Subversion Repositories HelenOS

Rev

Rev 3149 | Rev 3156 | Go to most recent revision | Only display areas with differences | Ignore whitespace | Details | Blame | Last modification | View Log | RSS feed

Rev 3149 Rev 3153
1
/*
1
/*
2
 * Copyright (c) 2001-2006 Jakub Jermar
2
 * Copyright (c) 2001-2006 Jakub Jermar
3
 * All rights reserved.
3
 * All rights reserved.
4
 *
4
 *
5
 * Redistribution and use in source and binary forms, with or without
5
 * Redistribution and use in source and binary forms, with or without
6
 * modification, are permitted provided that the following conditions
6
 * modification, are permitted provided that the following conditions
7
 * are met:
7
 * are met:
8
 *
8
 *
9
 * - Redistributions of source code must retain the above copyright
9
 * - Redistributions of source code must retain the above copyright
10
 *   notice, this list of conditions and the following disclaimer.
10
 *   notice, this list of conditions and the following disclaimer.
11
 * - Redistributions in binary form must reproduce the above copyright
11
 * - Redistributions in binary form must reproduce the above copyright
12
 *   notice, this list of conditions and the following disclaimer in the
12
 *   notice, this list of conditions and the following disclaimer in the
13
 *   documentation and/or other materials provided with the distribution.
13
 *   documentation and/or other materials provided with the distribution.
14
 * - The name of the author may not be used to endorse or promote products
14
 * - The name of the author may not be used to endorse or promote products
15
 *   derived from this software without specific prior written permission.
15
 *   derived from this software without specific prior written permission.
16
 *
16
 *
17
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
 */
27
 */
28
 
28
 
29
/** @addtogroup genericmm
29
/** @addtogroup genericmm
30
 * @{
30
 * @{
31
 */
31
 */
32
 
32
 
33
/**
33
/**
34
 * @file
34
 * @file
35
 * @brief   Address space related functions.
35
 * @brief   Address space related functions.
36
 *
36
 *
37
 * This file contains address space manipulation functions.
37
 * This file contains address space manipulation functions.
38
 * Roughly speaking, this is a higher-level client of
38
 * Roughly speaking, this is a higher-level client of
39
 * Virtual Address Translation (VAT) subsystem.
39
 * Virtual Address Translation (VAT) subsystem.
40
 *
40
 *
41
 * Functionality provided by this file allows one to
41
 * Functionality provided by this file allows one to
42
 * create address spaces and create, resize and share
42
 * create address spaces and create, resize and share
43
 * address space areas.
43
 * address space areas.
44
 *
44
 *
45
 * @see page.c
45
 * @see page.c
46
 *
46
 *
47
 */
47
 */
48
 
48
 
49
#include <mm/as.h>
49
#include <mm/as.h>
50
#include <arch/mm/as.h>
50
#include <arch/mm/as.h>
51
#include <mm/page.h>
51
#include <mm/page.h>
52
#include <mm/frame.h>
52
#include <mm/frame.h>
53
#include <mm/slab.h>
53
#include <mm/slab.h>
54
#include <mm/tlb.h>
54
#include <mm/tlb.h>
55
#include <arch/mm/page.h>
55
#include <arch/mm/page.h>
56
#include <genarch/mm/page_pt.h>
56
#include <genarch/mm/page_pt.h>
57
#include <genarch/mm/page_ht.h>
57
#include <genarch/mm/page_ht.h>
58
#include <mm/asid.h>
58
#include <mm/asid.h>
59
#include <arch/mm/asid.h>
59
#include <arch/mm/asid.h>
60
#include <preemption.h>
60
#include <preemption.h>
61
#include <synch/spinlock.h>
61
#include <synch/spinlock.h>
62
#include <synch/mutex.h>
62
#include <synch/mutex.h>
63
#include <adt/list.h>
63
#include <adt/list.h>
64
#include <adt/btree.h>
64
#include <adt/btree.h>
65
#include <proc/task.h>
65
#include <proc/task.h>
66
#include <proc/thread.h>
66
#include <proc/thread.h>
67
#include <arch/asm.h>
67
#include <arch/asm.h>
68
#include <panic.h>
68
#include <panic.h>
69
#include <debug.h>
69
#include <debug.h>
70
#include <print.h>
70
#include <print.h>
71
#include <memstr.h>
71
#include <memstr.h>
72
#include <macros.h>
72
#include <macros.h>
73
#include <arch.h>
73
#include <arch.h>
74
#include <errno.h>
74
#include <errno.h>
75
#include <config.h>
75
#include <config.h>
76
#include <align.h>
76
#include <align.h>
77
#include <arch/types.h>
77
#include <arch/types.h>
78
#include <syscall/copy.h>
78
#include <syscall/copy.h>
79
#include <arch/interrupt.h>
79
#include <arch/interrupt.h>
80
 
