Subversion Repositories HelenOS

Rev

Rev 3191 | Rev 3448 | Go to most recent revision | Only display areas with differences | Ignore whitespace | Details | Blame | Last modification | View Log | RSS feed

Rev 3191 Rev 3403
1
/*
1
/*
2
 * Copyright (c) 2001-2006 Jakub Jermar
2
 * Copyright (c) 2001-2006 Jakub Jermar
3
 * All rights reserved.
3
 * All rights reserved.
4
 *
4
 *
5
 * Redistribution and use in source and binary forms, with or without
5
 * Redistribution and use in source and binary forms, with or without
6
 * modification, are permitted provided that the following conditions
6
 * modification, are permitted provided that the following conditions
7
 * are met:
7
 * are met:
8
 *
8
 *
9
 * - Redistributions of source code must retain the above copyright
9
 * - Redistributions of source code must retain the above copyright
10
 *   notice, this list of conditions and the following disclaimer.
10
 *   notice, this list of conditions and the following disclaimer.
11
 * - Redistributions in binary form must reproduce the above copyright
11
 * - Redistributions in binary form must reproduce the above copyright
12
 *   notice, this list of conditions and the following disclaimer in the
12
 *   notice, this list of conditions and the following disclaimer in the
13
 *   documentation and/or other materials provided with the distribution.
13
 *   documentation and/or other materials provided with the distribution.
14
 * - The name of the author may not be used to endorse or promote products
14
 * - The name of the author may not be used to endorse or promote products
15
 *   derived from this software without specific prior written permission.
15
 *   derived from this software without specific prior written permission.
16
 *
16
 *
17
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
 */
27
 */
28
 
28
 
29
/** @addtogroup genericmm
29
/** @addtogroup genericmm
30
 * @{
30
 * @{
31
 */
31
 */
32
 
32
 
33
/**
33
/**
34
 * @file
34
 * @file
35
 * @brief   Address space related functions.
35
 * @brief   Address space related functions.
36
 *
36
 *
37
 * This file contains address space manipulation functions.
37
 * This file contains address space manipulation functions.
38
 * Roughly speaking, this is a higher-level client of
38
 * Roughly speaking, this is a higher-level client of
39
 * Virtual Address Translation (VAT) subsystem.
39
 * Virtual Address Translation (VAT) subsystem.
40
 *
40
 *
41
 * Functionality provided by this file allows one to
41
 * Functionality provided by this file allows one to
42
 * create address spaces and create, resize and share
42
 * create address spaces and create, resize and share
43
 * address space areas.
43
 * address space areas.
44
 *
44
 *
45
 * @see page.c
45
 * @see page.c
46
 *
46
 *
47
 */
47
 */
48
 
48
 
49
#include <mm/as.h>
49
#include <mm/as.h>
50
#include <arch/mm/as.h>
50
#include <arch/mm/as.h>
51
#include <mm/page.h>
51
#include <mm/page.h>
52
#include <mm/frame.h>
52
#include <mm/frame.h>
53
#include <mm/slab.h>
53
#include <mm/slab.h>
54
#include <mm/tlb.h>
54
#include <mm/tlb.h>
55
#include <arch/mm/page.h>
55
#include <arch/mm/page.h>
56
#include <genarch/mm/page_pt.h>
56
#include <genarch/mm/page_pt.h>
57
#include <genarch/mm/page_ht.h>
57
#include <genarch/mm/page_ht.h>
58
#include <mm/asid.h>
58
#include <mm/asid.h>
59
#include <arch/mm/asid.h>
59
#include <arch/mm/asid.h>
60
#include <preemption.h>
60
#include <preemption.h>
61
#include <synch/spinlock.h>
61
#include <synch/spinlock.h>
62
#include <synch/mutex.h>
62
#include <synch/mutex.h>
63
#include <adt/list.h>
63
#include <adt/list.h>
64
#include <adt/btree.h>
64
#include <adt/btree.h>
65
#include <proc/task.h>
65
#include <proc/task.h>
66
#include <proc/thread.h>
66
#include <proc/thread.h>
67
#include <arch/asm.h>
67
#include <arch/asm.h>
68
#include <panic.h>
68
#include <panic.h>
69
#include <debug.h>
69
#include <debug.h>
70
#include <print.h>
70
#include <print.h>
71
#include <memstr.h>
71
#include <memstr.h>
72
#include <macros.h>
72
#include <macros.h>
73
#include <arch.h>
73
#include <arch.h>
74
#include <errno.h>
74
#include <errno.h>
75
#include <config.h>
75
#include <config.h>
76
#include <align.h>
76
#include <align.h>
77
#include <arch/types.h>
77
#include <arch/types.h>
78
#include <syscall/copy.h>
78
#include <syscall/copy.h>
79
#include <arch/interrupt.h>
79
#include <arch/interrupt.h>
80
 
80
 
81
#ifdef CONFIG_VIRT_IDX_DCACHE
81
#ifdef CONFIG_VIRT_IDX_DCACHE
82
#include <arch/mm/cache.h>
82
#include <arch/mm/cache.h>
83
#endif /* CONFIG_VIRT_IDX_DCACHE */
83
#endif /* CONFIG_VIRT_IDX_DCACHE */
84
 
84
 
85
#ifndef __OBJC__
-
 
86
/**
85
/**
87
 * Each architecture decides what functions will be used to carry out
86
 * Each architecture decides what functions will be used to carry out
88
 * address space operations such as creating or locking page tables.
87
 * address space operations such as creating or locking page tables.
89
 */
88
 */
90
as_operations_t *as_operations = NULL;
89
as_operations_t *as_operations = NULL;
91
 
90
 
92
/**
91
/**
93
 * Slab for as_t objects.
92
 * Slab for as_t objects.
94
 */
93
 */
95
static slab_cache_t *as_slab;
94
static slab_cache_t *as_slab;
96
#endif
-
 
97
 
95
 
98
/**
96
/**
99
 * This lock serializes access to the ASID subsystem.
97
 * This lock serializes access to the ASID subsystem.
100
 * It protects:
98
 * It protects:
101
 * - inactive_as_with_asid_head list
99
 * - inactive_as_with_asid_head list
102
 * - as->asid for each as of the as_t type
100
 * - as->asid for each as of the as_t type
103
 * - asids_allocated counter
101
 * - asids_allocated counter
104
 */
102
 */
105
SPINLOCK_INITIALIZE(asidlock);
103
SPINLOCK_INITIALIZE(asidlock);
106
 
104
 
107
/**
105
/**
108
 * This list contains address spaces that are not active on any
106
 * This list contains address spaces that are not active on any
109
 * processor and that have valid ASID.
107
 * processor and that have valid ASID.
110
 */
108
 */
111
LIST_INITIALIZE(inactive_as_with_asid_head);
109
LIST_INITIALIZE(inactive_as_with_asid_head);
112
 
110
 
113
/** Kernel address space. */
111
/** Kernel address space. */
114
as_t *AS_KERNEL = NULL;
112
as_t *AS_KERNEL = NULL;
115
 
113
 
116
static int area_flags_to_page_flags(int aflags);
114
static int area_flags_to_page_flags(int);
117
static as_area_t *find_area_and_lock(as_t *as, uintptr_t va);
115
static as_area_t *find_area_and_lock(as_t *, uintptr_t);
118
static bool check_area_conflicts(as_t *as, uintptr_t va, size_t size,
116
static bool check_area_conflicts(as_t *, uintptr_t, size_t, as_area_t *);
119
    as_area_t *avoid_area);
-
 
120
static void sh_info_remove_reference(share_info_t *sh_info);
117
static void sh_info_remove_reference(share_info_t *);
121
 
118
 
122
#ifndef __OBJC__
-
 
123
static int as_constructor(void *obj, int flags)
119
static int as_constructor(void *obj, int flags)
124
{
120
{
125
    as_t *as = (as_t *) obj;
121
    as_t *as = (as_t *) obj;
126
    int rc;
122
    int rc;
127
 
123
 
128
    link_initialize(&as->inactive_as_with_asid_link);
124
    link_initialize(&as->inactive_as_with_asid_link);
129
    mutex_initialize(&as->lock, MUTEX_PASSIVE);
125
    mutex_initialize(&as->lock, MUTEX_PASSIVE);
130
   
126
   
131
    rc = as_constructor_arch(as, flags);
127
    rc = as_constructor_arch(as, flags);
132
   
128
   
133
    return rc;
129
    return rc;
134
}
130
}
135
 
131
 
136
static int as_destructor(void *obj)
132
static int as_destructor(void *obj)
137
{
133
{
138
    as_t *as = (as_t *) obj;
134
    as_t *as = (as_t *) obj;
139
 
135
 
140
    return as_destructor_arch(as);
136
    return as_destructor_arch(as);
141
}
137
}
142
#endif
-
 
143
 
138
 
144
/** Initialize address space subsystem. */
139
/** Initialize address space subsystem. */
145
void as_init(void)
140
void as_init(void)
146
{
141
{
147
    as_arch_init();
142
    as_arch_init();
148
 
143
 
149
#ifndef __OBJC__
-
 
150
    as_slab = slab_cache_create("as_slab", sizeof(as_t), 0,
144
    as_slab = slab_cache_create("as_slab", sizeof(as_t), 0,
151
        as_constructor, as_destructor, SLAB_CACHE_MAGDEFERRED);
145
        as_constructor, as_destructor, SLAB_CACHE_MAGDEFERRED);
152
#endif
-
 
153
   
146
   
154
    AS_KERNEL = as_create(FLAG_AS_KERNEL);
147
    AS_KERNEL = as_create(FLAG_AS_KERNEL);
155
    if (!AS_KERNEL)
148
    if (!AS_KERNEL)
156
        panic("can't create kernel address space\n");
149
        panic("can't create kernel address space\n");
157
   
150
   
158
}
151
}
159
 
152
 
160
/** Create address space.
153
/** Create address space.
161
 *
154
 *
162
 * @param flags Flags that influence way in wich the address space is created.
155
 * @param flags     Flags that influence the way in wich the address space
-
 
156
 *          is created.
163
 */
157
 */
164
as_t *as_create(int flags)
158
as_t *as_create(int flags)
165
{
159
{
166
    as_t *as;
160
    as_t *as;
167
 
161
 
168
#ifdef __OBJC__
-
 
169
    as = [as_t new];
-
 
170
    link_initialize(&as->inactive_as_with_asid_link);
-
 
171
    mutex_initialize(&as->lock, MUTEX_PASSIVE);
-
 
172
    (void) as_constructor_arch(as, flags);
-
 
173
#else
-
 
174
    as = (as_t *) slab_alloc(as_slab, 0);
162
    as = (as_t *) slab_alloc(as_slab, 0);
175
#endif
-
 
176
    (void) as_create_arch(as, 0);
163
    (void) as_create_arch(as, 0);
177
   
164
   
178
    btree_create(&as->as_area_btree);
165
    btree_create(&as->as_area_btree);
179
   
166
   
180
    if (flags & FLAG_AS_KERNEL)
167
    if (flags & FLAG_AS_KERNEL)
181
        as->asid = ASID_KERNEL;
168
        as->asid = ASID_KERNEL;
182
    else
169
    else
183
        as->asid = ASID_INVALID;
170
        as->asid = ASID_INVALID;
184
   
171
   
185
    atomic_set(&as->refcount, 0);
172
    atomic_set(&as->refcount, 0);
186
    as->cpu_refcount = 0;
173
    as->cpu_refcount = 0;
187
#ifdef AS_PAGE_TABLE
174
#ifdef AS_PAGE_TABLE
188
    as->genarch.page_table = page_table_create(flags);
175
    as->genarch.page_table = page_table_create(flags);
189
#else
176
#else
190
    page_table_create(flags);
177
    page_table_create(flags);
191
#endif
178
#endif
192
 
179
 
193
    return as;
180
    return as;
194
}
181
}
195
 
182
 
196
/** Destroy adress space.
183
/** Destroy adress space.
197
 *
184
 *
198
 * When there are no tasks referencing this address space (i.e. its refcount is
185
 * When there are no tasks referencing this address space (i.e. its refcount is
199
 * zero), the address space can be destroyed.
186
 * zero), the address space can be destroyed.
200
 *
187
 *
201
 * We know that we don't hold any spinlock.
188
 * We know that we don't hold any spinlock.
-
 
189
 *
-
 
190
 * @param as        Address space to be destroyed.
202
 */
191
 */
203
void as_destroy(as_t *as)
192
void as_destroy(as_t *as)
204
{
193
{
205
    ipl_t ipl;
194
    ipl_t ipl;
206
    bool cond;
195
    bool cond;
207
    DEADLOCK_PROBE_INIT(p_asidlock);
196
    DEADLOCK_PROBE_INIT(p_asidlock);
208
 
197
 
209
    ASSERT(atomic_get(&as->refcount) == 0);
198
    ASSERT(atomic_get(&as->refcount) == 0);
210
   
199
   
211
    /*
200
    /*
212
     * Since there is no reference to this area,
201
     * Since there is no reference to this area,
213
     * it is safe not to lock its mutex.
202
     * it is safe not to lock its mutex.
214
     */
203
     */
215
 
204
 
216
    /*
205
    /*
217
     * We need to avoid deadlock between TLB shootdown and asidlock.
206
     * We need to avoid deadlock between TLB shootdown and asidlock.
218
     * We therefore try to take asid conditionally and if we don't succeed,
207
     * We therefore try to take asid conditionally and if we don't succeed,
219
     * we enable interrupts and try again. This is done while preemption is
208
     * we enable interrupts and try again. This is done while preemption is
220
     * disabled to prevent nested context switches. We also depend on the
209
     * disabled to prevent nested context switches. We also depend on the
221
     * fact that so far no spinlocks are held.
210
     * fact that so far no spinlocks are held.
222
     */
211
     */
223
    preemption_disable();
212
    preemption_disable();
224
    ipl = interrupts_read();
213
    ipl = interrupts_read();
225
retry:
214
retry:
226
    interrupts_disable();
215
    interrupts_disable();
227
    if (!spinlock_trylock(&asidlock)) {
216
    if (!spinlock_trylock(&asidlock)) {
228
        interrupts_enable();
217
        interrupts_enable();
229
        DEADLOCK_PROBE(p_asidlock, DEADLOCK_THRESHOLD);
218
        DEADLOCK_PROBE(p_asidlock, DEADLOCK_THRESHOLD);
230
        goto retry;
219
        goto retry;
231
    }
220
    }
232
    preemption_enable();    /* Interrupts disabled, enable preemption */
221
    preemption_enable();    /* Interrupts disabled, enable preemption */
233
    if (as->asid != ASID_INVALID && as != AS_KERNEL) {
222
    if (as->asid != ASID_INVALID && as != AS_KERNEL) {
234
        if (as != AS && as->cpu_refcount == 0)
223
        if (as != AS && as->cpu_refcount == 0)
235
            list_remove(&as->inactive_as_with_asid_link);
224
            list_remove(&as->inactive_as_with_asid_link);
236
        asid_put(as->asid);
225
        asid_put(as->asid);
237
    }
226
    }
238
    spinlock_unlock(&asidlock);
227
    spinlock_unlock(&asidlock);
239
 
228
 
240
    /*
229
    /*
241
     * Destroy address space areas of the address space.
230
     * Destroy address space areas of the address space.
242
     * The B+tree must be walked carefully because it is
231
     * The B+tree must be walked carefully because it is
243
     * also being destroyed.
232
     * also being destroyed.
244
     */
233
     */
245
    for (cond = true; cond; ) {
234
    for (cond = true; cond; ) {
246
        btree_node_t *node;
235
        btree_node_t *node;
247
 
236
 
248
        ASSERT(!list_empty(&as->as_area_btree.leaf_head));
237
        ASSERT(!list_empty(&as->as_area_btree.leaf_head));
249
        node = list_get_instance(as->as_area_btree.leaf_head.next,
238
        node = list_get_instance(as->as_area_btree.leaf_head.next,
250
            btree_node_t, leaf_link);
239
            btree_node_t, leaf_link);
251
 
240
 
252
        if ((cond = node->keys)) {
241
        if ((cond = node->keys)) {
253
            as_area_destroy(as, node->key[0]);
242
            as_area_destroy(as, node->key[0]);
254
        }
243
        }
255
    }
244
    }
256
 
245
 
257
    btree_destroy(&as->as_area_btree);
246
    btree_destroy(&as->as_area_btree);
258
#ifdef AS_PAGE_TABLE
247
#ifdef AS_PAGE_TABLE
259
    page_table_destroy(as->genarch.page_table);
248
    page_table_destroy(as->genarch.page_table);
260
#else
249
#else
261
    page_table_destroy(NULL);
250
    page_table_destroy(NULL);
262
#endif
251
#endif
263
 
