         */
386
 
409
 
387
        /*
410
        /*
388
         * Start TLB shootdown sequence.
411
         * Start TLB shootdown sequence.
389
         */
412
         */
390
        tlb_shootdown_start(TLB_INVL_PAGES, AS->asid, area->base +
413
        tlb_shootdown_start(TLB_INVL_PAGES, AS->asid, area->base +
391
            pages * PAGE_SIZE, area->pages - pages);
414
            pages * PAGE_SIZE, area->pages - pages);
392
 
415
 
393
        /*
416
        /*
394
         * Remove frames belonging to used space starting from
417
         * Remove frames belonging to used space starting from
395
         * the highest addresses downwards until an overlap with
418
         * the highest addresses downwards until an overlap with
396
         * the resized address space area is found. Note that this
419
         * the resized address space area is found. Note that this
397
         * is also the right way to remove part of the used_space
420
         * is also the right way to remove part of the used_space
398
         * B+tree leaf list.
421
         * B+tree leaf list.
399
         */    
422
         */    
400
        for (cond = true; cond;) {
423
        for (cond = true; cond;) {
401
            btree_node_t *node;
424
            btree_node_t *node;
402
       
425
       
403
            ASSERT(!list_empty(&area->used_space.leaf_head));
426
            ASSERT(!list_empty(&area->used_space.leaf_head));
404
            node =
427
            node =
405
                list_get_instance(area->used_space.leaf_head.prev,
428
                list_get_instance(area->used_space.leaf_head.prev,
406
                btree_node_t, leaf_link);
429
                btree_node_t, leaf_link);
407
            if ((cond = (bool) node->keys)) {
430
            if ((cond = (bool) node->keys)) {
408
                uintptr_t b = node->key[node->keys - 1];
431
                uintptr_t b = node->key[node->keys - 1];
409
                count_t c =
432
                count_t c =
410
                    (count_t) node->value[node->keys - 1];
433
                    (count_t) node->value[node->keys - 1];
411
                int i = 0;
434
                int i = 0;
412
           
435
           
413
                if (overlaps(b, c * PAGE_SIZE, area->base,
436
                if (overlaps(b, c * PAGE_SIZE, area->base,
414
                    pages*PAGE_SIZE)) {
437
                    pages * PAGE_SIZE)) {
415
                   
438
                   
416
                    if (b + c * PAGE_SIZE <= start_free) {
439
                    if (b + c * PAGE_SIZE <= start_free) {
417
                        /*
440
                        /*
418
                         * The whole interval fits
441
                         * The whole interval fits
419
                         * completely in the resized
442
                         * completely in the resized
420
                         * address space area.
443
                         * address space area.
421
                         */
444
                         */
422
                        break;
445
                        break;
423
                    }
446
                    }
424
       
447
       
425
                    /*
448
                    /*
426
                     * Part of the interval corresponding
449
                     * Part of the interval corresponding
427
                     * to b and c overlaps with the resized
450
                     * to b and c overlaps with the resized
428
                     * address space area.
451
                     * address space area.
429
                     */
452
                     */
430
       
453
       
431
                    cond = false;   /* we are almost done */
454
                    cond = false;   /* we are almost done */
432
                    i = (start_free - b) >> PAGE_WIDTH;
455
                    i = (start_free - b) >> PAGE_WIDTH;
433
                    if (!used_space_remove(area, start_free,
456
                    if (!used_space_remove(area, start_free,
434
                        c - i))
457
                        c - i))
435
                        panic("Could not remove used "
458
                        panic("Could not remove used "
436
                            "space.\n");
459
                            "space.\n");
437
                } else {
460
                } else {
438
                    /*
461
                    /*
439
                     * The interval of used space can be
462
                     * The interval of used space can be
440
                     * completely removed.
463
                     * completely removed.
441
                     */
464
                     */
442
                    if (!used_space_remove(area, b, c))
465
                    if (!used_space_remove(area, b, c))
443
                        panic("Could not remove used "
466
                        panic("Could not remove used "
444
                            "space.\n");
467
                            "space.\n");
445
                }
468
                }
446
           
469
           
447
                for (; i < c; i++) {
470
                for (; i < c; i++) {
448
                    pte_t *pte;
471
                    pte_t *pte;
449
           
472
           
450
                    page_table_lock(as, false);
473
                    page_table_lock(as, false);
451
                    pte = page_mapping_find(as, b +
474
                    pte = page_mapping_find(as, b +
452
                        i * PAGE_SIZE);
475
                        i * PAGE_SIZE);
453
                    ASSERT(pte && PTE_VALID(pte) &&
476
                    ASSERT(pte && PTE_VALID(pte) &&
454
                        PTE_PRESENT(pte));
477
                        PTE_PRESENT(pte));
455
                    if (area->backend &&
478
                    if (area->backend &&
456
                        area->backend->frame_free) {
479
                        area->backend->frame_free) {
457
                        area->backend->frame_free(area,
480
                        area->backend->frame_free(area,
458
                            b + i * PAGE_SIZE,
481
                            b + i * PAGE_SIZE,
459
                            PTE_GET_FRAME(pte));
482
                            PTE_GET_FRAME(pte));
460
                    }
483
                    }
461
                    page_mapping_remove(as, b +
484
                    page_mapping_remove(as, b +
462
                        i * PAGE_SIZE);
485
                        i * PAGE_SIZE);
463
                    page_table_unlock(as, false);
486
                    page_table_unlock(as, false);
464
                }
487
                }
465
            }
488
            }
466
        }
489
        }
467
 
490
 
468
        /*
491
        /*
469
         * Finish TLB shootdown sequence.
492
         * Finish TLB shootdown sequence.
470
         */
493
         */
-
 
494
 
471
        tlb_invalidate_pages(as->asid, area->base + pages * PAGE_SIZE,
495
        tlb_invalidate_pages(as->asid, area->base + pages * PAGE_SIZE,
472
            area->pages - pages);
496
            area->pages - pages);
473
        tlb_shootdown_finalize();
-
 
474
       
-
 
475
        /*
497
        /*
476
         * Invalidate software translation caches (e.g. TSB on sparc64).
498
         * Invalidate software translation caches (e.g. TSB on sparc64).
477
         */
499
         */
478
        as_invalidate_translation_cache(as, area->base +
500
        as_invalidate_translation_cache(as, area->base +
479
            pages * PAGE_SIZE, area->pages - pages);
501
            pages * PAGE_SIZE, area->pages - pages);
-
 
502
        tlb_shootdown_finalize();
-
 
503
       
480
    } else {
504
    } else {
481
        /*
505
        /*
482
         * Growing the area.
506
         * Growing the area.
483
         * Check for overlaps with other address space areas.
507
         * Check for overlaps with other address space areas.
484
         */
508
         */
485
        if (!check_area_conflicts(as, address, pages * PAGE_SIZE,
509
        if (!check_area_conflicts(as, address, pages * PAGE_SIZE,
486
            area)) {
510
            area)) {
487
            mutex_unlock(&area->lock);
511
            mutex_unlock(&area->lock);
488
            mutex_unlock(&as->lock);       
512
            mutex_unlock(&as->lock);       
489
            interrupts_restore(ipl);
513
            interrupts_restore(ipl);
490
            return EADDRNOTAVAIL;
514
            return EADDRNOTAVAIL;
491
        }
515
        }
492
    }
516
    }
493
 
517
 
494
    area->pages = pages;
518
    area->pages = pages;
495
   
519
   
496
    mutex_unlock(&area->lock);
520
    mutex_unlock(&area->lock);
497
    mutex_unlock(&as->lock);
521
    mutex_unlock(&as->lock);
498
    interrupts_restore(ipl);
522
    interrupts_restore(ipl);
499
 
523
 
500
    return 0;
524
    return 0;
501
}
525
}
502
 
526
 
503
/** Destroy address space area.
527
/** Destroy address space area.
504
 *
528
 *
505
 * @param as Address space.
529
 * @param as Address space.
506
 * @param address Address withing the area to be deleted.
530
 * @param address Address withing the area to be deleted.
507
 *
531
 *
508
 * @return Zero on success or a value from @ref errno.h on failure.
532
 * @return Zero on success or a value from @ref errno.h on failure.
509
 */
533
 */
510
int as_area_destroy(as_t *as, uintptr_t address)
534
int as_area_destroy(as_t *as, uintptr_t address)
511
{
535
{
512
    as_area_t *area;
536
    as_area_t *area;
513
    uintptr_t base;
537
    uintptr_t base;
514
    link_t *cur;
538
    link_t *cur;
515
    ipl_t ipl;
539
    ipl_t ipl;
516
 
540
 
517
    ipl = interrupts_disable();
541
    ipl = interrupts_disable();
518
    mutex_lock(&as->lock);
542
    mutex_lock(&as->lock);
519
 
543
 
520
    area = find_area_and_lock(as, address);
544
    area = find_area_and_lock(as, address);
521
    if (!area) {
545
    if (!area) {
522
        mutex_unlock(&as->lock);
546
        mutex_unlock(&as->lock);
523
        interrupts_restore(ipl);
547
        interrupts_restore(ipl);
524
        return ENOENT;
548
        return ENOENT;
525
    }
549
    }
526
 
550
 
527
    base = area->base;
551
    base = area->base;
528
 
552
 
529
    /*
553
    /*
530
     * Start TLB shootdown sequence.
554
     * Start TLB shootdown sequence.
531
     */
555
     */
532
    tlb_shootdown_start(TLB_INVL_PAGES, as->asid, area->base, area->pages);
556
    tlb_shootdown_start(TLB_INVL_PAGES, as->asid, area->base, area->pages);
533
 
557
 
534
    /*
558
    /*
535
     * Visit only the pages mapped by used_space B+tree.
559
     * Visit only the pages mapped by used_space B+tree.
536
     */
560
     */
537
    for (cur = area->used_space.leaf_head.next;
561
    for (cur = area->used_space.leaf_head.next;
538
        cur != &area->used_space.leaf_head; cur = cur->next) {
562
        cur != &area->used_space.leaf_head; cur = cur->next) {
539
        btree_node_t *node;
563
        btree_node_t *node;
540
        int i;
564
        int i;
541
       
565
       
542
        node = list_get_instance(cur, btree_node_t, leaf_link);
566
        node = list_get_instance(cur, btree_node_t, leaf_link);
543
        for (i = 0; i < node->keys; i++) {
567
        for (i = 0; i < node->keys; i++) {
544
            uintptr_t b = node->key[i];
568
            uintptr_t b = node->key[i];
545
            count_t j;
569
            count_t j;
546
            pte_t *pte;
570
            pte_t *pte;
547
           
571
           
548
            for (j = 0; j < (count_t) node->value[i]; j++) {
572
            for (j = 0; j < (count_t) node->value[i]; j++) {
549
                page_table_lock(as, false);
573
                page_table_lock(as, false);
550
                pte = page_mapping_find(as, b + j * PAGE_SIZE);
574
                pte = page_mapping_find(as, b + j * PAGE_SIZE);
551
                ASSERT(pte && PTE_VALID(pte) &&
575
                ASSERT(pte && PTE_VALID(pte) &&
552
                    PTE_PRESENT(pte));
576
                    PTE_PRESENT(pte));
553
                if (area->backend &&
577
                if (area->backend &&
554
                    area->backend->frame_free) {
578
                    area->backend->frame_free) {
555
                    area->backend->frame_free(area, b +
579
                    area->backend->frame_free(area, b +
556
                    j * PAGE_SIZE, PTE_GET_FRAME(pte));
580
                        j * PAGE_SIZE, PTE_GET_FRAME(pte));
557
                }
581
                }
558
                page_mapping_remove(as, b + j * PAGE_SIZE);            
582
                page_mapping_remove(as, b + j * PAGE_SIZE);            
559
                page_table_unlock(as, false);
583
                page_table_unlock(as, false);
560
            }
584
            }
561
        }
585
        }
562
    }
586
    }
563
 
587
 
564
    /*
588
    /*
565
     * Finish TLB shootdown sequence.
589
     * Finish TLB shootdown sequence.
566
     */
590
     */
-
 
591
 
567
    tlb_invalidate_pages(as->asid, area->base, area->pages);
592
    tlb_invalidate_pages(as->asid, area->base, area->pages);
568
    tlb_shootdown_finalize();
-
 