80
 
81
#ifdef CONFIG_VIRT_IDX_DCACHE
81
#ifdef CONFIG_VIRT_IDX_DCACHE
82
#include <arch/mm/cache.h>
82
#include <arch/mm/cache.h>
83
#endif /* CONFIG_VIRT_IDX_DCACHE */
83
#endif /* CONFIG_VIRT_IDX_DCACHE */
84
 
84
 
85
#ifndef __OBJC__
85
#ifndef __OBJC__
86
/**
86
/**
87
 * Each architecture decides what functions will be used to carry out
87
 * Each architecture decides what functions will be used to carry out
88
 * address space operations such as creating or locking page tables.
88
 * address space operations such as creating or locking page tables.
89
 */
89
 */
90
as_operations_t *as_operations = NULL;
90
as_operations_t *as_operations = NULL;
91
 
91
 
92
/**
92
/**
93
 * Slab for as_t objects.
93
 * Slab for as_t objects.
94
 */
94
 */
95
static slab_cache_t *as_slab;
95
static slab_cache_t *as_slab;
96
#endif
96
#endif
97
 
97
 
98
/**
98
/**
99
 * This lock serializes access to the ASID subsystem.
99
 * This lock serializes access to the ASID subsystem.
100
 * It protects:
100
 * It protects:
101
 * - inactive_as_with_asid_head list
101
 * - inactive_as_with_asid_head list
102
 * - as->asid for each as of the as_t type
102
 * - as->asid for each as of the as_t type
103
 * - asids_allocated counter
103
 * - asids_allocated counter
104
 */
104
 */
105
SPINLOCK_INITIALIZE(asidlock);
105
SPINLOCK_INITIALIZE(asidlock);
106
 
106
 
107
/**
107
/**
108
 * This list contains address spaces that are not active on any
108
 * This list contains address spaces that are not active on any
109
 * processor and that have valid ASID.
109
 * processor and that have valid ASID.
110
 */
110
 */
111
LIST_INITIALIZE(inactive_as_with_asid_head);
111
LIST_INITIALIZE(inactive_as_with_asid_head);
112
 
112
 
113
/** Kernel address space. */
113
/** Kernel address space. */
114
as_t *AS_KERNEL = NULL;
114
as_t *AS_KERNEL = NULL;
115
 
115
 
116
static int area_flags_to_page_flags(int aflags);
116
static int area_flags_to_page_flags(int aflags);
117
static as_area_t *find_area_and_lock(as_t *as, uintptr_t va);
117
static as_area_t *find_area_and_lock(as_t *as, uintptr_t va);
118
static bool check_area_conflicts(as_t *as, uintptr_t va, size_t size,
118
static bool check_area_conflicts(as_t *as, uintptr_t va, size_t size,
119
    as_area_t *avoid_area);
119
    as_area_t *avoid_area);
120
static void sh_info_remove_reference(share_info_t *sh_info);
120
static void sh_info_remove_reference(share_info_t *sh_info);
121
 
121
 
122
#ifndef __OBJC__
122
#ifndef __OBJC__
123
static int as_constructor(void *obj, int flags)
123
static int as_constructor(void *obj, int flags)
124
{
124
{
125
    as_t *as = (as_t *) obj;
125
    as_t *as = (as_t *) obj;
126
    int rc;
126
    int rc;
127
 
127
 
128
    link_initialize(&as->inactive_as_with_asid_link);
128
    link_initialize(&as->inactive_as_with_asid_link);
129
    mutex_initialize(&as->lock);   
129
    mutex_initialize(&as->lock);   
130
   
130
   
131
    rc = as_constructor_arch(as, flags);
131
    rc = as_constructor_arch(as, flags);
132
   
132
   
133
    return rc;
133
    return rc;
134
}
134
}
135
 
135
 
136
static int as_destructor(void *obj)
136
static int as_destructor(void *obj)
137
{
137
{
138
    as_t *as = (as_t *) obj;
138
    as_t *as = (as_t *) obj;
139
 
139
 
140
    return as_destructor_arch(as);
140
    return as_destructor_arch(as);
141
}
141
}
142
#endif
142
#endif
143
 