252
 
264
    interrupts_restore(ipl);
253
    interrupts_restore(ipl);
265
 
254
 
266
#ifdef __OBJC__
-
 
267
    [as free];
-
 
268
#else
-
 
269
    slab_free(as_slab, as);
255
    slab_free(as_slab, as);
270
#endif
-
 
271
}
256
}
272
 
257
 
273
/** Create address space area of common attributes.
258
/** Create address space area of common attributes.
274
 *
259
 *
275
 * The created address space area is added to the target address space.
260
 * The created address space area is added to the target address space.
276
 *
261
 *
277
 * @param as Target address space.
262
 * @param as        Target address space.
278
 * @param flags Flags of the area memory.
263
 * @param flags     Flags of the area memory.
279
 * @param size Size of area.
264
 * @param size      Size of area.
280
 * @param base Base address of area.
265
 * @param base      Base address of area.
281
 * @param attrs Attributes of the area.
266
 * @param attrs     Attributes of the area.
282
 * @param backend Address space area backend. NULL if no backend is used.
267
 * @param backend   Address space area backend. NULL if no backend is used.
283
 * @param backend_data NULL or a pointer to an array holding two void *.
268
 * @param backend_data  NULL or a pointer to an array holding two void *.
284
 *
269
 *
285
 * @return Address space area on success or NULL on failure.
270
 * @return      Address space area on success or NULL on failure.
286
 */
271
 */
287
as_area_t *
272
as_area_t *
288
as_area_create(as_t *as, int flags, size_t size, uintptr_t base, int attrs,
273
as_area_create(as_t *as, int flags, size_t size, uintptr_t base, int attrs,
289
           mem_backend_t *backend, mem_backend_data_t *backend_data)
274
    mem_backend_t *backend, mem_backend_data_t *backend_data)
290
{
275
{
291
    ipl_t ipl;
276
    ipl_t ipl;
292
    as_area_t *a;
277
    as_area_t *a;
293
   
278
   
294
    if (base % PAGE_SIZE)
279
    if (base % PAGE_SIZE)
295
        return NULL;
280
        return NULL;
296
 
281
 
297
    if (!size)
282
    if (!size)
298
        return NULL;
283
        return NULL;
299
 
284
 
300
    /* Writeable executable areas are not supported. */
285
    /* Writeable executable areas are not supported. */
301
    if ((flags & AS_AREA_EXEC) && (flags & AS_AREA_WRITE))
286
    if ((flags & AS_AREA_EXEC) && (flags & AS_AREA_WRITE))
302
        return NULL;
287
        return NULL;
303
   
288
   
304
    ipl = interrupts_disable();
289
    ipl = interrupts_disable();
305
    mutex_lock(&as->lock);
290
    mutex_lock(&as->lock);
306
   
291
   
307
    if (!check_area_conflicts(as, base, size, NULL)) {
292
    if (!check_area_conflicts(as, base, size, NULL)) {
308
        mutex_unlock(&as->lock);
293
        mutex_unlock(&as->lock);
309
        interrupts_restore(ipl);
294
        interrupts_restore(ipl);
310
        return NULL;
295
        return NULL;
311
    }
296
    }
312
   
297
   
313
    a = (as_area_t *) malloc(sizeof(as_area_t), 0);
298
    a = (as_area_t *) malloc(sizeof(as_area_t), 0);
314
 
299
 
315
    mutex_initialize(&a->lock, MUTEX_PASSIVE);
300
    mutex_initialize(&a->lock, MUTEX_PASSIVE);
316
   
301
   
317
    a->as = as;
302
    a->as = as;
318
    a->flags = flags;
303
    a->flags = flags;
319
    a->attributes = attrs;
304
    a->attributes = attrs;
320
    a->pages = SIZE2FRAMES(size);
305
    a->pages = SIZE2FRAMES(size);
321
    a->base = base;
306
    a->base = base;
322
    a->sh_info = NULL;
307
    a->sh_info = NULL;
323
    a->backend = backend;
308
    a->backend = backend;
324
    if (backend_data)
309
    if (backend_data)
325
        a->backend_data = *backend_data;
310
        a->backend_data = *backend_data;
326
    else
311
    else
327
        memsetb(&a->backend_data, sizeof(a->backend_data), 0);
312
        memsetb(&a->backend_data, sizeof(a->backend_data), 0);
328
 
313
 
329
    btree_create(&a->used_space);
314
    btree_create(&a->used_space);
330
   
315
   
331
    btree_insert(&as->as_area_btree, base, (void *) a, NULL);
316
    btree_insert(&as->as_area_btree, base, (void *) a, NULL);
332
 
317
 
333
    mutex_unlock(&as->lock);
318
    mutex_unlock(&as->lock);
334
    interrupts_restore(ipl);
319
    interrupts_restore(ipl);
335
 
320
 
336
    return a;
321
    return a;
337
}
322
}
338
 
323
 
339
/** Find address space area and change it.
324
/** Find address space area and change it.
340
 *
325
 *
341
 * @param as Address space.
326
 * @param as        Address space.
342
 * @param address Virtual address belonging to the area to be changed. Must be
327
 * @param address   Virtual address belonging to the area to be changed.
343
 *     page-aligned.
328
 *          Must be page-aligned.
344
 * @param size New size of the virtual memory block starting at address.
329
 * @param size      New size of the virtual memory block starting at
-
 
330
 *          address.
345
 * @param flags Flags influencing the remap operation. Currently unused.
331
 * @param flags     Flags influencing the remap operation. Currently unused.
346
 *
332
 *
347
 * @return Zero on success or a value from @ref errno.h otherwise.
333
 * @return      Zero on success or a value from @ref errno.h otherwise.
348
 */
334
 */
349
int as_area_resize(as_t *as, uintptr_t address, size_t size, int flags)
335
int as_area_resize(as_t *as, uintptr_t address, size_t size, int flags)
350
{
336
{
351
    as_area_t *area;
337
    as_area_t *area;
352
    ipl_t ipl;
338
    ipl_t ipl;
353
    size_t pages;
339
    size_t pages;
354
   
340
   
355
    ipl = interrupts_disable();
341
    ipl = interrupts_disable();
356
    mutex_lock(&as->lock);
342
    mutex_lock(&as->lock);
357
   
343
   
358
    /*
344
    /*
359
     * Locate the area.
345
     * Locate the area.
360
     */
346
     */
361
    area = find_area_and_lock(as, address);
347
    area = find_area_and_lock(as, address);
362
    if (!area) {
348
    if (!area) {
363
        mutex_unlock(&as->lock);
349
        mutex_unlock(&as->lock);
364
        interrupts_restore(ipl);
350
        interrupts_restore(ipl);
365
        return ENOENT;
351
        return ENOENT;
366
    }
352
    }
367
 
353
 
368
    if (area->backend == &phys_backend) {
354
    if (area->backend == &phys_backend) {
369
        /*
355
        /*
370
         * Remapping of address space areas associated
356
         * Remapping of address space areas associated
371
         * with memory mapped devices is not supported.
357
         * with memory mapped devices is not supported.
372
         */
358
         */
373
        mutex_unlock(&area->lock);
359
        mutex_unlock(&area->lock);
374
        mutex_unlock(&as->lock);
360
        mutex_unlock(&as->lock);
375
        interrupts_restore(ipl);
361
        interrupts_restore(ipl);
376
        return ENOTSUP;
362
        return ENOTSUP;
377
    }
363
    }
378
    if (area->sh_info) {
364
    if (area->sh_info) {
379
        /*
365
        /*
380
         * Remapping of shared address space areas
366
         * Remapping of shared address space areas
381
         * is not supported.
367
         * is not supported.
382
         */
368
         */
383
        mutex_unlock(&area->lock);
369
        mutex_unlock(&area->lock);
384
        mutex_unlock(&as->lock);
370
        mutex_unlock(&as->lock);
385
        interrupts_restore(ipl);
371
        interrupts_restore(ipl);
386
        return ENOTSUP;
372
        return ENOTSUP;
387
    }
373
    }
388
 
374
 
389
    pages = SIZE2FRAMES((address - area->base) + size);
375
    pages = SIZE2FRAMES((address - area->base) + size);
390
    if (!pages) {
376
    if (!pages) {
391
        /*
377
        /*
392
         * Zero size address space areas are not allowed.
378
         * Zero size address space areas are not allowed.
393
         */
379
         */
394
        mutex_unlock(&area->lock);
380
        mutex_unlock(&area->lock);
395
        mutex_unlock(&as->lock);
381
        mutex_unlock(&as->lock);
396
        interrupts_restore(ipl);
382
        interrupts_restore(ipl);
397
        return EPERM;
383
        return EPERM;
398
    }
384
    }
399
   
385
   
400
    if (pages < area->pages) {
386
    if (pages < area->pages) {
401
        bool cond;
387
        bool cond;
402
        uintptr_t start_free = area->base + pages*PAGE_SIZE;
388
        uintptr_t start_free = area->base + pages*PAGE_SIZE;
403
 
389
 
404
        /*
390
        /*
405
         * Shrinking the area.
391
         * Shrinking the area.
406
         * No need to check for overlaps.
392
         * No need to check for overlaps.
407
         */
393
         */
408
 
394
 
409
        /*
395
        /*
410
         * Start TLB shootdown sequence.
396
         * Start TLB shootdown sequence.
411
         */
397
         */
412
        tlb_shootdown_start(TLB_INVL_PAGES, AS->asid, area->base +
398
        tlb_shootdown_start(TLB_INVL_PAGES, AS->asid, area->base +
413
            pages * PAGE_SIZE, area->pages - pages);
399
            pages * PAGE_SIZE, area->pages - pages);
414
 
400
 
415
        /*
401
        /*
416
         * Remove frames belonging to used space starting from
402
         * Remove frames belonging to used space starting from
417
         * the highest addresses downwards until an overlap with
403
         * the highest addresses downwards until an overlap with
418
         * the resized address space area is found. Note that this
404
         * the resized address space area is found. Note that this
419
         * is also the right way to remove part of the used_space
405
         * is also the right way to remove part of the used_space
420
         * B+tree leaf list.
406
         * B+tree leaf list.
421
         */    
407
         */    
422
        for (cond = true; cond;) {
408
        for (cond = true; cond;) {
423
            btree_node_t *node;
409
            btree_node_t *node;
424
       
410
       
425
            ASSERT(!list_empty(&area->used_space.leaf_head));
411
            ASSERT(!list_empty(&area->used_space.leaf_head));
426
            node =
412
            node =
427
                list_get_instance(area->used_space.leaf_head.prev,
413
                list_get_instance(area->used_space.leaf_head.prev,
428
                btree_node_t, leaf_link);
414
                btree_node_t, leaf_link);
429
            if ((cond = (bool) node->keys)) {
415
            if ((cond = (bool) node->keys)) {
430
                uintptr_t b = node->key[node->keys - 1];
416
                uintptr_t b = node->key[node->keys - 1];
431
                count_t c =
417
                count_t c =
432
                    (count_t) node->value[node->keys - 1];
418
                    (count_t) node->value[node->keys - 1];
433
                unsigned int i = 0;
419
                unsigned int i = 0;
434
           
420
           
435
                if (overlaps(b, c * PAGE_SIZE, area->base,
421
                if (overlaps(b, c * PAGE_SIZE, area->base,
436
                    pages * PAGE_SIZE)) {
422
                    pages * PAGE_SIZE)) {
437
                   
423
                   
438
                    if (b + c * PAGE_SIZE <= start_free) {
424
                    if (b + c * PAGE_SIZE <= start_free) {
439
                        /*
425
                        /*
440
                         * The whole interval fits
426
                         * The whole interval fits
441
                         * completely in the resized
427
                         * completely in the resized
442
                         * address space area.
428
                         * address space area.
443
                         */
429
                         */
444
                        break;
430
                        break;
445
                    }
431
                    }
446
       
432
       
447
                    /*
433
                    /*
448
                     * Part of the interval corresponding
434
                     * Part of the interval corresponding
449
                     * to b and c overlaps with the resized
435
                     * to b and c overlaps with the resized
450
                     * address space area.
436
                     * address space area.
451
                     */
437
                     */
452
       
438
       
453
                    cond = false;   /* we are almost done */
439
                    cond = false;   /* we are almost done */
454
                    i = (start_free - b) >> PAGE_WIDTH;
440
                    i = (start_free - b) >> PAGE_WIDTH;
455
                    if (!used_space_remove(area, start_free, c - i))
441
                    if (!used_space_remove(area, start_free,
-
 
442
                        c - i))
456
                        panic("Could not remove used space.\n");
443
                        panic("Could not remove used "
-
 
444
                            "space.\n");
457
                } else {
445
                } else {
458
                    /*
446
                    /*
459
                     * The interval of used space can be
447
                     * The interval of used space can be
460
                     * completely removed.
448
                     * completely removed.
461
                     */
449
                     */
462
                    if (!used_space_remove(area, b, c))
450
                    if (!used_space_remove(area, b, c))
463
                        panic("Could not remove used space.\n");
451
                        panic("Could not remove used "
-
 
452
                            "space.\n");
464
                }
453
                }
465
           
454
           
466
                for (; i < c; i++) {
455
                for (; i < c; i++) {
467
                    pte_t *pte;
456
                    pte_t *pte;
468
           
457
           
469
                    page_table_lock(as, false);
458
                    page_table_lock(as, false);
470
                    pte = page_mapping_find(as, b +
459
                    pte = page_mapping_find(as, b +
471
                        i * PAGE_SIZE);
460
                        i * PAGE_SIZE);
472
                    ASSERT(pte && PTE_VALID(pte) &&
461
                    ASSERT(pte && PTE_VALID(pte) &&
473
                        PTE_PRESENT(pte));
462
                        PTE_PRESENT(pte));
474
                    if (area->backend &&
463
                    if (area->backend &&
475
                        area->backend->frame_free) {
464
                        area->backend->frame_free) {
476
                        area->backend->frame_free(area,
465
                        area->backend->frame_free(area,
477
                            b + i * PAGE_SIZE,
466
                            b + i * PAGE_SIZE,
478
                            PTE_GET_FRAME(pte));
467
                            PTE_GET_FRAME(pte));
479
                    }
468
                    }
480
                    page_mapping_remove(as, b +
469
                    page_mapping_remove(as, b +
481
                        i * PAGE_SIZE);
470
                        i * PAGE_SIZE);
482
                    page_table_unlock(as, false);
471
                    page_table_unlock(as, false);
483
                }
472
                }
484
            }
473
            }
485
        }
474
        }
486
 
475
 
487
        /*
476
        /*
488
         * Finish TLB shootdown sequence.
477
         * Finish TLB shootdown sequence.
489
         */
478
         */
490
 
479
 
491
        tlb_invalidate_pages(as->asid, area->base + pages * PAGE_SIZE,
480
        tlb_invalidate_pages(as->asid, area->base + pages * PAGE_SIZE,
492
            area->pages - pages);
481
            area->pages - pages);
493
        /*
482
        /*
494
         * Invalidate software translation caches (e.g. TSB on sparc64).
483
         * Invalidate software translation caches (e.g. TSB on sparc64).
495
         */
484
         */
496
        as_invalidate_translation_cache(as, area->base +
485
        as_invalidate_translation_cache(as, area->base +
497
            pages * PAGE_SIZE, area->pages - pages);
486
            pages * PAGE_SIZE, area->pages - pages);
498
        tlb_shootdown_finalize();
487
        tlb_shootdown_finalize();
499
       
488
       
500
    } else {
489
    } else {
501
        /*
490
        /*
502
         * Growing the area.
491
         * Growing the area.
503
         * Check for overlaps with other address space areas.
492
         * Check for overlaps with other address space areas.
504
         */
493
         */
505
        if (!check_area_conflicts(as, address, pages * PAGE_SIZE,
494
        if (!check_area_conflicts(as, address, pages * PAGE_SIZE,
506
            area)) {
495
            area)) {
507
            mutex_unlock(&area->lock);
496
            mutex_unlock(&area->lock);
508
            mutex_unlock(&as->lock);       
497
            mutex_unlock(&as->lock);       
509
            interrupts_restore(ipl);
498
            interrupts_restore(ipl);
510
            return EADDRNOTAVAIL;
499
            return EADDRNOTAVAIL;
511
        }
500
        }
512
    }
501
    }
513
 
502
 
514
    area->pages = pages;
503
    area->pages = pages;
515
   
504
   
516
    mutex_unlock(&area->lock);
505
    mutex_unlock(&area->lock);
517
    mutex_unlock(&as->lock);
506
    mutex_unlock(&as->lock);
518
    interrupts_restore(ipl);
507
    interrupts_restore(ipl);
519
 
508
 
520
    return 0;
509
    return 0;
521
}
510
}
522
 
511
 
523
/** Destroy address space area.
512
/** Destroy address space area.
524
 *
513
 *
525
 * @param as Address space.
514
 * @param as        Address space.
526
 * @param address Address withing the area to be deleted.
515
 * @param address   Address within the area to be deleted.
527
 *
516
 *
528
 * @return Zero on success or a value from @ref errno.h on failure.
517
 * @return      Zero on success or a value from @ref errno.h on failure.
529
 */
518
 */
530
int as_area_destroy(as_t *as, uintptr_t address)
519
int as_area_destroy(as_t *as, uintptr_t address)
531
{
520
{
532
    as_area_t *area;
521
    as_area_t *area;
533
    uintptr_t base;
522
    uintptr_t base;
534
    link_t *cur;
523
    link_t *cur;
535
    ipl_t ipl;
524
    ipl_t ipl;
536
 