569
   
-
 
570
    /*
593
    /*
571
     * Invalidate potential software translation caches (e.g. TSB on
594
     * Invalidate potential software translation caches (e.g. TSB on
572
     * sparc64).
595
     * sparc64).
573
     */
596
     */
574
    as_invalidate_translation_cache(as, area->base, area->pages);
597
    as_invalidate_translation_cache(as, area->base, area->pages);
-
 
598
    tlb_shootdown_finalize();
575
   
599
   
576
    btree_destroy(&area->used_space);
600
    btree_destroy(&area->used_space);
577
 
601
 
578
    area->attributes |= AS_AREA_ATTR_PARTIAL;
602
    area->attributes |= AS_AREA_ATTR_PARTIAL;
579
   
603
   
580
    if (area->sh_info)
604
    if (area->sh_info)
581
        sh_info_remove_reference(area->sh_info);
605
        sh_info_remove_reference(area->sh_info);
582
       
606
       
583
    mutex_unlock(&area->lock);
607
    mutex_unlock(&area->lock);
584
 
608
 
585
    /*
609
    /*
586
     * Remove the empty area from address space.
610
     * Remove the empty area from address space.
587
     */
611
     */
588
    btree_remove(&as->as_area_btree, base, NULL);
612
    btree_remove(&as->as_area_btree, base, NULL);
589
   
613
   
590
    free(area);
614
    free(area);
591
   
615
   
592
    mutex_unlock(&as->lock);
616
    mutex_unlock(&as->lock);
593
    interrupts_restore(ipl);
617
    interrupts_restore(ipl);
594
    return 0;
618
    return 0;
595
}
619
}
596
 
620
 
597
/** Share address space area with another or the same address space.
621
/** Share address space area with another or the same address space.
598
 *
622
 *
599
 * Address space area mapping is shared with a new address space area.
623
 * Address space area mapping is shared with a new address space area.
600
 * If the source address space area has not been shared so far,
624
 * If the source address space area has not been shared so far,
601
 * a new sh_info is created. The new address space area simply gets the
625
 * a new sh_info is created. The new address space area simply gets the
602
 * sh_info of the source area. The process of duplicating the
626
 * sh_info of the source area. The process of duplicating the
603
 * mapping is done through the backend share function.
627
 * mapping is done through the backend share function.
604
 *
628
 *
605
 * @param src_as Pointer to source address space.
629
 * @param src_as Pointer to source address space.
606
 * @param src_base Base address of the source address space area.
630
 * @param src_base Base address of the source address space area.
607
 * @param acc_size Expected size of the source area.
631
 * @param acc_size Expected size of the source area.
608
 * @param dst_as Pointer to destination address space.
632
 * @param dst_as Pointer to destination address space.
609
 * @param dst_base Target base address.
633
 * @param dst_base Target base address.
610
 * @param dst_flags_mask Destination address space area flags mask.
634
 * @param dst_flags_mask Destination address space area flags mask.
611
 *
635
 *
612
 * @return Zero on success or ENOENT if there is no such task or if there is no
636
 * @return Zero on success or ENOENT if there is no such task or if there is no
613
 * such address space area, EPERM if there was a problem in accepting the area
637
 * such address space area, EPERM if there was a problem in accepting the area
614
 * or ENOMEM if there was a problem in allocating destination address space
638
 * or ENOMEM if there was a problem in allocating destination address space
615
 * area. ENOTSUP is returned if the address space area backend does not support
639
 * area. ENOTSUP is returned if the address space area backend does not support
616
 * sharing or if the kernel detects an attempt to create an illegal address
-
 
617
 * alias.
640
 * sharing.
618
 */
641
 */
619
int as_area_share(as_t *src_as, uintptr_t src_base, size_t acc_size,
642
int as_area_share(as_t *src_as, uintptr_t src_base, size_t acc_size,
620
          as_t *dst_as, uintptr_t dst_base, int dst_flags_mask)
643
          as_t *dst_as, uintptr_t dst_base, int dst_flags_mask)
621
{
644
{
622
    ipl_t ipl;
645
    ipl_t ipl;
623
    int src_flags;
646
    int src_flags;
624
    size_t src_size;
647
    size_t src_size;
625
    as_area_t *src_area, *dst_area;
648
    as_area_t *src_area, *dst_area;
626
    share_info_t *sh_info;
649
    share_info_t *sh_info;
627
    mem_backend_t *src_backend;
650
    mem_backend_t *src_backend;
628
    mem_backend_data_t src_backend_data;
651
    mem_backend_data_t src_backend_data;
629
   
652
   
630
    ipl = interrupts_disable();
653
    ipl = interrupts_disable();
631
    mutex_lock(&src_as->lock);
654
    mutex_lock(&src_as->lock);
632
    src_area = find_area_and_lock(src_as, src_base);
655
    src_area = find_area_and_lock(src_as, src_base);
633
    if (!src_area) {
656
    if (!src_area) {
634
        /*
657
        /*
635
         * Could not find the source address space area.
658
         * Could not find the source address space area.
636
         */
659
         */
637
        mutex_unlock(&src_as->lock);
660
        mutex_unlock(&src_as->lock);
638
        interrupts_restore(ipl);
661
        interrupts_restore(ipl);
639
        return ENOENT;
662
        return ENOENT;
640
    }
663
    }
641
 
664
 
642
    if (!src_area->backend || !src_area->backend->share) {
665
    if (!src_area->backend || !src_area->backend->share) {
643
        /*
666
        /*
644
         * There is no backend or the backend does not
667
         * There is no backend or the backend does not
645
         * know how to share the area.
668
         * know how to share the area.
646
         */
669
         */
647
        mutex_unlock(&src_area->lock);
670
        mutex_unlock(&src_area->lock);
648
        mutex_unlock(&src_as->lock);
671
        mutex_unlock(&src_as->lock);
649
        interrupts_restore(ipl);
672
        interrupts_restore(ipl);
650
        return ENOTSUP;
673
        return ENOTSUP;
651
    }
674
    }
652
   
675
   
653
    src_size = src_area->pages * PAGE_SIZE;
676
    src_size = src_area->pages * PAGE_SIZE;
654
    src_flags = src_area->flags;
677
    src_flags = src_area->flags;
655
    src_backend = src_area->backend;
678
    src_backend = src_area->backend;
656
    src_backend_data = src_area->backend_data;
679
    src_backend_data = src_area->backend_data;
657
 
680
 
658
    /* Share the cacheable flag from the original mapping */
681
    /* Share the cacheable flag from the original mapping */
659
    if (src_flags & AS_AREA_CACHEABLE)
682
    if (src_flags & AS_AREA_CACHEABLE)
660
        dst_flags_mask |= AS_AREA_CACHEABLE;
683
        dst_flags_mask |= AS_AREA_CACHEABLE;
661
 
684
 
662
    if (src_size != acc_size ||
685
    if (src_size != acc_size ||
663
        (src_flags & dst_flags_mask) != dst_flags_mask) {
686
        (src_flags & dst_flags_mask) != dst_flags_mask) {
664
        mutex_unlock(&src_area->lock);
687
        mutex_unlock(&src_area->lock);
665
        mutex_unlock(&src_as->lock);
688
        mutex_unlock(&src_as->lock);
666
        interrupts_restore(ipl);
689
        interrupts_restore(ipl);
667
        return EPERM;
690
        return EPERM;
668
    }
691
    }
669
 
692
 
670
#ifdef CONFIG_VIRT_IDX_DCACHE
-
 
671
    if (!(dst_flags_mask & AS_AREA_EXEC)) {
-
 
672
        if (PAGE_COLOR(src_area->base) != PAGE_COLOR(dst_base)) {
-
 
673
            /*
-
 
674
             * Refuse to create an illegal address alias.
-
 
675
             */
-
 
676
            mutex_unlock(&src_area->lock);
-
 
677
            mutex_unlock(&src_as->lock);
-
 
678
            interrupts_restore(ipl);
-
 
679
            return ENOTSUP;
-
 
680
        }
-
 
681
    }
-
 
682
#endif /* CONFIG_VIRT_IDX_DCACHE */
-
 
683
 
-
 
684
    /*
693
    /*
685
     * Now we are committed to sharing the area.
694
     * Now we are committed to sharing the area.
686
     * First, prepare the area for sharing.
695
     * First, prepare the area for sharing.
687
     * Then it will be safe to unlock it.
696
     * Then it will be safe to unlock it.
688
     */
697
     */
689
    sh_info = src_area->sh_info;
698
    sh_info = src_area->sh_info;
690
    if (!sh_info) {
699
    if (!sh_info) {
691
        sh_info = (share_info_t *) malloc(sizeof(share_info_t), 0);
700
        sh_info = (share_info_t *) malloc(sizeof(share_info_t), 0);
692
        mutex_initialize(&sh_info->lock);
701
        mutex_initialize(&sh_info->lock);
693
        sh_info->refcount = 2;
702
        sh_info->refcount = 2;
694
        btree_create(&sh_info->pagemap);
703
        btree_create(&sh_info->pagemap);
695
        src_area->sh_info = sh_info;
704
        src_area->sh_info = sh_info;
696
    } else {
705
    } else {
697
        mutex_lock(&sh_info->lock);
706
        mutex_lock(&sh_info->lock);
698
        sh_info->refcount++;
707
        sh_info->refcount++;
699
        mutex_unlock(&sh_info->lock);
708
        mutex_unlock(&sh_info->lock);
700
    }
709
    }
701
 
710
 
702
    src_area->backend->share(src_area);
711
    src_area->backend->share(src_area);
703
 
712
 
704
    mutex_unlock(&src_area->lock);
713
    mutex_unlock(&src_area->lock);
705
    mutex_unlock(&src_as->lock);
714
    mutex_unlock(&src_as->lock);
706
 
715
 
707
    /*
716
    /*
708
     * Create copy of the source address space area.
717
     * Create copy of the source address space area.
709
     * The destination area is created with AS_AREA_ATTR_PARTIAL
718
     * The destination area is created with AS_AREA_ATTR_PARTIAL
710
     * attribute set which prevents race condition with
719
     * attribute set which prevents race condition with
711
     * preliminary as_page_fault() calls.
720
     * preliminary as_page_fault() calls.
712
     * The flags of the source area are masked against dst_flags_mask
721
     * The flags of the source area are masked against dst_flags_mask
713
     * to support sharing in less privileged mode.
722
     * to support sharing in less privileged mode.
714
     */
723
     */
715
    dst_area = as_area_create(dst_as, dst_flags_mask, src_size, dst_base,
724
    dst_area = as_area_create(dst_as, dst_flags_mask, src_size, dst_base,
716
        AS_AREA_ATTR_PARTIAL, src_backend, &src_backend_data);
725
        AS_AREA_ATTR_PARTIAL, src_backend, &src_backend_data);
717
    if (!dst_area) {
726
    if (!dst_area) {
718
        /*
727
        /*
719
         * Destination address space area could not be created.
728
         * Destination address space area could not be created.
720
         */
729
         */
721
        sh_info_remove_reference(sh_info);
730
        sh_info_remove_reference(sh_info);
722
       
731
       
723
        interrupts_restore(ipl);
732
        interrupts_restore(ipl);
724
        return ENOMEM;
733
        return ENOMEM;
725
    }
734
    }
726
 
735
 
727
    /*
736
    /*
728
     * Now the destination address space area has been
737
     * Now the destination address space area has been
729
     * fully initialized. Clear the AS_AREA_ATTR_PARTIAL
738
     * fully initialized. Clear the AS_AREA_ATTR_PARTIAL
730
     * attribute and set the sh_info.
739
     * attribute and set the sh_info.
731
     */
740
     */
732
    mutex_lock(&dst_as->lock); 
741
    mutex_lock(&dst_as->lock); 
733
    mutex_lock(&dst_area->lock);
742
    mutex_lock(&dst_area->lock);
734
    dst_area->attributes &= ~AS_AREA_ATTR_PARTIAL;
743
    dst_area->attributes &= ~AS_AREA_ATTR_PARTIAL;
735
    dst_area->sh_info = sh_info;
744
    dst_area->sh_info = sh_info;
736
    mutex_unlock(&dst_area->lock);
745
    mutex_unlock(&dst_area->lock);
737
    mutex_unlock(&dst_as->lock);   
746
    mutex_unlock(&dst_as->lock);   
738
 
