Subversion Repositories HelenOS

Rev

Rev 3156 | Rev 3448 | Go to most recent revision | Only display areas with differences | Ignore whitespace | Details | Blame | Last modification | View Log | RSS feed

Rev 3156 Rev 3191
1
/*
1
/*
2
 * Copyright (c) 2001-2006 Jakub Jermar
2
 * Copyright (c) 2001-2006 Jakub Jermar
3
 * All rights reserved.
3
 * All rights reserved.
4
 *
4
 *
5
 * Redistribution and use in source and binary forms, with or without
5
 * Redistribution and use in source and binary forms, with or without
6
 * modification, are permitted provided that the following conditions
6
 * modification, are permitted provided that the following conditions
7
 * are met:
7
 * are met:
8
 *
8
 *
9
 * - Redistributions of source code must retain the above copyright
9
 * - Redistributions of source code must retain the above copyright
10
 *   notice, this list of conditions and the following disclaimer.
10
 *   notice, this list of conditions and the following disclaimer.
11
 * - Redistributions in binary form must reproduce the above copyright
11
 * - Redistributions in binary form must reproduce the above copyright
12
 *   notice, this list of conditions and the following disclaimer in the
12
 *   notice, this list of conditions and the following disclaimer in the
13
 *   documentation and/or other materials provided with the distribution.
13
 *   documentation and/or other materials provided with the distribution.
14
 * - The name of the author may not be used to endorse or promote products
14
 * - The name of the author may not be used to endorse or promote products
15
 *   derived from this software without specific prior written permission.
15
 *   derived from this software without specific prior written permission.
16
 *
16
 *
17
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
 */
27
 */
28
 
28
 
29
/** @addtogroup genericmm
29
/** @addtogroup genericmm
30
 * @{
30
 * @{
31
 */
31
 */
32
 
32
 
33
/**
33
/**
34
 * @file
34
 * @file
35
 * @brief   Address space related functions.
35
 * @brief   Address space related functions.
36
 *
36
 *
37
 * This file contains address space manipulation functions.
37
 * This file contains address space manipulation functions.
38
 * Roughly speaking, this is a higher-level client of
38
 * Roughly speaking, this is a higher-level client of
39
 * Virtual Address Translation (VAT) subsystem.
39
 * Virtual Address Translation (VAT) subsystem.
40
 *
40
 *
41
 * Functionality provided by this file allows one to
41
 * Functionality provided by this file allows one to
42
 * create address spaces and create, resize and share
42
 * create address spaces and create, resize and share
43
 * address space areas.
43
 * address space areas.
44
 *
44
 *
45
 * @see page.c
45
 * @see page.c
46
 *
46
 *
47
 */
47
 */
48
 
48
 
49
#include <mm/as.h>
49
#include <mm/as.h>
50
#include <arch/mm/as.h>
50
#include <arch/mm/as.h>
51
#include <mm/page.h>
51
#include <mm/page.h>
52
#include <mm/frame.h>
52
#include <mm/frame.h>
53
#include <mm/slab.h>
53
#include <mm/slab.h>
54
#include <mm/tlb.h>
54
#include <mm/tlb.h>
55
#include <arch/mm/page.h>
55
#include <arch/mm/page.h>
56
#include <genarch/mm/page_pt.h>
56
#include <genarch/mm/page_pt.h>
57
#include <genarch/mm/page_ht.h>
57
#include <genarch/mm/page_ht.h>
58
#include <mm/asid.h>
58
#include <mm/asid.h>
59
#include <arch/mm/asid.h>
59
#include <arch/mm/asid.h>
60
#include <preemption.h>
60
#include <preemption.h>
61
#include <synch/spinlock.h>
61
#include <synch/spinlock.h>
62
#include <synch/mutex.h>
62
#include <synch/mutex.h>
63
#include <adt/list.h>
63
#include <adt/list.h>
64
#include <adt/btree.h>
64
#include <adt/btree.h>
65
#include <proc/task.h>
65
#include <proc/task.h>
66
#include <proc/thread.h>
66
#include <proc/thread.h>
67
#include <arch/asm.h>
67
#include <arch/asm.h>
68
#include <panic.h>
68
#include <panic.h>
69
#include <debug.h>
69
#include <debug.h>
70
#include <print.h>
70
#include <print.h>
71
#include <memstr.h>
71
#include <memstr.h>
72
#include <macros.h>
72
#include <macros.h>
73
#include <arch.h>
73
#include <arch.h>
74
#include <errno.h>
74
#include <errno.h>
75
#include <config.h>
75
#include <config.h>
76
#include <align.h>
76
#include <align.h>
77
#include <arch/types.h>
77
#include <arch/types.h>
78
#include <syscall/copy.h>
78
#include <syscall/copy.h>
79
#include <arch/interrupt.h>
79
#include <arch/interrupt.h>
80
 
80
 
81
#ifdef CONFIG_VIRT_IDX_DCACHE
81
#ifdef CONFIG_VIRT_IDX_DCACHE
82
#include <arch/mm/cache.h>
82
#include <arch/mm/cache.h>
83
#endif /* CONFIG_VIRT_IDX_DCACHE */
83
#endif /* CONFIG_VIRT_IDX_DCACHE */
84
 
84
 
85
#ifndef __OBJC__
85
#ifndef __OBJC__
86
/**
86
/**
87
 * Each architecture decides what functions will be used to carry out
87
 * Each architecture decides what functions will be used to carry out
88
 * address space operations such as creating or locking page tables.
88
 * address space operations such as creating or locking page tables.
89
 */
89
 */
90
as_operations_t *as_operations = NULL;
90
as_operations_t *as_operations = NULL;
91
 
91
 
92
/**
92
/**
93
 * Slab for as_t objects.
93
 * Slab for as_t objects.
94
 */
94
 */
95
static slab_cache_t *as_slab;
95
static slab_cache_t *as_slab;
96
#endif
96
#endif
97
 
97
 
98
/**
98
/**
99
 * This lock serializes access to the ASID subsystem.
99
 * This lock serializes access to the ASID subsystem.
100
 * It protects:
100
 * It protects:
101
 * - inactive_as_with_asid_head list
101
 * - inactive_as_with_asid_head list
102
 * - as->asid for each as of the as_t type
102
 * - as->asid for each as of the as_t type
103
 * - asids_allocated counter
103
 * - asids_allocated counter
104
 */
104
 */
105
SPINLOCK_INITIALIZE(asidlock);
105
SPINLOCK_INITIALIZE(asidlock);
106
 
106
 
107
/**
107
/**
108
 * This list contains address spaces that are not active on any
108
 * This list contains address spaces that are not active on any
109
 * processor and that have valid ASID.
109
 * processor and that have valid ASID.
110
 */
110
 */
111
LIST_INITIALIZE(inactive_as_with_asid_head);
111
LIST_INITIALIZE(inactive_as_with_asid_head);
112
 
112
 
113
/** Kernel address space. */
113
/** Kernel address space. */
114
as_t *AS_KERNEL = NULL;
114
as_t *AS_KERNEL = NULL;
115
 
115
 
116
static int area_flags_to_page_flags(int aflags);
116
static int area_flags_to_page_flags(int aflags);
117
static as_area_t *find_area_and_lock(as_t *as, uintptr_t va);
117
static as_area_t *find_area_and_lock(as_t *as, uintptr_t va);
118
static bool check_area_conflicts(as_t *as, uintptr_t va, size_t size,
118
static bool check_area_conflicts(as_t *as, uintptr_t va, size_t size,
119
    as_area_t *avoid_area);
119
    as_area_t *avoid_area);
120
static void sh_info_remove_reference(share_info_t *sh_info);
120
static void sh_info_remove_reference(share_info_t *sh_info);
121
 
121
 
122
#ifndef __OBJC__
122
#ifndef __OBJC__
123
static int as_constructor(void *obj, int flags)
123
static int as_constructor(void *obj, int flags)
124
{
124
{
125
    as_t *as = (as_t *) obj;
125
    as_t *as = (as_t *) obj;
126
    int rc;
126
    int rc;
127
 
127
 
128
    link_initialize(&as->inactive_as_with_asid_link);
128
    link_initialize(&as->inactive_as_with_asid_link);
129
    mutex_initialize(&as->lock);   
129
    mutex_initialize(&as->lock, MUTEX_PASSIVE);
130
   
130
   
131
    rc = as_constructor_arch(as, flags);
131
    rc = as_constructor_arch(as, flags);
132
   
132
   
133
    return rc;
133
    return rc;
134
}
134
}
135
 
135
 
136
static int as_destructor(void *obj)
136
static int as_destructor(void *obj)
137
{
137
{
138
    as_t *as = (as_t *) obj;
138
    as_t *as = (as_t *) obj;
139
 
139
 
140
    return as_destructor_arch(as);
140
    return as_destructor_arch(as);
141
}
141
}
142
#endif
142
#endif
143
 
143
 
144
/** Initialize address space subsystem. */
144
/** Initialize address space subsystem. */
145
void as_init(void)
145
void as_init(void)
146
{
146
{
147
    as_arch_init();
147
    as_arch_init();
148
 
148
 
149
#ifndef __OBJC__
149
#ifndef __OBJC__
150
    as_slab = slab_cache_create("as_slab", sizeof(as_t), 0,
150
    as_slab = slab_cache_create("as_slab", sizeof(as_t), 0,
151
        as_constructor, as_destructor, SLAB_CACHE_MAGDEFERRED);
151
        as_constructor, as_destructor, SLAB_CACHE_MAGDEFERRED);
152
#endif
152
#endif
153
   
153
   
154
    AS_KERNEL = as_create(FLAG_AS_KERNEL);
154
    AS_KERNEL = as_create(FLAG_AS_KERNEL);
155
    if (!AS_KERNEL)
155
    if (!AS_KERNEL)
156
        panic("can't create kernel address space\n");
156
        panic("can't create kernel address space\n");
157
   
157
   
158
}
158
}
159
 
159
 
160
/** Create address space.
160
/** Create address space.
161
 *
161
 *
162
 * @param flags Flags that influence way in wich the address space is created.
162
 * @param flags Flags that influence way in wich the address space is created.
163
 */
163
 */
164
as_t *as_create(int flags)
164
as_t *as_create(int flags)
165
{
165
{
166
    as_t *as;
166
    as_t *as;
167
 
167
 
168
#ifdef __OBJC__
168
#ifdef __OBJC__
169
    as = [as_t new];
169
    as = [as_t new];
170
    link_initialize(&as->inactive_as_with_asid_link);
170
    link_initialize(&as->inactive_as_with_asid_link);
171
    mutex_initialize(&as->lock);   
171
    mutex_initialize(&as->lock, MUTEX_PASSIVE);
172
    (void) as_constructor_arch(as, flags);
172
    (void) as_constructor_arch(as, flags);
173
#else
173
#else
174
    as = (as_t *) slab_alloc(as_slab, 0);
174
    as = (as_t *) slab_alloc(as_slab, 0);
175
#endif
175
#endif
176
    (void) as_create_arch(as, 0);
176
    (void) as_create_arch(as, 0);
177
   
177
   
178
    btree_create(&as->as_area_btree);
178
    btree_create(&as->as_area_btree);
179
   
179
   
180
    if (flags & FLAG_AS_KERNEL)
180
    if (flags & FLAG_AS_KERNEL)
181
        as->asid = ASID_KERNEL;
181
        as->asid = ASID_KERNEL;
182
    else
182
    else
183
        as->asid = ASID_INVALID;
183
        as->asid = ASID_INVALID;
184
   
184
   
185
    atomic_set(&as->refcount, 0);
185
    atomic_set(&as->refcount, 0);
186
    as->cpu_refcount = 0;
186
    as->cpu_refcount = 0;
187
#ifdef AS_PAGE_TABLE
187
#ifdef AS_PAGE_TABLE
188
    as->genarch.page_table = page_table_create(flags);
188
    as->genarch.page_table = page_table_create(flags);
189
#else
189
#else
190
    page_table_create(flags);
190
    page_table_create(flags);
191
#endif
191
#endif
192
 
192
 
193
    return as;
193
    return as;
194
}
194
}
195
 
195
 
196
/** Destroy adress space.
196
/** Destroy adress space.
197
 *
197
 *
198
 * When there are no tasks referencing this address space (i.e. its refcount is
198
 * When there are no tasks referencing this address space (i.e. its refcount is
199
 * zero), the address space can be destroyed.
199
 * zero), the address space can be destroyed.
200
 *
200
 *
201
 * We know that we don't hold any spinlock.
201
 * We know that we don't hold any spinlock.
202
 */
202
 */
203
void as_destroy(as_t *as)
203
void as_destroy(as_t *as)
204
{
204
{
205
    ipl_t ipl;
205
    ipl_t ipl;
206
    bool cond;
206
    bool cond;
207
    DEADLOCK_PROBE_INIT(p_asidlock);
207
    DEADLOCK_PROBE_INIT(p_asidlock);
208
 
208
 
209
    ASSERT(atomic_get(&as->refcount) == 0);
209
    ASSERT(atomic_get(&as->refcount) == 0);
210
   
210
   
211
    /*
211
    /*
212
     * Since there is no reference to this area,
212
     * Since there is no reference to this area,
213
     * it is safe not to lock its mutex.
213
     * it is safe not to lock its mutex.
214
     */
214
     */
215
 
215
 
216
    /*
216
    /*
217
     * We need to avoid deadlock between TLB shootdown and asidlock.
217
     * We need to avoid deadlock between TLB shootdown and asidlock.
218
     * We therefore try to take asid conditionally and if we don't succeed,
218
     * We therefore try to take asid conditionally and if we don't succeed,
219
     * we enable interrupts and try again. This is done while preemption is
219
     * we enable interrupts and try again. This is done while preemption is
220
     * disabled to prevent nested context switches. We also depend on the
220
     * disabled to prevent nested context switches. We also depend on the
221
     * fact that so far no spinlocks are held.
221
     * fact that so far no spinlocks are held.
222
     */
222
     */
223
    preemption_disable();
223
    preemption_disable();
224
    ipl = interrupts_read();
224
    ipl = interrupts_read();
225
retry:
225
retry:
226
    interrupts_disable();
226
    interrupts_disable();
227
    if (!spinlock_trylock(&asidlock)) {
227
    if (!spinlock_trylock(&asidlock)) {
228
        interrupts_enable();
228
        interrupts_enable();
229
        DEADLOCK_PROBE(p_asidlock, DEADLOCK_THRESHOLD);
229
        DEADLOCK_PROBE(p_asidlock, DEADLOCK_THRESHOLD);
230
        goto retry;
230
        goto retry;
231
    }
231
    }
232
    preemption_enable();    /* Interrupts disabled, enable preemption */
232
    preemption_enable();    /* Interrupts disabled, enable preemption */
233
    if (as->asid != ASID_INVALID && as != AS_KERNEL) {
233
    if (as->asid != ASID_INVALID && as != AS_KERNEL) {
234
        if (as != AS && as->cpu_refcount == 0)
234
        if (as != AS && as->cpu_refcount == 0)
235
            list_remove(&as->inactive_as_with_asid_link);
235
            list_remove(&as->inactive_as_with_asid_link);
236
        asid_put(as->asid);
236
        asid_put(as->asid);
237
    }
237
    }
238
    spinlock_unlock(&asidlock);
238
    spinlock_unlock(&asidlock);
239
 
239
 
240
    /*
240
    /*
241
     * Destroy address space areas of the address space.
241
     * Destroy address space areas of the address space.
242
     * The B+tree must be walked carefully because it is
242
     * The B+tree must be walked carefully because it is
243
     * also being destroyed.
243
     * also being destroyed.
244
     */
244
     */
245
    for (cond = true; cond; ) {
245
    for (cond = true; cond; ) {
246
        btree_node_t *node;
246
        btree_node_t *node;
247
 
247
 
248
        ASSERT(!list_empty(&as->as_area_btree.leaf_head));
248
        ASSERT(!list_empty(&as->as_area_btree.leaf_head));
249
        node = list_get_instance(as->as_area_btree.leaf_head.next,
249
        node = list_get_instance(as->as_area_btree.leaf_head.next,
250
            btree_node_t, leaf_link);
250
            btree_node_t, leaf_link);
251
 
251
 
252
        if ((cond = node->keys)) {
252
        if ((cond = node->keys)) {
253
            as_area_destroy(as, node->key[0]);
253
            as_area_destroy(as, node->key[0]);
254
        }
254
        }
255
    }
255
    }
256
 
256
 
257
    btree_destroy(&as->as_area_btree);
257
    btree_destroy(&as->as_area_btree);
258
#ifdef AS_PAGE_TABLE
258
#ifdef AS_PAGE_TABLE
259
    page_table_destroy(as->genarch.page_table);
259
    page_table_destroy(as->genarch.page_table);
260
#else
260
#else
261
    page_table_destroy(NULL);
261
    page_table_destroy(NULL);
262
#endif
262
#endif
263
 