525
 
537
    ipl = interrupts_disable();
526
    ipl = interrupts_disable();
538
    mutex_lock(&as->lock);
527
    mutex_lock(&as->lock);
539
 
528
 
540
    area = find_area_and_lock(as, address);
529
    area = find_area_and_lock(as, address);
541
    if (!area) {
530
    if (!area) {
542
        mutex_unlock(&as->lock);
531
        mutex_unlock(&as->lock);
543
        interrupts_restore(ipl);
532
        interrupts_restore(ipl);
544
        return ENOENT;
533
        return ENOENT;
545
    }
534
    }
546
 
535
 
547
    base = area->base;
536
    base = area->base;
548
 
537
 
549
    /*
538
    /*
550
     * Start TLB shootdown sequence.
539
     * Start TLB shootdown sequence.
551
     */
540
     */
552
    tlb_shootdown_start(TLB_INVL_PAGES, as->asid, area->base, area->pages);
541
    tlb_shootdown_start(TLB_INVL_PAGES, as->asid, area->base, area->pages);
553
 
542
 
554
    /*
543
    /*
555
     * Visit only the pages mapped by used_space B+tree.
544
     * Visit only the pages mapped by used_space B+tree.
556
     */
545
     */
557
    for (cur = area->used_space.leaf_head.next;
546
    for (cur = area->used_space.leaf_head.next;
558
        cur != &area->used_space.leaf_head; cur = cur->next) {
547
        cur != &area->used_space.leaf_head; cur = cur->next) {
559
        btree_node_t *node;
548
        btree_node_t *node;
560
        unsigned int i;
549
        unsigned int i;
561
       
550
       
562
        node = list_get_instance(cur, btree_node_t, leaf_link);
551
        node = list_get_instance(cur, btree_node_t, leaf_link);
563
        for (i = 0; i < node->keys; i++) {
552
        for (i = 0; i < node->keys; i++) {
564
            uintptr_t b = node->key[i];
553
            uintptr_t b = node->key[i];
565
            count_t j;
554
            count_t j;
566
            pte_t *pte;
555
            pte_t *pte;
567
           
556
           
568
            for (j = 0; j < (count_t) node->value[i]; j++) {
557
            for (j = 0; j < (count_t) node->value[i]; j++) {
569
                page_table_lock(as, false);
558
                page_table_lock(as, false);
570
                pte = page_mapping_find(as, b + j * PAGE_SIZE);
559
                pte = page_mapping_find(as, b + j * PAGE_SIZE);
571
                ASSERT(pte && PTE_VALID(pte) &&
560
                ASSERT(pte && PTE_VALID(pte) &&
572
                    PTE_PRESENT(pte));
561
                    PTE_PRESENT(pte));
573
                if (area->backend &&
562
                if (area->backend &&
574
                    area->backend->frame_free) {
563
                    area->backend->frame_free) {
575
                    area->backend->frame_free(area, b +
564
                    area->backend->frame_free(area, b +
576
                        j * PAGE_SIZE, PTE_GET_FRAME(pte));
565
                        j * PAGE_SIZE, PTE_GET_FRAME(pte));
577
                }
566
                }
578
                page_mapping_remove(as, b + j * PAGE_SIZE);            
567
                page_mapping_remove(as, b + j * PAGE_SIZE);            
579
                page_table_unlock(as, false);
568
                page_table_unlock(as, false);
580
            }
569
            }
581
        }
570
        }
582
    }
571
    }
583
 
572
 
584
    /*
573
    /*
585
     * Finish TLB shootdown sequence.
574
     * Finish TLB shootdown sequence.
586
     */
575
     */
587
 
576
 
588
    tlb_invalidate_pages(as->asid, area->base, area->pages);
577
    tlb_invalidate_pages(as->asid, area->base, area->pages);
589
    /*
578
    /*
590
     * Invalidate potential software translation caches (e.g. TSB on
579
     * Invalidate potential software translation caches (e.g. TSB on
591
     * sparc64).
580
     * sparc64).
592
     */
581
     */
593
    as_invalidate_translation_cache(as, area->base, area->pages);
582
    as_invalidate_translation_cache(as, area->base, area->pages);
594
    tlb_shootdown_finalize();
583
    tlb_shootdown_finalize();
595
   
584
   
596
    btree_destroy(&area->used_space);
585
    btree_destroy(&area->used_space);
597
 
586
 
598
    area->attributes |= AS_AREA_ATTR_PARTIAL;
587
    area->attributes |= AS_AREA_ATTR_PARTIAL;
599
   
588
   
600
    if (area->sh_info)
589
    if (area->sh_info)
601
        sh_info_remove_reference(area->sh_info);
590
        sh_info_remove_reference(area->sh_info);
602
       
591
       
603
    mutex_unlock(&area->lock);
592
    mutex_unlock(&area->lock);
604
 
593
 
605
    /*
594
    /*
606
     * Remove the empty area from address space.
595
     * Remove the empty area from address space.
607
     */
596
     */
608
    btree_remove(&as->as_area_btree, base, NULL);
597
    btree_remove(&as->as_area_btree, base, NULL);
609
   
598
   
610
    free(area);
599
    free(area);
611
   
600
   
612
    mutex_unlock(&as->lock);
601
    mutex_unlock(&as->lock);
613
    interrupts_restore(ipl);
602
    interrupts_restore(ipl);
614
    return 0;
603
    return 0;
615
}
604
}
616
 
605
 
617
/** Share address space area with another or the same address space.
606
/** Share address space area with another or the same address space.
618
 *
607
 *
619
 * Address space area mapping is shared with a new address space area.
608
 * Address space area mapping is shared with a new address space area.
620
 * If the source address space area has not been shared so far,
609
 * If the source address space area has not been shared so far,
621
 * a new sh_info is created. The new address space area simply gets the
610
 * a new sh_info is created. The new address space area simply gets the
622
 * sh_info of the source area. The process of duplicating the
611
 * sh_info of the source area. The process of duplicating the
623
 * mapping is done through the backend share function.
612
 * mapping is done through the backend share function.
624
 *
613
 *
625
 * @param src_as Pointer to source address space.
614
 * @param src_as    Pointer to source address space.
626
 * @param src_base Base address of the source address space area.
615
 * @param src_base  Base address of the source address space area.
627
 * @param acc_size Expected size of the source area.
616
 * @param acc_size  Expected size of the source area.
628
 * @param dst_as Pointer to destination address space.
617
 * @param dst_as    Pointer to destination address space.
629
 * @param dst_base Target base address.
618
 * @param dst_base  Target base address.
630
 * @param dst_flags_mask Destination address space area flags mask.
619
 * @param dst_flags_mask Destination address space area flags mask.
631
 *
620
 *
632
 * @return Zero on success or ENOENT if there is no such task or if there is no
621
 * @return      Zero on success or ENOENT if there is no such task or if
633
 * such address space area, EPERM if there was a problem in accepting the area
622
 *          there is no such address space area, EPERM if there was
-
 
623
 *          a problem in accepting the area or ENOMEM if there was a
634
 * or ENOMEM if there was a problem in allocating destination address space
624
 *          problem in allocating destination address space area.
635
 * area. ENOTSUP is returned if the address space area backend does not support
625
 *          ENOTSUP is returned if the address space area backend
636
 * sharing.
626
 *          does not support sharing.
637
 */
627
 */
638
int as_area_share(as_t *src_as, uintptr_t src_base, size_t acc_size,
628
int as_area_share(as_t *src_as, uintptr_t src_base, size_t acc_size,
639
    as_t *dst_as, uintptr_t dst_base, int dst_flags_mask)
629
    as_t *dst_as, uintptr_t dst_base, int dst_flags_mask)
640
{
630
{
641
    ipl_t ipl;
631
    ipl_t ipl;
642
    int src_flags;
632
    int src_flags;
643
    size_t src_size;
633
    size_t src_size;
644
    as_area_t *src_area, *dst_area;
634
    as_area_t *src_area, *dst_area;
645
    share_info_t *sh_info;
635
    share_info_t *sh_info;
646
    mem_backend_t *src_backend;
636
    mem_backend_t *src_backend;
647
    mem_backend_data_t src_backend_data;
637
    mem_backend_data_t src_backend_data;
648
   
638
   
649
    ipl = interrupts_disable();
639
    ipl = interrupts_disable();
650
    mutex_lock(&src_as->lock);
640
    mutex_lock(&src_as->lock);
651
    src_area = find_area_and_lock(src_as, src_base);
641
    src_area = find_area_and_lock(src_as, src_base);
652
    if (!src_area) {
642
    if (!src_area) {
653
        /*
643
        /*
654
         * Could not find the source address space area.
644
         * Could not find the source address space area.
655
         */
645
         */
656
        mutex_unlock(&src_as->lock);
646
        mutex_unlock(&src_as->lock);
657
        interrupts_restore(ipl);
647
        interrupts_restore(ipl);
658
        return ENOENT;
648
        return ENOENT;
659
    }
649
    }
660
 
650
 
661
    if (!src_area->backend || !src_area->backend->share) {
651
    if (!src_area->backend || !src_area->backend->share) {
662
        /*
652
        /*
663
         * There is no backend or the backend does not
653
         * There is no backend or the backend does not
664
         * know how to share the area.
654
         * know how to share the area.
665
         */
655
         */
666
        mutex_unlock(&src_area->lock);
656
        mutex_unlock(&src_area->lock);
667
        mutex_unlock(&src_as->lock);
657
        mutex_unlock(&src_as->lock);
668
        interrupts_restore(ipl);
658
        interrupts_restore(ipl);
669
        return ENOTSUP;
659
        return ENOTSUP;
670
    }
660
    }
671
   
661
   
672
    src_size = src_area->pages * PAGE_SIZE;
662
    src_size = src_area->pages * PAGE_SIZE;
673
    src_flags = src_area->flags;
663
    src_flags = src_area->flags;
674
    src_backend = src_area->backend;
664
    src_backend = src_area->backend;
675
    src_backend_data = src_area->backend_data;
665
    src_backend_data = src_area->backend_data;
676
 
666
 
677
    /* Share the cacheable flag from the original mapping */
667
    /* Share the cacheable flag from the original mapping */
678
    if (src_flags & AS_AREA_CACHEABLE)
668
    if (src_flags & AS_AREA_CACHEABLE)
679
        dst_flags_mask |= AS_AREA_CACHEABLE;
669
        dst_flags_mask |= AS_AREA_CACHEABLE;
680
 
670
 
681
    if (src_size != acc_size ||
671
    if (src_size != acc_size ||
682
        (src_flags & dst_flags_mask) != dst_flags_mask) {
672
        (src_flags & dst_flags_mask) != dst_flags_mask) {
683
        mutex_unlock(&src_area->lock);
673
        mutex_unlock(&src_area->lock);
684
        mutex_unlock(&src_as->lock);
674
        mutex_unlock(&src_as->lock);
685
        interrupts_restore(ipl);
675
        interrupts_restore(ipl);
686
        return EPERM;
676
        return EPERM;
687
    }
677
    }
688
 
678
 
689
    /*
679
    /*
690
     * Now we are committed to sharing the area.
680
     * Now we are committed to sharing the area.
691
     * First, prepare the area for sharing.
681
     * First, prepare the area for sharing.
692
     * Then it will be safe to unlock it.
682
     * Then it will be safe to unlock it.
693
     */
683
     */
694
    sh_info = src_area->sh_info;
684
    sh_info = src_area->sh_info;
695
    if (!sh_info) {
685
    if (!sh_info) {
696
        sh_info = (share_info_t *) malloc(sizeof(share_info_t), 0);
686
        sh_info = (share_info_t *) malloc(sizeof(share_info_t), 0);
697
        mutex_initialize(&sh_info->lock, MUTEX_PASSIVE);
687
        mutex_initialize(&sh_info->lock, MUTEX_PASSIVE);
698
        sh_info->refcount = 2;
688
        sh_info->refcount = 2;
699
        btree_create(&sh_info->pagemap);
689
        btree_create(&sh_info->pagemap);
700
        src_area->sh_info = sh_info;
690
        src_area->sh_info = sh_info;
701
        /*
691
        /*
702
         * Call the backend to setup sharing.
692
         * Call the backend to setup sharing.
703
         */
693
         */
704
        src_area->backend->share(src_area);
694
        src_area->backend->share(src_area);
705
    } else {
695
    } else {
706
        mutex_lock(&sh_info->lock);
696
        mutex_lock(&sh_info->lock);
707
        sh_info->refcount++;
697
        sh_info->refcount++;
708
        mutex_unlock(&sh_info->lock);
698
        mutex_unlock(&sh_info->lock);
709
    }
699
    }
710
 
700
 
711
    mutex_unlock(&src_area->lock);
701
    mutex_unlock(&src_area->lock);
712
    mutex_unlock(&src_as->lock);
702
    mutex_unlock(&src_as->lock);
713
 
703
 
714
    /*
704
    /*
715
     * Create copy of the source address space area.
705
     * Create copy of the source address space area.
716
     * The destination area is created with AS_AREA_ATTR_PARTIAL
706
     * The destination area is created with AS_AREA_ATTR_PARTIAL
717
     * attribute set which prevents race condition with
707
     * attribute set which prevents race condition with
718
     * preliminary as_page_fault() calls.
708
     * preliminary as_page_fault() calls.
719
     * The flags of the source area are masked against dst_flags_mask
709
     * The flags of the source area are masked against dst_flags_mask
720
     * to support sharing in less privileged mode.
710
     * to support sharing in less privileged mode.
721
     */
711
     */
722
    dst_area = as_area_create(dst_as, dst_flags_mask, src_size, dst_base,
712
    dst_area = as_area_create(dst_as, dst_flags_mask, src_size, dst_base,
723
        AS_AREA_ATTR_PARTIAL, src_backend, &src_backend_data);
713
        AS_AREA_ATTR_PARTIAL, src_backend, &src_backend_data);
724
    if (!dst_area) {
714
    if (!dst_area) {
725
        /*
715
        /*
726
         * Destination address space area could not be created.
716
         * Destination address space area could not be created.
727
         */
717
         */
728
        sh_info_remove_reference(sh_info);
718
        sh_info_remove_reference(sh_info);
729
       
719
       
730
        interrupts_restore(ipl);
720
        interrupts_restore(ipl);
731
        return ENOMEM;
721
        return ENOMEM;
732
    }
722
    }
733
 
723
 
734
    /*
724
    /*
735
     * Now the destination address space area has been
725
     * Now the destination address space area has been
736
     * fully initialized. Clear the AS_AREA_ATTR_PARTIAL
726
     * fully initialized. Clear the AS_AREA_ATTR_PARTIAL
737
     * attribute and set the sh_info.
727
     * attribute and set the sh_info.
738
     */
728
     */
739
    mutex_lock(&dst_as->lock); 
729
    mutex_lock(&dst_as->lock); 
740
    mutex_lock(&dst_area->lock);
730
    mutex_lock(&dst_area->lock);
741
    dst_area->attributes &= ~AS_AREA_ATTR_PARTIAL;
731
    dst_area->attributes &= ~AS_AREA_ATTR_PARTIAL;
742
    dst_area->sh_info = sh_info;
732
    dst_area->sh_info = sh_info;
743
    mutex_unlock(&dst_area->lock);
733
    mutex_unlock(&dst_area->lock);
744
    mutex_unlock(&dst_as->lock);   
734
    mutex_unlock(&dst_as->lock);   
745
 
735
 
746
    interrupts_restore(ipl);
736
    interrupts_restore(ipl);
747
   
737
   
748
    return 0;
738
    return 0;
749
}
739
}
750
 
740
 
751
/** Check access mode for address space area.
741
/** Check access mode for address space area.
752
 *
742
 *
753
 * The address space area must be locked prior to this call.
743
 * The address space area must be locked prior to this call.
754
 *
744
 *
755
 * @param area Address space area.
745
 * @param area      Address space area.
756
 * @param access Access mode.
746
 * @param access    Access mode.
757
 *
747
 *
758
 * @return False if access violates area's permissions, true otherwise.
748
 * @return      False if access violates area's permissions, true
-
 
749
 *          otherwise.
759
 */
750
 */
760
bool as_area_check_access(as_area_t *area, pf_access_t access)
751
bool as_area_check_access(as_area_t *area, pf_access_t access)
761
{
752
{
762
    int flagmap[] = {
753
    int flagmap[] = {
763
        [PF_ACCESS_READ] = AS_AREA_READ,
754
        [PF_ACCESS_READ] = AS_AREA_READ,
764
        [PF_ACCESS_WRITE] = AS_AREA_WRITE,
755
        [PF_ACCESS_WRITE] = AS_AREA_WRITE,
765
        [PF_ACCESS_EXEC] = AS_AREA_EXEC
756
        [PF_ACCESS_EXEC] = AS_AREA_EXEC
766
    };
757
    };
767
 