747
 
739
    interrupts_restore(ipl);
748
    interrupts_restore(ipl);
740
   
749
   
741
    return 0;
750
    return 0;
742
}
751
}
743
 
752
 
744
/** Check access mode for address space area.
753
/** Check access mode for address space area.
745
 *
754
 *
746
 * The address space area must be locked prior to this call.
755
 * The address space area must be locked prior to this call.
747
 *
756
 *
748
 * @param area Address space area.
757
 * @param area Address space area.
749
 * @param access Access mode.
758
 * @param access Access mode.
750
 *
759
 *
751
 * @return False if access violates area's permissions, true otherwise.
760
 * @return False if access violates area's permissions, true otherwise.
752
 */
761
 */
753
bool as_area_check_access(as_area_t *area, pf_access_t access)
762
bool as_area_check_access(as_area_t *area, pf_access_t access)
754
{
763
{
755
    int flagmap[] = {
764
    int flagmap[] = {
756
        [PF_ACCESS_READ] = AS_AREA_READ,
765
        [PF_ACCESS_READ] = AS_AREA_READ,
757
        [PF_ACCESS_WRITE] = AS_AREA_WRITE,
766
        [PF_ACCESS_WRITE] = AS_AREA_WRITE,
758
        [PF_ACCESS_EXEC] = AS_AREA_EXEC
767
        [PF_ACCESS_EXEC] = AS_AREA_EXEC
759
    };
768
    };
760
 
769
 
761
    if (!(area->flags & flagmap[access]))
770
    if (!(area->flags & flagmap[access]))
762
        return false;
771
        return false;
763
   
772
   
764
    return true;
773
    return true;
765
}
774
}
766
 
775
 
767
/** Handle page fault within the current address space.
776
/** Handle page fault within the current address space.
768
 *
777
 *
769
 * This is the high-level page fault handler. It decides
778
 * This is the high-level page fault handler. It decides
770
 * whether the page fault can be resolved by any backend
779
 * whether the page fault can be resolved by any backend
771
 * and if so, it invokes the backend to resolve the page
780
 * and if so, it invokes the backend to resolve the page
772
 * fault.
781
 * fault.
773
 *
782
 *
774
 * Interrupts are assumed disabled.
783
 * Interrupts are assumed disabled.
775
 *
784
 *
776
 * @param page Faulting page.
785
 * @param page Faulting page.
777
 * @param access Access mode that caused the fault (i.e. read/write/exec).
786
 * @param access Access mode that caused the fault (i.e. read/write/exec).
778
 * @param istate Pointer to interrupted state.
787
 * @param istate Pointer to interrupted state.
779
 *
788
 *
780
 * @return AS_PF_FAULT on page fault, AS_PF_OK on success or AS_PF_DEFER if the
789
 * @return AS_PF_FAULT on page fault, AS_PF_OK on success or AS_PF_DEFER if the
781
 *     fault was caused by copy_to_uspace() or copy_from_uspace().
790
 *     fault was caused by copy_to_uspace() or copy_from_uspace().
782
 */
791
 */
783
int as_page_fault(uintptr_t page, pf_access_t access, istate_t *istate)
792
int as_page_fault(uintptr_t page, pf_access_t access, istate_t *istate)
784
{
793
{
785
    pte_t *pte;
794
    pte_t *pte;
786
    as_area_t *area;
795
    as_area_t *area;
787
   
796
   
788
    if (!THREAD)
797
    if (!THREAD)
789
        return AS_PF_FAULT;
798
        return AS_PF_FAULT;
790
       
799
       
791
    ASSERT(AS);
800
    ASSERT(AS);
792
 
801
 
793
    mutex_lock(&AS->lock);
802
    mutex_lock(&AS->lock);
794
    area = find_area_and_lock(AS, page);   
803
    area = find_area_and_lock(AS, page);   
795
    if (!area) {
804
    if (!area) {
796
        /*
805
        /*
797
         * No area contained mapping for 'page'.
806
         * No area contained mapping for 'page'.
798
         * Signal page fault to low-level handler.
807
         * Signal page fault to low-level handler.
799
         */
808
         */
800
        mutex_unlock(&AS->lock);
809
        mutex_unlock(&AS->lock);
801
        goto page_fault;
810
        goto page_fault;
802
    }
811
    }
803
 
812
 
804
    if (area->attributes & AS_AREA_ATTR_PARTIAL) {
813
    if (area->attributes & AS_AREA_ATTR_PARTIAL) {
805
        /*
814
        /*
806
         * The address space area is not fully initialized.
815
         * The address space area is not fully initialized.
807
         * Avoid possible race by returning error.
816
         * Avoid possible race by returning error.
808
         */
817
         */
809
        mutex_unlock(&area->lock);
818
        mutex_unlock(&area->lock);
810
        mutex_unlock(&AS->lock);
819
        mutex_unlock(&AS->lock);
811
        goto page_fault;       
820
        goto page_fault;       
812
    }
821
    }
813
 
822
 
814
    if (!area->backend || !area->backend->page_fault) {
823
    if (!area->backend || !area->backend->page_fault) {
815
        /*
824
        /*
816
         * The address space area is not backed by any backend
825
         * The address space area is not backed by any backend
817
         * or the backend cannot handle page faults.
826
         * or the backend cannot handle page faults.
818
         */
827
         */
819
        mutex_unlock(&area->lock);
828
        mutex_unlock(&area->lock);
820
        mutex_unlock(&AS->lock);
829
        mutex_unlock(&AS->lock);
821
        goto page_fault;       
830
        goto page_fault;       
822
    }
831
    }
823
 
832
 
824
    page_table_lock(AS, false);
833
    page_table_lock(AS, false);
825
   
834
   
826
    /*
835
    /*
827
     * To avoid race condition between two page faults
836
     * To avoid race condition between two page faults
828
     * on the same address, we need to make sure
837
     * on the same address, we need to make sure
829
     * the mapping has not been already inserted.
838
     * the mapping has not been already inserted.
830
     */
839
     */
831
    if ((pte = page_mapping_find(AS, page))) {
840
    if ((pte = page_mapping_find(AS, page))) {
832
        if (PTE_PRESENT(pte)) {
841
        if (PTE_PRESENT(pte)) {
833
            if (((access == PF_ACCESS_READ) && PTE_READABLE(pte)) ||
842
            if (((access == PF_ACCESS_READ) && PTE_READABLE(pte)) ||
834
                (access == PF_ACCESS_WRITE && PTE_WRITABLE(pte)) ||
843
                (access == PF_ACCESS_WRITE && PTE_WRITABLE(pte)) ||
835
                (access == PF_ACCESS_EXEC && PTE_EXECUTABLE(pte))) {
844
                (access == PF_ACCESS_EXEC && PTE_EXECUTABLE(pte))) {
836
                page_table_unlock(AS, false);
845
                page_table_unlock(AS, false);
837
                mutex_unlock(&area->lock);
846
                mutex_unlock(&area->lock);
838
                mutex_unlock(&AS->lock);
847
                mutex_unlock(&AS->lock);
839
                return AS_PF_OK;
848
                return AS_PF_OK;
840
            }
849
            }
841
        }
850
        }
842
    }
851
    }
843
   
852
   
844
    /*
853
    /*
845
     * Resort to the backend page fault handler.
854
     * Resort to the backend page fault handler.
846
     */
855
     */
847
    if (area->backend->page_fault(area, page, access) != AS_PF_OK) {
856
    if (area->backend->page_fault(area, page, access) != AS_PF_OK) {
848
        page_table_unlock(AS, false);
857
        page_table_unlock(AS, false);
849
        mutex_unlock(&area->lock);
858
        mutex_unlock(&area->lock);
850
        mutex_unlock(&AS->lock);
859
        mutex_unlock(&AS->lock);
851
        goto page_fault;
860
        goto page_fault;
852
    }
861
    }
853
   
862
   
854
    page_table_unlock(AS, false);
863
    page_table_unlock(AS, false);
855
    mutex_unlock(&area->lock);
864
    mutex_unlock(&area->lock);
856
    mutex_unlock(&AS->lock);
865
    mutex_unlock(&AS->lock);
857
    return AS_PF_OK;
866
    return AS_PF_OK;
858
 
867
 
859
page_fault:
868
page_fault:
860
    if (THREAD->in_copy_from_uspace) {
869
    if (THREAD->in_copy_from_uspace) {
861
        THREAD->in_copy_from_uspace = false;
870
        THREAD->in_copy_from_uspace = false;
862
        istate_set_retaddr(istate,
871
        istate_set_retaddr(istate,
863
            (uintptr_t) &memcpy_from_uspace_failover_address);
872
            (uintptr_t) &memcpy_from_uspace_failover_address);
864
    } else if (THREAD->in_copy_to_uspace) {
873
    } else if (THREAD->in_copy_to_uspace) {
865
        THREAD->in_copy_to_uspace = false;
874
        THREAD->in_copy_to_uspace = false;
866
        istate_set_retaddr(istate,
875
        istate_set_retaddr(istate,
867
            (uintptr_t) &memcpy_to_uspace_failover_address);
876
            (uintptr_t) &memcpy_to_uspace_failover_address);
868
    } else {
877
    } else {
869
        return AS_PF_FAULT;
878
        return AS_PF_FAULT;
870
    }
879
    }
871
 
880
 
872
    return AS_PF_DEFER;
881
    return AS_PF_DEFER;
873
}
882
}
874
 
883
 
875
/** Switch address spaces.
884
/** Switch address spaces.
876
 *
885
 *
877
 * Note that this function cannot sleep as it is essentially a part of
886
 * Note that this function cannot sleep as it is essentially a part of
878
 * scheduling. Sleeping here would lead to deadlock on wakeup.
887
 * scheduling. Sleeping here would lead to deadlock on wakeup. Another
-
 
888
 * thing which is forbidden in this context is locking the address space.
-
 
889
 *
-
 
890
 * When this function is enetered, no spinlocks may be held.
879
 *
891
 *
880
 * @param old Old address space or NULL.
892
 * @param old Old address space or NULL.
881
 * @param new New address space.
893
 * @param new New address space.
882
 */
894
 */
883
void as_switch(as_t *old_as, as_t *new_as)
895
void as_switch(as_t *old_as, as_t *new_as)
884
{
896
{
-
 
897
    DEADLOCK_PROBE_INIT(p_asidlock);
885
    ipl_t ipl;
898
    preemption_disable();
-
 
899
retry:
886
    bool needs_asid = false;
900
    (void) interrupts_disable();
-
 
901
    if (!spinlock_trylock(&asidlock)) {
-
 
902
        /*
-
 
903
         * Avoid deadlock with TLB shootdown.
-
 
904
         * We can enable interrupts here because
-
 
905
         * preemption is disabled. We should not be
-
 
906
         * holding any other lock.
887
   
907
         */
888
    ipl = interrupts_disable();
908
        (void) interrupts_enable();
889
    spinlock_lock(&inactive_as_with_asid_lock);
909
        DEADLOCK_PROBE(p_asidlock, DEADLOCK_THRESHOLD);
-
 
910
        goto retry;
-
 
911
    }
-
 
912
    preemption_enable();
890
 
913
 
891
    /*
914
    /*
892
     * First, take care of the old address space.
915
     * First, take care of the old address space.
893
     */
916
     */
894
    if (old_as) {
917
    if (old_as) {
895
        mutex_lock_active(&old_as->lock);
-
 
896
        ASSERT(old_as->cpu_refcount);
918
        ASSERT(old_as->cpu_refcount);
897
        if((--old_as->cpu_refcount == 0) && (old_as != AS_KERNEL)) {
919
        if((--old_as->cpu_refcount == 0) && (old_as != AS_KERNEL)) {
898
            /*
920
            /*
899
             * The old address space is no longer active on
921
             * The old address space is no longer active on
900
             * any processor. It can be appended to the
922
             * any processor. It can be appended to the
901
             * list of inactive address spaces with assigned
923
             * list of inactive address spaces with assigned
902
             * ASID.
924
             * ASID.
903
             */
925
             */
904
             ASSERT(old_as->asid != ASID_INVALID);
926
            ASSERT(old_as->asid != ASID_INVALID);
905
             list_append(&old_as->inactive_as_with_asid_link,
927
            list_append(&old_as->inactive_as_with_asid_link,
906
                 &inactive_as_with_asid_head);
928
                &inactive_as_with_asid_head);
907
        }
929
        }
908
        mutex_unlock(&old_as->lock);
-
 
909
 
930
 
910
        /*
931
        /*
911
         * Perform architecture-specific tasks when the address space
932
         * Perform architecture-specific tasks when the address space
912
         * is being removed from the CPU.
933
         * is being removed from the CPU.
913
         */
934
         */
914
        as_deinstall_arch(old_as);
935
        as_deinstall_arch(old_as);
915
    }
936
    }
916
 