263
 
264
    interrupts_restore(ipl);
264
    interrupts_restore(ipl);
265
 
265
 
266
#ifdef __OBJC__
266
#ifdef __OBJC__
267
    [as free];
267
    [as free];
268
#else
268
#else
269
    slab_free(as_slab, as);
269
    slab_free(as_slab, as);
270
#endif
270
#endif
271
}
271
}
272
 
272
 
273
/** Create address space area of common attributes.
273
/** Create address space area of common attributes.
274
 *
274
 *
275
 * The created address space area is added to the target address space.
275
 * The created address space area is added to the target address space.
276
 *
276
 *
277
 * @param as Target address space.
277
 * @param as Target address space.
278
 * @param flags Flags of the area memory.
278
 * @param flags Flags of the area memory.
279
 * @param size Size of area.
279
 * @param size Size of area.
280
 * @param base Base address of area.
280
 * @param base Base address of area.
281
 * @param attrs Attributes of the area.
281
 * @param attrs Attributes of the area.
282
 * @param backend Address space area backend. NULL if no backend is used.
282
 * @param backend Address space area backend. NULL if no backend is used.
283
 * @param backend_data NULL or a pointer to an array holding two void *.
283
 * @param backend_data NULL or a pointer to an array holding two void *.
284
 *
284
 *
285
 * @return Address space area on success or NULL on failure.
285
 * @return Address space area on success or NULL on failure.
286
 */
286
 */
287
as_area_t *
287
as_area_t *
288
as_area_create(as_t *as, int flags, size_t size, uintptr_t base, int attrs,
288
as_area_create(as_t *as, int flags, size_t size, uintptr_t base, int attrs,
289
           mem_backend_t *backend, mem_backend_data_t *backend_data)
289
           mem_backend_t *backend, mem_backend_data_t *backend_data)
290
{
290
{
291
    ipl_t ipl;
291
    ipl_t ipl;
292
    as_area_t *a;
292
    as_area_t *a;
293
   
293
   
294
    if (base % PAGE_SIZE)
294
    if (base % PAGE_SIZE)
295
        return NULL;
295
        return NULL;
296
 
296
 
297
    if (!size)
297
    if (!size)
298
        return NULL;
298
        return NULL;
299
 
299
 
300
    /* Writeable executable areas are not supported. */
300
    /* Writeable executable areas are not supported. */
301
    if ((flags & AS_AREA_EXEC) && (flags & AS_AREA_WRITE))
301
    if ((flags & AS_AREA_EXEC) && (flags & AS_AREA_WRITE))
302
        return NULL;
302
        return NULL;
303
   
303
   
304
    ipl = interrupts_disable();
304
    ipl = interrupts_disable();
305
    mutex_lock(&as->lock);
305
    mutex_lock(&as->lock);
306
   
306
   
307
    if (!check_area_conflicts(as, base, size, NULL)) {
307
    if (!check_area_conflicts(as, base, size, NULL)) {
308
        mutex_unlock(&as->lock);
308
        mutex_unlock(&as->lock);
309
        interrupts_restore(ipl);
309
        interrupts_restore(ipl);
310
        return NULL;
310
        return NULL;
311
    }
311
    }
312
   
312
   
313
    a = (as_area_t *) malloc(sizeof(as_area_t), 0);
313
    a = (as_area_t *) malloc(sizeof(as_area_t), 0);
314
 
314
 
315
    mutex_initialize(&a->lock);
315
    mutex_initialize(&a->lock, MUTEX_PASSIVE);
316
   
316
   
317
    a->as = as;
317
    a->as = as;
318
    a->flags = flags;
318
    a->flags = flags;
319
    a->attributes = attrs;
319
    a->attributes = attrs;
320
    a->pages = SIZE2FRAMES(size);
320
    a->pages = SIZE2FRAMES(size);
321
    a->base = base;
321
    a->base = base;
322
    a->sh_info = NULL;
322
    a->sh_info = NULL;
323
    a->backend = backend;
323
    a->backend = backend;
324
    if (backend_data)
324
    if (backend_data)
325
        a->backend_data = *backend_data;
325
        a->backend_data = *backend_data;
326
    else
326
    else
327
        memsetb(&a->backend_data, sizeof(a->backend_data), 0);
327
        memsetb(&a->backend_data, sizeof(a->backend_data), 0);
328
 
328
 
329
    btree_create(&a->used_space);
329
    btree_create(&a->used_space);
330
   
330
   
331
    btree_insert(&as->as_area_btree, base, (void *) a, NULL);
331
    btree_insert(&as->as_area_btree, base, (void *) a, NULL);
332
 
332
 
333
    mutex_unlock(&as->lock);
333
    mutex_unlock(&as->lock);
334
    interrupts_restore(ipl);
334
    interrupts_restore(ipl);
335
 
335
 
336
    return a;
336
    return a;
337
}
337
}
338
 
338
 
339
/** Find address space area and change it.
339
/** Find address space area and change it.
340
 *
340
 *
341
 * @param as Address space.
341
 * @param as Address space.
342
 * @param address Virtual address belonging to the area to be changed. Must be
342
 * @param address Virtual address belonging to the area to be changed. Must be
343
 *     page-aligned.
343
 *     page-aligned.
344
 * @param size New size of the virtual memory block starting at address.
344
 * @param size New size of the virtual memory block starting at address.
345
 * @param flags Flags influencing the remap operation. Currently unused.
345
 * @param flags Flags influencing the remap operation. Currently unused.
346
 *
346
 *
347
 * @return Zero on success or a value from @ref errno.h otherwise.
347
 * @return Zero on success or a value from @ref errno.h otherwise.
348
 */
348
 */
349
int as_area_resize(as_t *as, uintptr_t address, size_t size, int flags)
349
int as_area_resize(as_t *as, uintptr_t address, size_t size, int flags)
350
{
350
{
351
    as_area_t *area;
351
    as_area_t *area;
352
    ipl_t ipl;
352
    ipl_t ipl;
353
    size_t pages;
353
    size_t pages;
354
   
354
   
355
    ipl = interrupts_disable();
355
    ipl = interrupts_disable();
356
    mutex_lock(&as->lock);
356
    mutex_lock(&as->lock);
357
   
357
   
358
    /*
358
    /*
359
     * Locate the area.
359
     * Locate the area.
360
     */
360
     */
361
    area = find_area_and_lock(as, address);
361
    area = find_area_and_lock(as, address);
362
    if (!area) {
362
    if (!area) {
363
        mutex_unlock(&as->lock);
363
        mutex_unlock(&as->lock);
364
        interrupts_restore(ipl);
364
        interrupts_restore(ipl);
365
        return ENOENT;
365
        return ENOENT;
366
    }
366
    }
367
 
367
 
368
    if (area->backend == &phys_backend) {
368
    if (area->backend == &phys_backend) {
369
        /*
369
        /*
370
         * Remapping of address space areas associated
370
         * Remapping of address space areas associated
371
         * with memory mapped devices is not supported.
371
         * with memory mapped devices is not supported.
372
         */
372
         */
373
        mutex_unlock(&area->lock);
373
        mutex_unlock(&area->lock);
374
        mutex_unlock(&as->lock);
374
        mutex_unlock(&as->lock);
375
        interrupts_restore(ipl);
375
        interrupts_restore(ipl);
376
        return ENOTSUP;
376
        return ENOTSUP;
377
    }
377
    }
378
    if (area->sh_info) {
378
    if (area->sh_info) {
379
        /*
379
        /*
380
         * Remapping of shared address space areas
380
         * Remapping of shared address space areas
381
         * is not supported.
381
         * is not supported.
382
         */
382
         */
383
        mutex_unlock(&area->lock);
383
        mutex_unlock(&area->lock);
384
        mutex_unlock(&as->lock);
384
        mutex_unlock(&as->lock);
385
        interrupts_restore(ipl);
385
        interrupts_restore(ipl);
386
        return ENOTSUP;
386
        return ENOTSUP;
387
    }
387
    }
388
 
388
 
389
    pages = SIZE2FRAMES((address - area->base) + size);
389
    pages = SIZE2FRAMES((address - area->base) + size);
390
    if (!pages) {
390
    if (!pages) {
391
        /*
391
        /*
392
         * Zero size address space areas are not allowed.
392
         * Zero size address space areas are not allowed.
393
         */
393
         */
394
        mutex_unlock(&area->lock);
394
        mutex_unlock(&area->lock);
395
        mutex_unlock(&as->lock);
395
        mutex_unlock(&as->lock);
396
        interrupts_restore(ipl);
396
        interrupts_restore(ipl);
397
        return EPERM;
397
        return EPERM;
398
    }
398
    }
399
   
399
   
400
    if (pages < area->pages) {
400
    if (pages < area->pages) {
401
        bool cond;
401
        bool cond;
402
        uintptr_t start_free = area->base + pages*PAGE_SIZE;
402
        uintptr_t start_free = area->base + pages*PAGE_SIZE;
403
 
403
 
404
        /*
404
        /*
405
         * Shrinking the area.
405
         * Shrinking the area.
406
         * No need to check for overlaps.
406
         * No need to check for overlaps.
407
         */
407
         */
408
 
408
 
409
        /*
409
        /*
410
         * Start TLB shootdown sequence.
410
         * Start TLB shootdown sequence.
411
         */
411
         */
412
        tlb_shootdown_start(TLB_INVL_PAGES, AS->asid, area->base +
412
        tlb_shootdown_start(TLB_INVL_PAGES, AS->asid, area->base +
413
            pages * PAGE_SIZE, area->pages - pages);
413
            pages * PAGE_SIZE, area->pages - pages);
414
 
414
 
415
        /*
415
        /*
416
         * Remove frames belonging to used space starting from
416
         * Remove frames belonging to used space starting from
417
         * the highest addresses downwards until an overlap with
417
         * the highest addresses downwards until an overlap with
418
         * the resized address space area is found. Note that this
418
         * the resized address space area is found. Note that this
419
         * is also the right way to remove part of the used_space
419
         * is also the right way to remove part of the used_space
420
         * B+tree leaf list.
420
         * B+tree leaf list.
421
         */    
421
         */    
422
        for (cond = true; cond;) {
422
        for (cond = true; cond;) {
423
            btree_node_t *node;
423
            btree_node_t *node;
424
       
424
       
425
            ASSERT(!list_empty(&area->used_space.leaf_head));
425
            ASSERT(!list_empty(&area->used_space.leaf_head));
426
            node =
426
            node =
427
                list_get_instance(area->used_space.leaf_head.prev,
427
                list_get_instance(area->used_space.leaf_head.prev,
428
                btree_node_t, leaf_link);
428
                btree_node_t, leaf_link);
429
            if ((cond = (bool) node->keys)) {
429
            if ((cond = (bool) node->keys)) {
430
                uintptr_t b = node->key[node->keys - 1];
430
                uintptr_t b = node->key[node->keys - 1];
431
                count_t c =
431
                count_t c =
432
                    (count_t) node->value[node->keys - 1];
432
                    (count_t) node->value[node->keys - 1];
433
                unsigned int i = 0;
433
                unsigned int i = 0;
434
           
434
           
435
                if (overlaps(b, c * PAGE_SIZE, area->base,
435
                if (overlaps(b, c * PAGE_SIZE, area->base,
436
                    pages * PAGE_SIZE)) {
436
                    pages * PAGE_SIZE)) {
437
                   
437
                   
438
                    if (b + c * PAGE_SIZE <= start_free) {
438
                    if (b + c * PAGE_SIZE <= start_free) {
439
                        /*
439
                        /*
440
                         * The whole interval fits
440
                         * The whole interval fits
441
                         * completely in the resized
441
                         * completely in the resized
442
                         * address space area.
442
                         * address space area.
443
                         */
443
                         */
444
                        break;
444
                        break;
445
                    }
445
                    }
446
       
446
       
447
                    /*
447
                    /*
448
                     * Part of the interval corresponding
448
                     * Part of the interval corresponding
449
                     * to b and c overlaps with the resized
449
                     * to b and c overlaps with the resized
450
                     * address space area.
450
                     * address space area.
451
                     */
451
                     */
452
       
452
       
453
                    cond = false;   /* we are almost done */
453
                    cond = false;   /* we are almost done */
454
                    i = (start_free - b) >> PAGE_WIDTH;
454
                    i = (start_free - b) >> PAGE_WIDTH;
455
                    if (!used_space_remove(area, start_free, c - i))
455
                    if (!used_space_remove(area, start_free, c - i))
456
                        panic("Could not remove used space.\n");
456
                        panic("Could not remove used space.\n");
457
                } else {
457
                } else {
458
                    /*
458
                    /*
459
                     * The interval of used space can be
459
                     * The interval of used space can be
460
                     * completely removed.
460
                     * completely removed.
461
                     */
461
                     */
462
                    if (!used_space_remove(area, b, c))
462
                    if (!used_space_remove(area, b, c))
463
                        panic("Could not remove used space.\n");
463
                        panic("Could not remove used space.\n");
464
                }
464
                }
465
           
465
           
466
                for (; i < c; i++) {
466
                for (; i < c; i++) {
467
                    pte_t *pte;
467
                    pte_t *pte;
468
           
468
           
469
                    page_table_lock(as, false);
469
                    page_table_lock(as, false);
470
                    pte = page_mapping_find(as, b +
470
                    pte = page_mapping_find(as, b +
471
                        i * PAGE_SIZE);
471
                        i * PAGE_SIZE);
472
                    ASSERT(pte && PTE_VALID(pte) &&
472
                    ASSERT(pte && PTE_VALID(pte) &&
473
                        PTE_PRESENT(pte));
473
                        PTE_PRESENT(pte));
474
                    if (area->backend &&
474
                    if (area->backend &&
475
                        area->backend->frame_free) {
475
                        area->backend->frame_free) {
476
                        area->backend->frame_free(area,
476
                        area->backend->frame_free(area,
477
                            b + i * PAGE_SIZE,
477
                            b + i * PAGE_SIZE,
478
                            PTE_GET_FRAME(pte));
478
                            PTE_GET_FRAME(pte));
479
                    }
479
                    }
480
                    page_mapping_remove(as, b +
480
                    page_mapping_remove(as, b +
481
                        i * PAGE_SIZE);
481
                        i * PAGE_SIZE);
482
                    page_table_unlock(as, false);
482
                    page_table_unlock(as, false);
483
                }
483
                }
484
            }
484
            }
485
        }
485
        }
486
 
486
 
487
        /*
487
        /*
488
         * Finish TLB shootdown sequence.
488
         * Finish TLB shootdown sequence.
489
         */
489
         */
490
 
490
 
491
        tlb_invalidate_pages(as->asid, area->base + pages * PAGE_SIZE,
491
        tlb_invalidate_pages(as->asid, area->base + pages * PAGE_SIZE,
492
            area->pages - pages);
492
            area->pages - pages);
493
        /*
493
        /*
494
         * Invalidate software translation caches (e.g. TSB on sparc64).
494
         * Invalidate software translation caches (e.g. TSB on sparc64).
495
         */
495
         */
496
        as_invalidate_translation_cache(as, area->base +
496
        as_invalidate_translation_cache(as, area->base +
497
            pages * PAGE_SIZE, area->pages - pages);
497
            pages * PAGE_SIZE, area->pages - pages);
498
        tlb_shootdown_finalize();
498
        tlb_shootdown_finalize();
499
       
499
       
500
    } else {
500
    } else {
501
        /*
501
        /*
502
         * Growing the area.
502
         * Growing the area.
503
         * Check for overlaps with other address space areas.
503
         * Check for overlaps with other address space areas.
504
         */
504
         */
505
        if (!check_area_conflicts(as, address, pages * PAGE_SIZE,
505
        if (!check_area_conflicts(as, address, pages * PAGE_SIZE,
506
            area)) {
506
            area)) {
507
            mutex_unlock(&area->lock);
507
            mutex_unlock(&area->lock);
508
            mutex_unlock(&as->lock);       
508
            mutex_unlock(&as->lock);       
509
            interrupts_restore(ipl);
509
            interrupts_restore(ipl);
510
            return EADDRNOTAVAIL;
510
            return EADDRNOTAVAIL;
511
        }
511
        }
512
    }
512
    }
513
 
513
 
514
    area->pages = pages;
514
    area->pages = pages;
515
   
515
   
516
    mutex_unlock(&area->lock);
516
    mutex_unlock(&area->lock);
517
    mutex_unlock(&as->lock);
517
    mutex_unlock(&as->lock);
518
    interrupts_restore(ipl);
518
    interrupts_restore(ipl);
519
 
519
 
520
    return 0;
520
    return 0;
521
}
521
}
522
 
522
 
523
/** Destroy address space area.
523
/** Destroy address space area.
524
 *
524
 *
525
 * @param as Address space.
525
 * @param as Address space.
526
 * @param address Address withing the area to be deleted.
526
 * @param address Address withing the area to be deleted.
527
 *
527
 *
528
 * @return Zero on success or a value from @ref errno.h on failure.
528
 * @return Zero on success or a value from @ref errno.h on failure.
529
 */
529
 */
530
int as_area_destroy(as_t *as, uintptr_t address)
530
int as_area_destroy(as_t *as, uintptr_t address)
531
{
531
{
532
    as_area_t *area;
532
    as_area_t *area;
533
    uintptr_t base;
533
    uintptr_t base;
534
    link_t *cur;
534
    link_t *cur;
535
    ipl_t ipl;
535
    ipl_t ipl;
536
 