758
 
768
    if (!(area->flags & flagmap[access]))
759
    if (!(area->flags & flagmap[access]))
769
        return false;
760
        return false;
770
   
761
   
771
    return true;
762
    return true;
772
}
763
}
773
 
764
 
774
/** Change adress area flags.
765
/** Change adress space area flags.
775
 *
766
 *
776
 * The idea is to have the same data, but with a different access mode.
767
 * The idea is to have the same data, but with a different access mode.
777
 * This is needed e.g. for writing code into memory and then executing it.
768
 * This is needed e.g. for writing code into memory and then executing it.
778
 * In order for this to work properly, this may copy the data
769
 * In order for this to work properly, this may copy the data
779
 * into private anonymous memory (unless it's already there).
770
 * into private anonymous memory (unless it's already there).
780
 *
771
 *
781
 * @param as Address space.
772
 * @param as        Address space.
782
 * @param flags Flags of the area memory.
773
 * @param flags     Flags of the area memory.
783
 * @param address Address withing the area to be changed.
774
 * @param address   Address withing the area to be changed.
784
 *
775
 *
785
 * @return Zero on success or a value from @ref errno.h on failure.
776
 * @return      Zero on success or a value from @ref errno.h on failure.
786
 */
777
 */
787
int as_area_change_flags(as_t *as, int flags, uintptr_t address)
778
int as_area_change_flags(as_t *as, int flags, uintptr_t address)
788
{
779
{
789
    as_area_t *area;
780
    as_area_t *area;
790
    uintptr_t base;
781
    uintptr_t base;
791
    link_t *cur;
782
    link_t *cur;
792
    ipl_t ipl;
783
    ipl_t ipl;
793
    int page_flags;
784
    int page_flags;
794
    uintptr_t *old_frame;
785
    uintptr_t *old_frame;
795
    index_t frame_idx;
786
    index_t frame_idx;
796
    count_t used_pages;
787
    count_t used_pages;
797
 
788
 
798
    /* Flags for the new memory mapping */
789
    /* Flags for the new memory mapping */
799
    page_flags = area_flags_to_page_flags(flags);
790
    page_flags = area_flags_to_page_flags(flags);
800
 
791
 
801
    ipl = interrupts_disable();
792
    ipl = interrupts_disable();
802
    mutex_lock(&as->lock);
793
    mutex_lock(&as->lock);
803
 
794
 
804
    area = find_area_and_lock(as, address);
795
    area = find_area_and_lock(as, address);
805
    if (!area) {
796
    if (!area) {
806
        mutex_unlock(&as->lock);
797
        mutex_unlock(&as->lock);
807
        interrupts_restore(ipl);
798
        interrupts_restore(ipl);
808
        return ENOENT;
799
        return ENOENT;
809
    }
800
    }
810
 
801
 
811
    if (area->sh_info || area->backend != &anon_backend) {
802
    if (area->sh_info || area->backend != &anon_backend) {
812
        /* Copying shared areas not supported yet */
803
        /* Copying shared areas not supported yet */
813
        /* Copying non-anonymous memory not supported yet */
804
        /* Copying non-anonymous memory not supported yet */
814
        mutex_unlock(&area->lock);
805
        mutex_unlock(&area->lock);
815
        mutex_unlock(&as->lock);
806
        mutex_unlock(&as->lock);
816
        interrupts_restore(ipl);
807
        interrupts_restore(ipl);
817
        return ENOTSUP;
808
        return ENOTSUP;
818
    }
809
    }
819
 
810
 
820
    base = area->base;
811
    base = area->base;
821
 
812
 
822
    /*
813
    /*
823
     * Compute total number of used pages in the used_space B+tree
814
     * Compute total number of used pages in the used_space B+tree
824
     */
815
     */
825
    used_pages = 0;
816
    used_pages = 0;
826
 
817
 
827
    for (cur = area->used_space.leaf_head.next;
818
    for (cur = area->used_space.leaf_head.next;
828
        cur != &area->used_space.leaf_head; cur = cur->next) {
819
        cur != &area->used_space.leaf_head; cur = cur->next) {
829
        btree_node_t *node;
820
        btree_node_t *node;
830
        unsigned int i;
821
        unsigned int i;
831
       
822
       
832
        node = list_get_instance(cur, btree_node_t, leaf_link);
823
        node = list_get_instance(cur, btree_node_t, leaf_link);
833
        for (i = 0; i < node->keys; i++) {
824
        for (i = 0; i < node->keys; i++) {
834
            used_pages += (count_t) node->value[i];
825
            used_pages += (count_t) node->value[i];
835
        }
826
        }
836
    }
827
    }
837
 
828
 
838
    /* An array for storing frame numbers */
829
    /* An array for storing frame numbers */
839
    old_frame = malloc(used_pages * sizeof(uintptr_t), 0);
830
    old_frame = malloc(used_pages * sizeof(uintptr_t), 0);
840
 
831
 
841
    /*
832
    /*
842
     * Start TLB shootdown sequence.
833
     * Start TLB shootdown sequence.
843
     */
834
     */
844
    tlb_shootdown_start(TLB_INVL_PAGES, as->asid, area->base, area->pages);
835
    tlb_shootdown_start(TLB_INVL_PAGES, as->asid, area->base, area->pages);
845
 
836
 
846
    /*
837
    /*
847
     * Remove used pages from page tables and remember their frame
838
     * Remove used pages from page tables and remember their frame
848
     * numbers.
839
     * numbers.
849
     */
840
     */
850
    frame_idx = 0;
841
    frame_idx = 0;
851
 
842
 
852
    for (cur = area->used_space.leaf_head.next;
843
    for (cur = area->used_space.leaf_head.next;
853
        cur != &area->used_space.leaf_head; cur = cur->next) {
844
        cur != &area->used_space.leaf_head; cur = cur->next) {
854
        btree_node_t *node;
845
        btree_node_t *node;
855
        unsigned int i;
846
        unsigned int i;
856
       
847
       
857
        node = list_get_instance(cur, btree_node_t, leaf_link);
848
        node = list_get_instance(cur, btree_node_t, leaf_link);
858
        for (i = 0; i < node->keys; i++) {
849
        for (i = 0; i < node->keys; i++) {
859
            uintptr_t b = node->key[i];
850
            uintptr_t b = node->key[i];
860
            count_t j;
851
            count_t j;
861
            pte_t *pte;
852
            pte_t *pte;
862
           
853
           
863
            for (j = 0; j < (count_t) node->value[i]; j++) {
854
            for (j = 0; j < (count_t) node->value[i]; j++) {
864
                page_table_lock(as, false);
855
                page_table_lock(as, false);
865
                pte = page_mapping_find(as, b + j * PAGE_SIZE);
856
                pte = page_mapping_find(as, b + j * PAGE_SIZE);
866
                ASSERT(pte && PTE_VALID(pte) &&
857
                ASSERT(pte && PTE_VALID(pte) &&
867
                    PTE_PRESENT(pte));
858
                    PTE_PRESENT(pte));
868
                old_frame[frame_idx++] = PTE_GET_FRAME(pte);
859
                old_frame[frame_idx++] = PTE_GET_FRAME(pte);
869
 
860
 
870
                /* Remove old mapping */
861
                /* Remove old mapping */
871
                page_mapping_remove(as, b + j * PAGE_SIZE);
862
                page_mapping_remove(as, b + j * PAGE_SIZE);
872
                page_table_unlock(as, false);
863
                page_table_unlock(as, false);
873
            }
864
            }
874
        }
865
        }
875
    }
866
    }
876
 
867
 
877
    /*
868
    /*
878
     * Finish TLB shootdown sequence.
869
     * Finish TLB shootdown sequence.
879
     */
870
     */
880
 
871
 
881
    tlb_invalidate_pages(as->asid, area->base, area->pages);
872
    tlb_invalidate_pages(as->asid, area->base, area->pages);
882
    /*
873
    /*
883
     * Invalidate potential software translation caches (e.g. TSB on
874
     * Invalidate potential software translation caches (e.g. TSB on
884
     * sparc64).
875
     * sparc64).
885
     */
876
     */
886
    as_invalidate_translation_cache(as, area->base, area->pages);
877
    as_invalidate_translation_cache(as, area->base, area->pages);
887
    tlb_shootdown_finalize();
878
    tlb_shootdown_finalize();
888
 
879
 
889
    /*
880
    /*
-
 
881
     * Set the new flags.
-
 
882
     */
-
 
883
    area->flags = flags;
-
 
884
 
-
 
885
    /*
890
     * Map pages back in with new flags. This step is kept separate
886
     * Map pages back in with new flags. This step is kept separate
891
     * so that there's no instant when the memory area could be
887
     * so that the memory area could not be accesed with both the old and
892
     * accesed with both the old and the new flags at once.
888
     * the new flags at once.
893
     */
889
     */
894
    frame_idx = 0;
890
    frame_idx = 0;
895
 
891
 
896
    for (cur = area->used_space.leaf_head.next;
892
    for (cur = area->used_space.leaf_head.next;
897
        cur != &area->used_space.leaf_head; cur = cur->next) {
893
        cur != &area->used_space.leaf_head; cur = cur->next) {
898
        btree_node_t *node;
894
        btree_node_t *node;
899
        unsigned int i;
895
        unsigned int i;
900
       
896
       
901
        node = list_get_instance(cur, btree_node_t, leaf_link);
897
        node = list_get_instance(cur, btree_node_t, leaf_link);
902
        for (i = 0; i < node->keys; i++) {
898
        for (i = 0; i < node->keys; i++) {
903
            uintptr_t b = node->key[i];
899
            uintptr_t b = node->key[i];
904
            count_t j;
900
            count_t j;
905
           
901
           
906
            for (j = 0; j < (count_t) node->value[i]; j++) {
902
            for (j = 0; j < (count_t) node->value[i]; j++) {
907
                page_table_lock(as, false);
903
                page_table_lock(as, false);
908
 
904
 
909
                /* Insert the new mapping */
905
                /* Insert the new mapping */
910
                page_mapping_insert(as, b + j * PAGE_SIZE,
906
                page_mapping_insert(as, b + j * PAGE_SIZE,
911
                    old_frame[frame_idx++], page_flags);
907
                    old_frame[frame_idx++], page_flags);
912
 
908
 
913
                page_table_unlock(as, false);
909
                page_table_unlock(as, false);
914
            }
910
            }
915
        }
911
        }
916
    }
912
    }
917
 
913
 
918
    free(old_frame);
914
    free(old_frame);
919
 
915
 
920
    mutex_unlock(&area->lock);
916
    mutex_unlock(&area->lock);
921
    mutex_unlock(&as->lock);
917
    mutex_unlock(&as->lock);
922
    interrupts_restore(ipl);
918
    interrupts_restore(ipl);
923
 
919
 
924
    return 0;
920
    return 0;
925
}
921
}
926
 
922
 
927
 
923
 
928
/** Handle page fault within the current address space.
924
/** Handle page fault within the current address space.
929
 *
925
 *
930
 * This is the high-level page fault handler. It decides
926
 * This is the high-level page fault handler. It decides whether the page fault
931
 * whether the page fault can be resolved by any backend
-
 
932
 * and if so, it invokes the backend to resolve the page
927
 * can be resolved by any backend and if so, it invokes the backend to resolve
933
 * fault.
928
 * the page fault.
934
 *
929
 *
935
 * Interrupts are assumed disabled.
930
 * Interrupts are assumed disabled.
936
 *
931
 *
937
 * @param page Faulting page.
932
 * @param page      Faulting page.
938
 * @param access Access mode that caused the fault (i.e. read/write/exec).
933
 * @param access    Access mode that caused the page fault (i.e.
-
 
934
 *          read/write/exec).
939
 * @param istate Pointer to interrupted state.
935
 * @param istate    Pointer to the interrupted state.
940
 *
936
 *
941
 * @return AS_PF_FAULT on page fault, AS_PF_OK on success or AS_PF_DEFER if the
937
 * @return      AS_PF_FAULT on page fault, AS_PF_OK on success or
942
 *     fault was caused by copy_to_uspace() or copy_from_uspace().
938
 *          AS_PF_DEFER if the fault was caused by copy_to_uspace()
-
 
939
 *          or copy_from_uspace().
943
 */
940
 */
944
int as_page_fault(uintptr_t page, pf_access_t access, istate_t *istate)
941
int as_page_fault(uintptr_t page, pf_access_t access, istate_t *istate)
945
{
942
{
946
    pte_t *pte;
943
    pte_t *pte;
947
    as_area_t *area;
944
    as_area_t *area;
948
   
945
   
949
    if (!THREAD)
946
    if (!THREAD)
950
        return AS_PF_FAULT;
947
        return AS_PF_FAULT;
951
       
948
       
952
    ASSERT(AS);
949
    ASSERT(AS);
953
 
950
 
954
    mutex_lock(&AS->lock);
951
    mutex_lock(&AS->lock);
955
    area = find_area_and_lock(AS, page);   
952
    area = find_area_and_lock(AS, page);   
956
    if (!area) {
953
    if (!area) {
957
        /*
954
        /*
958
         * No area contained mapping for 'page'.
955
         * No area contained mapping for 'page'.
959
         * Signal page fault to low-level handler.
956
         * Signal page fault to low-level handler.
960
         */
957
         */
961
        mutex_unlock(&AS->lock);
958
        mutex_unlock(&AS->lock);
962
        goto page_fault;
959
        goto page_fault;
963
    }
960
    }
964
 
961
 
965
    if (area->attributes & AS_AREA_ATTR_PARTIAL) {
962
    if (area->attributes & AS_AREA_ATTR_PARTIAL) {
966
        /*
963
        /*
967
         * The address space area is not fully initialized.
964
         * The address space area is not fully initialized.
968
         * Avoid possible race by returning error.
965
         * Avoid possible race by returning error.
969
         */
966
         */
970
        mutex_unlock(&area->lock);
967
        mutex_unlock(&area->lock);
971
        mutex_unlock(&AS->lock);
968
        mutex_unlock(&AS->lock);
972
        goto page_fault;       
969
        goto page_fault;       
973
    }
970
    }
974
 
971
 
975
    if (!area->backend || !area->backend->page_fault) {
972
    if (!area->backend || !area->backend->page_fault) {
976
        /*
973
        /*
977
         * The address space area is not backed by any backend
974
         * The address space area is not backed by any backend
978
         * or the backend cannot handle page faults.
975
         * or the backend cannot handle page faults.
979
         */
976
         */
980
        mutex_unlock(&area->lock);
977
        mutex_unlock(&area->lock);
981
        mutex_unlock(&AS->lock);
978
        mutex_unlock(&AS->lock);
982
        goto page_fault;       
979
        goto page_fault;       
983
    }
980
    }
984
 
981
 
985
    page_table_lock(AS, false);
982
    page_table_lock(AS, false);
986
   
983
   
987
    /*
984
    /*
988
     * To avoid race condition between two page faults
985
     * To avoid race condition between two page faults on the same address,
989
     * on the same address, we need to make sure
-
 
990
     * the mapping has not been already inserted.
986
     * we need to make sure the mapping has not been already inserted.
991
     */
987
     */
992
    if ((pte = page_mapping_find(AS, page))) {
988
    if ((pte = page_mapping_find(AS, page))) {
993
        if (PTE_PRESENT(pte)) {
989
        if (PTE_PRESENT(pte)) {
994
            if (((access == PF_ACCESS_READ) && PTE_READABLE(pte)) ||
990
            if (((access == PF_ACCESS_READ) && PTE_READABLE(pte)) ||
995
                (access == PF_ACCESS_WRITE && PTE_WRITABLE(pte)) ||
991
                (access == PF_ACCESS_WRITE && PTE_WRITABLE(pte)) ||
996
                (access == PF_ACCESS_EXEC && PTE_EXECUTABLE(pte))) {
992
                (access == PF_ACCESS_EXEC && PTE_EXECUTABLE(pte))) {
997
                page_table_unlock(AS, false);
993
                page_table_unlock(AS, false);
998
                mutex_unlock(&area->lock);
994
                mutex_unlock(&area->lock);
999
                mutex_unlock(&AS->lock);
995
                mutex_unlock(&AS->lock);
1000
                return AS_PF_OK;
996
                return AS_PF_OK;
1001
            }
997
            }
1002
        }
998
        }
1003
    }
999
    }
1004
   
1000
   
1005
    /*
1001
    /*
1006
     * Resort to the backend page fault handler.
1002
     * Resort to the backend page fault handler.
1007
     */
1003
     */
1008
    if (area->backend->page_fault(area, page, access) != AS_PF_OK) {
1004
    if (area->backend->page_fault(area, page, access) != AS_PF_OK) {
1009
        page_table_unlock(AS, false);
1005
        page_table_unlock(AS, false);
1010
        mutex_unlock(&area->lock);
1006
        mutex_unlock(&area->lock);
1011
        mutex_unlock(&AS->lock);
1007
        mutex_unlock(&AS->lock);
1012
        goto page_fault;
1008
        goto page_fault;
1013
    }
1009
    }
1014
   