937
 
917
    /*
938
    /*
918
     * Second, prepare the new address space.
939
     * Second, prepare the new address space.
919
     */
940
     */
920
    mutex_lock_active(&new_as->lock);
-
 
921
    if ((new_as->cpu_refcount++ == 0) && (new_as != AS_KERNEL)) {
941
    if ((new_as->cpu_refcount++ == 0) && (new_as != AS_KERNEL)) {
922
        if (new_as->asid != ASID_INVALID) {
942
        if (new_as->asid != ASID_INVALID)
923
            list_remove(&new_as->inactive_as_with_asid_link);
943
            list_remove(&new_as->inactive_as_with_asid_link);
924
        } else {
944
        else
925
            /*
-
 
926
             * Defer call to asid_get() until new_as->lock is released.
-
 
927
             */
-
 
928
            needs_asid = true;
945
            new_as->asid = asid_get();
929
        }
-
 
930
    }
946
    }
931
#ifdef AS_PAGE_TABLE
947
#ifdef AS_PAGE_TABLE
932
    SET_PTL0_ADDRESS(new_as->genarch.page_table);
948
    SET_PTL0_ADDRESS(new_as->genarch.page_table);
933
#endif
949
#endif
934
    mutex_unlock(&new_as->lock);
-
 
935
 
-
 
936
    if (needs_asid) {
-
 
937
        /*
-
 
938
         * Allocation of new ASID was deferred
-
 
939
         * until now in order to avoid deadlock.
-
 
940
         */
-
 
941
        asid_t asid;
-
 
942
       
-
 
943
        asid = asid_get();
-
 
944
        mutex_lock_active(&new_as->lock);
-
 
945
        new_as->asid = asid;
-
 
946
        mutex_unlock(&new_as->lock);
-
 
947
    }
-
 
948
    spinlock_unlock(&inactive_as_with_asid_lock);
-
 
949
    interrupts_restore(ipl);
-
 
950
   
950
   
951
    /*
951
    /*
952
     * Perform architecture-specific steps.
952
     * Perform architecture-specific steps.
953
     * (e.g. write ASID to hardware register etc.)
953
     * (e.g. write ASID to hardware register etc.)
954
     */
954
     */
955
    as_install_arch(new_as);
955
    as_install_arch(new_as);
-
 
956
 
-
 
957
    spinlock_unlock(&asidlock);
956
   
958
   
957
    AS = new_as;
959
    AS = new_as;
958
}
960
}
959
 
961
 
960
/** Convert address space area flags to page flags.
962
/** Convert address space area flags to page flags.
961
 *
963
 *
962
 * @param aflags Flags of some address space area.
964
 * @param aflags Flags of some address space area.
963
 *
965
 *
964
 * @return Flags to be passed to page_mapping_insert().
966
 * @return Flags to be passed to page_mapping_insert().
965
 */
967
 */
966
int area_flags_to_page_flags(int aflags)
968
int area_flags_to_page_flags(int aflags)
967
{
969
{
968
    int flags;
970
    int flags;
969
 
971
 
970
    flags = PAGE_USER | PAGE_PRESENT;
972
    flags = PAGE_USER | PAGE_PRESENT;
971
   
973
   
972
    if (aflags & AS_AREA_READ)
974
    if (aflags & AS_AREA_READ)
973
        flags |= PAGE_READ;
975
        flags |= PAGE_READ;
974
       
976
       
975
    if (aflags & AS_AREA_WRITE)
977
    if (aflags & AS_AREA_WRITE)
976
        flags |= PAGE_WRITE;
978
        flags |= PAGE_WRITE;
977
   
979
   
978
    if (aflags & AS_AREA_EXEC)
980
    if (aflags & AS_AREA_EXEC)
979
        flags |= PAGE_EXEC;
981
        flags |= PAGE_EXEC;
980
   
982
   
981
    if (aflags & AS_AREA_CACHEABLE)
983
    if (aflags & AS_AREA_CACHEABLE)
982
        flags |= PAGE_CACHEABLE;
984
        flags |= PAGE_CACHEABLE;
983
       
985
       
984
    return flags;
986
    return flags;
985
}
987
}
986
 
988
 
987
/** Compute flags for virtual address translation subsytem.
989
/** Compute flags for virtual address translation subsytem.
988
 *
990
 *
989
 * The address space area must be locked.
991
 * The address space area must be locked.
990
 * Interrupts must be disabled.
992
 * Interrupts must be disabled.
991
 *
993
 *
992
 * @param a Address space area.
994
 * @param a Address space area.
993
 *
995
 *
994
 * @return Flags to be used in page_mapping_insert().
996
 * @return Flags to be used in page_mapping_insert().
995
 */
997
 */
996
int as_area_get_flags(as_area_t *a)
998
int as_area_get_flags(as_area_t *a)
997
{
999
{
998
    return area_flags_to_page_flags(a->flags);
1000
    return area_flags_to_page_flags(a->flags);
999
}
1001
}
1000
 
1002
 
1001
/** Create page table.
1003
/** Create page table.
1002
 *
1004
 *
1003
 * Depending on architecture, create either address space
1005
 * Depending on architecture, create either address space
1004
 * private or global page table.
1006
 * private or global page table.
1005
 *
1007
 *
1006
 * @param flags Flags saying whether the page table is for kernel address space.
1008
 * @param flags Flags saying whether the page table is for kernel address space.
1007
 *
1009
 *
1008
 * @return First entry of the page table.
1010
 * @return First entry of the page table.
1009
 */
1011
 */
1010
pte_t *page_table_create(int flags)
1012
pte_t *page_table_create(int flags)
1011
{
1013
{
1012
#ifdef __OBJC__
1014
#ifdef __OBJC__
1013
    return [as_t page_table_create: flags];
1015
    return [as_t page_table_create: flags];
1014
#else
1016
#else
1015
    ASSERT(as_operations);
1017
    ASSERT(as_operations);
1016
    ASSERT(as_operations->page_table_create);
1018
    ASSERT(as_operations->page_table_create);
1017
   
1019
   
1018
    return as_operations->page_table_create(flags);
1020
    return as_operations->page_table_create(flags);
1019
#endif
1021
#endif
1020
}
1022
}
1021
 
1023
 
1022
/** Destroy page table.
1024
/** Destroy page table.
1023
 *
1025
 *
1024
 * Destroy page table in architecture specific way.
1026
 * Destroy page table in architecture specific way.
1025
 *
1027
 *
1026
 * @param page_table Physical address of PTL0.
1028
 * @param page_table Physical address of PTL0.
1027
 */
1029
 */
1028
void page_table_destroy(pte_t *page_table)
1030
void page_table_destroy(pte_t *page_table)
1029
{
1031
{
1030
#ifdef __OBJC__
1032
#ifdef __OBJC__
1031
    return [as_t page_table_destroy: page_table];
1033
    return [as_t page_table_destroy: page_table];
1032
#else
1034
#else
1033
    ASSERT(as_operations);
1035
    ASSERT(as_operations);
1034
    ASSERT(as_operations->page_table_destroy);
1036
    ASSERT(as_operations->page_table_destroy);
1035
   
1037
   
1036
    as_operations->page_table_destroy(page_table);
1038
    as_operations->page_table_destroy(page_table);
1037
#endif
1039
#endif
1038
}
1040
}
1039
 
1041
 
1040
/** Lock page table.
1042
/** Lock page table.
1041
 *
1043
 *
1042
 * This function should be called before any page_mapping_insert(),
1044
 * This function should be called before any page_mapping_insert(),
1043
 * page_mapping_remove() and page_mapping_find().
1045
 * page_mapping_remove() and page_mapping_find().
1044
 *
1046
 *
1045
 * Locking order is such that address space areas must be locked
1047
 * Locking order is such that address space areas must be locked
1046
 * prior to this call. Address space can be locked prior to this
1048
 * prior to this call. Address space can be locked prior to this
1047
 * call in which case the lock argument is false.
1049
 * call in which case the lock argument is false.
1048
 *
1050
 *
1049
 * @param as Address space.
1051
 * @param as Address space.
1050
 * @param lock If false, do not attempt to lock as->lock.
1052
 * @param lock If false, do not attempt to lock as->lock.
1051
 */
1053
 */
1052
void page_table_lock(as_t *as, bool lock)
1054
void page_table_lock(as_t *as, bool lock)
1053
{
1055
{
1054
#ifdef __OBJC__
1056
#ifdef __OBJC__
1055
    [as page_table_lock: lock];
1057
    [as page_table_lock: lock];
1056
#else
1058
#else
1057
    ASSERT(as_operations);
1059
    ASSERT(as_operations);
1058
    ASSERT(as_operations->page_table_lock);
1060
    ASSERT(as_operations->page_table_lock);
1059
   
1061
   
1060
    as_operations->page_table_lock(as, lock);
1062
    as_operations->page_table_lock(as, lock);
1061
#endif
1063
#endif
1062
}
1064
}
1063
 
1065
 
1064
/** Unlock page table.
1066
/** Unlock page table.
1065
 *
1067
 *
1066
 * @param as Address space.
1068
 * @param as Address space.
1067
 * @param unlock If false, do not attempt to unlock as->lock.
1069
 * @param unlock If false, do not attempt to unlock as->lock.
1068
 */
1070
 */
1069
void page_table_unlock(as_t *as, bool unlock)
1071
void page_table_unlock(as_t *as, bool unlock)
1070
{
1072
{
1071
#ifdef __OBJC__
1073
#ifdef __OBJC__
1072
    [as page_table_unlock: unlock];
1074
    [as page_table_unlock: unlock];
1073
#else
1075
#else
1074
    ASSERT(as_operations);
1076
    ASSERT(as_operations);
1075
    ASSERT(as_operations->page_table_unlock);
1077
    ASSERT(as_operations->page_table_unlock);
1076
   
1078
   
1077
    as_operations->page_table_unlock(as, unlock);
1079
    as_operations->page_table_unlock(as, unlock);
1078
#endif
1080
#endif
1079
}
1081
}
1080
 
1082
 
1081
 
1083
 
1082
/** Find address space area and lock it.
1084
/** Find address space area and lock it.
1083
 *
1085
 *
1084
 * The address space must be locked and interrupts must be disabled.
1086
 * The address space must be locked and interrupts must be disabled.
1085
 *
1087
 *
1086
 * @param as Address space.
1088
 * @param as Address space.
1087
 * @param va Virtual address.
1089
 * @param va Virtual address.
1088
 *
1090
 *
1089
 * @return Locked address space area containing va on success or NULL on
1091
 * @return Locked address space area containing va on success or NULL on
1090
 *     failure.
1092
 *     failure.
1091
 */
1093
 */
1092
as_area_t *find_area_and_lock(as_t *as, uintptr_t va)
1094
as_area_t *find_area_and_lock(as_t *as, uintptr_t va)
1093
{
1095
{
1094
    as_area_t *a;
1096
    as_area_t *a;
1095
    btree_node_t *leaf, *lnode;
1097
    btree_node_t *leaf, *lnode;
1096
    int i;
1098
    int i;
1097
   
1099
   
1098
    a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf);
1100
    a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf);
1099
    if (a) {
1101
    if (a) {
1100
        /* va is the base address of an address space area */
1102
        /* va is the base address of an address space area */
1101
        mutex_lock(&a->lock);
1103
        mutex_lock(&a->lock);
1102
        return a;
1104
        return a;
1103
    }
1105
    }
1104
   
1106
   
1105
    /*
1107
    /*
1106
     * Search the leaf node and the righmost record of its left neighbour
1108
     * Search the leaf node and the righmost record of its left neighbour
1107
     * to find out whether this is a miss or va belongs to an address
1109
     * to find out whether this is a miss or va belongs to an address
1108
     * space area found there.
1110
     * space area found there.
1109
     */
1111
     */
1110
   
1112
   
1111
    /* First, search the leaf node itself. */
1113
    /* First, search the leaf node itself. */
1112
    for (i = 0; i < leaf->keys; i++) {
1114
    for (i = 0; i < leaf->keys; i++) {
1113
        a = (as_area_t *) leaf->value[i];
1115
        a = (as_area_t *) leaf->value[i];
1114
        mutex_lock(&a->lock);
1116
        mutex_lock(&a->lock);
1115
        if ((a->base <= va) && (va < a->base + a->pages * PAGE_SIZE)) {
1117
        if ((a->base <= va) && (va < a->base + a->pages * PAGE_SIZE)) {
1116
            return a;
1118
            return a;
1117
        }
1119
        }
1118
        mutex_unlock(&a->lock);
1120
        mutex_unlock(&a->lock);
1119
    }
1121
    }
1120
 