536
 
537
    ipl = interrupts_disable();
537
    ipl = interrupts_disable();
538
    mutex_lock(&as->lock);
538
    mutex_lock(&as->lock);
539
 
539
 
540
    area = find_area_and_lock(as, address);
540
    area = find_area_and_lock(as, address);
541
    if (!area) {
541
    if (!area) {
542
        mutex_unlock(&as->lock);
542
        mutex_unlock(&as->lock);
543
        interrupts_restore(ipl);
543
        interrupts_restore(ipl);
544
        return ENOENT;
544
        return ENOENT;
545
    }
545
    }
546
 
546
 
547
    base = area->base;
547
    base = area->base;
548
 
548
 
549
    /*
549
    /*
550
     * Start TLB shootdown sequence.
550
     * Start TLB shootdown sequence.
551
     */
551
     */
552
    tlb_shootdown_start(TLB_INVL_PAGES, as->asid, area->base, area->pages);
552
    tlb_shootdown_start(TLB_INVL_PAGES, as->asid, area->base, area->pages);
553
 
553
 
554
    /*
554
    /*
555
     * Visit only the pages mapped by used_space B+tree.
555
     * Visit only the pages mapped by used_space B+tree.
556
     */
556
     */
557
    for (cur = area->used_space.leaf_head.next;
557
    for (cur = area->used_space.leaf_head.next;
558
        cur != &area->used_space.leaf_head; cur = cur->next) {
558
        cur != &area->used_space.leaf_head; cur = cur->next) {
559
        btree_node_t *node;
559
        btree_node_t *node;
560
        unsigned int i;
560
        unsigned int i;
561
       
561
       
562
        node = list_get_instance(cur, btree_node_t, leaf_link);
562
        node = list_get_instance(cur, btree_node_t, leaf_link);
563
        for (i = 0; i < node->keys; i++) {
563
        for (i = 0; i < node->keys; i++) {
564
            uintptr_t b = node->key[i];
564
            uintptr_t b = node->key[i];
565
            count_t j;
565
            count_t j;
566
            pte_t *pte;
566
            pte_t *pte;
567
           
567
           
568
            for (j = 0; j < (count_t) node->value[i]; j++) {
568
            for (j = 0; j < (count_t) node->value[i]; j++) {
569
                page_table_lock(as, false);
569
                page_table_lock(as, false);
570
                pte = page_mapping_find(as, b + j * PAGE_SIZE);
570
                pte = page_mapping_find(as, b + j * PAGE_SIZE);
571
                ASSERT(pte && PTE_VALID(pte) &&
571
                ASSERT(pte && PTE_VALID(pte) &&
572
                    PTE_PRESENT(pte));
572
                    PTE_PRESENT(pte));
573
                if (area->backend &&
573
                if (area->backend &&
574
                    area->backend->frame_free) {
574
                    area->backend->frame_free) {
575
                    area->backend->frame_free(area, b +
575
                    area->backend->frame_free(area, b +
576
                        j * PAGE_SIZE, PTE_GET_FRAME(pte));
576
                        j * PAGE_SIZE, PTE_GET_FRAME(pte));
577
                }
577
                }
578
                page_mapping_remove(as, b + j * PAGE_SIZE);            
578
                page_mapping_remove(as, b + j * PAGE_SIZE);            
579
                page_table_unlock(as, false);
579
                page_table_unlock(as, false);
580
            }
580
            }
581
        }
581
        }
582
    }
582
    }
583
 
583
 
584
    /*
584
    /*
585
     * Finish TLB shootdown sequence.
585
     * Finish TLB shootdown sequence.
586
     */
586
     */
587
 
587
 
588
    tlb_invalidate_pages(as->asid, area->base, area->pages);
588
    tlb_invalidate_pages(as->asid, area->base, area->pages);
589
    /*
589
    /*
590
     * Invalidate potential software translation caches (e.g. TSB on
590
     * Invalidate potential software translation caches (e.g. TSB on
591
     * sparc64).
591
     * sparc64).
592
     */
592
     */
593
    as_invalidate_translation_cache(as, area->base, area->pages);
593
    as_invalidate_translation_cache(as, area->base, area->pages);
594
    tlb_shootdown_finalize();
594
    tlb_shootdown_finalize();
595
   
595
   
596
    btree_destroy(&area->used_space);
596
    btree_destroy(&area->used_space);
597
 
597
 
598
    area->attributes |= AS_AREA_ATTR_PARTIAL;
598
    area->attributes |= AS_AREA_ATTR_PARTIAL;
599
   
599
   
600
    if (area->sh_info)
600
    if (area->sh_info)
601
        sh_info_remove_reference(area->sh_info);
601
        sh_info_remove_reference(area->sh_info);
602
       
602
       
603
    mutex_unlock(&area->lock);
603
    mutex_unlock(&area->lock);
604
 
604
 
605
    /*
605
    /*
606
     * Remove the empty area from address space.
606
     * Remove the empty area from address space.
607
     */
607
     */
608
    btree_remove(&as->as_area_btree, base, NULL);
608
    btree_remove(&as->as_area_btree, base, NULL);
609
   
609
   
610
    free(area);
610
    free(area);
611
   
611
   
612
    mutex_unlock(&as->lock);
612
    mutex_unlock(&as->lock);
613
    interrupts_restore(ipl);
613
    interrupts_restore(ipl);
614
    return 0;
614
    return 0;
615
}
615
}
616
 
616
 
617
/** Share address space area with another or the same address space.
617
/** Share address space area with another or the same address space.
618
 *
618
 *
619
 * Address space area mapping is shared with a new address space area.
619
 * Address space area mapping is shared with a new address space area.
620
 * If the source address space area has not been shared so far,
620
 * If the source address space area has not been shared so far,
621
 * a new sh_info is created. The new address space area simply gets the
621
 * a new sh_info is created. The new address space area simply gets the
622
 * sh_info of the source area. The process of duplicating the
622
 * sh_info of the source area. The process of duplicating the
623
 * mapping is done through the backend share function.
623
 * mapping is done through the backend share function.
624
 *
624
 *
625
 * @param src_as Pointer to source address space.
625
 * @param src_as Pointer to source address space.
626
 * @param src_base Base address of the source address space area.
626
 * @param src_base Base address of the source address space area.
627
 * @param acc_size Expected size of the source area.
627
 * @param acc_size Expected size of the source area.
628
 * @param dst_as Pointer to destination address space.
628
 * @param dst_as Pointer to destination address space.
629
 * @param dst_base Target base address.
629
 * @param dst_base Target base address.
630
 * @param dst_flags_mask Destination address space area flags mask.
630
 * @param dst_flags_mask Destination address space area flags mask.
631
 *
631
 *
632
 * @return Zero on success or ENOENT if there is no such task or if there is no
632
 * @return Zero on success or ENOENT if there is no such task or if there is no
633
 * such address space area, EPERM if there was a problem in accepting the area
633
 * such address space area, EPERM if there was a problem in accepting the area
634
 * or ENOMEM if there was a problem in allocating destination address space
634
 * or ENOMEM if there was a problem in allocating destination address space
635
 * area. ENOTSUP is returned if the address space area backend does not support
635
 * area. ENOTSUP is returned if the address space area backend does not support
636
 * sharing.
636
 * sharing.
637
 */
637
 */
638
int as_area_share(as_t *src_as, uintptr_t src_base, size_t acc_size,
638
int as_area_share(as_t *src_as, uintptr_t src_base, size_t acc_size,
639
    as_t *dst_as, uintptr_t dst_base, int dst_flags_mask)
639
    as_t *dst_as, uintptr_t dst_base, int dst_flags_mask)
640
{
640
{
641
    ipl_t ipl;
641
    ipl_t ipl;
642
    int src_flags;
642
    int src_flags;
643
    size_t src_size;
643
    size_t src_size;
644
    as_area_t *src_area, *dst_area;
644
    as_area_t *src_area, *dst_area;
645
    share_info_t *sh_info;
645
    share_info_t *sh_info;
646
    mem_backend_t *src_backend;
646
    mem_backend_t *src_backend;
647
    mem_backend_data_t src_backend_data;
647
    mem_backend_data_t src_backend_data;
648
   
648
   
649
    ipl = interrupts_disable();
649
    ipl = interrupts_disable();
650
    mutex_lock(&src_as->lock);
650
    mutex_lock(&src_as->lock);
651
    src_area = find_area_and_lock(src_as, src_base);
651
    src_area = find_area_and_lock(src_as, src_base);
652
    if (!src_area) {
652
    if (!src_area) {
653
        /*
653
        /*
654
         * Could not find the source address space area.
654
         * Could not find the source address space area.
655
         */
655
         */
656
        mutex_unlock(&src_as->lock);
656
        mutex_unlock(&src_as->lock);
657
        interrupts_restore(ipl);
657
        interrupts_restore(ipl);
658
        return ENOENT;
658
        return ENOENT;
659
    }
659
    }
660
 
660
 
661
    if (!src_area->backend || !src_area->backend->share) {
661
    if (!src_area->backend || !src_area->backend->share) {
662
        /*
662
        /*
663
         * There is no backend or the backend does not
663
         * There is no backend or the backend does not
664
         * know how to share the area.
664
         * know how to share the area.
665
         */
665
         */
666
        mutex_unlock(&src_area->lock);
666
        mutex_unlock(&src_area->lock);
667
        mutex_unlock(&src_as->lock);
667
        mutex_unlock(&src_as->lock);
668
        interrupts_restore(ipl);
668
        interrupts_restore(ipl);
669
        return ENOTSUP;
669
        return ENOTSUP;
670
    }
670
    }
671
   
671
   
672
    src_size = src_area->pages * PAGE_SIZE;
672
    src_size = src_area->pages * PAGE_SIZE;
673
    src_flags = src_area->flags;
673
    src_flags = src_area->flags;
674
    src_backend = src_area->backend;
674
    src_backend = src_area->backend;
675
    src_backend_data = src_area->backend_data;
675
    src_backend_data = src_area->backend_data;
676
 
676
 
677
    /* Share the cacheable flag from the original mapping */
677
    /* Share the cacheable flag from the original mapping */
678
    if (src_flags & AS_AREA_CACHEABLE)
678
    if (src_flags & AS_AREA_CACHEABLE)
679
        dst_flags_mask |= AS_AREA_CACHEABLE;
679
        dst_flags_mask |= AS_AREA_CACHEABLE;
680
 
680
 
681
    if (src_size != acc_size ||
681
    if (src_size != acc_size ||
682
        (src_flags & dst_flags_mask) != dst_flags_mask) {
682
        (src_flags & dst_flags_mask) != dst_flags_mask) {
683
        mutex_unlock(&src_area->lock);
683
        mutex_unlock(&src_area->lock);
684
        mutex_unlock(&src_as->lock);
684
        mutex_unlock(&src_as->lock);
685
        interrupts_restore(ipl);
685
        interrupts_restore(ipl);
686
        return EPERM;
686
        return EPERM;
687
    }
687
    }
688
 
688
 
689
    /*
689
    /*
690
     * Now we are committed to sharing the area.
690
     * Now we are committed to sharing the area.
691
     * First, prepare the area for sharing.
691
     * First, prepare the area for sharing.
692
     * Then it will be safe to unlock it.
692
     * Then it will be safe to unlock it.
693
     */
693
     */
694
    sh_info = src_area->sh_info;
694
    sh_info = src_area->sh_info;
695
    if (!sh_info) {
695
    if (!sh_info) {
696
        sh_info = (share_info_t *) malloc(sizeof(share_info_t), 0);
696
        sh_info = (share_info_t *) malloc(sizeof(share_info_t), 0);
697
        mutex_initialize(&sh_info->lock);
697
        mutex_initialize(&sh_info->lock, MUTEX_PASSIVE);
698
        sh_info->refcount = 2;
698
        sh_info->refcount = 2;
699
        btree_create(&sh_info->pagemap);
699
        btree_create(&sh_info->pagemap);
700
        src_area->sh_info = sh_info;
700
        src_area->sh_info = sh_info;
701
        /*
701
        /*
702
         * Call the backend to setup sharing.
702
         * Call the backend to setup sharing.
703
         */
703
         */
704
        src_area->backend->share(src_area);
704
        src_area->backend->share(src_area);
705
    } else {
705
    } else {
706
        mutex_lock(&sh_info->lock);
706
        mutex_lock(&sh_info->lock);
707
        sh_info->refcount++;
707
        sh_info->refcount++;
708
        mutex_unlock(&sh_info->lock);
708
        mutex_unlock(&sh_info->lock);
709
    }
709
    }
710
 
710
 
711
    mutex_unlock(&src_area->lock);
711
    mutex_unlock(&src_area->lock);
712
    mutex_unlock(&src_as->lock);
712
    mutex_unlock(&src_as->lock);
713
 
713
 
714
    /*
714
    /*
715
     * Create copy of the source address space area.
715
     * Create copy of the source address space area.
716
     * The destination area is created with AS_AREA_ATTR_PARTIAL
716
     * The destination area is created with AS_AREA_ATTR_PARTIAL
717
     * attribute set which prevents race condition with
717
     * attribute set which prevents race condition with
718
     * preliminary as_page_fault() calls.
718
     * preliminary as_page_fault() calls.
719
     * The flags of the source area are masked against dst_flags_mask
719
     * The flags of the source area are masked against dst_flags_mask
720
     * to support sharing in less privileged mode.
720
     * to support sharing in less privileged mode.
721
     */
721
     */
722
    dst_area = as_area_create(dst_as, dst_flags_mask, src_size, dst_base,
722
    dst_area = as_area_create(dst_as, dst_flags_mask, src_size, dst_base,
723
        AS_AREA_ATTR_PARTIAL, src_backend, &src_backend_data);
723
        AS_AREA_ATTR_PARTIAL, src_backend, &src_backend_data);
724
    if (!dst_area) {
724
    if (!dst_area) {
725
        /*
725
        /*
726
         * Destination address space area could not be created.
726
         * Destination address space area could not be created.
727
         */
727
         */
728
        sh_info_remove_reference(sh_info);
728
        sh_info_remove_reference(sh_info);
729
       
729
       
730
        interrupts_restore(ipl);
730
        interrupts_restore(ipl);
731
        return ENOMEM;
731
        return ENOMEM;
732
    }
732
    }
733
 
733
 
734
    /*
734
    /*
735
     * Now the destination address space area has been
735
     * Now the destination address space area has been
736
     * fully initialized. Clear the AS_AREA_ATTR_PARTIAL
736
     * fully initialized. Clear the AS_AREA_ATTR_PARTIAL
737
     * attribute and set the sh_info.
737
     * attribute and set the sh_info.
738
     */
738
     */
739
    mutex_lock(&dst_as->lock); 
739
    mutex_lock(&dst_as->lock); 
740
    mutex_lock(&dst_area->lock);
740
    mutex_lock(&dst_area->lock);
741
    dst_area->attributes &= ~AS_AREA_ATTR_PARTIAL;
741
    dst_area->attributes &= ~AS_AREA_ATTR_PARTIAL;
742
    dst_area->sh_info = sh_info;
742
    dst_area->sh_info = sh_info;
743
    mutex_unlock(&dst_area->lock);
743
    mutex_unlock(&dst_area->lock);
744
    mutex_unlock(&dst_as->lock);   
744
    mutex_unlock(&dst_as->lock);   
745
 
745
 
746
    interrupts_restore(ipl);
746
    interrupts_restore(ipl);
747
   
747
   
748
    return 0;
748
    return 0;
749
}
749
}
750
 
750
 
751
/** Check access mode for address space area.
751
/** Check access mode for address space area.
752
 *
752
 *
753
 * The address space area must be locked prior to this call.
753
 * The address space area must be locked prior to this call.
754
 *
754
 *
755
 * @param area Address space area.
755
 * @param area Address space area.
756
 * @param access Access mode.
756
 * @param access Access mode.
757
 *
757
 *
758
 * @return False if access violates area's permissions, true otherwise.
758
 * @return False if access violates area's permissions, true otherwise.
759
 */
759
 */
760
bool as_area_check_access(as_area_t *area, pf_access_t access)
760
bool as_area_check_access(as_area_t *area, pf_access_t access)
761
{
761
{
762
    int flagmap[] = {
762
    int flagmap[] = {
763
        [PF_ACCESS_READ] = AS_AREA_READ,
763
        [PF_ACCESS_READ] = AS_AREA_READ,
764
        [PF_ACCESS_WRITE] = AS_AREA_WRITE,
764
        [PF_ACCESS_WRITE] = AS_AREA_WRITE,
765
        [PF_ACCESS_EXEC] = AS_AREA_EXEC
765
        [PF_ACCESS_EXEC] = AS_AREA_EXEC
766
    };
766
    };
767
 