1010
   
1015
    page_table_unlock(AS, false);
1011
    page_table_unlock(AS, false);
1016
    mutex_unlock(&area->lock);
1012
    mutex_unlock(&area->lock);
1017
    mutex_unlock(&AS->lock);
1013
    mutex_unlock(&AS->lock);
1018
    return AS_PF_OK;
1014
    return AS_PF_OK;
1019
 
1015
 
1020
page_fault:
1016
page_fault:
1021
    if (THREAD->in_copy_from_uspace) {
1017
    if (THREAD->in_copy_from_uspace) {
1022
        THREAD->in_copy_from_uspace = false;
1018
        THREAD->in_copy_from_uspace = false;
1023
        istate_set_retaddr(istate,
1019
        istate_set_retaddr(istate,
1024
            (uintptr_t) &memcpy_from_uspace_failover_address);
1020
            (uintptr_t) &memcpy_from_uspace_failover_address);
1025
    } else if (THREAD->in_copy_to_uspace) {
1021
    } else if (THREAD->in_copy_to_uspace) {
1026
        THREAD->in_copy_to_uspace = false;
1022
        THREAD->in_copy_to_uspace = false;
1027
        istate_set_retaddr(istate,
1023
        istate_set_retaddr(istate,
1028
            (uintptr_t) &memcpy_to_uspace_failover_address);
1024
            (uintptr_t) &memcpy_to_uspace_failover_address);
1029
    } else {
1025
    } else {
1030
        return AS_PF_FAULT;
1026
        return AS_PF_FAULT;
1031
    }
1027
    }
1032
 
1028
 
1033
    return AS_PF_DEFER;
1029
    return AS_PF_DEFER;
1034
}
1030
}
1035
 
1031
 
1036
/** Switch address spaces.
1032
/** Switch address spaces.
1037
 *
1033
 *
1038
 * Note that this function cannot sleep as it is essentially a part of
1034
 * Note that this function cannot sleep as it is essentially a part of
1039
 * scheduling. Sleeping here would lead to deadlock on wakeup. Another
1035
 * scheduling. Sleeping here would lead to deadlock on wakeup. Another
1040
 * thing which is forbidden in this context is locking the address space.
1036
 * thing which is forbidden in this context is locking the address space.
1041
 *
1037
 *
1042
 * When this function is enetered, no spinlocks may be held.
1038
 * When this function is enetered, no spinlocks may be held.
1043
 *
1039
 *
1044
 * @param old Old address space or NULL.
1040
 * @param old       Old address space or NULL.
1045
 * @param new New address space.
1041
 * @param new       New address space.
1046
 */
1042
 */
1047
void as_switch(as_t *old_as, as_t *new_as)
1043
void as_switch(as_t *old_as, as_t *new_as)
1048
{
1044
{
1049
    DEADLOCK_PROBE_INIT(p_asidlock);
1045
    DEADLOCK_PROBE_INIT(p_asidlock);
1050
    preemption_disable();
1046
    preemption_disable();
1051
retry:
1047
retry:
1052
    (void) interrupts_disable();
1048
    (void) interrupts_disable();
1053
    if (!spinlock_trylock(&asidlock)) {
1049
    if (!spinlock_trylock(&asidlock)) {
1054
        /*
1050
        /*
1055
         * Avoid deadlock with TLB shootdown.
1051
         * Avoid deadlock with TLB shootdown.
1056
         * We can enable interrupts here because
1052
         * We can enable interrupts here because
1057
         * preemption is disabled. We should not be
1053
         * preemption is disabled. We should not be
1058
         * holding any other lock.
1054
         * holding any other lock.
1059
         */
1055
         */
1060
        (void) interrupts_enable();
1056
        (void) interrupts_enable();
1061
        DEADLOCK_PROBE(p_asidlock, DEADLOCK_THRESHOLD);
1057
        DEADLOCK_PROBE(p_asidlock, DEADLOCK_THRESHOLD);
1062
        goto retry;
1058
        goto retry;
1063
    }
1059
    }
1064
    preemption_enable();
1060
    preemption_enable();
1065
 
1061
 
1066
    /*
1062
    /*
1067
     * First, take care of the old address space.
1063
     * First, take care of the old address space.
1068
     */
1064
     */
1069
    if (old_as) {
1065
    if (old_as) {
1070
        ASSERT(old_as->cpu_refcount);
1066
        ASSERT(old_as->cpu_refcount);
1071
        if((--old_as->cpu_refcount == 0) && (old_as != AS_KERNEL)) {
1067
        if((--old_as->cpu_refcount == 0) && (old_as != AS_KERNEL)) {
1072
            /*
1068
            /*
1073
             * The old address space is no longer active on
1069
             * The old address space is no longer active on
1074
             * any processor. It can be appended to the
1070
             * any processor. It can be appended to the
1075
             * list of inactive address spaces with assigned
1071
             * list of inactive address spaces with assigned
1076
             * ASID.
1072
             * ASID.
1077
             */
1073
             */
1078
            ASSERT(old_as->asid != ASID_INVALID);
1074
            ASSERT(old_as->asid != ASID_INVALID);
1079
            list_append(&old_as->inactive_as_with_asid_link,
1075
            list_append(&old_as->inactive_as_with_asid_link,
1080
                &inactive_as_with_asid_head);
1076
                &inactive_as_with_asid_head);
1081
        }
1077
        }
1082
 
1078
 
1083
        /*
1079
        /*
1084
         * Perform architecture-specific tasks when the address space
1080
         * Perform architecture-specific tasks when the address space
1085
         * is being removed from the CPU.
1081
         * is being removed from the CPU.
1086
         */
1082
         */
1087
        as_deinstall_arch(old_as);
1083
        as_deinstall_arch(old_as);
1088
    }
1084
    }
1089
 
1085
 
1090
    /*
1086
    /*
1091
     * Second, prepare the new address space.
1087
     * Second, prepare the new address space.
1092
     */
1088
     */
1093
    if ((new_as->cpu_refcount++ == 0) && (new_as != AS_KERNEL)) {
1089
    if ((new_as->cpu_refcount++ == 0) && (new_as != AS_KERNEL)) {
1094
        if (new_as->asid != ASID_INVALID)
1090
        if (new_as->asid != ASID_INVALID)
1095
            list_remove(&new_as->inactive_as_with_asid_link);
1091
            list_remove(&new_as->inactive_as_with_asid_link);
1096
        else
1092
        else
1097
            new_as->asid = asid_get();
1093
            new_as->asid = asid_get();
1098
    }
1094
    }
1099
#ifdef AS_PAGE_TABLE
1095
#ifdef AS_PAGE_TABLE
1100
    SET_PTL0_ADDRESS(new_as->genarch.page_table);
1096
    SET_PTL0_ADDRESS(new_as->genarch.page_table);
1101
#endif
1097
#endif
1102
   
1098
   
1103
    /*
1099
    /*
1104
     * Perform architecture-specific steps.
1100
     * Perform architecture-specific steps.
1105
     * (e.g. write ASID to hardware register etc.)
1101
     * (e.g. write ASID to hardware register etc.)
1106
     */
1102
     */
1107
    as_install_arch(new_as);
1103
    as_install_arch(new_as);
1108
 
1104
 
1109
    spinlock_unlock(&asidlock);
1105
    spinlock_unlock(&asidlock);
1110
   
1106
   
1111
    AS = new_as;
1107
    AS = new_as;
1112
}
1108
}
1113
 
1109
 
1114
/** Convert address space area flags to page flags.
1110
/** Convert address space area flags to page flags.
1115
 *
1111
 *
1116
 * @param aflags Flags of some address space area.
1112
 * @param aflags    Flags of some address space area.
1117
 *
1113
 *
1118
 * @return Flags to be passed to page_mapping_insert().
1114
 * @return      Flags to be passed to page_mapping_insert().
1119
 */
1115
 */
1120
int area_flags_to_page_flags(int aflags)
1116
int area_flags_to_page_flags(int aflags)
1121
{
1117
{
1122
    int flags;
1118
    int flags;
1123
 
1119
 
1124
    flags = PAGE_USER | PAGE_PRESENT;
1120
    flags = PAGE_USER | PAGE_PRESENT;
1125
   
1121
   
1126
    if (aflags & AS_AREA_READ)
1122
    if (aflags & AS_AREA_READ)
1127
        flags |= PAGE_READ;
1123
        flags |= PAGE_READ;
1128
       
1124
       
1129
    if (aflags & AS_AREA_WRITE)
1125
    if (aflags & AS_AREA_WRITE)
1130
        flags |= PAGE_WRITE;
1126
        flags |= PAGE_WRITE;
1131
   
1127
   
1132
    if (aflags & AS_AREA_EXEC)
1128
    if (aflags & AS_AREA_EXEC)
1133
        flags |= PAGE_EXEC;
1129
        flags |= PAGE_EXEC;
1134
   
1130
   
1135
    if (aflags & AS_AREA_CACHEABLE)
1131
    if (aflags & AS_AREA_CACHEABLE)
1136
        flags |= PAGE_CACHEABLE;
1132
        flags |= PAGE_CACHEABLE;
1137
       
1133
       
1138
    return flags;
1134
    return flags;
1139
}
1135
}
1140
 
1136
 
1141
/** Compute flags for virtual address translation subsytem.
1137
/** Compute flags for virtual address translation subsytem.
1142
 *
1138
 *
1143
 * The address space area must be locked.
1139
 * The address space area must be locked.
1144
 * Interrupts must be disabled.
1140
 * Interrupts must be disabled.
1145
 *
1141
 *
1146
 * @param a Address space area.
1142
 * @param a     Address space area.
1147
 *
1143
 *
1148
 * @return Flags to be used in page_mapping_insert().
1144
 * @return      Flags to be used in page_mapping_insert().
1149
 */
1145
 */
1150
int as_area_get_flags(as_area_t *a)
1146
int as_area_get_flags(as_area_t *a)
1151
{
1147
{
1152
    return area_flags_to_page_flags(a->flags);
1148
    return area_flags_to_page_flags(a->flags);
1153
}
1149
}
1154
 
1150
 
1155
/** Create page table.
1151
/** Create page table.
1156
 *
1152
 *
1157
 * Depending on architecture, create either address space
1153
 * Depending on architecture, create either address space private or global page
1158
 * private or global page table.
1154
 * table.
1159
 *
1155
 *
1160
 * @param flags Flags saying whether the page table is for kernel address space.
1156
 * @param flags     Flags saying whether the page table is for the kernel
-
 
1157
 *          address space.
1161
 *
1158
 *
1162
 * @return First entry of the page table.
1159
 * @return      First entry of the page table.
1163
 */
1160
 */
1164
pte_t *page_table_create(int flags)
1161
pte_t *page_table_create(int flags)
1165
{
1162
{
1166
#ifdef __OBJC__
-
 
1167
    return [as_t page_table_create: flags];
-
 
1168
#else
-
 
1169
    ASSERT(as_operations);
1163
    ASSERT(as_operations);
1170
    ASSERT(as_operations->page_table_create);
1164
    ASSERT(as_operations->page_table_create);
1171
   
1165
   
1172
    return as_operations->page_table_create(flags);
1166
    return as_operations->page_table_create(flags);
1173
#endif
-
 
1174
}
1167
}
1175
 
1168
 
1176
/** Destroy page table.
1169
/** Destroy page table.
1177
 *
1170
 *
1178
 * Destroy page table in architecture specific way.
1171
 * Destroy page table in architecture specific way.
1179
 *
1172
 *
1180
 * @param page_table Physical address of PTL0.
1173
 * @param page_table    Physical address of PTL0.
1181
 */
1174
 */
1182
void page_table_destroy(pte_t *page_table)
1175
void page_table_destroy(pte_t *page_table)
1183
{
1176
{
1184
#ifdef __OBJC__
-
 
1185
    return [as_t page_table_destroy: page_table];
-
 
1186
#else
-
 
1187
    ASSERT(as_operations);
1177
    ASSERT(as_operations);
1188
    ASSERT(as_operations->page_table_destroy);
1178
    ASSERT(as_operations->page_table_destroy);
1189
   
1179
   
1190
    as_operations->page_table_destroy(page_table);
1180
    as_operations->page_table_destroy(page_table);
1191
#endif
-
 
1192
}
1181
}
1193
 
1182
 
1194
/** Lock page table.
1183
/** Lock page table.
1195
 *
1184
 *
1196
 * This function should be called before any page_mapping_insert(),
1185
 * This function should be called before any page_mapping_insert(),
1197
 * page_mapping_remove() and page_mapping_find().
1186
 * page_mapping_remove() and page_mapping_find().
1198
 *
1187
 *
1199
 * Locking order is such that address space areas must be locked
1188
 * Locking order is such that address space areas must be locked
1200
 * prior to this call. Address space can be locked prior to this
1189
 * prior to this call. Address space can be locked prior to this
1201
 * call in which case the lock argument is false.
1190
 * call in which case the lock argument is false.
1202
 *
1191
 *
1203
 * @param as Address space.
1192
 * @param as        Address space.
1204
 * @param lock If false, do not attempt to lock as->lock.
1193
 * @param lock      If false, do not attempt to lock as->lock.
1205
 */
1194
 */
1206
void page_table_lock(as_t *as, bool lock)
1195
void page_table_lock(as_t *as, bool lock)
1207
{
1196
{
1208
#ifdef __OBJC__
-
 
1209
    [as page_table_lock: lock];
-
 
1210
#else
-
 
1211
    ASSERT(as_operations);
1197
    ASSERT(as_operations);
1212
    ASSERT(as_operations->page_table_lock);
1198
    ASSERT(as_operations->page_table_lock);
1213
   
1199
   
1214
    as_operations->page_table_lock(as, lock);
1200
    as_operations->page_table_lock(as, lock);
1215
#endif
-
 
1216
}
1201
}
1217
 
1202
 
1218
/** Unlock page table.
1203
/** Unlock page table.
1219
 *
1204
 *
1220
 * @param as Address space.
1205
 * @param as        Address space.
1221
 * @param unlock If false, do not attempt to unlock as->lock.
1206
 * @param unlock    If false, do not attempt to unlock as->lock.
1222
 */
1207
 */
1223
void page_table_unlock(as_t *as, bool unlock)
1208
void page_table_unlock(as_t *as, bool unlock)
1224
{
1209
{
1225
#ifdef __OBJC__
-
 
1226
    [as page_table_unlock: unlock];
-
 
1227
#else
-
 
1228
    ASSERT(as_operations);
1210
    ASSERT(as_operations);
1229
    ASSERT(as_operations->page_table_unlock);
1211
    ASSERT(as_operations->page_table_unlock);
1230
   
1212
   
1231
    as_operations->page_table_unlock(as, unlock);
1213
    as_operations->page_table_unlock(as, unlock);
1232
#endif
-
 
1233
}
1214
}
1234
 
1215
 
1235
 
1216
 
1236
/** Find address space area and lock it.
1217
/** Find address space area and lock it.
1237
 *
1218
 *
1238
 * The address space must be locked and interrupts must be disabled.
1219
 * The address space must be locked and interrupts must be disabled.
1239
 *
1220
 *
1240
 * @param as Address space.
1221
 * @param as        Address space.
1241
 * @param va Virtual address.
1222
 * @param va        Virtual address.
1242
 *
1223
 *
1243
 * @return Locked address space area containing va on success or NULL on
1224
 * @return      Locked address space area containing va on success or
1244
 *     failure.
1225
 *          NULL on failure.
1245
 */
1226
 */
1246
as_area_t *find_area_and_lock(as_t *as, uintptr_t va)
1227
as_area_t *find_area_and_lock(as_t *as, uintptr_t va)
1247
{
1228
{
1248
    as_area_t *a;
1229
    as_area_t *a;
1249
    btree_node_t *leaf, *lnode;
1230
    btree_node_t *leaf, *lnode;
1250
    unsigned int i;
1231
    unsigned int i;
1251
   
1232
   
1252
    a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf);
1233
    a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf);
1253
    if (a) {
1234
    if (a) {
1254
        /* va is the base address of an address space area */
1235
        /* va is the base address of an address space area */
1255
        mutex_lock(&a->lock);
1236
        mutex_lock(&a->lock);
1256
        return a;
1237
        return a;
1257
    }
1238
    }
1258
   
1239
   
1259
    /*
1240
    /*
1260
     * Search the leaf node and the righmost record of its left neighbour
1241
     * Search the leaf node and the righmost record of its left neighbour
1261
     * to find out whether this is a miss or va belongs to an address
1242
     * to find out whether this is a miss or va belongs to an address
1262
     * space area found there.
1243
     * space area found there.
1263
     */
1244
     */
1264
   