1122
 
1121
    /*
1123
    /*
1122
     * Second, locate the left neighbour and test its last record.
1124
     * Second, locate the left neighbour and test its last record.
1123
     * Because of its position in the B+tree, it must have base < va.
1125
     * Because of its position in the B+tree, it must have base < va.
1124
     */
1126
     */
1125
    lnode = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf);
1127
    lnode = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf);
1126
    if (lnode) {
1128
    if (lnode) {
1127
        a = (as_area_t *) lnode->value[lnode->keys - 1];
1129
        a = (as_area_t *) lnode->value[lnode->keys - 1];
1128
        mutex_lock(&a->lock);
1130
        mutex_lock(&a->lock);
1129
        if (va < a->base + a->pages * PAGE_SIZE) {
1131
        if (va < a->base + a->pages * PAGE_SIZE) {
1130
            return a;
1132
            return a;
1131
        }
1133
        }
1132
        mutex_unlock(&a->lock);
1134
        mutex_unlock(&a->lock);
1133
    }
1135
    }
1134
 
1136
 
1135
    return NULL;
1137
    return NULL;
1136
}
1138
}
1137
 
1139
 
1138
/** Check area conflicts with other areas.
1140
/** Check area conflicts with other areas.
1139
 *
1141
 *
1140
 * The address space must be locked and interrupts must be disabled.
1142
 * The address space must be locked and interrupts must be disabled.
1141
 *
1143
 *
1142
 * @param as Address space.
1144
 * @param as Address space.
1143
 * @param va Starting virtual address of the area being tested.
1145
 * @param va Starting virtual address of the area being tested.
1144
 * @param size Size of the area being tested.
1146
 * @param size Size of the area being tested.
1145
 * @param avoid_area Do not touch this area.
1147
 * @param avoid_area Do not touch this area.
1146
 *
1148
 *
1147
 * @return True if there is no conflict, false otherwise.
1149
 * @return True if there is no conflict, false otherwise.
1148
 */
1150
 */
1149
bool check_area_conflicts(as_t *as, uintptr_t va, size_t size,
1151
bool check_area_conflicts(as_t *as, uintptr_t va, size_t size,
1150
              as_area_t *avoid_area)
1152
              as_area_t *avoid_area)
1151
{
1153
{
1152
    as_area_t *a;
1154
    as_area_t *a;
1153
    btree_node_t *leaf, *node;
1155
    btree_node_t *leaf, *node;
1154
    int i;
1156
    int i;
1155
   
1157
   
1156
    /*
1158
    /*
1157
     * We don't want any area to have conflicts with NULL page.
1159
     * We don't want any area to have conflicts with NULL page.
1158
     */
1160
     */
1159
    if (overlaps(va, size, NULL, PAGE_SIZE))
1161
    if (overlaps(va, size, NULL, PAGE_SIZE))
1160
        return false;
1162
        return false;
1161
   
1163
   
1162
    /*
1164
    /*
1163
     * The leaf node is found in O(log n), where n is proportional to
1165
     * The leaf node is found in O(log n), where n is proportional to
1164
     * the number of address space areas belonging to as.
1166
     * the number of address space areas belonging to as.
1165
     * The check for conflicts is then attempted on the rightmost
1167
     * The check for conflicts is then attempted on the rightmost
1166
     * record in the left neighbour, the leftmost record in the right
1168
     * record in the left neighbour, the leftmost record in the right
1167
     * neighbour and all records in the leaf node itself.
1169
     * neighbour and all records in the leaf node itself.
1168
     */
1170
     */
1169
   
1171
   
1170
    if ((a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf))) {
1172
    if ((a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf))) {
1171
        if (a != avoid_area)
1173
        if (a != avoid_area)
1172
            return false;
1174
            return false;
1173
    }
1175
    }
1174
   
1176
   
1175
    /* First, check the two border cases. */
1177
    /* First, check the two border cases. */
1176
    if ((node = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf))) {
1178
    if ((node = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf))) {
1177
        a = (as_area_t *) node->value[node->keys - 1];
1179
        a = (as_area_t *) node->value[node->keys - 1];
1178
        mutex_lock(&a->lock);
1180
        mutex_lock(&a->lock);
1179
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1181
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1180
            mutex_unlock(&a->lock);
1182
            mutex_unlock(&a->lock);
1181
            return false;
1183
            return false;
1182
        }
1184
        }
1183
        mutex_unlock(&a->lock);
1185
        mutex_unlock(&a->lock);
1184
    }
1186
    }
1185
    node = btree_leaf_node_right_neighbour(&as->as_area_btree, leaf);
1187
    node = btree_leaf_node_right_neighbour(&as->as_area_btree, leaf);
1186
    if (node) {
1188
    if (node) {
1187
        a = (as_area_t *) node->value[0];
1189
        a = (as_area_t *) node->value[0];
1188
        mutex_lock(&a->lock);
1190
        mutex_lock(&a->lock);
1189
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1191
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1190
            mutex_unlock(&a->lock);
1192
            mutex_unlock(&a->lock);
1191
            return false;
1193
            return false;
1192
        }
1194
        }
1193
        mutex_unlock(&a->lock);
1195
        mutex_unlock(&a->lock);
1194
    }
1196
    }
1195
   
1197
   
1196
    /* Second, check the leaf node. */
1198
    /* Second, check the leaf node. */
1197
    for (i = 0; i < leaf->keys; i++) {
1199
    for (i = 0; i < leaf->keys; i++) {
1198
        a = (as_area_t *) leaf->value[i];
1200
        a = (as_area_t *) leaf->value[i];
1199
   
1201
   
1200
        if (a == avoid_area)
1202
        if (a == avoid_area)
1201
            continue;
1203
            continue;
1202
   
1204
   
1203
        mutex_lock(&a->lock);
1205
        mutex_lock(&a->lock);
1204
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1206
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1205
            mutex_unlock(&a->lock);
1207
            mutex_unlock(&a->lock);
1206
            return false;
1208
            return false;
1207
        }
1209
        }
1208
        mutex_unlock(&a->lock);
1210
        mutex_unlock(&a->lock);
1209
    }
1211
    }
1210
 
1212
 
1211
    /*
1213
    /*
1212
     * So far, the area does not conflict with other areas.
1214
     * So far, the area does not conflict with other areas.
1213
     * Check if it doesn't conflict with kernel address space.
1215
     * Check if it doesn't conflict with kernel address space.
1214
     */  
1216
     */  
1215
    if (!KERNEL_ADDRESS_SPACE_SHADOWED) {
1217
    if (!KERNEL_ADDRESS_SPACE_SHADOWED) {
1216
        return !overlaps(va, size,
1218
        return !overlaps(va, size,
1217
            KERNEL_ADDRESS_SPACE_START,
1219
            KERNEL_ADDRESS_SPACE_START,
1218
            KERNEL_ADDRESS_SPACE_END - KERNEL_ADDRESS_SPACE_START);
1220
            KERNEL_ADDRESS_SPACE_END - KERNEL_ADDRESS_SPACE_START);
1219
    }
1221
    }
1220
 
1222
 
1221
    return true;
1223
    return true;
1222
}
1224
}
1223
 
1225
 
1224
/** Return size of the address space area with given base.  */
1226
/** Return size of the address space area with given base.  */
1225
size_t as_get_size(uintptr_t base)
1227
size_t as_get_size(uintptr_t base)
1226
{
1228
{
1227
    ipl_t ipl;
1229
    ipl_t ipl;
1228
    as_area_t *src_area;
1230
    as_area_t *src_area;
1229
    size_t size;
1231
    size_t size;
1230
 
1232
 
1231
    ipl = interrupts_disable();
1233
    ipl = interrupts_disable();
1232
    src_area = find_area_and_lock(AS, base);
1234
    src_area = find_area_and_lock(AS, base);
1233
    if (src_area){
1235
    if (src_area){
1234
        size = src_area->pages * PAGE_SIZE;
1236
        size = src_area->pages * PAGE_SIZE;
1235
        mutex_unlock(&src_area->lock);
1237
        mutex_unlock(&src_area->lock);
1236
    } else {
1238
    } else {
1237
        size = 0;
1239
        size = 0;
1238
    }
1240
    }
1239
    interrupts_restore(ipl);
1241
    interrupts_restore(ipl);
1240
    return size;
1242
    return size;
1241
}
1243
}
1242
 
1244
 
1243
/** Mark portion of address space area as used.
1245
/** Mark portion of address space area as used.
1244
 *
1246
 *
1245
 * The address space area must be already locked.
1247
 * The address space area must be already locked.
1246
 *
1248
 *
1247
 * @param a Address space area.
1249
 * @param a Address space area.
1248
 * @param page First page to be marked.
1250
 * @param page First page to be marked.
1249
 * @param count Number of page to be marked.
1251
 * @param count Number of page to be marked.
1250
 *
1252
 *
1251
 * @return 0 on failure and 1 on success.
1253
 * @return 0 on failure and 1 on success.
1252
 */
1254
 */
1253
int used_space_insert(as_area_t *a, uintptr_t page, count_t count)
1255
int used_space_insert(as_area_t *a, uintptr_t page, count_t count)
1254
{
1256
{
1255
    btree_node_t *leaf, *node;
1257
    btree_node_t *leaf, *node;
1256
    count_t pages;
1258
    count_t pages;
1257
    int i;
1259
    int i;
1258
 
1260
 
1259
    ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1261
    ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1260
    ASSERT(count);
1262
    ASSERT(count);
1261
 
1263
 
1262
    pages = (count_t) btree_search(&a->used_space, page, &leaf);
1264
    pages = (count_t) btree_search(&a->used_space, page, &leaf);
1263
    if (pages) {
1265
    if (pages) {
1264
        /*
1266
        /*
1265
         * We hit the beginning of some used space.
1267
         * We hit the beginning of some used space.
1266
         */
1268
         */
1267
        return 0;
1269
        return 0;
1268
    }
1270
    }
1269
 
1271
 
1270
    if (!leaf->keys) {
1272
    if (!leaf->keys) {
1271
        btree_insert(&a->used_space, page, (void *) count, leaf);
1273
        btree_insert(&a->used_space, page, (void *) count, leaf);
1272
        return 1;
1274
        return 1;
1273
    }
1275
    }
1274
 
1276
 
1275
    node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1277
    node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1276
    if (node) {
1278
    if (node) {
1277
        uintptr_t left_pg = node->key[node->keys - 1];
1279
        uintptr_t left_pg = node->key[node->keys - 1];
1278
        uintptr_t right_pg = leaf->key[0];
1280
        uintptr_t right_pg = leaf->key[0];
1279
        count_t left_cnt = (count_t) node->value[node->keys - 1];
1281
        count_t left_cnt = (count_t) node->value[node->keys - 1];
1280
        count_t right_cnt = (count_t) leaf->value[0];
1282
        count_t right_cnt = (count_t) leaf->value[0];
1281
       
1283
       
1282
        /*
1284
        /*
1283
         * Examine the possibility that the interval fits
1285
         * Examine the possibility that the interval fits
1284
         * somewhere between the rightmost interval of
1286
         * somewhere between the rightmost interval of
1285
         * the left neigbour and the first interval of the leaf.
1287
         * the left neigbour and the first interval of the leaf.
1286
         */
1288
         */
1287
         