767
 
768
    if (!(area->flags & flagmap[access]))
768
    if (!(area->flags & flagmap[access]))
769
        return false;
769
        return false;
770
   
770
   
771
    return true;
771
    return true;
772
}
772
}
773
 
773
 
774
/** Change adress area flags.
774
/** Change adress area flags.
775
 *
775
 *
776
 * The idea is to have the same data, but with a different access mode.
776
 * The idea is to have the same data, but with a different access mode.
777
 * This is needed e.g. for writing code into memory and then executing it.
777
 * This is needed e.g. for writing code into memory and then executing it.
778
 * In order for this to work properly, this may copy the data
778
 * In order for this to work properly, this may copy the data
779
 * into private anonymous memory (unless it's already there).
779
 * into private anonymous memory (unless it's already there).
780
 *
780
 *
781
 * @param as Address space.
781
 * @param as Address space.
782
 * @param flags Flags of the area memory.
782
 * @param flags Flags of the area memory.
783
 * @param address Address withing the area to be changed.
783
 * @param address Address withing the area to be changed.
784
 *
784
 *
785
 * @return Zero on success or a value from @ref errno.h on failure.
785
 * @return Zero on success or a value from @ref errno.h on failure.
786
 */
786
 */
787
int as_area_change_flags(as_t *as, int flags, uintptr_t address)
787
int as_area_change_flags(as_t *as, int flags, uintptr_t address)
788
{
788
{
789
    as_area_t *area;
789
    as_area_t *area;
790
    uintptr_t base;
790
    uintptr_t base;
791
    link_t *cur;
791
    link_t *cur;
792
    ipl_t ipl;
792
    ipl_t ipl;
793
    int page_flags;
793
    int page_flags;
794
    uintptr_t *old_frame;
794
    uintptr_t *old_frame;
795
    index_t frame_idx;
795
    index_t frame_idx;
796
    count_t used_pages;
796
    count_t used_pages;
797
 
797
 
798
    /* Flags for the new memory mapping */
798
    /* Flags for the new memory mapping */
799
    page_flags = area_flags_to_page_flags(flags);
799
    page_flags = area_flags_to_page_flags(flags);
800
 
800
 
801
    ipl = interrupts_disable();
801
    ipl = interrupts_disable();
802
    mutex_lock(&as->lock);
802
    mutex_lock(&as->lock);
803
 
803
 
804
    area = find_area_and_lock(as, address);
804
    area = find_area_and_lock(as, address);
805
    if (!area) {
805
    if (!area) {
806
        mutex_unlock(&as->lock);
806
        mutex_unlock(&as->lock);
807
        interrupts_restore(ipl);
807
        interrupts_restore(ipl);
808
        return ENOENT;
808
        return ENOENT;
809
    }
809
    }
810
 
810
 
811
    if (area->sh_info || area->backend != &anon_backend) {
811
    if (area->sh_info || area->backend != &anon_backend) {
812
        /* Copying shared areas not supported yet */
812
        /* Copying shared areas not supported yet */
813
        /* Copying non-anonymous memory not supported yet */
813
        /* Copying non-anonymous memory not supported yet */
814
        mutex_unlock(&area->lock);
814
        mutex_unlock(&area->lock);
815
        mutex_unlock(&as->lock);
815
        mutex_unlock(&as->lock);
816
        interrupts_restore(ipl);
816
        interrupts_restore(ipl);
817
        return ENOTSUP;
817
        return ENOTSUP;
818
    }
818
    }
819
 
819
 
820
    base = area->base;
820
    base = area->base;
821
 
821
 
822
    /*
822
    /*
823
     * Compute total number of used pages in the used_space B+tree
823
     * Compute total number of used pages in the used_space B+tree
824
     */
824
     */
825
    used_pages = 0;
825
    used_pages = 0;
826
 
826
 
827
    for (cur = area->used_space.leaf_head.next;
827
    for (cur = area->used_space.leaf_head.next;
828
        cur != &area->used_space.leaf_head; cur = cur->next) {
828
        cur != &area->used_space.leaf_head; cur = cur->next) {
829
        btree_node_t *node;
829
        btree_node_t *node;
830
        unsigned int i;
830
        unsigned int i;
831
       
831
       
832
        node = list_get_instance(cur, btree_node_t, leaf_link);
832
        node = list_get_instance(cur, btree_node_t, leaf_link);
833
        for (i = 0; i < node->keys; i++) {
833
        for (i = 0; i < node->keys; i++) {
834
            used_pages += (count_t) node->value[i];
834
            used_pages += (count_t) node->value[i];
835
        }
835
        }
836
    }
836
    }
837
 
837
 
838
    /* An array for storing frame numbers */
838
    /* An array for storing frame numbers */
839
    old_frame = malloc(used_pages * sizeof(uintptr_t), 0);
839
    old_frame = malloc(used_pages * sizeof(uintptr_t), 0);
840
 
840
 
841
    /*
841
    /*
842
     * Start TLB shootdown sequence.
842
     * Start TLB shootdown sequence.
843
     */
843
     */
844
    tlb_shootdown_start(TLB_INVL_PAGES, as->asid, area->base, area->pages);
844
    tlb_shootdown_start(TLB_INVL_PAGES, as->asid, area->base, area->pages);
845
 
845
 
846
    /*
846
    /*
847
     * Remove used pages from page tables and remember their frame
847
     * Remove used pages from page tables and remember their frame
848
     * numbers.
848
     * numbers.
849
     */
849
     */
850
    frame_idx = 0;
850
    frame_idx = 0;
851
 
851
 
852
    for (cur = area->used_space.leaf_head.next;
852
    for (cur = area->used_space.leaf_head.next;
853
        cur != &area->used_space.leaf_head; cur = cur->next) {
853
        cur != &area->used_space.leaf_head; cur = cur->next) {
854
        btree_node_t *node;
854
        btree_node_t *node;
855
        unsigned int i;
855
        unsigned int i;
856
       
856
       
857
        node = list_get_instance(cur, btree_node_t, leaf_link);
857
        node = list_get_instance(cur, btree_node_t, leaf_link);
858
        for (i = 0; i < node->keys; i++) {
858
        for (i = 0; i < node->keys; i++) {
859
            uintptr_t b = node->key[i];
859
            uintptr_t b = node->key[i];
860
            count_t j;
860
            count_t j;
861
            pte_t *pte;
861
            pte_t *pte;
862
           
862
           
863
            for (j = 0; j < (count_t) node->value[i]; j++) {
863
            for (j = 0; j < (count_t) node->value[i]; j++) {
864
                page_table_lock(as, false);
864
                page_table_lock(as, false);
865
                pte = page_mapping_find(as, b + j * PAGE_SIZE);
865
                pte = page_mapping_find(as, b + j * PAGE_SIZE);
866
                ASSERT(pte && PTE_VALID(pte) &&
866
                ASSERT(pte && PTE_VALID(pte) &&
867
                    PTE_PRESENT(pte));
867
                    PTE_PRESENT(pte));
868
                old_frame[frame_idx++] = PTE_GET_FRAME(pte);
868
                old_frame[frame_idx++] = PTE_GET_FRAME(pte);
869
 
869
 
870
                /* Remove old mapping */
870
                /* Remove old mapping */
871
                page_mapping_remove(as, b + j * PAGE_SIZE);
871
                page_mapping_remove(as, b + j * PAGE_SIZE);
872
                page_table_unlock(as, false);
872
                page_table_unlock(as, false);
873
            }
873
            }
874
        }
874
        }
875
    }
875
    }
876
 
876
 
877
    /*
877
    /*
878
     * Finish TLB shootdown sequence.
878
     * Finish TLB shootdown sequence.
879
     */
879
     */
880
 
880
 
881
    tlb_invalidate_pages(as->asid, area->base, area->pages);
881
    tlb_invalidate_pages(as->asid, area->base, area->pages);
882
    /*
882
    /*
883
     * Invalidate potential software translation caches (e.g. TSB on
883
     * Invalidate potential software translation caches (e.g. TSB on
884
     * sparc64).
884
     * sparc64).
885
     */
885
     */
886
    as_invalidate_translation_cache(as, area->base, area->pages);
886
    as_invalidate_translation_cache(as, area->base, area->pages);
887
    tlb_shootdown_finalize();
887
    tlb_shootdown_finalize();
888
 
888
 
889
    /*
889
    /*
890
     * Map pages back in with new flags. This step is kept separate
890
     * Map pages back in with new flags. This step is kept separate
891
     * so that there's no instant when the memory area could be
891
     * so that there's no instant when the memory area could be
892
     * accesed with both the old and the new flags at once.
892
     * accesed with both the old and the new flags at once.
893
     */
893
     */
894
    frame_idx = 0;
894
    frame_idx = 0;
895
 
895
 
896
    for (cur = area->used_space.leaf_head.next;
896
    for (cur = area->used_space.leaf_head.next;
897
        cur != &area->used_space.leaf_head; cur = cur->next) {
897
        cur != &area->used_space.leaf_head; cur = cur->next) {
898
        btree_node_t *node;
898
        btree_node_t *node;
899
        unsigned int i;
899
        unsigned int i;
900
       
900
       
901
        node = list_get_instance(cur, btree_node_t, leaf_link);
901
        node = list_get_instance(cur, btree_node_t, leaf_link);
902
        for (i = 0; i < node->keys; i++) {
902
        for (i = 0; i < node->keys; i++) {
903
            uintptr_t b = node->key[i];
903
            uintptr_t b = node->key[i];
904
            count_t j;
904
            count_t j;
905
           
905
           
906
            for (j = 0; j < (count_t) node->value[i]; j++) {
906
            for (j = 0; j < (count_t) node->value[i]; j++) {
907
                page_table_lock(as, false);
907
                page_table_lock(as, false);
908
 
908
 
909
                /* Insert the new mapping */
909
                /* Insert the new mapping */
910
                page_mapping_insert(as, b + j * PAGE_SIZE,
910
                page_mapping_insert(as, b + j * PAGE_SIZE,
911
                    old_frame[frame_idx++], page_flags);
911
                    old_frame[frame_idx++], page_flags);
912
 
912
 
913
                page_table_unlock(as, false);
913
                page_table_unlock(as, false);
914
            }
914
            }
915
        }
915
        }
916
    }
916
    }
917
 
917
 
918
    free(old_frame);
918
    free(old_frame);
919
 
919
 
920
    mutex_unlock(&area->lock);
920
    mutex_unlock(&area->lock);
921
    mutex_unlock(&as->lock);
921
    mutex_unlock(&as->lock);
922
    interrupts_restore(ipl);
922
    interrupts_restore(ipl);
923
 
923
 
924
    return 0;
924
    return 0;
925
}
925
}
926
 
926
 
927
 
927
 
928
/** Handle page fault within the current address space.
928
/** Handle page fault within the current address space.
929
 *
929
 *
930
 * This is the high-level page fault handler. It decides
930
 * This is the high-level page fault handler. It decides
931
 * whether the page fault can be resolved by any backend
931
 * whether the page fault can be resolved by any backend
932
 * and if so, it invokes the backend to resolve the page
932
 * and if so, it invokes the backend to resolve the page
933
 * fault.
933
 * fault.
934
 *
934
 *
935
 * Interrupts are assumed disabled.
935
 * Interrupts are assumed disabled.
936
 *
936
 *
937
 * @param page Faulting page.
937
 * @param page Faulting page.
938
 * @param access Access mode that caused the fault (i.e. read/write/exec).
938
 * @param access Access mode that caused the fault (i.e. read/write/exec).
939
 * @param istate Pointer to interrupted state.
939
 * @param istate Pointer to interrupted state.
940
 *
940
 *
941
 * @return AS_PF_FAULT on page fault, AS_PF_OK on success or AS_PF_DEFER if the
941
 * @return AS_PF_FAULT on page fault, AS_PF_OK on success or AS_PF_DEFER if the
942
 *     fault was caused by copy_to_uspace() or copy_from_uspace().
942
 *     fault was caused by copy_to_uspace() or copy_from_uspace().
943
 */
943
 */
944
int as_page_fault(uintptr_t page, pf_access_t access, istate_t *istate)
944
int as_page_fault(uintptr_t page, pf_access_t access, istate_t *istate)
945
{
945
{
946
    pte_t *pte;
946
    pte_t *pte;
947
    as_area_t *area;
947
    as_area_t *area;
948
   
948
   
949
    if (!THREAD)
949
    if (!THREAD)
950
        return AS_PF_FAULT;
950
        return AS_PF_FAULT;
951
       
951
       
952
    ASSERT(AS);
952
    ASSERT(AS);
953
 
953
 
954
    mutex_lock(&AS->lock);
954
    mutex_lock(&AS->lock);
955
    area = find_area_and_lock(AS, page);   
955
    area = find_area_and_lock(AS, page);   
956
    if (!area) {
956
    if (!area) {
957
        /*
957
        /*
958
         * No area contained mapping for 'page'.
958
         * No area contained mapping for 'page'.
959
         * Signal page fault to low-level handler.
959
         * Signal page fault to low-level handler.
960
         */
960
         */
961
        mutex_unlock(&AS->lock);
961
        mutex_unlock(&AS->lock);
962
        goto page_fault;
962
        goto page_fault;
963
    }
963
    }
964
 
964
 
965
    if (area->attributes & AS_AREA_ATTR_PARTIAL) {
965
    if (area->attributes & AS_AREA_ATTR_PARTIAL) {
966
        /*
966
        /*
967
         * The address space area is not fully initialized.
967
         * The address space area is not fully initialized.
968
         * Avoid possible race by returning error.
968
         * Avoid possible race by returning error.
969
         */
969
         */
970
        mutex_unlock(&area->lock);
970
        mutex_unlock(&area->lock);
971
        mutex_unlock(&AS->lock);
971
        mutex_unlock(&AS->lock);
972
        goto page_fault;       
972
        goto page_fault;       
973
    }
973
    }
974
 
974
 
975
    if (!area->backend || !area->backend->page_fault) {
975
    if (!area->backend || !area->backend->page_fault) {
976
        /*
976
        /*
977
         * The address space area is not backed by any backend
977
         * The address space area is not backed by any backend
978
         * or the backend cannot handle page faults.
978
         * or the backend cannot handle page faults.
979
         */
979
         */
980
        mutex_unlock(&area->lock);
980
        mutex_unlock(&area->lock);
981
        mutex_unlock(&AS->lock);
981
        mutex_unlock(&AS->lock);
982
        goto page_fault;       
982
        goto page_fault;       
983
    }
983
    }
984
 
984
 
985
    page_table_lock(AS, false);
985
    page_table_lock(AS, false);
986
   
986
   
987
    /*
987
    /*
988
     * To avoid race condition between two page faults
988
     * To avoid race condition between two page faults
989
     * on the same address, we need to make sure
989
     * on the same address, we need to make sure
990
     * the mapping has not been already inserted.
990
     * the mapping has not been already inserted.
991
     */
991
     */
992
    if ((pte = page_mapping_find(AS, page))) {
992
    if ((pte = page_mapping_find(AS, page))) {
993
        if (PTE_PRESENT(pte)) {
993
        if (PTE_PRESENT(pte)) {
994
            if (((access == PF_ACCESS_READ) && PTE_READABLE(pte)) ||
994
            if (((access == PF_ACCESS_READ) && PTE_READABLE(pte)) ||
995
                (access == PF_ACCESS_WRITE && PTE_WRITABLE(pte)) ||
995
                (access == PF_ACCESS_WRITE && PTE_WRITABLE(pte)) ||
996
                (access == PF_ACCESS_EXEC && PTE_EXECUTABLE(pte))) {
996
                (access == PF_ACCESS_EXEC && PTE_EXECUTABLE(pte))) {
997
                page_table_unlock(AS, false);
997
                page_table_unlock(AS, false);
998
                mutex_unlock(&area->lock);
998
                mutex_unlock(&area->lock);
999
                mutex_unlock(&AS->lock);
999
                mutex_unlock(&AS->lock);
1000
                return AS_PF_OK;
1000
                return AS_PF_OK;
1001
            }
1001
            }
1002
        }
1002
        }
1003
    }
1003
    }
1004
   
1004
   
1005
    /*
1005
    /*
1006
     * Resort to the backend page fault handler.
1006
     * Resort to the backend page fault handler.
1007
     */
1007
     */
1008
    if (area->backend->page_fault(area, page, access) != AS_PF_OK) {
1008
    if (area->backend->page_fault(area, page, access) != AS_PF_OK) {
1009
        page_table_unlock(AS, false);
1009
        page_table_unlock(AS, false);
1010
        mutex_unlock(&area->lock);
1010
        mutex_unlock(&area->lock);
1011
        mutex_unlock(&AS->lock);
1011
        mutex_unlock(&AS->lock);
1012
        goto page_fault;
1012
        goto page_fault;
1013
    }
1013
    }
1014
   
1014
   
1015
    page_table_unlock(AS, false);
1015
    page_table_unlock(AS, false);
1016
    mutex_unlock(&area->lock);
1016
    mutex_unlock(&area->lock);
1017
    mutex_unlock(&AS->lock);
1017
    mutex_unlock(&AS->lock);
1018
    return AS_PF_OK;
1018
    return AS_PF_OK;
1019
 