143
 
144
/** Initialize address space subsystem. */
144
/** Initialize address space subsystem. */
145
void as_init(void)
145
void as_init(void)
146
{
146
{
147
    as_arch_init();
147
    as_arch_init();
148
 
148
 
149
#ifndef __OBJC__
149
#ifndef __OBJC__
150
    as_slab = slab_cache_create("as_slab", sizeof(as_t), 0,
150
    as_slab = slab_cache_create("as_slab", sizeof(as_t), 0,
151
        as_constructor, as_destructor, SLAB_CACHE_MAGDEFERRED);
151
        as_constructor, as_destructor, SLAB_CACHE_MAGDEFERRED);
152
#endif
152
#endif
153
   
153
   
154
    AS_KERNEL = as_create(FLAG_AS_KERNEL);
154
    AS_KERNEL = as_create(FLAG_AS_KERNEL);
155
    if (!AS_KERNEL)
155
    if (!AS_KERNEL)
156
        panic("can't create kernel address space\n");
156
        panic("can't create kernel address space\n");
157
   
157
   
158
}
158
}
159
 
159
 
160
/** Create address space.
160
/** Create address space.
161
 *
161
 *
162
 * @param flags Flags that influence way in wich the address space is created.
162
 * @param flags Flags that influence way in wich the address space is created.
163
 */
163
 */
164
as_t *as_create(int flags)
164
as_t *as_create(int flags)
165
{
165
{
166
    as_t *as;
166
    as_t *as;
167
 
167
 
168
#ifdef __OBJC__
168
#ifdef __OBJC__
169
    as = [as_t new];
169
    as = [as_t new];
170
    link_initialize(&as->inactive_as_with_asid_link);
170
    link_initialize(&as->inactive_as_with_asid_link);
171
    mutex_initialize(&as->lock);   
171
    mutex_initialize(&as->lock);   
172
    (void) as_constructor_arch(as, flags);
172
    (void) as_constructor_arch(as, flags);
173
#else
173
#else
174
    as = (as_t *) slab_alloc(as_slab, 0);
174
    as = (as_t *) slab_alloc(as_slab, 0);
175
#endif
175
#endif
176
    (void) as_create_arch(as, 0);
176
    (void) as_create_arch(as, 0);
177
   
177
   
178
    btree_create(&as->as_area_btree);
178
    btree_create(&as->as_area_btree);
179
   
179
   
180
    if (flags & FLAG_AS_KERNEL)
180
    if (flags & FLAG_AS_KERNEL)
181
        as->asid = ASID_KERNEL;
181
        as->asid = ASID_KERNEL;
182
    else
182
    else
183
        as->asid = ASID_INVALID;
183
        as->asid = ASID_INVALID;
184
   
184
   
185
    atomic_set(&as->refcount, 0);
185
    atomic_set(&as->refcount, 0);
186
    as->cpu_refcount = 0;
186
    as->cpu_refcount = 0;
187
#ifdef AS_PAGE_TABLE
187
#ifdef AS_PAGE_TABLE
188
    as->genarch.page_table = page_table_create(flags);
188
    as->genarch.page_table = page_table_create(flags);
189
#else
189
#else
190
    page_table_create(flags);
190
    page_table_create(flags);
191
#endif
191
#endif
192
 
192
 
193
    return as;
193
    return as;
194
}
194
}
195
 
195
 
196
/** Destroy adress space.
196
/** Destroy adress space.
197
 *
197
 *
198
 * When there are no tasks referencing this address space (i.e. its refcount is
198
 * When there are no tasks referencing this address space (i.e. its refcount is
199
 * zero), the address space can be destroyed.
199
 * zero), the address space can be destroyed.
200
 *
200
 *
201
 * We know that we don't hold any spinlock.
201
 * We know that we don't hold any spinlock.
202
 */
202
 */
203
void as_destroy(as_t *as)
203
void as_destroy(as_t *as)
204
{
204
{
205
    ipl_t ipl;
205
    ipl_t ipl;
206
    bool cond;
206
    bool cond;
207
    DEADLOCK_PROBE_INIT(p_asidlock);
207
    DEADLOCK_PROBE_INIT(p_asidlock);
208
 
208
 
209
    ASSERT(atomic_get(&as->refcount) == 0);
209
    ASSERT(atomic_get(&as->refcount) == 0);
210
   
210
   
211
    /*
211
    /*
212
     * Since there is no reference to this area,
212
     * Since there is no reference to this area,
213
     * it is safe not to lock its mutex.
213
     * it is safe not to lock its mutex.
214
     */
214
     */
215
 