1289
         
1288
        if (page >= right_pg) {
1290
        if (page >= right_pg) {
1289
            /* Do nothing. */
1291
            /* Do nothing. */
1290
        } else if (overlaps(page, count * PAGE_SIZE, left_pg,
1292
        } else if (overlaps(page, count * PAGE_SIZE, left_pg,
1291
            left_cnt * PAGE_SIZE)) {
1293
            left_cnt * PAGE_SIZE)) {
1292
            /* The interval intersects with the left interval. */
1294
            /* The interval intersects with the left interval. */
1293
            return 0;
1295
            return 0;
1294
        } else if (overlaps(page, count * PAGE_SIZE, right_pg,
1296
        } else if (overlaps(page, count * PAGE_SIZE, right_pg,
1295
            right_cnt * PAGE_SIZE)) {
1297
            right_cnt * PAGE_SIZE)) {
1296
            /* The interval intersects with the right interval. */
1298
            /* The interval intersects with the right interval. */
1297
            return 0;          
1299
            return 0;          
1298
        } else if ((page == left_pg + left_cnt * PAGE_SIZE) &&
1300
        } else if ((page == left_pg + left_cnt * PAGE_SIZE) &&
1299
            (page + count * PAGE_SIZE == right_pg)) {
1301
            (page + count * PAGE_SIZE == right_pg)) {
1300
            /*
1302
            /*
1301
             * The interval can be added by merging the two already
1303
             * The interval can be added by merging the two already
1302
             * present intervals.
1304
             * present intervals.
1303
             */
1305
             */
1304
            node->value[node->keys - 1] += count + right_cnt;
1306
            node->value[node->keys - 1] += count + right_cnt;
1305
            btree_remove(&a->used_space, right_pg, leaf);
1307
            btree_remove(&a->used_space, right_pg, leaf);
1306
            return 1;
1308
            return 1;
1307
        } else if (page == left_pg + left_cnt * PAGE_SIZE) {
1309
        } else if (page == left_pg + left_cnt * PAGE_SIZE) {
1308
            /*
1310
            /*
1309
             * The interval can be added by simply growing the left
1311
             * The interval can be added by simply growing the left
1310
             * interval.
1312
             * interval.
1311
             */
1313
             */
1312
            node->value[node->keys - 1] += count;
1314
            node->value[node->keys - 1] += count;
1313
            return 1;
1315
            return 1;
1314
        } else if (page + count * PAGE_SIZE == right_pg) {
1316
        } else if (page + count * PAGE_SIZE == right_pg) {
1315
            /*
1317
            /*
1316
             * The interval can be addded by simply moving base of
1318
             * The interval can be addded by simply moving base of
1317
             * the right interval down and increasing its size
1319
             * the right interval down and increasing its size
1318
             * accordingly.
1320
             * accordingly.
1319
             */
1321
             */
1320
            leaf->value[0] += count;
1322
            leaf->value[0] += count;
1321
            leaf->key[0] = page;
1323
            leaf->key[0] = page;
1322
            return 1;
1324
            return 1;
1323
        } else {
1325
        } else {
1324
            /*
1326
            /*
1325
             * The interval is between both neigbouring intervals,
1327
             * The interval is between both neigbouring intervals,
1326
             * but cannot be merged with any of them.
1328
             * but cannot be merged with any of them.
1327
             */
1329
             */
1328
            btree_insert(&a->used_space, page, (void *) count,
1330
            btree_insert(&a->used_space, page, (void *) count,
1329
                leaf);
1331
                leaf);
1330
            return 1;
1332
            return 1;
1331
        }
1333
        }
1332
    } else if (page < leaf->key[0]) {
1334
    } else if (page < leaf->key[0]) {
1333
        uintptr_t right_pg = leaf->key[0];
1335
        uintptr_t right_pg = leaf->key[0];
1334
        count_t right_cnt = (count_t) leaf->value[0];
1336
        count_t right_cnt = (count_t) leaf->value[0];
1335
   
1337
   
1336
        /*
1338
        /*
1337
         * Investigate the border case in which the left neighbour does
1339
         * Investigate the border case in which the left neighbour does
1338
         * not exist but the interval fits from the left.
1340
         * not exist but the interval fits from the left.
1339
         */
1341
         */
1340
         
1342
         
1341
        if (overlaps(page, count * PAGE_SIZE, right_pg,
1343
        if (overlaps(page, count * PAGE_SIZE, right_pg,
1342
            right_cnt * PAGE_SIZE)) {
1344
            right_cnt * PAGE_SIZE)) {
1343
            /* The interval intersects with the right interval. */
1345
            /* The interval intersects with the right interval. */
1344
            return 0;
1346
            return 0;
1345
        } else if (page + count * PAGE_SIZE == right_pg) {
1347
        } else if (page + count * PAGE_SIZE == right_pg) {
1346
            /*
1348
            /*
1347
             * The interval can be added by moving the base of the
1349
             * The interval can be added by moving the base of the
1348
             * right interval down and increasing its size
1350
             * right interval down and increasing its size
1349
             * accordingly.
1351
             * accordingly.
1350
             */
1352
             */
1351
            leaf->key[0] = page;
1353
            leaf->key[0] = page;
1352
            leaf->value[0] += count;
1354
            leaf->value[0] += count;
1353
            return 1;
1355
            return 1;
1354
        } else {
1356
        } else {
1355
            /*
1357
            /*
1356
             * The interval doesn't adjoin with the right interval.
1358
             * The interval doesn't adjoin with the right interval.
1357
             * It must be added individually.
1359
             * It must be added individually.
1358
             */
1360
             */
1359
            btree_insert(&a->used_space, page, (void *) count,
1361
            btree_insert(&a->used_space, page, (void *) count,
1360
                leaf);
1362
                leaf);
1361
            return 1;
1363
            return 1;
1362
        }
1364
        }
1363
    }
1365
    }
1364
 
1366
 
1365
    node = btree_leaf_node_right_neighbour(&a->used_space, leaf);
1367
    node = btree_leaf_node_right_neighbour(&a->used_space, leaf);
1366
    if (node) {
1368
    if (node) {
1367
        uintptr_t left_pg = leaf->key[leaf->keys - 1];
1369
        uintptr_t left_pg = leaf->key[leaf->keys - 1];
1368
        uintptr_t right_pg = node->key[0];
1370
        uintptr_t right_pg = node->key[0];
1369
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1371
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1370
        count_t right_cnt = (count_t) node->value[0];
1372
        count_t right_cnt = (count_t) node->value[0];
1371
       
1373
       
1372
        /*
1374
        /*
1373
         * Examine the possibility that the interval fits
1375
         * Examine the possibility that the interval fits
1374
         * somewhere between the leftmost interval of
1376
         * somewhere between the leftmost interval of
1375
         * the right neigbour and the last interval of the leaf.
1377
         * the right neigbour and the last interval of the leaf.
1376
         */
1378
         */
1377
 
1379
 
1378
        if (page < left_pg) {
1380
        if (page < left_pg) {
1379
            /* Do nothing. */
1381
            /* Do nothing. */
1380
        } else if (overlaps(page, count * PAGE_SIZE, left_pg,
1382
        } else if (overlaps(page, count * PAGE_SIZE, left_pg,
1381
            left_cnt * PAGE_SIZE)) {
1383
            left_cnt * PAGE_SIZE)) {
1382
            /* The interval intersects with the left interval. */
1384
            /* The interval intersects with the left interval. */
1383
            return 0;
1385
            return 0;
1384
        } else if (overlaps(page, count * PAGE_SIZE, right_pg,
1386
        } else if (overlaps(page, count * PAGE_SIZE, right_pg,
1385
            right_cnt * PAGE_SIZE)) {
1387
            right_cnt * PAGE_SIZE)) {
1386
            /* The interval intersects with the right interval. */
1388
            /* The interval intersects with the right interval. */
1387
            return 0;          
1389
            return 0;          
1388
        } else if ((page == left_pg + left_cnt * PAGE_SIZE) &&
1390
        } else if ((page == left_pg + left_cnt * PAGE_SIZE) &&
1389
            (page + count * PAGE_SIZE == right_pg)) {
1391
            (page + count * PAGE_SIZE == right_pg)) {
1390
            /*
1392
            /*
1391
             * The interval can be added by merging the two already
1393
             * The interval can be added by merging the two already
1392
             * present intervals.
1394
             * present intervals.
1393
             * */
1395
             * */
1394
            leaf->value[leaf->keys - 1] += count + right_cnt;
1396
            leaf->value[leaf->keys - 1] += count + right_cnt;
1395
            btree_remove(&a->used_space, right_pg, node);
1397
            btree_remove(&a->used_space, right_pg, node);
1396
            return 1;
1398
            return 1;
1397
        } else if (page == left_pg + left_cnt * PAGE_SIZE) {
1399
        } else if (page == left_pg + left_cnt * PAGE_SIZE) {
1398
            /*
1400
            /*
1399
             * The interval can be added by simply growing the left
1401
             * The interval can be added by simply growing the left
1400
             * interval.
1402
             * interval.
1401
             * */
1403
             * */
1402
            leaf->value[leaf->keys - 1] +=  count;
1404
            leaf->value[leaf->keys - 1] +=  count;
1403
            return 1;
1405
            return 1;
1404
        } else if (page + count * PAGE_SIZE == right_pg) {
1406
        } else if (page + count * PAGE_SIZE == right_pg) {
1405
            /*
1407
            /*
1406
             * The interval can be addded by simply moving base of
1408
             * The interval can be addded by simply moving base of
1407
             * the right interval down and increasing its size
1409
             * the right interval down and increasing its size
1408
             * accordingly.
1410
             * accordingly.
1409
             */
1411
             */
1410
            node->value[0] += count;
1412
            node->value[0] += count;
1411
            node->key[0] = page;
1413
            node->key[0] = page;
1412
            return 1;
1414
            return 1;
1413
        } else {
1415
        } else {
1414
            /*
1416
            /*
1415
             * The interval is between both neigbouring intervals,
1417
             * The interval is between both neigbouring intervals,
1416
             * but cannot be merged with any of them.
1418
             * but cannot be merged with any of them.
1417
             */
1419
             */
1418
            btree_insert(&a->used_space, page, (void *) count,
1420
            btree_insert(&a->used_space, page, (void *) count,
1419
                leaf);
1421
                leaf);
1420
            return 1;
1422
            return 1;
1421
        }
1423
        }
1422
    } else if (page >= leaf->key[leaf->keys - 1]) {
1424
    } else if (page >= leaf->key[leaf->keys - 1]) {
1423
        uintptr_t left_pg = leaf->key[leaf->keys - 1];
1425
        uintptr_t left_pg = leaf->key[leaf->keys - 1];
1424
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1426
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1425
   
1427
   
1426
        /*
1428
        /*
1427
         * Investigate the border case in which the right neighbour
1429
         * Investigate the border case in which the right neighbour
1428
         * does not exist but the interval fits from the right.
1430
         * does not exist but the interval fits from the right.
1429
         */
1431
         */
1430
         
1432
         
1431
        if (overlaps(page, count * PAGE_SIZE, left_pg,
1433
        if (overlaps(page, count * PAGE_SIZE, left_pg,
1432
            left_cnt * PAGE_SIZE)) {
1434
            left_cnt * PAGE_SIZE)) {
1433
            /* The interval intersects with the left interval. */
1435
            /* The interval intersects with the left interval. */
1434
            return 0;
1436
            return 0;
1435
        } else if (left_pg + left_cnt * PAGE_SIZE == page) {
1437
        } else if (left_pg + left_cnt * PAGE_SIZE == page) {
1436
            /*
1438
            /*
1437
             * The interval can be added by growing the left
1439
             * The interval can be added by growing the left
1438
             * interval.
1440
             * interval.
1439
             */
1441
             */
1440
            leaf->value[leaf->keys - 1] += count;
1442
            leaf->value[leaf->keys - 1] += count;
1441
            return 1;
1443
            return 1;
1442
        } else {
1444
        } else {
1443
            /*
1445
            /*
1444
             * The interval doesn't adjoin with the left interval.
1446
             * The interval doesn't adjoin with the left interval.
1445
             * It must be added individually.
1447
             * It must be added individually.
1446
             */
1448
             */
1447
            btree_insert(&a->used_space, page, (void *) count,
1449
            btree_insert(&a->used_space, page, (void *) count,
1448
                leaf);
1450
                leaf);
1449
            return 1;
1451
            return 1;
1450
        }
1452
        }
1451
    }
1453
    }
1452
   
1454
   
1453
    /*
1455
    /*
1454
     * Note that if the algorithm made it thus far, the interval can fit
1456
     * Note that if the algorithm made it thus far, the interval can fit
1455
     * only between two other intervals of the leaf. The two border cases
1457
     * only between two other intervals of the leaf. The two border cases
1456
     * were already resolved.
1458
     * were already resolved.
1457
     */
1459
     */
1458
    for (i = 1; i < leaf->keys; i++) {
1460
    for (i = 1; i < leaf->keys; i++) {
1459
        if (page < leaf->key[i]) {
1461
        if (page < leaf->key[i]) {
1460
            uintptr_t left_pg = leaf->key[i - 1];
1462
            uintptr_t left_pg = leaf->key[i - 1];
1461
            uintptr_t right_pg = leaf->key[i];
1463
            uintptr_t right_pg = leaf->key[i];
1462
            count_t left_cnt = (count_t) leaf->value[i - 1];
1464
            count_t left_cnt = (count_t) leaf->value[i - 1];
1463
            count_t right_cnt = (count_t) leaf->value[i];
1465
            count_t right_cnt = (count_t) leaf->value[i];
1464
 