1019
 
1020
page_fault:
1020
page_fault:
1021
    if (THREAD->in_copy_from_uspace) {
1021
    if (THREAD->in_copy_from_uspace) {
1022
        THREAD->in_copy_from_uspace = false;
1022
        THREAD->in_copy_from_uspace = false;
1023
        istate_set_retaddr(istate,
1023
        istate_set_retaddr(istate,
1024
            (uintptr_t) &memcpy_from_uspace_failover_address);
1024
            (uintptr_t) &memcpy_from_uspace_failover_address);
1025
    } else if (THREAD->in_copy_to_uspace) {
1025
    } else if (THREAD->in_copy_to_uspace) {
1026
        THREAD->in_copy_to_uspace = false;
1026
        THREAD->in_copy_to_uspace = false;
1027
        istate_set_retaddr(istate,
1027
        istate_set_retaddr(istate,
1028
            (uintptr_t) &memcpy_to_uspace_failover_address);
1028
            (uintptr_t) &memcpy_to_uspace_failover_address);
1029
    } else {
1029
    } else {
1030
        return AS_PF_FAULT;
1030
        return AS_PF_FAULT;
1031
    }
1031
    }
1032
 
1032
 
1033
    return AS_PF_DEFER;
1033
    return AS_PF_DEFER;
1034
}
1034
}
1035
 
1035
 
1036
/** Switch address spaces.
1036
/** Switch address spaces.
1037
 *
1037
 *
1038
 * Note that this function cannot sleep as it is essentially a part of
1038
 * Note that this function cannot sleep as it is essentially a part of
1039
 * scheduling. Sleeping here would lead to deadlock on wakeup. Another
1039
 * scheduling. Sleeping here would lead to deadlock on wakeup. Another
1040
 * thing which is forbidden in this context is locking the address space.
1040
 * thing which is forbidden in this context is locking the address space.
1041
 *
1041
 *
1042
 * When this function is enetered, no spinlocks may be held.
1042
 * When this function is enetered, no spinlocks may be held.
1043
 *
1043
 *
1044
 * @param old Old address space or NULL.
1044
 * @param old Old address space or NULL.
1045
 * @param new New address space.
1045
 * @param new New address space.
1046
 */
1046
 */
1047
void as_switch(as_t *old_as, as_t *new_as)
1047
void as_switch(as_t *old_as, as_t *new_as)
1048
{
1048
{
1049
    DEADLOCK_PROBE_INIT(p_asidlock);
1049
    DEADLOCK_PROBE_INIT(p_asidlock);
1050
    preemption_disable();
1050
    preemption_disable();
1051
retry:
1051
retry:
1052
    (void) interrupts_disable();
1052
    (void) interrupts_disable();
1053
    if (!spinlock_trylock(&asidlock)) {
1053
    if (!spinlock_trylock(&asidlock)) {
1054
        /*
1054
        /*
1055
         * Avoid deadlock with TLB shootdown.
1055
         * Avoid deadlock with TLB shootdown.
1056
         * We can enable interrupts here because
1056
         * We can enable interrupts here because
1057
         * preemption is disabled. We should not be
1057
         * preemption is disabled. We should not be
1058
         * holding any other lock.
1058
         * holding any other lock.
1059
         */
1059
         */
1060
        (void) interrupts_enable();
1060
        (void) interrupts_enable();
1061
        DEADLOCK_PROBE(p_asidlock, DEADLOCK_THRESHOLD);
1061
        DEADLOCK_PROBE(p_asidlock, DEADLOCK_THRESHOLD);
1062
        goto retry;
1062
        goto retry;
1063
    }
1063
    }
1064
    preemption_enable();
1064
    preemption_enable();
1065
 
1065
 
1066
    /*
1066
    /*
1067
     * First, take care of the old address space.
1067
     * First, take care of the old address space.
1068
     */
1068
     */
1069
    if (old_as) {
1069
    if (old_as) {
1070
        ASSERT(old_as->cpu_refcount);
1070
        ASSERT(old_as->cpu_refcount);
1071
        if((--old_as->cpu_refcount == 0) && (old_as != AS_KERNEL)) {
1071
        if((--old_as->cpu_refcount == 0) && (old_as != AS_KERNEL)) {
1072
            /*
1072
            /*
1073
             * The old address space is no longer active on
1073
             * The old address space is no longer active on
1074
             * any processor. It can be appended to the
1074
             * any processor. It can be appended to the
1075
             * list of inactive address spaces with assigned
1075
             * list of inactive address spaces with assigned
1076
             * ASID.
1076
             * ASID.
1077
             */
1077
             */
1078
            ASSERT(old_as->asid != ASID_INVALID);
1078
            ASSERT(old_as->asid != ASID_INVALID);
1079
            list_append(&old_as->inactive_as_with_asid_link,
1079
            list_append(&old_as->inactive_as_with_asid_link,
1080
                &inactive_as_with_asid_head);
1080
                &inactive_as_with_asid_head);
1081
        }
1081
        }
1082
 
1082
 
1083
        /*
1083
        /*
1084
         * Perform architecture-specific tasks when the address space
1084
         * Perform architecture-specific tasks when the address space
1085
         * is being removed from the CPU.
1085
         * is being removed from the CPU.
1086
         */
1086
         */
1087
        as_deinstall_arch(old_as);
1087
        as_deinstall_arch(old_as);
1088
    }
1088
    }
1089
 
1089
 
1090
    /*
1090
    /*
1091
     * Second, prepare the new address space.
1091
     * Second, prepare the new address space.
1092
     */
1092
     */
1093
    if ((new_as->cpu_refcount++ == 0) && (new_as != AS_KERNEL)) {
1093
    if ((new_as->cpu_refcount++ == 0) && (new_as != AS_KERNEL)) {
1094
        if (new_as->asid != ASID_INVALID)
1094
        if (new_as->asid != ASID_INVALID)
1095
            list_remove(&new_as->inactive_as_with_asid_link);
1095
            list_remove(&new_as->inactive_as_with_asid_link);
1096
        else
1096
        else
1097
            new_as->asid = asid_get();
1097
            new_as->asid = asid_get();
1098
    }
1098
    }
1099
#ifdef AS_PAGE_TABLE
1099
#ifdef AS_PAGE_TABLE
1100
    SET_PTL0_ADDRESS(new_as->genarch.page_table);
1100
    SET_PTL0_ADDRESS(new_as->genarch.page_table);
1101
#endif
1101
#endif
1102
   
1102
   
1103
    /*
1103
    /*
1104
     * Perform architecture-specific steps.
1104
     * Perform architecture-specific steps.
1105
     * (e.g. write ASID to hardware register etc.)
1105
     * (e.g. write ASID to hardware register etc.)
1106
     */
1106
     */
1107
    as_install_arch(new_as);
1107
    as_install_arch(new_as);
1108
 
1108
 
1109
    spinlock_unlock(&asidlock);
1109
    spinlock_unlock(&asidlock);
1110
   
1110
   
1111
    AS = new_as;
1111
    AS = new_as;
1112
}
1112
}
1113
 
1113
 
1114
/** Convert address space area flags to page flags.
1114
/** Convert address space area flags to page flags.
1115
 *
1115
 *
1116
 * @param aflags Flags of some address space area.
1116
 * @param aflags Flags of some address space area.
1117
 *
1117
 *
1118
 * @return Flags to be passed to page_mapping_insert().
1118
 * @return Flags to be passed to page_mapping_insert().
1119
 */
1119
 */
1120
int area_flags_to_page_flags(int aflags)
1120
int area_flags_to_page_flags(int aflags)
1121
{
1121
{
1122
    int flags;
1122
    int flags;
1123
 
1123
 
1124
    flags = PAGE_USER | PAGE_PRESENT;
1124
    flags = PAGE_USER | PAGE_PRESENT;
1125
   
1125
   
1126
    if (aflags & AS_AREA_READ)
1126
    if (aflags & AS_AREA_READ)
1127
        flags |= PAGE_READ;
1127
        flags |= PAGE_READ;
1128
       
1128
       
1129
    if (aflags & AS_AREA_WRITE)
1129
    if (aflags & AS_AREA_WRITE)
1130
        flags |= PAGE_WRITE;
1130
        flags |= PAGE_WRITE;
1131
   
1131
   
1132
    if (aflags & AS_AREA_EXEC)
1132
    if (aflags & AS_AREA_EXEC)
1133
        flags |= PAGE_EXEC;
1133
        flags |= PAGE_EXEC;
1134
   
1134
   
1135
    if (aflags & AS_AREA_CACHEABLE)
1135
    if (aflags & AS_AREA_CACHEABLE)
1136
        flags |= PAGE_CACHEABLE;
1136
        flags |= PAGE_CACHEABLE;
1137
       
1137
       
1138
    return flags;
1138
    return flags;
1139
}
1139
}
1140
 
1140
 
1141
/** Compute flags for virtual address translation subsytem.
1141
/** Compute flags for virtual address translation subsytem.
1142
 *
1142
 *
1143
 * The address space area must be locked.
1143
 * The address space area must be locked.
1144
 * Interrupts must be disabled.
1144
 * Interrupts must be disabled.
1145
 *
1145
 *
1146
 * @param a Address space area.
1146
 * @param a Address space area.
1147
 *
1147
 *
1148
 * @return Flags to be used in page_mapping_insert().
1148
 * @return Flags to be used in page_mapping_insert().
1149
 */
1149
 */
1150
int as_area_get_flags(as_area_t *a)
1150
int as_area_get_flags(as_area_t *a)
1151
{
1151
{
1152
    return area_flags_to_page_flags(a->flags);
1152
    return area_flags_to_page_flags(a->flags);
1153
}
1153
}
1154
 
1154
 
1155
/** Create page table.
1155
/** Create page table.
1156
 *
1156
 *
1157
 * Depending on architecture, create either address space
1157
 * Depending on architecture, create either address space
1158
 * private or global page table.
1158
 * private or global page table.
1159
 *
1159
 *
1160
 * @param flags Flags saying whether the page table is for kernel address space.
1160
 * @param flags Flags saying whether the page table is for kernel address space.
1161
 *
1161
 *
1162
 * @return First entry of the page table.
1162
 * @return First entry of the page table.
1163
 */
1163
 */
1164
pte_t *page_table_create(int flags)
1164
pte_t *page_table_create(int flags)
1165
{
1165
{
1166
#ifdef __OBJC__
1166
#ifdef __OBJC__
1167
    return [as_t page_table_create: flags];
1167
    return [as_t page_table_create: flags];
1168
#else
1168
#else
1169
    ASSERT(as_operations);
1169
    ASSERT(as_operations);
1170
    ASSERT(as_operations->page_table_create);
1170
    ASSERT(as_operations->page_table_create);
1171
   
1171
   
1172
    return as_operations->page_table_create(flags);
1172
    return as_operations->page_table_create(flags);
1173
#endif
1173
#endif
1174
}
1174
}
1175
 
1175
 
1176
/** Destroy page table.
1176
/** Destroy page table.
1177
 *
1177
 *
1178
 * Destroy page table in architecture specific way.
1178
 * Destroy page table in architecture specific way.
1179
 *
1179
 *
1180
 * @param page_table Physical address of PTL0.
1180
 * @param page_table Physical address of PTL0.
1181
 */
1181
 */
1182
void page_table_destroy(pte_t *page_table)
1182
void page_table_destroy(pte_t *page_table)
1183
{
1183
{
1184
#ifdef __OBJC__
1184
#ifdef __OBJC__
1185
    return [as_t page_table_destroy: page_table];
1185
    return [as_t page_table_destroy: page_table];
1186
#else
1186
#else
1187
    ASSERT(as_operations);
1187
    ASSERT(as_operations);
1188
    ASSERT(as_operations->page_table_destroy);
1188
    ASSERT(as_operations->page_table_destroy);
1189
   
1189
   
1190
    as_operations->page_table_destroy(page_table);
1190
    as_operations->page_table_destroy(page_table);
1191
#endif
1191
#endif
1192
}
1192
}
1193
 
1193
 
1194
/** Lock page table.
1194
/** Lock page table.
1195
 *
1195
 *
1196
 * This function should be called before any page_mapping_insert(),
1196
 * This function should be called before any page_mapping_insert(),
1197
 * page_mapping_remove() and page_mapping_find().
1197
 * page_mapping_remove() and page_mapping_find().
1198
 *
1198
 *
1199
 * Locking order is such that address space areas must be locked
1199
 * Locking order is such that address space areas must be locked
1200
 * prior to this call. Address space can be locked prior to this
1200
 * prior to this call. Address space can be locked prior to this
1201
 * call in which case the lock argument is false.
1201
 * call in which case the lock argument is false.
1202
 *
1202
 *
1203
 * @param as Address space.
1203
 * @param as Address space.
1204
 * @param lock If false, do not attempt to lock as->lock.
1204
 * @param lock If false, do not attempt to lock as->lock.
1205
 */
1205
 */
1206
void page_table_lock(as_t *as, bool lock)
1206
void page_table_lock(as_t *as, bool lock)
1207
{
1207
{
1208
#ifdef __OBJC__
1208
#ifdef __OBJC__
1209
    [as page_table_lock: lock];
1209
    [as page_table_lock: lock];
1210
#else
1210
#else
1211
    ASSERT(as_operations);
1211
    ASSERT(as_operations);
1212
    ASSERT(as_operations->page_table_lock);
1212
    ASSERT(as_operations->page_table_lock);
1213
   
1213
   
1214
    as_operations->page_table_lock(as, lock);
1214
    as_operations->page_table_lock(as, lock);
1215
#endif
1215
#endif
1216
}
1216
}
1217
 
1217
 
1218
/** Unlock page table.
1218
/** Unlock page table.
1219
 *
1219
 *
1220
 * @param as Address space.
1220
 * @param as Address space.
1221
 * @param unlock If false, do not attempt to unlock as->lock.
1221
 * @param unlock If false, do not attempt to unlock as->lock.
1222
 */
1222
 */
1223
void page_table_unlock(as_t *as, bool unlock)
1223
void page_table_unlock(as_t *as, bool unlock)
1224
{
1224
{
1225
#ifdef __OBJC__
1225
#ifdef __OBJC__
1226
    [as page_table_unlock: unlock];
1226
    [as page_table_unlock: unlock];
1227
#else
1227
#else
1228
    ASSERT(as_operations);
1228
    ASSERT(as_operations);
1229
    ASSERT(as_operations->page_table_unlock);
1229
    ASSERT(as_operations->page_table_unlock);
1230
   
1230
   
1231
    as_operations->page_table_unlock(as, unlock);
1231
    as_operations->page_table_unlock(as, unlock);
1232
#endif
1232
#endif
1233
}
1233
}
1234
 
1234
 
1235
 
1235
 
1236
/** Find address space area and lock it.
1236
/** Find address space area and lock it.
1237
 *
1237
 *
1238
 * The address space must be locked and interrupts must be disabled.
1238
 * The address space must be locked and interrupts must be disabled.
1239
 *
1239
 *
1240
 * @param as Address space.
1240
 * @param as Address space.
1241
 * @param va Virtual address.
1241
 * @param va Virtual address.
1242
 *
1242
 *
1243
 * @return Locked address space area containing va on success or NULL on
1243
 * @return Locked address space area containing va on success or NULL on
1244
 *     failure.
1244
 *     failure.
1245
 */
1245
 */
1246
as_area_t *find_area_and_lock(as_t *as, uintptr_t va)
1246
as_area_t *find_area_and_lock(as_t *as, uintptr_t va)
1247
{
1247
{
1248
    as_area_t *a;
1248
    as_area_t *a;
1249
    btree_node_t *leaf, *lnode;
1249
    btree_node_t *leaf, *lnode;
1250
    unsigned int i;
1250
    unsigned int i;
1251
   
1251
   
1252
    a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf);
1252
    a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf);
1253
    if (a) {
1253
    if (a) {
1254
        /* va is the base address of an address space area */
1254
        /* va is the base address of an address space area */
1255
        mutex_lock(&a->lock);
1255
        mutex_lock(&a->lock);
1256
        return a;
1256
        return a;
1257
    }
1257
    }
1258
   
1258
   
1259
    /*
1259
    /*
1260
     * Search the leaf node and the righmost record of its left neighbour
1260
     * Search the leaf node and the righmost record of its left neighbour
1261
     * to find out whether this is a miss or va belongs to an address
1261
     * to find out whether this is a miss or va belongs to an address
1262
     * space area found there.
1262
     * space area found there.
1263
     */
1263
     */
1264
   