1245
   
1265
    /* First, search the leaf node itself. */
1246
    /* First, search the leaf node itself. */
1266
    for (i = 0; i < leaf->keys; i++) {
1247
    for (i = 0; i < leaf->keys; i++) {
1267
        a = (as_area_t *) leaf->value[i];
1248
        a = (as_area_t *) leaf->value[i];
1268
        mutex_lock(&a->lock);
1249
        mutex_lock(&a->lock);
1269
        if ((a->base <= va) && (va < a->base + a->pages * PAGE_SIZE)) {
1250
        if ((a->base <= va) && (va < a->base + a->pages * PAGE_SIZE)) {
1270
            return a;
1251
            return a;
1271
        }
1252
        }
1272
        mutex_unlock(&a->lock);
1253
        mutex_unlock(&a->lock);
1273
    }
1254
    }
1274
 
1255
 
1275
    /*
1256
    /*
1276
     * Second, locate the left neighbour and test its last record.
1257
     * Second, locate the left neighbour and test its last record.
1277
     * Because of its position in the B+tree, it must have base < va.
1258
     * Because of its position in the B+tree, it must have base < va.
1278
     */
1259
     */
1279
    lnode = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf);
1260
    lnode = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf);
1280
    if (lnode) {
1261
    if (lnode) {
1281
        a = (as_area_t *) lnode->value[lnode->keys - 1];
1262
        a = (as_area_t *) lnode->value[lnode->keys - 1];
1282
        mutex_lock(&a->lock);
1263
        mutex_lock(&a->lock);
1283
        if (va < a->base + a->pages * PAGE_SIZE) {
1264
        if (va < a->base + a->pages * PAGE_SIZE) {
1284
            return a;
1265
            return a;
1285
        }
1266
        }
1286
        mutex_unlock(&a->lock);
1267
        mutex_unlock(&a->lock);
1287
    }
1268
    }
1288
 
1269
 
1289
    return NULL;
1270
    return NULL;
1290
}
1271
}
1291
 
1272
 
1292
/** Check area conflicts with other areas.
1273
/** Check area conflicts with other areas.
1293
 *
1274
 *
1294
 * The address space must be locked and interrupts must be disabled.
1275
 * The address space must be locked and interrupts must be disabled.
1295
 *
1276
 *
1296
 * @param as Address space.
1277
 * @param as        Address space.
1297
 * @param va Starting virtual address of the area being tested.
1278
 * @param va        Starting virtual address of the area being tested.
1298
 * @param size Size of the area being tested.
1279
 * @param size      Size of the area being tested.
1299
 * @param avoid_area Do not touch this area.
1280
 * @param avoid_area    Do not touch this area.
1300
 *
1281
 *
1301
 * @return True if there is no conflict, false otherwise.
1282
 * @return      True if there is no conflict, false otherwise.
1302
 */
1283
 */
-
 
1284
bool
1303
bool check_area_conflicts(as_t *as, uintptr_t va, size_t size,
1285
check_area_conflicts(as_t *as, uintptr_t va, size_t size, as_area_t *avoid_area)
1304
              as_area_t *avoid_area)
-
 
1305
{
1286
{
1306
    as_area_t *a;
1287
    as_area_t *a;
1307
    btree_node_t *leaf, *node;
1288
    btree_node_t *leaf, *node;
1308
    unsigned int i;
1289
    unsigned int i;
1309
   
1290
   
1310
    /*
1291
    /*
1311
     * We don't want any area to have conflicts with NULL page.
1292
     * We don't want any area to have conflicts with NULL page.
1312
     */
1293
     */
1313
    if (overlaps(va, size, NULL, PAGE_SIZE))
1294
    if (overlaps(va, size, NULL, PAGE_SIZE))
1314
        return false;
1295
        return false;
1315
   
1296
   
1316
    /*
1297
    /*
1317
     * The leaf node is found in O(log n), where n is proportional to
1298
     * The leaf node is found in O(log n), where n is proportional to
1318
     * the number of address space areas belonging to as.
1299
     * the number of address space areas belonging to as.
1319
     * The check for conflicts is then attempted on the rightmost
1300
     * The check for conflicts is then attempted on the rightmost
1320
     * record in the left neighbour, the leftmost record in the right
1301
     * record in the left neighbour, the leftmost record in the right
1321
     * neighbour and all records in the leaf node itself.
1302
     * neighbour and all records in the leaf node itself.
1322
     */
1303
     */
1323
   
1304
   
1324
    if ((a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf))) {
1305
    if ((a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf))) {
1325
        if (a != avoid_area)
1306
        if (a != avoid_area)
1326
            return false;
1307
            return false;
1327
    }
1308
    }
1328
   
1309
   
1329
    /* First, check the two border cases. */
1310
    /* First, check the two border cases. */
1330
    if ((node = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf))) {
1311
    if ((node = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf))) {
1331
        a = (as_area_t *) node->value[node->keys - 1];
1312
        a = (as_area_t *) node->value[node->keys - 1];
1332
        mutex_lock(&a->lock);
1313
        mutex_lock(&a->lock);
1333
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1314
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1334
            mutex_unlock(&a->lock);
1315
            mutex_unlock(&a->lock);
1335
            return false;
1316
            return false;
1336
        }
1317
        }
1337
        mutex_unlock(&a->lock);
1318
        mutex_unlock(&a->lock);
1338
    }
1319
    }
1339
    node = btree_leaf_node_right_neighbour(&as->as_area_btree, leaf);
1320
    node = btree_leaf_node_right_neighbour(&as->as_area_btree, leaf);
1340
    if (node) {
1321
    if (node) {
1341
        a = (as_area_t *) node->value[0];
1322
        a = (as_area_t *) node->value[0];
1342
        mutex_lock(&a->lock);
1323
        mutex_lock(&a->lock);
1343
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1324
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1344
            mutex_unlock(&a->lock);
1325
            mutex_unlock(&a->lock);
1345
            return false;
1326
            return false;
1346
        }
1327
        }
1347
        mutex_unlock(&a->lock);
1328
        mutex_unlock(&a->lock);
1348
    }
1329
    }
1349
   
1330
   
1350
    /* Second, check the leaf node. */
1331
    /* Second, check the leaf node. */
1351
    for (i = 0; i < leaf->keys; i++) {
1332
    for (i = 0; i < leaf->keys; i++) {
1352
        a = (as_area_t *) leaf->value[i];
1333
        a = (as_area_t *) leaf->value[i];
1353
   
1334
   
1354
        if (a == avoid_area)
1335
        if (a == avoid_area)
1355
            continue;
1336
            continue;
1356
   
1337
   
1357
        mutex_lock(&a->lock);
1338
        mutex_lock(&a->lock);
1358
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1339
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1359
            mutex_unlock(&a->lock);
1340
            mutex_unlock(&a->lock);
1360
            return false;
1341
            return false;
1361
        }
1342
        }
1362
        mutex_unlock(&a->lock);
1343
        mutex_unlock(&a->lock);
1363
    }
1344
    }
1364
 
1345
 
1365
    /*
1346
    /*
1366
     * So far, the area does not conflict with other areas.
1347
     * So far, the area does not conflict with other areas.
1367
     * Check if it doesn't conflict with kernel address space.
1348
     * Check if it doesn't conflict with kernel address space.
1368
     */  
1349
     */  
1369
    if (!KERNEL_ADDRESS_SPACE_SHADOWED) {
1350
    if (!KERNEL_ADDRESS_SPACE_SHADOWED) {
1370
        return !overlaps(va, size,
1351
        return !overlaps(va, size,
1371
            KERNEL_ADDRESS_SPACE_START,
1352
            KERNEL_ADDRESS_SPACE_START,
1372
            KERNEL_ADDRESS_SPACE_END - KERNEL_ADDRESS_SPACE_START);
1353
            KERNEL_ADDRESS_SPACE_END - KERNEL_ADDRESS_SPACE_START);
1373
    }
1354
    }
1374
 
1355
 
1375
    return true;
1356
    return true;
1376
}
1357
}
1377
 
1358
 
1378
/** Return size of the address space area with given base.
1359
/** Return size of the address space area with given base.
1379
 *
1360
 *
1380
 * @param base      Arbitrary address insede the address space area.
1361
 * @param base      Arbitrary address insede the address space area.
1381
 *
1362
 *
1382
 * @return      Size of the address space area in bytes or zero if it
1363
 * @return      Size of the address space area in bytes or zero if it
1383
 *          does not exist.
1364
 *          does not exist.
1384
 */
1365
 */
1385
size_t as_area_get_size(uintptr_t base)
1366
size_t as_area_get_size(uintptr_t base)
1386
{
1367
{
1387
    ipl_t ipl;
1368
    ipl_t ipl;
1388
    as_area_t *src_area;
1369
    as_area_t *src_area;
1389
    size_t size;
1370
    size_t size;
1390
 
1371
 
1391
    ipl = interrupts_disable();
1372
    ipl = interrupts_disable();
1392
    src_area = find_area_and_lock(AS, base);
1373
    src_area = find_area_and_lock(AS, base);
1393
    if (src_area){
1374
    if (src_area) {
1394
        size = src_area->pages * PAGE_SIZE;
1375
        size = src_area->pages * PAGE_SIZE;
1395
        mutex_unlock(&src_area->lock);
1376
        mutex_unlock(&src_area->lock);
1396
    } else {
1377
    } else {
1397
        size = 0;
1378
        size = 0;
1398
    }
1379
    }
1399
    interrupts_restore(ipl);
1380
    interrupts_restore(ipl);
1400
    return size;
1381
    return size;
1401
}
1382
}
1402
 
1383
 
1403
/** Mark portion of address space area as used.
1384
/** Mark portion of address space area as used.
1404
 *
1385
 *
1405
 * The address space area must be already locked.
1386
 * The address space area must be already locked.
1406
 *
1387
 *
1407
 * @param a Address space area.
1388
 * @param a     Address space area.
1408
 * @param page First page to be marked.
1389
 * @param page      First page to be marked.
1409
 * @param count Number of page to be marked.
1390
 * @param count     Number of page to be marked.
1410
 *
1391
 *
1411
 * @return 0 on failure and 1 on success.
1392
 * @return      Zero on failure and non-zero on success.
1412
 */
1393
 */
1413
int used_space_insert(as_area_t *a, uintptr_t page, count_t count)
1394
int used_space_insert(as_area_t *a, uintptr_t page, count_t count)
1414
{
1395
{
1415
    btree_node_t *leaf, *node;
1396
    btree_node_t *leaf, *node;
1416
    count_t pages;
1397
    count_t pages;
1417
    unsigned int i;
1398
    unsigned int i;
1418
 
1399
 
1419
    ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1400
    ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1420
    ASSERT(count);
1401
    ASSERT(count);
1421
 
1402
 
1422
    pages = (count_t) btree_search(&a->used_space, page, &leaf);
1403
    pages = (count_t) btree_search(&a->used_space, page, &leaf);
1423
    if (pages) {
1404
    if (pages) {
1424
        /*
1405
        /*
1425
         * We hit the beginning of some used space.
1406
         * We hit the beginning of some used space.
1426
         */
1407
         */
1427
        return 0;
1408
        return 0;
1428
    }
1409
    }
1429
 
1410
 
1430
    if (!leaf->keys) {
1411
    if (!leaf->keys) {
1431
        btree_insert(&a->used_space, page, (void *) count, leaf);
1412
        btree_insert(&a->used_space, page, (void *) count, leaf);
1432
        return 1;
1413
        return 1;
1433
    }
1414
    }
1434
 
1415
 
1435
    node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1416
    node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1436
    if (node) {
1417
    if (node) {
1437
        uintptr_t left_pg = node->key[node->keys - 1];
1418
        uintptr_t left_pg = node->key[node->keys - 1];
1438
        uintptr_t right_pg = leaf->key[0];
1419
        uintptr_t right_pg = leaf->key[0];
1439
        count_t left_cnt = (count_t) node->value[node->keys - 1];
1420
        count_t left_cnt = (count_t) node->value[node->keys - 1];
1440
        count_t right_cnt = (count_t) leaf->value[0];
1421
        count_t right_cnt = (count_t) leaf->value[0];
1441
       
1422
       
1442
        /*
1423
        /*
1443
         * Examine the possibility that the interval fits
1424
         * Examine the possibility that the interval fits
1444
         * somewhere between the rightmost interval of
1425
         * somewhere between the rightmost interval of
1445
         * the left neigbour and the first interval of the leaf.
1426
         * the left neigbour and the first interval of the leaf.
1446
         */
1427
         */
1447
         
1428
         
1448
        if (page >= right_pg) {
1429
        if (page >= right_pg) {
1449
            /* Do nothing. */
1430
            /* Do nothing. */
1450
        } else if (overlaps(page, count * PAGE_SIZE, left_pg,
1431
        } else if (overlaps(page, count * PAGE_SIZE, left_pg,
1451
            left_cnt * PAGE_SIZE)) {
1432
            left_cnt * PAGE_SIZE)) {
1452
            /* The interval intersects with the left interval. */
1433
            /* The interval intersects with the left interval. */
1453
            return 0;
1434
            return 0;
1454
        } else if (overlaps(page, count * PAGE_SIZE, right_pg,
1435
        } else if (overlaps(page, count * PAGE_SIZE, right_pg,
1455
            right_cnt * PAGE_SIZE)) {
1436
            right_cnt * PAGE_SIZE)) {
1456
            /* The interval intersects with the right interval. */
1437
            /* The interval intersects with the right interval. */
1457
            return 0;          
1438
            return 0;          
1458
        } else if ((page == left_pg + left_cnt * PAGE_SIZE) &&
1439
        } else if ((page == left_pg + left_cnt * PAGE_SIZE) &&
1459
            (page + count * PAGE_SIZE == right_pg)) {
1440
            (page + count * PAGE_SIZE == right_pg)) {
1460
            /*
1441
            /*
1461
             * The interval can be added by merging the two already
1442
             * The interval can be added by merging the two already
1462
             * present intervals.
1443
             * present intervals.
1463
             */
1444
             */
1464
            node->value[node->keys - 1] += count + right_cnt;
1445
            node->value[node->keys - 1] += count + right_cnt;
1465
            btree_remove(&a->used_space, right_pg, leaf);
1446
            btree_remove(&a->used_space, right_pg, leaf);
1466
            return 1;
1447
            return 1;
1467
        } else if (page == left_pg + left_cnt * PAGE_SIZE) {
1448
        } else if (page == left_pg + left_cnt * PAGE_SIZE) {
1468
            /*
1449
            /*
1469
             * The interval can be added by simply growing the left
1450
             * The interval can be added by simply growing the left
1470
             * interval.
1451
             * interval.
1471
             */
1452
             */
1472
            node->value[node->keys - 1] += count;
1453
            node->value[node->keys - 1] += count;
1473
            return 1;
1454
            return 1;
1474
        } else if (page + count * PAGE_SIZE == right_pg) {
1455
        } else if (page + count * PAGE_SIZE == right_pg) {
1475
            /*
1456
            /*
1476
             * The interval can be addded by simply moving base of
1457
             * The interval can be addded by simply moving base of
1477
             * the right interval down and increasing its size
1458
             * the right interval down and increasing its size
1478
             * accordingly.
1459
             * accordingly.
1479
             */
1460
             */
1480
            leaf->value[0] += count;
1461
            leaf->value[0] += count;
1481
            leaf->key[0] = page;
1462
            leaf->key[0] = page;
1482
            return 1;
1463
            return 1;
1483
        } else {
1464
        } else {
1484
            /*
1465
            /*
1485
             * The interval is between both neigbouring intervals,
1466
             * The interval is between both neigbouring intervals,
1486
             * but cannot be merged with any of them.
1467
             * but cannot be merged with any of them.
1487
             */
1468
             */
1488
            btree_insert(&a->used_space, page, (void *) count,
1469
            btree_insert(&a->used_space, page, (void *) count,
1489
                leaf);
1470
                leaf);
1490
            return 1;
1471
            return 1;
1491
        }
1472
        }
1492
    } else if (page < leaf->key[0]) {
1473
    } else if (page < leaf->key[0]) {
1493
        uintptr_t right_pg = leaf->key[0];
1474
        uintptr_t right_pg = leaf->key[0];
1494
        count_t right_cnt = (count_t) leaf->value[0];
1475
        count_t right_cnt = (count_t) leaf->value[0];
1495
   
1476
   
1496
        /*
1477
        /*
1497
         * Investigate the border case in which the left neighbour does
1478
         * Investigate the border case in which the left neighbour does
1498
         * not exist but the interval fits from the left.
1479
         * not exist but the interval fits from the left.
1499
         */
1480
         */
1500
         