1466
 
1465
            /*
1467
            /*
1466
             * The interval fits between left_pg and right_pg.
1468
             * The interval fits between left_pg and right_pg.
1467
             */
1469
             */
1468
 
1470
 
1469
            if (overlaps(page, count * PAGE_SIZE, left_pg,
1471
            if (overlaps(page, count * PAGE_SIZE, left_pg,
1470
                left_cnt * PAGE_SIZE)) {
1472
                left_cnt * PAGE_SIZE)) {
1471
                /*
1473
                /*
1472
                 * The interval intersects with the left
1474
                 * The interval intersects with the left
1473
                 * interval.
1475
                 * interval.
1474
                 */
1476
                 */
1475
                return 0;
1477
                return 0;
1476
            } else if (overlaps(page, count * PAGE_SIZE, right_pg,
1478
            } else if (overlaps(page, count * PAGE_SIZE, right_pg,
1477
                right_cnt * PAGE_SIZE)) {
1479
                right_cnt * PAGE_SIZE)) {
1478
                /*
1480
                /*
1479
                 * The interval intersects with the right
1481
                 * The interval intersects with the right
1480
                 * interval.
1482
                 * interval.
1481
                 */
1483
                 */
1482
                return 0;          
1484
                return 0;          
1483
            } else if ((page == left_pg + left_cnt * PAGE_SIZE) &&
1485
            } else if ((page == left_pg + left_cnt * PAGE_SIZE) &&
1484
                (page + count * PAGE_SIZE == right_pg)) {
1486
                (page + count * PAGE_SIZE == right_pg)) {
1485
                /*
1487
                /*
1486
                 * The interval can be added by merging the two
1488
                 * The interval can be added by merging the two
1487
                 * already present intervals.
1489
                 * already present intervals.
1488
                 */
1490
                 */
1489
                leaf->value[i - 1] += count + right_cnt;
1491
                leaf->value[i - 1] += count + right_cnt;
1490
                btree_remove(&a->used_space, right_pg, leaf);
1492
                btree_remove(&a->used_space, right_pg, leaf);
1491
                return 1;
1493
                return 1;
1492
            } else if (page == left_pg + left_cnt * PAGE_SIZE) {
1494
            } else if (page == left_pg + left_cnt * PAGE_SIZE) {
1493
                /*
1495
                /*
1494
                 * The interval can be added by simply growing
1496
                 * The interval can be added by simply growing
1495
                 * the left interval.
1497
                 * the left interval.
1496
                 */
1498
                 */
1497
                leaf->value[i - 1] += count;
1499
                leaf->value[i - 1] += count;
1498
                return 1;
1500
                return 1;
1499
            } else if (page + count * PAGE_SIZE == right_pg) {
1501
            } else if (page + count * PAGE_SIZE == right_pg) {
1500
                /*
1502
                /*
1501
                     * The interval can be addded by simply moving
1503
                     * The interval can be addded by simply moving
1502
                 * base of the right interval down and
1504
                 * base of the right interval down and
1503
                 * increasing its size accordingly.
1505
                 * increasing its size accordingly.
1504
                 */
1506
                 */
1505
                leaf->value[i] += count;
1507
                leaf->value[i] += count;
1506
                leaf->key[i] = page;
1508
                leaf->key[i] = page;
1507
                return 1;
1509
                return 1;
1508
            } else {
1510
            } else {
1509
                /*
1511
                /*
1510
                 * The interval is between both neigbouring
1512
                 * The interval is between both neigbouring
1511
                 * intervals, but cannot be merged with any of
1513
                 * intervals, but cannot be merged with any of
1512
                 * them.
1514
                 * them.
1513
                 */
1515
                 */
1514
                btree_insert(&a->used_space, page,
1516
                btree_insert(&a->used_space, page,
1515
                    (void *) count, leaf);
1517
                    (void *) count, leaf);
1516
                return 1;
1518
                return 1;
1517
            }
1519
            }
1518
        }
1520
        }
1519
    }
1521
    }
1520
 
1522
 
1521
    panic("Inconsistency detected while adding %d pages of used space at "
1523
    panic("Inconsistency detected while adding %d pages of used space at "
1522
        "%p.\n", count, page);
1524
        "%p.\n", count, page);
1523
}
1525
}
1524
 
1526
 
1525
/** Mark portion of address space area as unused.
1527
/** Mark portion of address space area as unused.
1526
 *
1528
 *
1527
 * The address space area must be already locked.
1529
 * The address space area must be already locked.
1528
 *
1530
 *
1529
 * @param a Address space area.
1531
 * @param a Address space area.
1530
 * @param page First page to be marked.
1532
 * @param page First page to be marked.
1531
 * @param count Number of page to be marked.
1533
 * @param count Number of page to be marked.
1532
 *
1534
 *
1533
 * @return 0 on failure and 1 on success.
1535
 * @return 0 on failure and 1 on success.
1534
 */
1536
 */
1535
int used_space_remove(as_area_t *a, uintptr_t page, count_t count)
1537
int used_space_remove(as_area_t *a, uintptr_t page, count_t count)
1536
{
1538
{
1537
    btree_node_t *leaf, *node;
1539
    btree_node_t *leaf, *node;
1538
    count_t pages;
1540
    count_t pages;
1539
    int i;
1541
    int i;
1540
 
1542
 
1541
    ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1543
    ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1542
    ASSERT(count);
1544
    ASSERT(count);
1543
 
1545
 
1544
    pages = (count_t) btree_search(&a->used_space, page, &leaf);
1546
    pages = (count_t) btree_search(&a->used_space, page, &leaf);
1545
    if (pages) {
1547
    if (pages) {
1546
        /*
1548
        /*
1547
         * We are lucky, page is the beginning of some interval.
1549
         * We are lucky, page is the beginning of some interval.
1548
         */
1550
         */
1549
        if (count > pages) {
1551
        if (count > pages) {
1550
            return 0;
1552
            return 0;
1551
        } else if (count == pages) {
1553
        } else if (count == pages) {
1552
            btree_remove(&a->used_space, page, leaf);
1554
            btree_remove(&a->used_space, page, leaf);
1553
            return 1;
1555
            return 1;
1554
        } else {
1556
        } else {
1555
            /*
1557
            /*
1556
             * Find the respective interval.
1558
             * Find the respective interval.
1557
             * Decrease its size and relocate its start address.
1559
             * Decrease its size and relocate its start address.
1558
             */
1560
             */
1559
            for (i = 0; i < leaf->keys; i++) {
1561
            for (i = 0; i < leaf->keys; i++) {
1560
                if (leaf->key[i] == page) {
1562
                if (leaf->key[i] == page) {
1561
                    leaf->key[i] += count * PAGE_SIZE;
1563
                    leaf->key[i] += count * PAGE_SIZE;
1562
                    leaf->value[i] -= count;
1564
                    leaf->value[i] -= count;
1563
                    return 1;
1565
                    return 1;
1564
                }
1566
                }
1565
            }
1567
            }
1566
            goto error;
1568
            goto error;
1567
        }
1569
        }
1568
    }
1570
    }
1569
 
1571
 
1570
    node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1572
    node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1571
    if (node && page < leaf->key[0]) {
1573
    if (node && page < leaf->key[0]) {
1572
        uintptr_t left_pg = node->key[node->keys - 1];
1574
        uintptr_t left_pg = node->key[node->keys - 1];
1573
        count_t left_cnt = (count_t) node->value[node->keys - 1];
1575
        count_t left_cnt = (count_t) node->value[node->keys - 1];
1574
 
1576
 
1575
        if (overlaps(left_pg, left_cnt * PAGE_SIZE, page,
1577
        if (overlaps(left_pg, left_cnt * PAGE_SIZE, page,
1576
            count * PAGE_SIZE)) {
1578
            count * PAGE_SIZE)) {
1577
            if (page + count * PAGE_SIZE ==
1579
            if (page + count * PAGE_SIZE ==
1578
                left_pg + left_cnt * PAGE_SIZE) {
1580
                left_pg + left_cnt * PAGE_SIZE) {
1579
                /*
1581
                /*
1580
                 * The interval is contained in the rightmost
1582
                 * The interval is contained in the rightmost
1581
                 * interval of the left neighbour and can be
1583
                 * interval of the left neighbour and can be
1582
                 * removed by updating the size of the bigger
1584
                 * removed by updating the size of the bigger
1583
                 * interval.
1585
                 * interval.
1584
                 */
1586
                 */
1585
                node->value[node->keys - 1] -= count;
1587
                node->value[node->keys - 1] -= count;
1586
                return 1;
1588
                return 1;
1587
            } else if (page + count * PAGE_SIZE <
1589
            } else if (page + count * PAGE_SIZE <
1588
                left_pg + left_cnt*PAGE_SIZE) {
1590
                left_pg + left_cnt*PAGE_SIZE) {
1589
                count_t new_cnt;
1591
                count_t new_cnt;
1590
               
1592
               
1591
                /*
1593
                /*
1592
                 * The interval is contained in the rightmost
1594
                 * The interval is contained in the rightmost
1593
                 * interval of the left neighbour but its
1595
                 * interval of the left neighbour but its
1594
                 * removal requires both updating the size of
1596
                 * removal requires both updating the size of
1595
                 * the original interval and also inserting a
1597
                 * the original interval and also inserting a
1596
                 * new interval.
1598
                 * new interval.
1597
                 */
1599
                 */
1598
                new_cnt = ((left_pg + left_cnt * PAGE_SIZE) -
1600
                new_cnt = ((left_pg + left_cnt * PAGE_SIZE) -
1599
                    (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1601
                    (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1600
                node->value[node->keys - 1] -= count + new_cnt;
1602
                node->value[node->keys - 1] -= count + new_cnt;
1601
                btree_insert(&a->used_space, page +
1603
                btree_insert(&a->used_space, page +
1602
                    count * PAGE_SIZE, (void *) new_cnt, leaf);
1604
                    count * PAGE_SIZE, (void *) new_cnt, leaf);
1603
                return 1;
1605
                return 1;
1604
            }
1606
            }
1605
        }
1607
        }
1606
        return 0;
1608
        return 0;
1607
    } else if (page < leaf->key[0]) {
1609
    } else if (page < leaf->key[0]) {
1608
        return 0;
1610
        return 0;
1609
    }
1611
    }
1610
   
1612
   
1611
    if (page > leaf->key[leaf->keys - 1]) {
1613
    if (page > leaf->key[leaf->keys - 1]) {
1612
        uintptr_t left_pg = leaf->key[leaf->keys - 1];
1614
        uintptr_t left_pg = leaf->key[leaf->keys - 1];
1613
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1615
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1614
 
1616
 
1615
        if (overlaps(left_pg, left_cnt * PAGE_SIZE, page,
1617
        if (overlaps(left_pg, left_cnt * PAGE_SIZE, page,
1616
            count * PAGE_SIZE)) {
1618
            count * PAGE_SIZE)) {
1617
            if (page + count * PAGE_SIZE ==
1619
            if (page + count * PAGE_SIZE ==
1618
                left_pg + left_cnt * PAGE_SIZE) {
1620
                left_pg + left_cnt * PAGE_SIZE) {
1619
                /*
1621
                /*
1620
                 * The interval is contained in the rightmost
1622
                 * The interval is contained in the rightmost
1621
                 * interval of the leaf and can be removed by
1623
                 * interval of the leaf and can be removed by
1622
                 * updating the size of the bigger interval.
1624
                 * updating the size of the bigger interval.
1623
                 */
1625
                 */
1624
                leaf->value[leaf->keys - 1] -= count;
1626
                leaf->value[leaf->keys - 1] -= count;
1625
                return 1;
1627
                return 1;
1626
            } else if (page + count * PAGE_SIZE < left_pg +
1628
            } else if (page + count * PAGE_SIZE < left_pg +
1627
                left_cnt * PAGE_SIZE) {
1629
                left_cnt * PAGE_SIZE) {
1628
                count_t new_cnt;
1630
                count_t new_cnt;
1629
               