1264
   
1265
    /* First, search the leaf node itself. */
1265
    /* First, search the leaf node itself. */
1266
    for (i = 0; i < leaf->keys; i++) {
1266
    for (i = 0; i < leaf->keys; i++) {
1267
        a = (as_area_t *) leaf->value[i];
1267
        a = (as_area_t *) leaf->value[i];
1268
        mutex_lock(&a->lock);
1268
        mutex_lock(&a->lock);
1269
        if ((a->base <= va) && (va < a->base + a->pages * PAGE_SIZE)) {
1269
        if ((a->base <= va) && (va < a->base + a->pages * PAGE_SIZE)) {
1270
            return a;
1270
            return a;
1271
        }
1271
        }
1272
        mutex_unlock(&a->lock);
1272
        mutex_unlock(&a->lock);
1273
    }
1273
    }
1274
 
1274
 
1275
    /*
1275
    /*
1276
     * Second, locate the left neighbour and test its last record.
1276
     * Second, locate the left neighbour and test its last record.
1277
     * Because of its position in the B+tree, it must have base < va.
1277
     * Because of its position in the B+tree, it must have base < va.
1278
     */
1278
     */
1279
    lnode = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf);
1279
    lnode = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf);
1280
    if (lnode) {
1280
    if (lnode) {
1281
        a = (as_area_t *) lnode->value[lnode->keys - 1];
1281
        a = (as_area_t *) lnode->value[lnode->keys - 1];
1282
        mutex_lock(&a->lock);
1282
        mutex_lock(&a->lock);
1283
        if (va < a->base + a->pages * PAGE_SIZE) {
1283
        if (va < a->base + a->pages * PAGE_SIZE) {
1284
            return a;
1284
            return a;
1285
        }
1285
        }
1286
        mutex_unlock(&a->lock);
1286
        mutex_unlock(&a->lock);
1287
    }
1287
    }
1288
 
1288
 
1289
    return NULL;
1289
    return NULL;
1290
}
1290
}
1291
 
1291
 
1292
/** Check area conflicts with other areas.
1292
/** Check area conflicts with other areas.
1293
 *
1293
 *
1294
 * The address space must be locked and interrupts must be disabled.
1294
 * The address space must be locked and interrupts must be disabled.
1295
 *
1295
 *
1296
 * @param as Address space.
1296
 * @param as Address space.
1297
 * @param va Starting virtual address of the area being tested.
1297
 * @param va Starting virtual address of the area being tested.
1298
 * @param size Size of the area being tested.
1298
 * @param size Size of the area being tested.
1299
 * @param avoid_area Do not touch this area.
1299
 * @param avoid_area Do not touch this area.
1300
 *
1300
 *
1301
 * @return True if there is no conflict, false otherwise.
1301
 * @return True if there is no conflict, false otherwise.
1302
 */
1302
 */
1303
bool check_area_conflicts(as_t *as, uintptr_t va, size_t size,
1303
bool check_area_conflicts(as_t *as, uintptr_t va, size_t size,
1304
              as_area_t *avoid_area)
1304
              as_area_t *avoid_area)
1305
{
1305
{
1306
    as_area_t *a;
1306
    as_area_t *a;
1307
    btree_node_t *leaf, *node;
1307
    btree_node_t *leaf, *node;
1308
    unsigned int i;
1308
    unsigned int i;
1309
   
1309
   
1310
    /*
1310
    /*
1311
     * We don't want any area to have conflicts with NULL page.
1311
     * We don't want any area to have conflicts with NULL page.
1312
     */
1312
     */
1313
    if (overlaps(va, size, NULL, PAGE_SIZE))
1313
    if (overlaps(va, size, NULL, PAGE_SIZE))
1314
        return false;
1314
        return false;
1315
   
1315
   
1316
    /*
1316
    /*
1317
     * The leaf node is found in O(log n), where n is proportional to
1317
     * The leaf node is found in O(log n), where n is proportional to
1318
     * the number of address space areas belonging to as.
1318
     * the number of address space areas belonging to as.
1319
     * The check for conflicts is then attempted on the rightmost
1319
     * The check for conflicts is then attempted on the rightmost
1320
     * record in the left neighbour, the leftmost record in the right
1320
     * record in the left neighbour, the leftmost record in the right
1321
     * neighbour and all records in the leaf node itself.
1321
     * neighbour and all records in the leaf node itself.
1322
     */
1322
     */
1323
   
1323
   
1324
    if ((a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf))) {
1324
    if ((a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf))) {
1325
        if (a != avoid_area)
1325
        if (a != avoid_area)
1326
            return false;
1326
            return false;
1327
    }
1327
    }
1328
   
1328
   
1329
    /* First, check the two border cases. */
1329
    /* First, check the two border cases. */
1330
    if ((node = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf))) {
1330
    if ((node = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf))) {
1331
        a = (as_area_t *) node->value[node->keys - 1];
1331
        a = (as_area_t *) node->value[node->keys - 1];
1332
        mutex_lock(&a->lock);
1332
        mutex_lock(&a->lock);
1333
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1333
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1334
            mutex_unlock(&a->lock);
1334
            mutex_unlock(&a->lock);
1335
            return false;
1335
            return false;
1336
        }
1336
        }
1337
        mutex_unlock(&a->lock);
1337
        mutex_unlock(&a->lock);
1338
    }
1338
    }
1339
    node = btree_leaf_node_right_neighbour(&as->as_area_btree, leaf);
1339
    node = btree_leaf_node_right_neighbour(&as->as_area_btree, leaf);
1340
    if (node) {
1340
    if (node) {
1341
        a = (as_area_t *) node->value[0];
1341
        a = (as_area_t *) node->value[0];
1342
        mutex_lock(&a->lock);
1342
        mutex_lock(&a->lock);
1343
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1343
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1344
            mutex_unlock(&a->lock);
1344
            mutex_unlock(&a->lock);
1345
            return false;
1345
            return false;
1346
        }
1346
        }
1347
        mutex_unlock(&a->lock);
1347
        mutex_unlock(&a->lock);
1348
    }
1348
    }
1349
   
1349
   
1350
    /* Second, check the leaf node. */
1350
    /* Second, check the leaf node. */
1351
    for (i = 0; i < leaf->keys; i++) {
1351
    for (i = 0; i < leaf->keys; i++) {
1352
        a = (as_area_t *) leaf->value[i];
1352
        a = (as_area_t *) leaf->value[i];
1353
   
1353
   
1354
        if (a == avoid_area)
1354
        if (a == avoid_area)
1355
            continue;
1355
            continue;
1356
   
1356
   
1357
        mutex_lock(&a->lock);
1357
        mutex_lock(&a->lock);
1358
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1358
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1359
            mutex_unlock(&a->lock);
1359
            mutex_unlock(&a->lock);
1360
            return false;
1360
            return false;
1361
        }
1361
        }
1362
        mutex_unlock(&a->lock);
1362
        mutex_unlock(&a->lock);
1363
    }
1363
    }
1364
 
1364
 
1365
    /*
1365
    /*
1366
     * So far, the area does not conflict with other areas.
1366
     * So far, the area does not conflict with other areas.
1367
     * Check if it doesn't conflict with kernel address space.
1367
     * Check if it doesn't conflict with kernel address space.
1368
     */  
1368
     */  
1369
    if (!KERNEL_ADDRESS_SPACE_SHADOWED) {
1369
    if (!KERNEL_ADDRESS_SPACE_SHADOWED) {
1370
        return !overlaps(va, size,
1370
        return !overlaps(va, size,
1371
            KERNEL_ADDRESS_SPACE_START,
1371
            KERNEL_ADDRESS_SPACE_START,
1372
            KERNEL_ADDRESS_SPACE_END - KERNEL_ADDRESS_SPACE_START);
1372
            KERNEL_ADDRESS_SPACE_END - KERNEL_ADDRESS_SPACE_START);
1373
    }
1373
    }
1374
 
1374
 
1375
    return true;
1375
    return true;
1376
}
1376
}
1377
 
1377
 
1378
/** Return size of the address space area with given base.
1378
/** Return size of the address space area with given base.
1379
 *
1379
 *
1380
 * @param base      Arbitrary address insede the address space area.
1380
 * @param base      Arbitrary address insede the address space area.
1381
 *
1381
 *
1382
 * @return      Size of the address space area in bytes or zero if it
1382
 * @return      Size of the address space area in bytes or zero if it
1383
 *          does not exist.
1383
 *          does not exist.
1384
 */
1384
 */
1385
size_t as_area_get_size(uintptr_t base)
1385
size_t as_area_get_size(uintptr_t base)
1386
{
1386
{
1387
    ipl_t ipl;
1387
    ipl_t ipl;
1388
    as_area_t *src_area;
1388
    as_area_t *src_area;
1389
    size_t size;
1389
    size_t size;
1390
 
1390
 
1391
    ipl = interrupts_disable();
1391
    ipl = interrupts_disable();
1392
    src_area = find_area_and_lock(AS, base);
1392
    src_area = find_area_and_lock(AS, base);
1393
    if (src_area){
1393
    if (src_area){
1394
        size = src_area->pages * PAGE_SIZE;
1394
        size = src_area->pages * PAGE_SIZE;
1395
        mutex_unlock(&src_area->lock);
1395
        mutex_unlock(&src_area->lock);
1396
    } else {
1396
    } else {
1397
        size = 0;
1397
        size = 0;
1398
    }
1398
    }
1399
    interrupts_restore(ipl);
1399
    interrupts_restore(ipl);
1400
    return size;
1400
    return size;
1401
}
1401
}
1402
 
1402
 
1403
/** Mark portion of address space area as used.
1403
/** Mark portion of address space area as used.
1404
 *
1404
 *
1405
 * The address space area must be already locked.
1405
 * The address space area must be already locked.
1406
 *
1406
 *
1407
 * @param a Address space area.
1407
 * @param a Address space area.
1408
 * @param page First page to be marked.
1408
 * @param page First page to be marked.
1409
 * @param count Number of page to be marked.
1409
 * @param count Number of page to be marked.
1410
 *
1410
 *
1411
 * @return 0 on failure and 1 on success.
1411
 * @return 0 on failure and 1 on success.
1412
 */
1412
 */
1413
int used_space_insert(as_area_t *a, uintptr_t page, count_t count)
1413
int used_space_insert(as_area_t *a, uintptr_t page, count_t count)
1414
{
1414
{
1415
    btree_node_t *leaf, *node;
1415
    btree_node_t *leaf, *node;
1416
    count_t pages;
1416
    count_t pages;
1417
    unsigned int i;
1417
    unsigned int i;
1418
 
1418
 
1419
    ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1419
    ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1420
    ASSERT(count);
1420
    ASSERT(count);
1421
 
1421
 
1422
    pages = (count_t) btree_search(&a->used_space, page, &leaf);
1422
    pages = (count_t) btree_search(&a->used_space, page, &leaf);
1423
    if (pages) {
1423
    if (pages) {
1424
        /*
1424
        /*
1425
         * We hit the beginning of some used space.
1425
         * We hit the beginning of some used space.
1426
         */
1426
         */
1427
        return 0;
1427
        return 0;
1428
    }
1428
    }
1429
 
1429
 
1430
    if (!leaf->keys) {
1430
    if (!leaf->keys) {
1431
        btree_insert(&a->used_space, page, (void *) count, leaf);
1431
        btree_insert(&a->used_space, page, (void *) count, leaf);
1432
        return 1;
1432
        return 1;
1433
    }
1433
    }
1434
 
1434
 
1435
    node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1435
    node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1436
    if (node) {
1436
    if (node) {
1437
        uintptr_t left_pg = node->key[node->keys - 1];
1437
        uintptr_t left_pg = node->key[node->keys - 1];
1438
        uintptr_t right_pg = leaf->key[0];
1438
        uintptr_t right_pg = leaf->key[0];
1439
        count_t left_cnt = (count_t) node->value[node->keys - 1];
1439
        count_t left_cnt = (count_t) node->value[node->keys - 1];
1440
        count_t right_cnt = (count_t) leaf->value[0];
1440
        count_t right_cnt = (count_t) leaf->value[0];
1441
       
1441
       
1442
        /*
1442
        /*
1443
         * Examine the possibility that the interval fits
1443
         * Examine the possibility that the interval fits
1444
         * somewhere between the rightmost interval of
1444
         * somewhere between the rightmost interval of
1445
         * the left neigbour and the first interval of the leaf.
1445
         * the left neigbour and the first interval of the leaf.
1446
         */
1446
         */
1447
         
1447
         
1448
        if (page >= right_pg) {
1448
        if (page >= right_pg) {
1449
            /* Do nothing. */
1449
            /* Do nothing. */
1450
        } else if (overlaps(page, count * PAGE_SIZE, left_pg,
1450
        } else if (overlaps(page, count * PAGE_SIZE, left_pg,
1451
            left_cnt * PAGE_SIZE)) {
1451
            left_cnt * PAGE_SIZE)) {
1452
            /* The interval intersects with the left interval. */
1452
            /* The interval intersects with the left interval. */
1453
            return 0;
1453
            return 0;
1454
        } else if (overlaps(page, count * PAGE_SIZE, right_pg,
1454
        } else if (overlaps(page, count * PAGE_SIZE, right_pg,
1455
            right_cnt * PAGE_SIZE)) {
1455
            right_cnt * PAGE_SIZE)) {
1456
            /* The interval intersects with the right interval. */
1456
            /* The interval intersects with the right interval. */
1457
            return 0;          
1457
            return 0;          
1458
        } else if ((page == left_pg + left_cnt * PAGE_SIZE) &&
1458
        } else if ((page == left_pg + left_cnt * PAGE_SIZE) &&
1459
            (page + count * PAGE_SIZE == right_pg)) {
1459
            (page + count * PAGE_SIZE == right_pg)) {
1460
            /*
1460
            /*
1461
             * The interval can be added by merging the two already
1461
             * The interval can be added by merging the two already
1462
             * present intervals.
1462
             * present intervals.
1463
             */
1463
             */
1464
            node->value[node->keys - 1] += count + right_cnt;
1464
            node->value[node->keys - 1] += count + right_cnt;
1465
            btree_remove(&a->used_space, right_pg, leaf);
1465
            btree_remove(&a->used_space, right_pg, leaf);
1466
            return 1;
1466
            return 1;
1467
        } else if (page == left_pg + left_cnt * PAGE_SIZE) {
1467
        } else if (page == left_pg + left_cnt * PAGE_SIZE) {
1468
            /*
1468
            /*
1469
             * The interval can be added by simply growing the left
1469
             * The interval can be added by simply growing the left
1470
             * interval.
1470
             * interval.
1471
             */
1471
             */
1472
            node->value[node->keys - 1] += count;
1472
            node->value[node->keys - 1] += count;
1473
            return 1;
1473
            return 1;
1474
        } else if (page + count * PAGE_SIZE == right_pg) {
1474
        } else if (page + count * PAGE_SIZE == right_pg) {
1475
            /*
1475
            /*
1476
             * The interval can be addded by simply moving base of
1476
             * The interval can be addded by simply moving base of
1477
             * the right interval down and increasing its size
1477
             * the right interval down and increasing its size
1478
             * accordingly.
1478
             * accordingly.
1479
             */
1479
             */
1480
            leaf->value[0] += count;
1480
            leaf->value[0] += count;
1481
            leaf->key[0] = page;
1481
            leaf->key[0] = page;
1482
            return 1;
1482
            return 1;
1483
        } else {
1483
        } else {
1484
            /*
1484
            /*
1485
             * The interval is between both neigbouring intervals,
1485
             * The interval is between both neigbouring intervals,
1486
             * but cannot be merged with any of them.
1486
             * but cannot be merged with any of them.
1487
             */
1487
             */
1488
            btree_insert(&a->used_space, page, (void *) count,
1488
            btree_insert(&a->used_space, page, (void *) count,
1489
                leaf);
1489
                leaf);
1490
            return 1;
1490
            return 1;
1491
        }
1491
        }
1492
    } else if (page < leaf->key[0]) {
1492
    } else if (page < leaf->key[0]) {
1493
        uintptr_t right_pg = leaf->key[0];
1493
        uintptr_t right_pg = leaf->key[0];
1494
        count_t right_cnt = (count_t) leaf->value[0];
1494
        count_t right_cnt = (count_t) leaf->value[0];
1495
   
1495
   
1496
        /*
1496
        /*
1497
         * Investigate the border case in which the left neighbour does
1497
         * Investigate the border case in which the left neighbour does
1498
         * not exist but the interval fits from the left.
1498
         * not exist but the interval fits from the left.
1499
         */
1499
         */
1500
         