1481
         
1501
        if (overlaps(page, count * PAGE_SIZE, right_pg,
1482
        if (overlaps(page, count * PAGE_SIZE, right_pg,
1502
            right_cnt * PAGE_SIZE)) {
1483
            right_cnt * PAGE_SIZE)) {
1503
            /* The interval intersects with the right interval. */
1484
            /* The interval intersects with the right interval. */
1504
            return 0;
1485
            return 0;
1505
        } else if (page + count * PAGE_SIZE == right_pg) {
1486
        } else if (page + count * PAGE_SIZE == right_pg) {
1506
            /*
1487
            /*
1507
             * The interval can be added by moving the base of the
1488
             * The interval can be added by moving the base of the
1508
             * right interval down and increasing its size
1489
             * right interval down and increasing its size
1509
             * accordingly.
1490
             * accordingly.
1510
             */
1491
             */
1511
            leaf->key[0] = page;
1492
            leaf->key[0] = page;
1512
            leaf->value[0] += count;
1493
            leaf->value[0] += count;
1513
            return 1;
1494
            return 1;
1514
        } else {
1495
        } else {
1515
            /*
1496
            /*
1516
             * The interval doesn't adjoin with the right interval.
1497
             * The interval doesn't adjoin with the right interval.
1517
             * It must be added individually.
1498
             * It must be added individually.
1518
             */
1499
             */
1519
            btree_insert(&a->used_space, page, (void *) count,
1500
            btree_insert(&a->used_space, page, (void *) count,
1520
                leaf);
1501
                leaf);
1521
            return 1;
1502
            return 1;
1522
        }
1503
        }
1523
    }
1504
    }
1524
 
1505
 
1525
    node = btree_leaf_node_right_neighbour(&a->used_space, leaf);
1506
    node = btree_leaf_node_right_neighbour(&a->used_space, leaf);
1526
    if (node) {
1507
    if (node) {
1527
        uintptr_t left_pg = leaf->key[leaf->keys - 1];
1508
        uintptr_t left_pg = leaf->key[leaf->keys - 1];
1528
        uintptr_t right_pg = node->key[0];
1509
        uintptr_t right_pg = node->key[0];
1529
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1510
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1530
        count_t right_cnt = (count_t) node->value[0];
1511
        count_t right_cnt = (count_t) node->value[0];
1531
       
1512
       
1532
        /*
1513
        /*
1533
         * Examine the possibility that the interval fits
1514
         * Examine the possibility that the interval fits
1534
         * somewhere between the leftmost interval of
1515
         * somewhere between the leftmost interval of
1535
         * the right neigbour and the last interval of the leaf.
1516
         * the right neigbour and the last interval of the leaf.
1536
         */
1517
         */
1537
 
1518
 
1538
        if (page < left_pg) {
1519
        if (page < left_pg) {
1539
            /* Do nothing. */
1520
            /* Do nothing. */
1540
        } else if (overlaps(page, count * PAGE_SIZE, left_pg,
1521
        } else if (overlaps(page, count * PAGE_SIZE, left_pg,
1541
            left_cnt * PAGE_SIZE)) {
1522
            left_cnt * PAGE_SIZE)) {
1542
            /* The interval intersects with the left interval. */
1523
            /* The interval intersects with the left interval. */
1543
            return 0;
1524
            return 0;
1544
        } else if (overlaps(page, count * PAGE_SIZE, right_pg,
1525
        } else if (overlaps(page, count * PAGE_SIZE, right_pg,
1545
            right_cnt * PAGE_SIZE)) {
1526
            right_cnt * PAGE_SIZE)) {
1546
            /* The interval intersects with the right interval. */
1527
            /* The interval intersects with the right interval. */
1547
            return 0;          
1528
            return 0;          
1548
        } else if ((page == left_pg + left_cnt * PAGE_SIZE) &&
1529
        } else if ((page == left_pg + left_cnt * PAGE_SIZE) &&
1549
            (page + count * PAGE_SIZE == right_pg)) {
1530
            (page + count * PAGE_SIZE == right_pg)) {
1550
            /*
1531
            /*
1551
             * The interval can be added by merging the two already
1532
             * The interval can be added by merging the two already
1552
             * present intervals.
1533
             * present intervals.
1553
             * */
1534
             * */
1554
            leaf->value[leaf->keys - 1] += count + right_cnt;
1535
            leaf->value[leaf->keys - 1] += count + right_cnt;
1555
            btree_remove(&a->used_space, right_pg, node);
1536
            btree_remove(&a->used_space, right_pg, node);
1556
            return 1;
1537
            return 1;
1557
        } else if (page == left_pg + left_cnt * PAGE_SIZE) {
1538
        } else if (page == left_pg + left_cnt * PAGE_SIZE) {
1558
            /*
1539
            /*
1559
             * The interval can be added by simply growing the left
1540
             * The interval can be added by simply growing the left
1560
             * interval.
1541
             * interval.
1561
             * */
1542
             * */
1562
            leaf->value[leaf->keys - 1] +=  count;
1543
            leaf->value[leaf->keys - 1] +=  count;
1563
            return 1;
1544
            return 1;
1564
        } else if (page + count * PAGE_SIZE == right_pg) {
1545
        } else if (page + count * PAGE_SIZE == right_pg) {
1565
            /*
1546
            /*
1566
             * The interval can be addded by simply moving base of
1547
             * The interval can be addded by simply moving base of
1567
             * the right interval down and increasing its size
1548
             * the right interval down and increasing its size
1568
             * accordingly.
1549
             * accordingly.
1569
             */
1550
             */
1570
            node->value[0] += count;
1551
            node->value[0] += count;
1571
            node->key[0] = page;
1552
            node->key[0] = page;
1572
            return 1;
1553
            return 1;
1573
        } else {
1554
        } else {
1574
            /*
1555
            /*
1575
             * The interval is between both neigbouring intervals,
1556
             * The interval is between both neigbouring intervals,
1576
             * but cannot be merged with any of them.
1557
             * but cannot be merged with any of them.
1577
             */
1558
             */
1578
            btree_insert(&a->used_space, page, (void *) count,
1559
            btree_insert(&a->used_space, page, (void *) count,
1579
                leaf);
1560
                leaf);
1580
            return 1;
1561
            return 1;
1581
        }
1562
        }
1582
    } else if (page >= leaf->key[leaf->keys - 1]) {
1563
    } else if (page >= leaf->key[leaf->keys - 1]) {
1583
        uintptr_t left_pg = leaf->key[leaf->keys - 1];
1564
        uintptr_t left_pg = leaf->key[leaf->keys - 1];
1584
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1565
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1585
   
1566
   
1586
        /*
1567
        /*
1587
         * Investigate the border case in which the right neighbour
1568
         * Investigate the border case in which the right neighbour
1588
         * does not exist but the interval fits from the right.
1569
         * does not exist but the interval fits from the right.
1589
         */
1570
         */
1590
         
1571
         
1591
        if (overlaps(page, count * PAGE_SIZE, left_pg,
1572
        if (overlaps(page, count * PAGE_SIZE, left_pg,
1592
            left_cnt * PAGE_SIZE)) {
1573
            left_cnt * PAGE_SIZE)) {
1593
            /* The interval intersects with the left interval. */
1574
            /* The interval intersects with the left interval. */
1594
            return 0;
1575
            return 0;
1595
        } else if (left_pg + left_cnt * PAGE_SIZE == page) {
1576
        } else if (left_pg + left_cnt * PAGE_SIZE == page) {
1596
            /*
1577
            /*
1597
             * The interval can be added by growing the left
1578
             * The interval can be added by growing the left
1598
             * interval.
1579
             * interval.
1599
             */
1580
             */
1600
            leaf->value[leaf->keys - 1] += count;
1581
            leaf->value[leaf->keys - 1] += count;
1601
            return 1;
1582
            return 1;
1602
        } else {
1583
        } else {
1603
            /*
1584
            /*
1604
             * The interval doesn't adjoin with the left interval.
1585
             * The interval doesn't adjoin with the left interval.
1605
             * It must be added individually.
1586
             * It must be added individually.
1606
             */
1587
             */
1607
            btree_insert(&a->used_space, page, (void *) count,
1588
            btree_insert(&a->used_space, page, (void *) count,
1608
                leaf);
1589
                leaf);
1609
            return 1;
1590
            return 1;
1610
        }
1591
        }
1611
    }
1592
    }
1612
   
1593
   
1613
    /*
1594
    /*
1614
     * Note that if the algorithm made it thus far, the interval can fit
1595
     * Note that if the algorithm made it thus far, the interval can fit
1615
     * only between two other intervals of the leaf. The two border cases
1596
     * only between two other intervals of the leaf. The two border cases
1616
     * were already resolved.
1597
     * were already resolved.
1617
     */
1598
     */
1618
    for (i = 1; i < leaf->keys; i++) {
1599
    for (i = 1; i < leaf->keys; i++) {
1619
        if (page < leaf->key[i]) {
1600
        if (page < leaf->key[i]) {
1620
            uintptr_t left_pg = leaf->key[i - 1];
1601
            uintptr_t left_pg = leaf->key[i - 1];
1621
            uintptr_t right_pg = leaf->key[i];
1602
            uintptr_t right_pg = leaf->key[i];
1622
            count_t left_cnt = (count_t) leaf->value[i - 1];
1603
            count_t left_cnt = (count_t) leaf->value[i - 1];
1623
            count_t right_cnt = (count_t) leaf->value[i];
1604
            count_t right_cnt = (count_t) leaf->value[i];
1624
 
1605
 
1625
            /*
1606
            /*
1626
             * The interval fits between left_pg and right_pg.
1607
             * The interval fits between left_pg and right_pg.
1627
             */
1608
             */
1628
 
1609
 
1629
            if (overlaps(page, count * PAGE_SIZE, left_pg,
1610
            if (overlaps(page, count * PAGE_SIZE, left_pg,
1630
                left_cnt * PAGE_SIZE)) {
1611
                left_cnt * PAGE_SIZE)) {
1631
                /*
1612
                /*
1632
                 * The interval intersects with the left
1613
                 * The interval intersects with the left
1633
                 * interval.
1614
                 * interval.
1634
                 */
1615
                 */
1635
                return 0;
1616
                return 0;
1636
            } else if (overlaps(page, count * PAGE_SIZE, right_pg,
1617
            } else if (overlaps(page, count * PAGE_SIZE, right_pg,
1637
                right_cnt * PAGE_SIZE)) {
1618
                right_cnt * PAGE_SIZE)) {
1638
                /*
1619
                /*
1639
                 * The interval intersects with the right
1620
                 * The interval intersects with the right
1640
                 * interval.
1621
                 * interval.
1641
                 */
1622
                 */
1642
                return 0;          
1623
                return 0;          
1643
            } else if ((page == left_pg + left_cnt * PAGE_SIZE) &&
1624
            } else if ((page == left_pg + left_cnt * PAGE_SIZE) &&
1644
                (page + count * PAGE_SIZE == right_pg)) {
1625
                (page + count * PAGE_SIZE == right_pg)) {
1645
                /*
1626
                /*
1646
                 * The interval can be added by merging the two
1627
                 * The interval can be added by merging the two
1647
                 * already present intervals.
1628
                 * already present intervals.
1648
                 */
1629
                 */
1649
                leaf->value[i - 1] += count + right_cnt;
1630
                leaf->value[i - 1] += count + right_cnt;
1650
                btree_remove(&a->used_space, right_pg, leaf);
1631
                btree_remove(&a->used_space, right_pg, leaf);
1651
                return 1;
1632
                return 1;
1652
            } else if (page == left_pg + left_cnt * PAGE_SIZE) {
1633
            } else if (page == left_pg + left_cnt * PAGE_SIZE) {
1653
                /*
1634
                /*
1654
                 * The interval can be added by simply growing
1635
                 * The interval can be added by simply growing
1655
                 * the left interval.
1636
                 * the left interval.
1656
                 */
1637
                 */
1657
                leaf->value[i - 1] += count;
1638
                leaf->value[i - 1] += count;
1658
                return 1;
1639
                return 1;
1659
            } else if (page + count * PAGE_SIZE == right_pg) {
1640
            } else if (page + count * PAGE_SIZE == right_pg) {
1660
                /*
1641
                /*
1661
                     * The interval can be addded by simply moving
1642
                     * The interval can be addded by simply moving
1662
                 * base of the right interval down and
1643
                 * base of the right interval down and
1663
                 * increasing its size accordingly.
1644
                 * increasing its size accordingly.
1664
                 */
1645
                 */
1665
                leaf->value[i] += count;
1646
                leaf->value[i] += count;
1666
                leaf->key[i] = page;
1647
                leaf->key[i] = page;
1667
                return 1;
1648
                return 1;
1668
            } else {
1649
            } else {
1669
                /*
1650
                /*
1670
                 * The interval is between both neigbouring
1651
                 * The interval is between both neigbouring
1671
                 * intervals, but cannot be merged with any of
1652
                 * intervals, but cannot be merged with any of
1672
                 * them.
1653
                 * them.
1673
                 */
1654
                 */
1674
                btree_insert(&a->used_space, page,
1655
                btree_insert(&a->used_space, page,
1675
                    (void *) count, leaf);
1656
                    (void *) count, leaf);
1676
                return 1;
1657
                return 1;
1677
            }
1658
            }
1678
        }
1659
        }
1679
    }
1660
    }
1680
 
1661
 
1681
    panic("Inconsistency detected while adding %" PRIc " pages of used space at "
1662
    panic("Inconsistency detected while adding %" PRIc " pages of used "
1682
        "%p.\n", count, page);
1663
        "space at %p.\n", count, page);
1683
}
1664
}
1684
 
1665
 
1685
/** Mark portion of address space area as unused.
1666
/** Mark portion of address space area as unused.
1686
 *
1667
 *
1687
 * The address space area must be already locked.
1668
 * The address space area must be already locked.
1688
 *
1669
 *
1689
 * @param a Address space area.
1670
 * @param a     Address space area.
1690
 * @param page First page to be marked.
1671
 * @param page      First page to be marked.
1691
 * @param count Number of page to be marked.
1672
 * @param count     Number of page to be marked.
1692
 *
1673
 *
1693
 * @return 0 on failure and 1 on success.
1674
 * @return      Zero on failure and non-zero on success.
1694
 */
1675
 */
1695
int used_space_remove(as_area_t *a, uintptr_t page, count_t count)
1676
int used_space_remove(as_area_t *a, uintptr_t page, count_t count)
1696
{
1677
{
1697
    btree_node_t *leaf, *node;
1678
    btree_node_t *leaf, *node;
1698
    count_t pages;
1679
    count_t pages;
1699
    unsigned int i;
1680
    unsigned int i;
1700
 
1681
 
1701
    ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1682
    ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1702
    ASSERT(count);
1683
    ASSERT(count);
1703
 
1684
 
1704
    pages = (count_t) btree_search(&a->used_space, page, &leaf);
1685
    pages = (count_t) btree_search(&a->used_space, page, &leaf);
1705
    if (pages) {
1686
    if (pages) {
1706
        /*
1687
        /*
1707
         * We are lucky, page is the beginning of some interval.
1688
         * We are lucky, page is the beginning of some interval.
1708
         */
1689
         */
1709
        if (count > pages) {
1690
        if (count > pages) {
1710
            return 0;
1691
            return 0;
1711
        } else if (count == pages) {
1692
        } else if (count == pages) {
1712
            btree_remove(&a->used_space, page, leaf);
1693
            btree_remove(&a->used_space, page, leaf);
1713
            return 1;
1694
            return 1;
1714
        } else {
1695
        } else {
1715
            /*
1696
            /*
1716
             * Find the respective interval.
1697
             * Find the respective interval.
1717
             * Decrease its size and relocate its start address.
1698
             * Decrease its size and relocate its start address.
1718
             */
1699
             */
1719
            for (i = 0; i < leaf->keys; i++) {
1700
            for (i = 0; i < leaf->keys; i++) {
1720
                if (leaf->key[i] == page) {
1701
                if (leaf->key[i] == page) {
1721
                    leaf->key[i] += count * PAGE_SIZE;
1702
                    leaf->key[i] += count * PAGE_SIZE;
1722
                    leaf->value[i] -= count;
1703
                    leaf->value[i] -= count;
1723
                    return 1;
1704
                    return 1;
1724
                }
1705
                }
1725
            }
1706
            }
1726
            goto error;
1707
            goto error;
1727
        }
1708
        }
1728
    }
1709
    }
1729
 
1710
 
1730
    node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1711
    node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1731
    if (node && page < leaf->key[0]) {
1712
    if (node && page < leaf->key[0]) {
1732
        uintptr_t left_pg = node->key[node->keys - 1];
1713
        uintptr_t left_pg = node->key[node->keys - 1];
1733
        count_t left_cnt = (count_t) node->value[node->keys - 1];
1714
        count_t left_cnt = (count_t) node->value[node->keys - 1];
1734
 
1715
 
1735
        if (overlaps(left_pg, left_cnt * PAGE_SIZE, page,
1716
        if (overlaps(left_pg, left_cnt * PAGE_SIZE, page,
1736
            count * PAGE_SIZE)) {
1717
            count * PAGE_SIZE)) {
1737
            if (page + count * PAGE_SIZE ==
1718
            if (page + count * PAGE_SIZE ==
1738
                left_pg + left_cnt * PAGE_SIZE) {
1719
                left_pg + left_cnt * PAGE_SIZE) {
1739
                /*
1720
                /*
1740
                 * The interval is contained in the rightmost
1721
                 * The interval is contained in the rightmost
1741
                 * interval of the left neighbour and can be
1722
                 * interval of the left neighbour and can be
1742
                 * removed by updating the size of the bigger
1723
                 * removed by updating the size of the bigger
1743
                 * interval.
1724
                 * interval.
1744
                 */
1725
                 */
1745
                node->value[node->keys - 1] -= count;
1726
                node->value[node->keys - 1] -= count;
1746
                return 1;
1727
                return 1;
1747
            } else if (page + count * PAGE_SIZE <
1728
            } else if (page + count * PAGE_SIZE <
1748
                left_pg + left_cnt*PAGE_SIZE) {
1729
                left_pg + left_cnt*PAGE_SIZE) {
1749
                count_t new_cnt;
1730
                count_t new_cnt;
1750
               