1631
               
1630
                /*
1632
                /*
1631
                 * The interval is contained in the rightmost
1633
                 * The interval is contained in the rightmost
1632
                 * interval of the leaf but its removal
1634
                 * interval of the leaf but its removal
1633
                 * requires both updating the size of the
1635
                 * requires both updating the size of the
1634
                 * original interval and also inserting a new
1636
                 * original interval and also inserting a new
1635
                 * interval.
1637
                 * interval.
1636
                 */
1638
                 */
1637
                new_cnt = ((left_pg + left_cnt * PAGE_SIZE) -
1639
                new_cnt = ((left_pg + left_cnt * PAGE_SIZE) -
1638
                    (page + count * PAGE_SIZE)) >> PAGE_WIDTH;
1640
                    (page + count * PAGE_SIZE)) >> PAGE_WIDTH;
1639
                leaf->value[leaf->keys - 1] -= count + new_cnt;
1641
                leaf->value[leaf->keys - 1] -= count + new_cnt;
1640
                btree_insert(&a->used_space, page +
1642
                btree_insert(&a->used_space, page +
1641
                    count * PAGE_SIZE, (void *) new_cnt, leaf);
1643
                    count * PAGE_SIZE, (void *) new_cnt, leaf);
1642
                return 1;
1644
                return 1;
1643
            }
1645
            }
1644
        }
1646
        }
1645
        return 0;
1647
        return 0;
1646
    }  
1648
    }  
1647
   
1649
   
1648
    /*
1650
    /*
1649
     * The border cases have been already resolved.
1651
     * The border cases have been already resolved.
1650
     * Now the interval can be only between intervals of the leaf.
1652
     * Now the interval can be only between intervals of the leaf.
1651
     */
1653
     */
1652
    for (i = 1; i < leaf->keys - 1; i++) {
1654
    for (i = 1; i < leaf->keys - 1; i++) {
1653
        if (page < leaf->key[i]) {
1655
        if (page < leaf->key[i]) {
1654
            uintptr_t left_pg = leaf->key[i - 1];
1656
            uintptr_t left_pg = leaf->key[i - 1];
1655
            count_t left_cnt = (count_t) leaf->value[i - 1];
1657
            count_t left_cnt = (count_t) leaf->value[i - 1];
1656
 
1658
 
1657
            /*
1659
            /*
1658
             * Now the interval is between intervals corresponding
1660
             * Now the interval is between intervals corresponding
1659
             * to (i - 1) and i.
1661
             * to (i - 1) and i.
1660
             */
1662
             */
1661
            if (overlaps(left_pg, left_cnt * PAGE_SIZE, page,
1663
            if (overlaps(left_pg, left_cnt * PAGE_SIZE, page,
1662
                count * PAGE_SIZE)) {
1664
                count * PAGE_SIZE)) {
1663
                if (page + count * PAGE_SIZE ==
1665
                if (page + count * PAGE_SIZE ==
1664
                    left_pg + left_cnt*PAGE_SIZE) {
1666
                    left_pg + left_cnt*PAGE_SIZE) {
1665
                    /*
1667
                    /*
1666
                     * The interval is contained in the
1668
                     * The interval is contained in the
1667
                     * interval (i - 1) of the leaf and can
1669
                     * interval (i - 1) of the leaf and can
1668
                     * be removed by updating the size of
1670
                     * be removed by updating the size of
1669
                     * the bigger interval.
1671
                     * the bigger interval.
1670
                     */
1672
                     */
1671
                    leaf->value[i - 1] -= count;
1673
                    leaf->value[i - 1] -= count;
1672
                    return 1;
1674
                    return 1;
1673
                } else if (page + count * PAGE_SIZE <
1675
                } else if (page + count * PAGE_SIZE <
1674
                    left_pg + left_cnt * PAGE_SIZE) {
1676
                    left_pg + left_cnt * PAGE_SIZE) {
1675
                    count_t new_cnt;
1677
                    count_t new_cnt;
1676
               
1678
               
1677
                    /*
1679
                    /*
1678
                     * The interval is contained in the
1680
                     * The interval is contained in the
1679
                     * interval (i - 1) of the leaf but its
1681
                     * interval (i - 1) of the leaf but its
1680
                     * removal requires both updating the
1682
                     * removal requires both updating the
1681
                     * size of the original interval and
1683
                     * size of the original interval and
1682
                     * also inserting a new interval.
1684
                     * also inserting a new interval.
1683
                     */
1685
                     */
1684
                    new_cnt = ((left_pg +
1686
                    new_cnt = ((left_pg +
1685
                        left_cnt * PAGE_SIZE) -
1687
                        left_cnt * PAGE_SIZE) -
1686
                        (page + count * PAGE_SIZE)) >>
1688
                        (page + count * PAGE_SIZE)) >>
1687
                        PAGE_WIDTH;
1689
                        PAGE_WIDTH;
1688
                    leaf->value[i - 1] -= count + new_cnt;
1690
                    leaf->value[i - 1] -= count + new_cnt;
1689
                    btree_insert(&a->used_space, page +
1691
                    btree_insert(&a->used_space, page +
1690
                        count * PAGE_SIZE, (void *) new_cnt,
1692
                        count * PAGE_SIZE, (void *) new_cnt,
1691
                        leaf);
1693
                        leaf);
1692
                    return 1;
1694
                    return 1;
1693
                }
1695
                }
1694
            }
1696
            }
1695
            return 0;
1697
            return 0;
1696
        }
1698
        }
1697
    }
1699
    }
1698
 
1700
 
1699
error:
1701
error:
1700
    panic("Inconsistency detected while removing %d pages of used space "
1702
    panic("Inconsistency detected while removing %d pages of used space "
1701
        "from %p.\n", count, page);
1703
        "from %p.\n", count, page);
1702
}
1704
}
1703
 
1705
 
1704
/** Remove reference to address space area share info.
1706
/** Remove reference to address space area share info.
1705
 *
1707
 *
1706
 * If the reference count drops to 0, the sh_info is deallocated.
1708
 * If the reference count drops to 0, the sh_info is deallocated.
1707
 *
1709
 *
1708
 * @param sh_info Pointer to address space area share info.
1710
 * @param sh_info Pointer to address space area share info.
1709
 */
1711
 */
1710
void sh_info_remove_reference(share_info_t *sh_info)
1712
void sh_info_remove_reference(share_info_t *sh_info)
1711
{
1713
{
1712
    bool dealloc = false;
1714
    bool dealloc = false;
1713
 
1715
 
1714
    mutex_lock(&sh_info->lock);
1716
    mutex_lock(&sh_info->lock);
1715
    ASSERT(sh_info->refcount);
1717
    ASSERT(sh_info->refcount);
1716
    if (--sh_info->refcount == 0) {
1718
    if (--sh_info->refcount == 0) {
1717
        dealloc = true;
1719
        dealloc = true;
1718
        link_t *cur;
1720
        link_t *cur;
1719
       
1721
       
1720
        /*
1722
        /*
1721
         * Now walk carefully the pagemap B+tree and free/remove
1723
         * Now walk carefully the pagemap B+tree and free/remove
1722
         * reference from all frames found there.
1724
         * reference from all frames found there.
1723
         */
1725
         */
1724
        for (cur = sh_info->pagemap.leaf_head.next;
1726
        for (cur = sh_info->pagemap.leaf_head.next;
1725
            cur != &sh_info->pagemap.leaf_head; cur = cur->next) {
1727
            cur != &sh_info->pagemap.leaf_head; cur = cur->next) {
1726
            btree_node_t *node;
1728
            btree_node_t *node;
1727
            int i;
1729
            int i;
1728
           
1730
           
1729
            node = list_get_instance(cur, btree_node_t, leaf_link);
1731
            node = list_get_instance(cur, btree_node_t, leaf_link);
1730
            for (i = 0; i < node->keys; i++)
1732
            for (i = 0; i < node->keys; i++)
1731
                frame_free((uintptr_t) node->value[i]);
1733
                frame_free((uintptr_t) node->value[i]);
1732
        }
1734
        }
1733
       
1735
       
1734
    }
1736
    }
1735
    mutex_unlock(&sh_info->lock);
1737
    mutex_unlock(&sh_info->lock);
1736
   
1738
   
1737
    if (dealloc) {
1739
    if (dealloc) {
1738
        btree_destroy(&sh_info->pagemap);
1740
        btree_destroy(&sh_info->pagemap);
1739
        free(sh_info);
1741
        free(sh_info);
1740
    }
1742
    }
1741
}
1743
}
1742
 
1744
 
1743
/*
1745
/*
1744
 * Address space related syscalls.
1746
 * Address space related syscalls.
1745
 */
1747
 */
1746
 
1748
 
1747
/** Wrapper for as_area_create(). */
1749
/** Wrapper for as_area_create(). */
1748
unative_t sys_as_area_create(uintptr_t address, size_t size, int flags)
1750
unative_t sys_as_area_create(uintptr_t address, size_t size, int flags)
1749
{
1751
{
1750
    if (as_area_create(AS, flags | AS_AREA_CACHEABLE, size, address,
1752
    if (as_area_create(AS, flags | AS_AREA_CACHEABLE, size, address,
1751
        AS_AREA_ATTR_NONE, &anon_backend, NULL))
1753
        AS_AREA_ATTR_NONE, &anon_backend, NULL))
1752
        return (unative_t) address;
1754
        return (unative_t) address;
1753
    else
1755
    else
1754
        return (unative_t) -1;
1756
        return (unative_t) -1;
1755
}
1757
}
1756
 
1758
 
1757
/** Wrapper for as_area_resize(). */
1759
/** Wrapper for as_area_resize(). */
1758
unative_t sys_as_area_resize(uintptr_t address, size_t size, int flags)
1760
unative_t sys_as_area_resize(uintptr_t address, size_t size, int flags)
1759
{
1761
{
1760
    return (unative_t) as_area_resize(AS, address, size, 0);
1762
    return (unative_t) as_area_resize(AS, address, size, 0);
1761
}
1763
}
1762
 
1764
 
1763
/** Wrapper for as_area_destroy(). */
1765
/** Wrapper for as_area_destroy(). */
1764
unative_t sys_as_area_destroy(uintptr_t address)
1766
unative_t sys_as_area_destroy(uintptr_t address)
1765
{
1767
{
1766
    return (unative_t) as_area_destroy(AS, address);
1768
    return (unative_t) as_area_destroy(AS, address);
1767
}
1769
}
1768
 
1770
 
1769
/** Print out information about address space.
1771
/** Print out information about address space.
1770
 *
1772
 *
1771
 * @param as Address space.
1773
 * @param as Address space.
1772
 */
1774
 */
1773
void as_print(as_t *as)
1775
void as_print(as_t *as)
1774
{
1776
{
1775
    ipl_t ipl;
1777
    ipl_t ipl;
1776
   
1778
   
1777
    ipl = interrupts_disable();
1779
    ipl = interrupts_disable();
1778
    mutex_lock(&as->lock);
1780
    mutex_lock(&as->lock);
1779
   
1781
   
1780
    /* print out info about address space areas */
1782
    /* print out info about address space areas */
1781
    link_t *cur;
1783
    link_t *cur;
1782
    for (cur = as->as_area_btree.leaf_head.next;
1784
    for (cur = as->as_area_btree.leaf_head.next;
1783
        cur != &as->as_area_btree.leaf_head; cur = cur->next) {
1785
        cur != &as->as_area_btree.leaf_head; cur = cur->next) {
1784
        btree_node_t *node;
1786
        btree_node_t *node;
1785
       
1787
       
1786
        node = list_get_instance(cur, btree_node_t, leaf_link);
1788
        node = list_get_instance(cur, btree_node_t, leaf_link);
1787
       
1789
       
1788
        int i;
1790
        int i;
1789
        for (i = 0; i < node->keys; i++) {
1791
        for (i = 0; i < node->keys; i++) {
1790
            as_area_t *area = node->value[i];
1792
            as_area_t *area = node->value[i];
1791
       
1793
       
1792
            mutex_lock(&area->lock);
1794
            mutex_lock(&area->lock);
1793
            printf("as_area: %p, base=%p, pages=%d (%p - %p)\n",
1795
            printf("as_area: %p, base=%p, pages=%d (%p - %p)\n",
1794
                area, area->base, area->pages, area->base,
1796
                area, area->base, area->pages, area->base,
1795
                area->base + area->pages*PAGE_SIZE);
1797
                area->base + area->pages*PAGE_SIZE);
1796
            mutex_unlock(&area->lock);
1798
            mutex_unlock(&area->lock);
1797
        }
1799
        }
1798
    }
1800
    }
1799
   
1801
   
1800
    mutex_unlock(&as->lock);
1802
    mutex_unlock(&as->lock);
1801
    interrupts_restore(ipl);
1803
    interrupts_restore(ipl);
1802
}
1804
}
1803
 
1805
 
1804
/** @}
1806
/** @}
1805
 */
1807
 */
1806
 
1808