1500
         
1501
        if (overlaps(page, count * PAGE_SIZE, right_pg,
1501
        if (overlaps(page, count * PAGE_SIZE, right_pg,
1502
            right_cnt * PAGE_SIZE)) {
1502
            right_cnt * PAGE_SIZE)) {
1503
            /* The interval intersects with the right interval. */
1503
            /* The interval intersects with the right interval. */
1504
            return 0;
1504
            return 0;
1505
        } else if (page + count * PAGE_SIZE == right_pg) {
1505
        } else if (page + count * PAGE_SIZE == right_pg) {
1506
            /*
1506
            /*
1507
             * The interval can be added by moving the base of the
1507
             * The interval can be added by moving the base of the
1508
             * right interval down and increasing its size
1508
             * right interval down and increasing its size
1509
             * accordingly.
1509
             * accordingly.
1510
             */
1510
             */
1511
            leaf->key[0] = page;
1511
            leaf->key[0] = page;
1512
            leaf->value[0] += count;
1512
            leaf->value[0] += count;
1513
            return 1;
1513
            return 1;
1514
        } else {
1514
        } else {
1515
            /*
1515
            /*
1516
             * The interval doesn't adjoin with the right interval.
1516
             * The interval doesn't adjoin with the right interval.
1517
             * It must be added individually.
1517
             * It must be added individually.
1518
             */
1518
             */
1519
            btree_insert(&a->used_space, page, (void *) count,
1519
            btree_insert(&a->used_space, page, (void *) count,
1520
                leaf);
1520
                leaf);
1521
            return 1;
1521
            return 1;
1522
        }
1522
        }
1523
    }
1523
    }
1524
 
1524
 
1525
    node = btree_leaf_node_right_neighbour(&a->used_space, leaf);
1525
    node = btree_leaf_node_right_neighbour(&a->used_space, leaf);
1526
    if (node) {
1526
    if (node) {
1527
        uintptr_t left_pg = leaf->key[leaf->keys - 1];
1527
        uintptr_t left_pg = leaf->key[leaf->keys - 1];
1528
        uintptr_t right_pg = node->key[0];
1528
        uintptr_t right_pg = node->key[0];
1529
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1529
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1530
        count_t right_cnt = (count_t) node->value[0];
1530
        count_t right_cnt = (count_t) node->value[0];
1531
       
1531
       
1532
        /*
1532
        /*
1533
         * Examine the possibility that the interval fits
1533
         * Examine the possibility that the interval fits
1534
         * somewhere between the leftmost interval of
1534
         * somewhere between the leftmost interval of
1535
         * the right neigbour and the last interval of the leaf.
1535
         * the right neigbour and the last interval of the leaf.
1536
         */
1536
         */
1537
 
1537
 
1538
        if (page < left_pg) {
1538
        if (page < left_pg) {
1539
            /* Do nothing. */
1539
            /* Do nothing. */
1540
        } else if (overlaps(page, count * PAGE_SIZE, left_pg,
1540
        } else if (overlaps(page, count * PAGE_SIZE, left_pg,
1541
            left_cnt * PAGE_SIZE)) {
1541
            left_cnt * PAGE_SIZE)) {
1542
            /* The interval intersects with the left interval. */
1542
            /* The interval intersects with the left interval. */
1543
            return 0;
1543
            return 0;
1544
        } else if (overlaps(page, count * PAGE_SIZE, right_pg,
1544
        } else if (overlaps(page, count * PAGE_SIZE, right_pg,
1545
            right_cnt * PAGE_SIZE)) {
1545
            right_cnt * PAGE_SIZE)) {
1546
            /* The interval intersects with the right interval. */
1546
            /* The interval intersects with the right interval. */
1547
            return 0;          
1547
            return 0;          
1548
        } else if ((page == left_pg + left_cnt * PAGE_SIZE) &&
1548
        } else if ((page == left_pg + left_cnt * PAGE_SIZE) &&
1549
            (page + count * PAGE_SIZE == right_pg)) {
1549
            (page + count * PAGE_SIZE == right_pg)) {
1550
            /*
1550
            /*
1551
             * The interval can be added by merging the two already
1551
             * The interval can be added by merging the two already
1552
             * present intervals.
1552
             * present intervals.
1553
             * */
1553
             * */
1554
            leaf->value[leaf->keys - 1] += count + right_cnt;
1554
            leaf->value[leaf->keys - 1] += count + right_cnt;
1555
            btree_remove(&a->used_space, right_pg, node);
1555
            btree_remove(&a->used_space, right_pg, node);
1556
            return 1;
1556
            return 1;
1557
        } else if (page == left_pg + left_cnt * PAGE_SIZE) {
1557
        } else if (page == left_pg + left_cnt * PAGE_SIZE) {
1558
            /*
1558
            /*
1559
             * The interval can be added by simply growing the left
1559
             * The interval can be added by simply growing the left
1560
             * interval.
1560
             * interval.
1561
             * */
1561
             * */
1562
            leaf->value[leaf->keys - 1] +=  count;
1562
            leaf->value[leaf->keys - 1] +=  count;
1563
            return 1;
1563
            return 1;
1564
        } else if (page + count * PAGE_SIZE == right_pg) {
1564
        } else if (page + count * PAGE_SIZE == right_pg) {
1565
            /*
1565
            /*
1566
             * The interval can be addded by simply moving base of
1566
             * The interval can be addded by simply moving base of
1567
             * the right interval down and increasing its size
1567
             * the right interval down and increasing its size
1568
             * accordingly.
1568
             * accordingly.
1569
             */
1569
             */
1570
            node->value[0] += count;
1570
            node->value[0] += count;
1571
            node->key[0] = page;
1571
            node->key[0] = page;
1572
            return 1;
1572
            return 1;
1573
        } else {
1573
        } else {
1574
            /*
1574
            /*
1575
             * The interval is between both neigbouring intervals,
1575
             * The interval is between both neigbouring intervals,
1576
             * but cannot be merged with any of them.
1576
             * but cannot be merged with any of them.
1577
             */
1577
             */
1578
            btree_insert(&a->used_space, page, (void *) count,
1578
            btree_insert(&a->used_space, page, (void *) count,
1579
                leaf);
1579
                leaf);
1580
            return 1;
1580
            return 1;
1581
        }
1581
        }
1582
    } else if (page >= leaf->key[leaf->keys - 1]) {
1582
    } else if (page >= leaf->key[leaf->keys - 1]) {
1583
        uintptr_t left_pg = leaf->key[leaf->keys - 1];
1583
        uintptr_t left_pg = leaf->key[leaf->keys - 1];
1584
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1584
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1585
   
1585
   
1586
        /*
1586
        /*
1587
         * Investigate the border case in which the right neighbour
1587
         * Investigate the border case in which the right neighbour
1588
         * does not exist but the interval fits from the right.
1588
         * does not exist but the interval fits from the right.
1589
         */
1589
         */
1590
         
1590
         
1591
        if (overlaps(page, count * PAGE_SIZE, left_pg,
1591
        if (overlaps(page, count * PAGE_SIZE, left_pg,
1592
            left_cnt * PAGE_SIZE)) {
1592
            left_cnt * PAGE_SIZE)) {
1593
            /* The interval intersects with the left interval. */
1593
            /* The interval intersects with the left interval. */
1594
            return 0;
1594
            return 0;
1595
        } else if (left_pg + left_cnt * PAGE_SIZE == page) {
1595
        } else if (left_pg + left_cnt * PAGE_SIZE == page) {
1596
            /*
1596
            /*
1597
             * The interval can be added by growing the left
1597
             * The interval can be added by growing the left
1598
             * interval.
1598
             * interval.
1599
             */
1599
             */
1600
            leaf->value[leaf->keys - 1] += count;
1600
            leaf->value[leaf->keys - 1] += count;
1601
            return 1;
1601
            return 1;
1602
        } else {
1602
        } else {
1603
            /*
1603
            /*
1604
             * The interval doesn't adjoin with the left interval.
1604
             * The interval doesn't adjoin with the left interval.
1605
             * It must be added individually.
1605
             * It must be added individually.
1606
             */
1606
             */
1607
            btree_insert(&a->used_space, page, (void *) count,
1607
            btree_insert(&a->used_space, page, (void *) count,
1608
                leaf);
1608
                leaf);
1609
            return 1;
1609
            return 1;
1610
        }
1610
        }
1611
    }
1611
    }
1612
   
1612
   
1613
    /*
1613
    /*
1614
     * Note that if the algorithm made it thus far, the interval can fit
1614
     * Note that if the algorithm made it thus far, the interval can fit
1615
     * only between two other intervals of the leaf. The two border cases
1615
     * only between two other intervals of the leaf. The two border cases
1616
     * were already resolved.
1616
     * were already resolved.
1617
     */
1617
     */
1618
    for (i = 1; i < leaf->keys; i++) {
1618
    for (i = 1; i < leaf->keys; i++) {
1619
        if (page < leaf->key[i]) {
1619
        if (page < leaf->key[i]) {
1620
            uintptr_t left_pg = leaf->key[i - 1];
1620
            uintptr_t left_pg = leaf->key[i - 1];
1621
            uintptr_t right_pg = leaf->key[i];
1621
            uintptr_t right_pg = leaf->key[i];
1622
            count_t left_cnt = (count_t) leaf->value[i - 1];
1622
            count_t left_cnt = (count_t) leaf->value[i - 1];
1623
            count_t right_cnt = (count_t) leaf->value[i];
1623
            count_t right_cnt = (count_t) leaf->value[i];
1624
 
1624
 
1625
            /*
1625
            /*
1626
             * The interval fits between left_pg and right_pg.
1626
             * The interval fits between left_pg and right_pg.
1627
             */
1627
             */
1628
 
1628
 
1629
            if (overlaps(page, count * PAGE_SIZE, left_pg,
1629
            if (overlaps(page, count * PAGE_SIZE, left_pg,
1630
                left_cnt * PAGE_SIZE)) {
1630
                left_cnt * PAGE_SIZE)) {
1631
                /*
1631
                /*
1632
                 * The interval intersects with the left
1632
                 * The interval intersects with the left
1633
                 * interval.
1633
                 * interval.
1634
                 */
1634
                 */
1635
                return 0;
1635
                return 0;
1636
            } else if (overlaps(page, count * PAGE_SIZE, right_pg,
1636
            } else if (overlaps(page, count * PAGE_SIZE, right_pg,
1637
                right_cnt * PAGE_SIZE)) {
1637
                right_cnt * PAGE_SIZE)) {
1638
                /*
1638
                /*
1639
                 * The interval intersects with the right
1639
                 * The interval intersects with the right
1640
                 * interval.
1640
                 * interval.
1641
                 */
1641
                 */
1642
                return 0;          
1642
                return 0;          
1643
            } else if ((page == left_pg + left_cnt * PAGE_SIZE) &&
1643
            } else if ((page == left_pg + left_cnt * PAGE_SIZE) &&
1644
                (page + count * PAGE_SIZE == right_pg)) {
1644
                (page + count * PAGE_SIZE == right_pg)) {
1645
                /*
1645
                /*
1646
                 * The interval can be added by merging the two
1646
                 * The interval can be added by merging the two
1647
                 * already present intervals.
1647
                 * already present intervals.
1648
                 */
1648
                 */
1649
                leaf->value[i - 1] += count + right_cnt;
1649
                leaf->value[i - 1] += count + right_cnt;
1650
                btree_remove(&a->used_space, right_pg, leaf);
1650
                btree_remove(&a->used_space, right_pg, leaf);
1651
                return 1;
1651
                return 1;
1652
            } else if (page == left_pg + left_cnt * PAGE_SIZE) {
1652
            } else if (page == left_pg + left_cnt * PAGE_SIZE) {
1653
                /*
1653
                /*
1654
                 * The interval can be added by simply growing
1654
                 * The interval can be added by simply growing
1655
                 * the left interval.
1655
                 * the left interval.
1656
                 */
1656
                 */
1657
                leaf->value[i - 1] += count;
1657
                leaf->value[i - 1] += count;
1658
                return 1;
1658
                return 1;
1659
            } else if (page + count * PAGE_SIZE == right_pg) {
1659
            } else if (page + count * PAGE_SIZE == right_pg) {
1660
                /*
1660
                /*
1661
                     * The interval can be addded by simply moving
1661
                     * The interval can be addded by simply moving
1662
                 * base of the right interval down and
1662
                 * base of the right interval down and
1663
                 * increasing its size accordingly.
1663
                 * increasing its size accordingly.
1664
                 */
1664
                 */
1665
                leaf->value[i] += count;
1665
                leaf->value[i] += count;
1666
                leaf->key[i] = page;
1666
                leaf->key[i] = page;
1667
                return 1;
1667
                return 1;
1668
            } else {
1668
            } else {
1669
                /*
1669
                /*
1670
                 * The interval is between both neigbouring
1670
                 * The interval is between both neigbouring
1671
                 * intervals, but cannot be merged with any of
1671
                 * intervals, but cannot be merged with any of
1672
                 * them.
1672
                 * them.
1673
                 */
1673
                 */
1674
                btree_insert(&a->used_space, page,
1674
                btree_insert(&a->used_space, page,
1675
                    (void *) count, leaf);
1675
                    (void *) count, leaf);
1676
                return 1;
1676
                return 1;
1677
            }
1677
            }
1678
        }
1678
        }
1679
    }
1679
    }
1680
 
1680
 
1681
    panic("Inconsistency detected while adding %" PRIc " pages of used space at "
1681
    panic("Inconsistency detected while adding %" PRIc " pages of used space at "
1682
        "%p.\n", count, page);
1682
        "%p.\n", count, page);
1683
}
1683
}
1684
 
1684
 
1685
/** Mark portion of address space area as unused.
1685
/** Mark portion of address space area as unused.
1686
 *
1686
 *
1687
 * The address space area must be already locked.
1687
 * The address space area must be already locked.
1688
 *
1688
 *
1689
 * @param a Address space area.
1689
 * @param a Address space area.
1690
 * @param page First page to be marked.
1690
 * @param page First page to be marked.
1691
 * @param count Number of page to be marked.
1691
 * @param count Number of page to be marked.
1692
 *
1692
 *
1693
 * @return 0 on failure and 1 on success.
1693
 * @return 0 on failure and 1 on success.
1694
 */
1694
 */
1695
int used_space_remove(as_area_t *a, uintptr_t page, count_t count)
1695
int used_space_remove(as_area_t *a, uintptr_t page, count_t count)
1696
{
1696
{
1697
    btree_node_t *leaf, *node;
1697
    btree_node_t *leaf, *node;
1698
    count_t pages;
1698
    count_t pages;
1699
    unsigned int i;
1699
    unsigned int i;
1700
 
1700
 
1701
    ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1701
    ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1702
    ASSERT(count);
1702
    ASSERT(count);
1703
 
1703
 
1704
    pages = (count_t) btree_search(&a->used_space, page, &leaf);
1704
    pages = (count_t) btree_search(&a->used_space, page, &leaf);
1705
    if (pages) {
1705
    if (pages) {
1706
        /*
1706
        /*
1707
         * We are lucky, page is the beginning of some interval.
1707
         * We are lucky, page is the beginning of some interval.
1708
         */
1708
         */
1709
        if (count > pages) {
1709
        if (count > pages) {
1710
            return 0;
1710
            return 0;
1711
        } else if (count == pages) {
1711
        } else if (count == pages) {
1712
            btree_remove(&a->used_space, page, leaf);
1712
            btree_remove(&a->used_space, page, leaf);
1713
            return 1;
1713
            return 1;
1714
        } else {
1714
        } else {
1715
            /*
1715
            /*
1716
             * Find the respective interval.
1716
             * Find the respective interval.
1717
             * Decrease its size and relocate its start address.
1717
             * Decrease its size and relocate its start address.
1718
             */
1718
             */
1719
            for (i = 0; i < leaf->keys; i++) {
1719
            for (i = 0; i < leaf->keys; i++) {
1720
                if (leaf->key[i] == page) {
1720
                if (leaf->key[i] == page) {
1721
                    leaf->key[i] += count * PAGE_SIZE;
1721
                    leaf->key[i] += count * PAGE_SIZE;
1722
                    leaf->value[i] -= count;
1722
                    leaf->value[i] -= count;
1723
                    return 1;
1723
                    return 1;
1724
                }
1724
                }
1725
            }
1725
            }
1726
            goto error;
1726
            goto error;
1727
        }
1727
        }
1728
    }
1728
    }
1729
 
1729
 
1730
    node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1730
    node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1731
    if (node && page < leaf->key[0]) {
1731
    if (node && page < leaf->key[0]) {
1732
        uintptr_t left_pg = node->key[node->keys - 1];
1732
        uintptr_t left_pg = node->key[node->keys - 1];
1733
        count_t left_cnt = (count_t) node->value[node->keys - 1];
1733
        count_t left_cnt = (count_t) node->value[node->keys - 1];
1734
 
1734
 
1735
        if (overlaps(left_pg, left_cnt * PAGE_SIZE, page,
1735
        if (overlaps(left_pg, left_cnt * PAGE_SIZE, page,
1736
            count * PAGE_SIZE)) {
1736
            count * PAGE_SIZE)) {
1737
            if (page + count * PAGE_SIZE ==
1737
            if (page + count * PAGE_SIZE ==
1738
                left_pg + left_cnt * PAGE_SIZE) {
1738
                left_pg + left_cnt * PAGE_SIZE) {
1739
                /*
1739
                /*
1740
                 * The interval is contained in the rightmost
1740
                 * The interval is contained in the rightmost
1741
                 * interval of the left neighbour and can be
1741
                 * interval of the left neighbour and can be
1742
                 * removed by updating the size of the bigger
1742
                 * removed by updating the size of the bigger
1743
                 * interval.
1743
                 * interval.
1744
                 */
1744
                 */
1745
                node->value[node->keys - 1] -= count;
1745
                node->value[node->keys - 1] -= count;
1746
                return 1;
1746
                return 1;
1747
            } else if (page + count * PAGE_SIZE <
1747
            } else if (page + count * PAGE_SIZE <
1748
                left_pg + left_cnt*PAGE_SIZE) {
1748
                left_pg + left_cnt*PAGE_SIZE) {
1749
                count_t new_cnt;
1749
                count_t new_cnt;
1750
               