1731
               
1751
                /*
1732
                /*
1752
                 * The interval is contained in the rightmost
1733
                 * The interval is contained in the rightmost
1753
                 * interval of the left neighbour but its
1734
                 * interval of the left neighbour but its
1754
                 * removal requires both updating the size of
1735
                 * removal requires both updating the size of
1755
                 * the original interval and also inserting a
1736
                 * the original interval and also inserting a
1756
                 * new interval.
1737
                 * new interval.
1757
                 */
1738
                 */
1758
                new_cnt = ((left_pg + left_cnt * PAGE_SIZE) -
1739
                new_cnt = ((left_pg + left_cnt * PAGE_SIZE) -
1759
                    (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1740
                    (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1760
                node->value[node->keys - 1] -= count + new_cnt;
1741
                node->value[node->keys - 1] -= count + new_cnt;
1761
                btree_insert(&a->used_space, page +
1742
                btree_insert(&a->used_space, page +
1762
                    count * PAGE_SIZE, (void *) new_cnt, leaf);
1743
                    count * PAGE_SIZE, (void *) new_cnt, leaf);
1763
                return 1;
1744
                return 1;
1764
            }
1745
            }
1765
        }
1746
        }
1766
        return 0;
1747
        return 0;
1767
    } else if (page < leaf->key[0]) {
1748
    } else if (page < leaf->key[0]) {
1768
        return 0;
1749
        return 0;
1769
    }
1750
    }
1770
   
1751
   
1771
    if (page > leaf->key[leaf->keys - 1]) {
1752
    if (page > leaf->key[leaf->keys - 1]) {
1772
        uintptr_t left_pg = leaf->key[leaf->keys - 1];
1753
        uintptr_t left_pg = leaf->key[leaf->keys - 1];
1773
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1754
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1774
 
1755
 
1775
        if (overlaps(left_pg, left_cnt * PAGE_SIZE, page,
1756
        if (overlaps(left_pg, left_cnt * PAGE_SIZE, page,
1776
            count * PAGE_SIZE)) {
1757
            count * PAGE_SIZE)) {
1777
            if (page + count * PAGE_SIZE ==
1758
            if (page + count * PAGE_SIZE ==
1778
                left_pg + left_cnt * PAGE_SIZE) {
1759
                left_pg + left_cnt * PAGE_SIZE) {
1779
                /*
1760
                /*
1780
                 * The interval is contained in the rightmost
1761
                 * The interval is contained in the rightmost
1781
                 * interval of the leaf and can be removed by
1762
                 * interval of the leaf and can be removed by
1782
                 * updating the size of the bigger interval.
1763
                 * updating the size of the bigger interval.
1783
                 */
1764
                 */
1784
                leaf->value[leaf->keys - 1] -= count;
1765
                leaf->value[leaf->keys - 1] -= count;
1785
                return 1;
1766
                return 1;
1786
            } else if (page + count * PAGE_SIZE < left_pg +
1767
            } else if (page + count * PAGE_SIZE < left_pg +
1787
                left_cnt * PAGE_SIZE) {
1768
                left_cnt * PAGE_SIZE) {
1788
                count_t new_cnt;
1769
                count_t new_cnt;
1789
               
1770
               
1790
                /*
1771
                /*
1791
                 * The interval is contained in the rightmost
1772
                 * The interval is contained in the rightmost
1792
                 * interval of the leaf but its removal
1773
                 * interval of the leaf but its removal
1793
                 * requires both updating the size of the
1774
                 * requires both updating the size of the
1794
                 * original interval and also inserting a new
1775
                 * original interval and also inserting a new
1795
                 * interval.
1776
                 * interval.
1796
                 */
1777
                 */
1797
                new_cnt = ((left_pg + left_cnt * PAGE_SIZE) -
1778
                new_cnt = ((left_pg + left_cnt * PAGE_SIZE) -
1798
                    (page + count * PAGE_SIZE)) >> PAGE_WIDTH;
1779
                    (page + count * PAGE_SIZE)) >> PAGE_WIDTH;
1799
                leaf->value[leaf->keys - 1] -= count + new_cnt;
1780
                leaf->value[leaf->keys - 1] -= count + new_cnt;
1800
                btree_insert(&a->used_space, page +
1781
                btree_insert(&a->used_space, page +
1801
                    count * PAGE_SIZE, (void *) new_cnt, leaf);
1782
                    count * PAGE_SIZE, (void *) new_cnt, leaf);
1802
                return 1;
1783
                return 1;
1803
            }
1784
            }
1804
        }
1785
        }
1805
        return 0;
1786
        return 0;
1806
    }  
1787
    }  
1807
   
1788
   
1808
    /*
1789
    /*
1809
     * The border cases have been already resolved.
1790
     * The border cases have been already resolved.
1810
     * Now the interval can be only between intervals of the leaf.
1791
     * Now the interval can be only between intervals of the leaf.
1811
     */
1792
     */
1812
    for (i = 1; i < leaf->keys - 1; i++) {
1793
    for (i = 1; i < leaf->keys - 1; i++) {
1813
        if (page < leaf->key[i]) {
1794
        if (page < leaf->key[i]) {
1814
            uintptr_t left_pg = leaf->key[i - 1];
1795
            uintptr_t left_pg = leaf->key[i - 1];
1815
            count_t left_cnt = (count_t) leaf->value[i - 1];
1796
            count_t left_cnt = (count_t) leaf->value[i - 1];
1816
 
1797
 
1817
            /*
1798
            /*
1818
             * Now the interval is between intervals corresponding
1799
             * Now the interval is between intervals corresponding
1819
             * to (i - 1) and i.
1800
             * to (i - 1) and i.
1820
             */
1801
             */
1821
            if (overlaps(left_pg, left_cnt * PAGE_SIZE, page,
1802
            if (overlaps(left_pg, left_cnt * PAGE_SIZE, page,
1822
                count * PAGE_SIZE)) {
1803
                count * PAGE_SIZE)) {
1823
                if (page + count * PAGE_SIZE ==
1804
                if (page + count * PAGE_SIZE ==
1824
                    left_pg + left_cnt*PAGE_SIZE) {
1805
                    left_pg + left_cnt*PAGE_SIZE) {
1825
                    /*
1806
                    /*
1826
                     * The interval is contained in the
1807
                     * The interval is contained in the
1827
                     * interval (i - 1) of the leaf and can
1808
                     * interval (i - 1) of the leaf and can
1828
                     * be removed by updating the size of
1809
                     * be removed by updating the size of
1829
                     * the bigger interval.
1810
                     * the bigger interval.
1830
                     */
1811
                     */
1831
                    leaf->value[i - 1] -= count;
1812
                    leaf->value[i - 1] -= count;
1832
                    return 1;
1813
                    return 1;
1833
                } else if (page + count * PAGE_SIZE <
1814
                } else if (page + count * PAGE_SIZE <
1834
                    left_pg + left_cnt * PAGE_SIZE) {
1815
                    left_pg + left_cnt * PAGE_SIZE) {
1835
                    count_t new_cnt;
1816
                    count_t new_cnt;
1836
               
1817
               
1837
                    /*
1818
                    /*
1838
                     * The interval is contained in the
1819
                     * The interval is contained in the
1839
                     * interval (i - 1) of the leaf but its
1820
                     * interval (i - 1) of the leaf but its
1840
                     * removal requires both updating the
1821
                     * removal requires both updating the
1841
                     * size of the original interval and
1822
                     * size of the original interval and
1842
                     * also inserting a new interval.
1823
                     * also inserting a new interval.
1843
                     */
1824
                     */
1844
                    new_cnt = ((left_pg +
1825
                    new_cnt = ((left_pg +
1845
                        left_cnt * PAGE_SIZE) -
1826
                        left_cnt * PAGE_SIZE) -
1846
                        (page + count * PAGE_SIZE)) >>
1827
                        (page + count * PAGE_SIZE)) >>
1847
                        PAGE_WIDTH;
1828
                        PAGE_WIDTH;
1848
                    leaf->value[i - 1] -= count + new_cnt;
1829
                    leaf->value[i - 1] -= count + new_cnt;
1849
                    btree_insert(&a->used_space, page +
1830
                    btree_insert(&a->used_space, page +
1850
                        count * PAGE_SIZE, (void *) new_cnt,
1831
                        count * PAGE_SIZE, (void *) new_cnt,
1851
                        leaf);
1832
                        leaf);
1852
                    return 1;
1833
                    return 1;
1853
                }
1834
                }
1854
            }
1835
            }
1855
            return 0;
1836
            return 0;
1856
        }
1837
        }
1857
    }
1838
    }
1858
 
1839
 
1859
error:
1840
error:
1860
    panic("Inconsistency detected while removing %" PRIc " pages of used space "
1841
    panic("Inconsistency detected while removing %" PRIc " pages of used "
1861
        "from %p.\n", count, page);
1842
        "space from %p.\n", count, page);
1862
}
1843
}
1863
 
1844
 
1864
/** Remove reference to address space area share info.
1845
/** Remove reference to address space area share info.
1865
 *
1846
 *
1866
 * If the reference count drops to 0, the sh_info is deallocated.
1847
 * If the reference count drops to 0, the sh_info is deallocated.
1867
 *
1848
 *
1868
 * @param sh_info Pointer to address space area share info.
1849
 * @param sh_info   Pointer to address space area share info.
1869
 */
1850
 */
1870
void sh_info_remove_reference(share_info_t *sh_info)
1851
void sh_info_remove_reference(share_info_t *sh_info)
1871
{
1852
{
1872
    bool dealloc = false;
1853
    bool dealloc = false;
1873
 
1854
 
1874
    mutex_lock(&sh_info->lock);
1855
    mutex_lock(&sh_info->lock);
1875
    ASSERT(sh_info->refcount);
1856
    ASSERT(sh_info->refcount);
1876
    if (--sh_info->refcount == 0) {
1857
    if (--sh_info->refcount == 0) {
1877
        dealloc = true;
1858
        dealloc = true;
1878
        link_t *cur;
1859
        link_t *cur;
1879
       
1860
       
1880
        /*
1861
        /*
1881
         * Now walk carefully the pagemap B+tree and free/remove
1862
         * Now walk carefully the pagemap B+tree and free/remove
1882
         * reference from all frames found there.
1863
         * reference from all frames found there.
1883
         */
1864
         */
1884
        for (cur = sh_info->pagemap.leaf_head.next;
1865
        for (cur = sh_info->pagemap.leaf_head.next;
1885
            cur != &sh_info->pagemap.leaf_head; cur = cur->next) {
1866
            cur != &sh_info->pagemap.leaf_head; cur = cur->next) {
1886
            btree_node_t *node;
1867
            btree_node_t *node;
1887
            unsigned int i;
1868
            unsigned int i;
1888
           
1869
           
1889
            node = list_get_instance(cur, btree_node_t, leaf_link);
1870
            node = list_get_instance(cur, btree_node_t, leaf_link);
1890
            for (i = 0; i < node->keys; i++)
1871
            for (i = 0; i < node->keys; i++)
1891
                frame_free((uintptr_t) node->value[i]);
1872
                frame_free((uintptr_t) node->value[i]);
1892
        }
1873
        }
1893
       
1874
       
1894
    }
1875
    }
1895
    mutex_unlock(&sh_info->lock);
1876
    mutex_unlock(&sh_info->lock);
1896
   
1877
   
1897
    if (dealloc) {
1878
    if (dealloc) {
1898
        btree_destroy(&sh_info->pagemap);
1879
        btree_destroy(&sh_info->pagemap);
1899
        free(sh_info);
1880
        free(sh_info);
1900
    }
1881
    }
1901
}
1882
}
1902
 
1883
 
1903
/*
1884
/*
1904
 * Address space related syscalls.
1885
 * Address space related syscalls.
1905
 */
1886
 */
1906
 
1887
 
1907
/** Wrapper for as_area_create(). */
1888
/** Wrapper for as_area_create(). */
1908
unative_t sys_as_area_create(uintptr_t address, size_t size, int flags)
1889
unative_t sys_as_area_create(uintptr_t address, size_t size, int flags)
1909
{
1890
{
1910
    if (as_area_create(AS, flags | AS_AREA_CACHEABLE, size, address,
1891
    if (as_area_create(AS, flags | AS_AREA_CACHEABLE, size, address,
1911
        AS_AREA_ATTR_NONE, &anon_backend, NULL))
1892
        AS_AREA_ATTR_NONE, &anon_backend, NULL))
1912
        return (unative_t) address;
1893
        return (unative_t) address;
1913
    else
1894
    else
1914
        return (unative_t) -1;
1895
        return (unative_t) -1;
1915
}
1896
}
1916
 
1897
 
1917
/** Wrapper for as_area_resize(). */
1898
/** Wrapper for as_area_resize(). */
1918
unative_t sys_as_area_resize(uintptr_t address, size_t size, int flags)
1899
unative_t sys_as_area_resize(uintptr_t address, size_t size, int flags)
1919
{
1900
{
1920
    return (unative_t) as_area_resize(AS, address, size, 0);
1901
    return (unative_t) as_area_resize(AS, address, size, 0);
1921
}
1902
}
1922
 
1903
 
1923
/** Wrapper for as_area_change_flags(). */
1904
/** Wrapper for as_area_change_flags(). */
1924
unative_t sys_as_area_change_flags(uintptr_t address, int flags)
1905
unative_t sys_as_area_change_flags(uintptr_t address, int flags)
1925
{
1906
{
1926
    return (unative_t) as_area_change_flags(AS, flags, address);
1907
    return (unative_t) as_area_change_flags(AS, flags, address);
1927
}
1908
}
1928
 
1909
 
1929
/** Wrapper for as_area_destroy(). */
1910
/** Wrapper for as_area_destroy(). */
1930
unative_t sys_as_area_destroy(uintptr_t address)
1911
unative_t sys_as_area_destroy(uintptr_t address)
1931
{
1912
{
1932
    return (unative_t) as_area_destroy(AS, address);
1913
    return (unative_t) as_area_destroy(AS, address);
1933
}
1914
}
1934
 
1915
 
1935
/** Print out information about address space.
1916
/** Print out information about address space.
1936
 *
1917
 *
1937
 * @param as Address space.
1918
 * @param as        Address space.
1938
 */
1919
 */
1939
void as_print(as_t *as)
1920
void as_print(as_t *as)
1940
{
1921
{
1941
    ipl_t ipl;
1922
    ipl_t ipl;
1942
   
1923
   
1943
    ipl = interrupts_disable();
1924
    ipl = interrupts_disable();
1944
    mutex_lock(&as->lock);
1925
    mutex_lock(&as->lock);
1945
   
1926
   
1946
    /* print out info about address space areas */
1927
    /* print out info about address space areas */
1947
    link_t *cur;
1928
    link_t *cur;
1948
    for (cur = as->as_area_btree.leaf_head.next;
1929
    for (cur = as->as_area_btree.leaf_head.next;
1949
        cur != &as->as_area_btree.leaf_head; cur = cur->next) {
1930
        cur != &as->as_area_btree.leaf_head; cur = cur->next) {
1950
        btree_node_t *node;
1931
        btree_node_t *node;
1951
       
1932
       
1952
        node = list_get_instance(cur, btree_node_t, leaf_link);
1933
        node = list_get_instance(cur, btree_node_t, leaf_link);
1953
       
1934
       
1954
        unsigned int i;
1935
        unsigned int i;
1955
        for (i = 0; i < node->keys; i++) {
1936
        for (i = 0; i < node->keys; i++) {
1956
            as_area_t *area = node->value[i];
1937
            as_area_t *area = node->value[i];
1957
       
1938
       
1958
            mutex_lock(&area->lock);
1939
            mutex_lock(&area->lock);
1959
            printf("as_area: %p, base=%p, pages=%" PRIc " (%p - %p)\n",
1940
            printf("as_area: %p, base=%p, pages=%" PRIc
1960
                area, area->base, area->pages, area->base,
1941
                " (%p - %p)\n", area, area->base, area->pages,
1961
                area->base + FRAMES2SIZE(area->pages));
1942
                area->base, area->base + FRAMES2SIZE(area->pages));
1962
            mutex_unlock(&area->lock);
1943
            mutex_unlock(&area->lock);
1963
        }
1944
        }
1964
    }
1945
    }
1965
   
1946
   
1966
    mutex_unlock(&as->lock);
1947
    mutex_unlock(&as->lock);
1967
    interrupts_restore(ipl);
1948
    interrupts_restore(ipl);
1968
}
1949
}
1969
 
1950
 
1970
/** @}
1951
/** @}
1971
 */
1952
 */
1972
 
1953