1750
               
1751
                /*
1751
                /*
1752
                 * The interval is contained in the rightmost
1752
                 * The interval is contained in the rightmost
1753
                 * interval of the left neighbour but its
1753
                 * interval of the left neighbour but its
1754
                 * removal requires both updating the size of
1754
                 * removal requires both updating the size of
1755
                 * the original interval and also inserting a
1755
                 * the original interval and also inserting a
1756
                 * new interval.
1756
                 * new interval.
1757
                 */
1757
                 */
1758
                new_cnt = ((left_pg + left_cnt * PAGE_SIZE) -
1758
                new_cnt = ((left_pg + left_cnt * PAGE_SIZE) -
1759
                    (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1759
                    (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1760
                node->value[node->keys - 1] -= count + new_cnt;
1760
                node->value[node->keys - 1] -= count + new_cnt;
1761
                btree_insert(&a->used_space, page +
1761
                btree_insert(&a->used_space, page +
1762
                    count * PAGE_SIZE, (void *) new_cnt, leaf);
1762
                    count * PAGE_SIZE, (void *) new_cnt, leaf);
1763
                return 1;
1763
                return 1;
1764
            }
1764
            }
1765
        }
1765
        }
1766
        return 0;
1766
        return 0;
1767
    } else if (page < leaf->key[0]) {
1767
    } else if (page < leaf->key[0]) {
1768
        return 0;
1768
        return 0;
1769
    }
1769
    }
1770
   
1770
   
1771
    if (page > leaf->key[leaf->keys - 1]) {
1771
    if (page > leaf->key[leaf->keys - 1]) {
1772
        uintptr_t left_pg = leaf->key[leaf->keys - 1];
1772
        uintptr_t left_pg = leaf->key[leaf->keys - 1];
1773
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1773
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1774
 
1774
 
1775
        if (overlaps(left_pg, left_cnt * PAGE_SIZE, page,
1775
        if (overlaps(left_pg, left_cnt * PAGE_SIZE, page,
1776
            count * PAGE_SIZE)) {
1776
            count * PAGE_SIZE)) {
1777
            if (page + count * PAGE_SIZE ==
1777
            if (page + count * PAGE_SIZE ==
1778
                left_pg + left_cnt * PAGE_SIZE) {
1778
                left_pg + left_cnt * PAGE_SIZE) {
1779
                /*
1779
                /*
1780
                 * The interval is contained in the rightmost
1780
                 * The interval is contained in the rightmost
1781
                 * interval of the leaf and can be removed by
1781
                 * interval of the leaf and can be removed by
1782
                 * updating the size of the bigger interval.
1782
                 * updating the size of the bigger interval.
1783
                 */
1783
                 */
1784
                leaf->value[leaf->keys - 1] -= count;
1784
                leaf->value[leaf->keys - 1] -= count;
1785
                return 1;
1785
                return 1;
1786
            } else if (page + count * PAGE_SIZE < left_pg +
1786
            } else if (page + count * PAGE_SIZE < left_pg +
1787
                left_cnt * PAGE_SIZE) {
1787
                left_cnt * PAGE_SIZE) {
1788
                count_t new_cnt;
1788
                count_t new_cnt;
1789
               
1789
               
1790
                /*
1790
                /*
1791
                 * The interval is contained in the rightmost
1791
                 * The interval is contained in the rightmost
1792
                 * interval of the leaf but its removal
1792
                 * interval of the leaf but its removal
1793
                 * requires both updating the size of the
1793
                 * requires both updating the size of the
1794
                 * original interval and also inserting a new
1794
                 * original interval and also inserting a new
1795
                 * interval.
1795
                 * interval.
1796
                 */
1796
                 */
1797
                new_cnt = ((left_pg + left_cnt * PAGE_SIZE) -
1797
                new_cnt = ((left_pg + left_cnt * PAGE_SIZE) -
1798
                    (page + count * PAGE_SIZE)) >> PAGE_WIDTH;
1798
                    (page + count * PAGE_SIZE)) >> PAGE_WIDTH;
1799
                leaf->value[leaf->keys - 1] -= count + new_cnt;
1799
                leaf->value[leaf->keys - 1] -= count + new_cnt;
1800
                btree_insert(&a->used_space, page +
1800
                btree_insert(&a->used_space, page +
1801
                    count * PAGE_SIZE, (void *) new_cnt, leaf);
1801
                    count * PAGE_SIZE, (void *) new_cnt, leaf);
1802
                return 1;
1802
                return 1;
1803
            }
1803
            }
1804
        }
1804
        }
1805
        return 0;
1805
        return 0;
1806
    }  
1806
    }  
1807
   
1807
   
1808
    /*
1808
    /*
1809
     * The border cases have been already resolved.
1809
     * The border cases have been already resolved.
1810
     * Now the interval can be only between intervals of the leaf.
1810
     * Now the interval can be only between intervals of the leaf.
1811
     */
1811
     */
1812
    for (i = 1; i < leaf->keys - 1; i++) {
1812
    for (i = 1; i < leaf->keys - 1; i++) {
1813
        if (page < leaf->key[i]) {
1813
        if (page < leaf->key[i]) {
1814
            uintptr_t left_pg = leaf->key[i - 1];
1814
            uintptr_t left_pg = leaf->key[i - 1];
1815
            count_t left_cnt = (count_t) leaf->value[i - 1];
1815
            count_t left_cnt = (count_t) leaf->value[i - 1];
1816
 
1816
 
1817
            /*
1817
            /*
1818
             * Now the interval is between intervals corresponding
1818
             * Now the interval is between intervals corresponding
1819
             * to (i - 1) and i.
1819
             * to (i - 1) and i.
1820
             */
1820
             */
1821
            if (overlaps(left_pg, left_cnt * PAGE_SIZE, page,
1821
            if (overlaps(left_pg, left_cnt * PAGE_SIZE, page,
1822
                count * PAGE_SIZE)) {
1822
                count * PAGE_SIZE)) {
1823
                if (page + count * PAGE_SIZE ==
1823
                if (page + count * PAGE_SIZE ==
1824
                    left_pg + left_cnt*PAGE_SIZE) {
1824
                    left_pg + left_cnt*PAGE_SIZE) {
1825
                    /*
1825
                    /*
1826
                     * The interval is contained in the
1826
                     * The interval is contained in the
1827
                     * interval (i - 1) of the leaf and can
1827
                     * interval (i - 1) of the leaf and can
1828
                     * be removed by updating the size of
1828
                     * be removed by updating the size of
1829
                     * the bigger interval.
1829
                     * the bigger interval.
1830
                     */
1830
                     */
1831
                    leaf->value[i - 1] -= count;
1831
                    leaf->value[i - 1] -= count;
1832
                    return 1;
1832
                    return 1;
1833
                } else if (page + count * PAGE_SIZE <
1833
                } else if (page + count * PAGE_SIZE <
1834
                    left_pg + left_cnt * PAGE_SIZE) {
1834
                    left_pg + left_cnt * PAGE_SIZE) {
1835
                    count_t new_cnt;
1835
                    count_t new_cnt;
1836
               
1836
               
1837
                    /*
1837
                    /*
1838
                     * The interval is contained in the
1838
                     * The interval is contained in the
1839
                     * interval (i - 1) of the leaf but its
1839
                     * interval (i - 1) of the leaf but its
1840
                     * removal requires both updating the
1840
                     * removal requires both updating the
1841
                     * size of the original interval and
1841
                     * size of the original interval and
1842
                     * also inserting a new interval.
1842
                     * also inserting a new interval.
1843
                     */
1843
                     */
1844
                    new_cnt = ((left_pg +
1844
                    new_cnt = ((left_pg +
1845
                        left_cnt * PAGE_SIZE) -
1845
                        left_cnt * PAGE_SIZE) -
1846
                        (page + count * PAGE_SIZE)) >>
1846
                        (page + count * PAGE_SIZE)) >>
1847
                        PAGE_WIDTH;
1847
                        PAGE_WIDTH;
1848
                    leaf->value[i - 1] -= count + new_cnt;
1848
                    leaf->value[i - 1] -= count + new_cnt;
1849
                    btree_insert(&a->used_space, page +
1849
                    btree_insert(&a->used_space, page +
1850
                        count * PAGE_SIZE, (void *) new_cnt,
1850
                        count * PAGE_SIZE, (void *) new_cnt,
1851
                        leaf);
1851
                        leaf);
1852
                    return 1;
1852
                    return 1;
1853
                }
1853
                }
1854
            }
1854
            }
1855
            return 0;
1855
            return 0;
1856
        }
1856
        }
1857
    }
1857
    }
1858
 
1858
 
1859
error:
1859
error:
1860
    panic("Inconsistency detected while removing %" PRIc " pages of used space "
1860
    panic("Inconsistency detected while removing %" PRIc " pages of used space "
1861
        "from %p.\n", count, page);
1861
        "from %p.\n", count, page);
1862
}
1862
}
1863
 
1863
 
1864
/** Remove reference to address space area share info.
1864
/** Remove reference to address space area share info.
1865
 *
1865
 *
1866
 * If the reference count drops to 0, the sh_info is deallocated.
1866
 * If the reference count drops to 0, the sh_info is deallocated.
1867
 *
1867
 *
1868
 * @param sh_info Pointer to address space area share info.
1868
 * @param sh_info Pointer to address space area share info.
1869
 */
1869
 */
1870
void sh_info_remove_reference(share_info_t *sh_info)
1870
void sh_info_remove_reference(share_info_t *sh_info)
1871
{
1871
{
1872
    bool dealloc = false;
1872
    bool dealloc = false;
1873
 
1873
 
1874
    mutex_lock(&sh_info->lock);
1874
    mutex_lock(&sh_info->lock);
1875
    ASSERT(sh_info->refcount);
1875
    ASSERT(sh_info->refcount);
1876
    if (--sh_info->refcount == 0) {
1876
    if (--sh_info->refcount == 0) {
1877
        dealloc = true;
1877
        dealloc = true;
1878
        link_t *cur;
1878
        link_t *cur;
1879
       
1879
       
1880
        /*
1880
        /*
1881
         * Now walk carefully the pagemap B+tree and free/remove
1881
         * Now walk carefully the pagemap B+tree and free/remove
1882
         * reference from all frames found there.
1882
         * reference from all frames found there.
1883
         */
1883
         */
1884
        for (cur = sh_info->pagemap.leaf_head.next;
1884
        for (cur = sh_info->pagemap.leaf_head.next;
1885
            cur != &sh_info->pagemap.leaf_head; cur = cur->next) {
1885
            cur != &sh_info->pagemap.leaf_head; cur = cur->next) {
1886
            btree_node_t *node;
1886
            btree_node_t *node;
1887
            unsigned int i;
1887
            unsigned int i;
1888
           
1888
           
1889
            node = list_get_instance(cur, btree_node_t, leaf_link);
1889
            node = list_get_instance(cur, btree_node_t, leaf_link);
1890
            for (i = 0; i < node->keys; i++)
1890
            for (i = 0; i < node->keys; i++)
1891
                frame_free((uintptr_t) node->value[i]);
1891
                frame_free((uintptr_t) node->value[i]);
1892
        }
1892
        }
1893
       
1893
       
1894
    }
1894
    }
1895
    mutex_unlock(&sh_info->lock);
1895
    mutex_unlock(&sh_info->lock);
1896
   
1896
   
1897
    if (dealloc) {
1897
    if (dealloc) {
1898
        btree_destroy(&sh_info->pagemap);
1898
        btree_destroy(&sh_info->pagemap);
1899
        free(sh_info);
1899
        free(sh_info);
1900
    }
1900
    }
1901
}
1901
}
1902
 
1902
 
1903
/*
1903
/*
1904
 * Address space related syscalls.
1904
 * Address space related syscalls.
1905
 */
1905
 */
1906
 
1906
 
1907
/** Wrapper for as_area_create(). */
1907
/** Wrapper for as_area_create(). */
1908
unative_t sys_as_area_create(uintptr_t address, size_t size, int flags)
1908
unative_t sys_as_area_create(uintptr_t address, size_t size, int flags)
1909
{
1909
{
1910
    if (as_area_create(AS, flags | AS_AREA_CACHEABLE, size, address,
1910
    if (as_area_create(AS, flags | AS_AREA_CACHEABLE, size, address,
1911
        AS_AREA_ATTR_NONE, &anon_backend, NULL))
1911
        AS_AREA_ATTR_NONE, &anon_backend, NULL))
1912
        return (unative_t) address;
1912
        return (unative_t) address;
1913
    else
1913
    else
1914
        return (unative_t) -1;
1914
        return (unative_t) -1;
1915
}
1915
}
1916
 
1916
 
1917
/** Wrapper for as_area_resize(). */
1917
/** Wrapper for as_area_resize(). */
1918
unative_t sys_as_area_resize(uintptr_t address, size_t size, int flags)
1918
unative_t sys_as_area_resize(uintptr_t address, size_t size, int flags)
1919
{
1919
{
1920
    return (unative_t) as_area_resize(AS, address, size, 0);
1920
    return (unative_t) as_area_resize(AS, address, size, 0);
1921
}
1921
}
1922
 
1922
 
1923
/** Wrapper for as_area_change_flags(). */
1923
/** Wrapper for as_area_change_flags(). */
1924
unative_t sys_as_area_change_flags(uintptr_t address, int flags)
1924
unative_t sys_as_area_change_flags(uintptr_t address, int flags)
1925
{
1925
{
1926
    return (unative_t) as_area_change_flags(AS, flags, address);
1926
    return (unative_t) as_area_change_flags(AS, flags, address);
1927
}
1927
}
1928
 
1928
 
1929
/** Wrapper for as_area_destroy(). */
1929
/** Wrapper for as_area_destroy(). */
1930
unative_t sys_as_area_destroy(uintptr_t address)
1930
unative_t sys_as_area_destroy(uintptr_t address)
1931
{
1931
{
1932
    return (unative_t) as_area_destroy(AS, address);
1932
    return (unative_t) as_area_destroy(AS, address);
1933
}
1933
}
1934
 
1934
 
1935
/** Print out information about address space.
1935
/** Print out information about address space.
1936
 *
1936
 *
1937
 * @param as Address space.
1937
 * @param as Address space.
1938
 */
1938
 */
1939
void as_print(as_t *as)
1939
void as_print(as_t *as)
1940
{
1940
{
1941
    ipl_t ipl;
1941
    ipl_t ipl;
1942
   
1942
   
1943
    ipl = interrupts_disable();
1943
    ipl = interrupts_disable();
1944
    mutex_lock(&as->lock);
1944
    mutex_lock(&as->lock);
1945
   
1945
   
1946
    /* print out info about address space areas */
1946
    /* print out info about address space areas */
1947
    link_t *cur;
1947
    link_t *cur;
1948
    for (cur = as->as_area_btree.leaf_head.next;
1948
    for (cur = as->as_area_btree.leaf_head.next;
1949
        cur != &as->as_area_btree.leaf_head; cur = cur->next) {
1949
        cur != &as->as_area_btree.leaf_head; cur = cur->next) {
1950
        btree_node_t *node;
1950
        btree_node_t *node;
1951
       
1951
       
1952
        node = list_get_instance(cur, btree_node_t, leaf_link);
1952
        node = list_get_instance(cur, btree_node_t, leaf_link);
1953
       
1953
       
1954
        unsigned int i;
1954
        unsigned int i;
1955
        for (i = 0; i < node->keys; i++) {
1955
        for (i = 0; i < node->keys; i++) {
1956
            as_area_t *area = node->value[i];
1956
            as_area_t *area = node->value[i];
1957
       
1957
       
1958
            mutex_lock(&area->lock);
1958
            mutex_lock(&area->lock);
1959
            printf("as_area: %p, base=%p, pages=%" PRIc " (%p - %p)\n",
1959
            printf("as_area: %p, base=%p, pages=%" PRIc " (%p - %p)\n",
1960
                area, area->base, area->pages, area->base,
1960
                area, area->base, area->pages, area->base,
1961
                area->base + FRAMES2SIZE(area->pages));
1961
                area->base + FRAMES2SIZE(area->pages));
1962
            mutex_unlock(&area->lock);
1962
            mutex_unlock(&area->lock);
1963
        }
1963
        }
1964
    }
1964
    }
1965
   
1965
   
1966
    mutex_unlock(&as->lock);
1966
    mutex_unlock(&as->lock);
1967
    interrupts_restore(ipl);
1967
    interrupts_restore(ipl);
1968
}
1968
}
1969
 
1969
 
1970
/** @}
1970
/** @}
1971
 */
1971
 */
1972
 
1972