215
 
216
    /*
216
    /*
217
     * We need to avoid deadlock between TLB shootdown and asidlock.
217
     * We need to avoid deadlock between TLB shootdown and asidlock.
218
     * We therefore try to take asid conditionally and if we don't succeed,
218
     * We therefore try to take asid conditionally and if we don't succeed,
219
     * we enable interrupts and try again. This is done while preemption is
219
     * we enable interrupts and try again. This is done while preemption is
220
     * disabled to prevent nested context switches. We also depend on the
220
     * disabled to prevent nested context switches. We also depend on the
221
     * fact that so far no spinlocks are held.
221
     * fact that so far no spinlocks are held.
222
     */
222
     */
223
    preemption_disable();
223
    preemption_disable();
224
    ipl = interrupts_read();
224
    ipl = interrupts_read();
225
retry:
225
retry:
226
    interrupts_disable();
226
    interrupts_disable();
227
    if (!spinlock_trylock(&asidlock)) {
227
    if (!spinlock_trylock(&asidlock)) {
228
        interrupts_enable();
228
        interrupts_enable();
229
        DEADLOCK_PROBE(p_asidlock, DEADLOCK_THRESHOLD);
229
        DEADLOCK_PROBE(p_asidlock, DEADLOCK_THRESHOLD);
230
        goto retry;
230
        goto retry;
231
    }
231
    }
232
    preemption_enable();    /* Interrupts disabled, enable preemption */
232
    preemption_enable();    /* Interrupts disabled, enable preemption */
233
    if (as->asid != ASID_INVALID && as != AS_KERNEL) {
233
    if (as->asid != ASID_INVALID && as != AS_KERNEL) {
234
        if (as != AS && as->cpu_refcount == 0)
234
        if (as != AS && as->cpu_refcount == 0)
235
            list_remove(&as->inactive_as_with_asid_link);
235
            list_remove(&as->inactive_as_with_asid_link);
236
        asid_put(as->asid);
236
        asid_put(as->asid);
237
    }
237
    }
238
    spinlock_unlock(&asidlock);
238
    spinlock_unlock(&asidlock);
239
 
239
 
240
    /*
240
    /*
241
     * Destroy address space areas of the address space.
241
     * Destroy address space areas of the address space.
242
     * The B+tree must be walked carefully because it is
242
     * The B+tree must be walked carefully because it is
243
     * also being destroyed.
243
     * also being destroyed.
244
     */
244
     */
245
    for (cond = true; cond; ) {
245
    for (cond = true; cond; ) {
246
        btree_node_t *node;
246
        btree_node_t *node;
247
 
247
 
248
        ASSERT(!list_empty(&as->as_area_btree.leaf_head));
248
        ASSERT(!list_empty(&as->as_area_btree.leaf_head));
249
        node = list_get_instance(as->as_area_btree.leaf_head.next,
249
        node = list_get_instance(as->as_area_btree.leaf_head.next,
250
            btree_node_t, leaf_link);
250
            btree_node_t, leaf_link);
251
 
251
 
252
        if ((cond = node->keys)) {
252
        if ((cond = node->keys)) {
253
            as_area_destroy(as, node->key[0]);
253
            as_area_destroy(as, node->key[0]);
254
        }
254
        }
255
    }
255
    }
256
 
256
 
257
    btree_destroy(&as->as_area_btree);
257
    btree_destroy(&as->as_area_btree);
258
#ifdef AS_PAGE_TABLE
258
#ifdef AS_PAGE_TABLE
259
    page_table_destroy(as->genarch.page_table);
259
    page_table_destroy(as->genarch.page_table);
260
#else
260
#else
261
    page_table_destroy(NULL);
261
    page_table_destroy(NULL);
262
#endif
262
#endif
263
 
263
 
264
    interrupts_restore(ipl);
264
    interrupts_restore(ipl);
265
 
265
 
266
#ifdef __OBJC__
266
#ifdef __OBJC__
267
    [as free];
267
    [as free];
268
#else
268
#else
269
    slab_free(as_slab, as);
269
    slab_free(as_slab, as);
270
#endif
270
#endif
271
}
271
}
272
 
272
 
273
/** Create address space area of common attributes.
273
/** Create address space area of common attributes.
274
 *
274
 *
275
 * The created address space area is added to the target address space.
275
 * The created address space area is added to the target address space.
276
 *
276
 *
277
 * @param as Target address space.
277
 * @param as Target address space.
278
 * @param flags Flags of the area memory.
278
 * @param flags Flags of the area memory.
279
 * @param size Size of area.
279
 * @param size Size of area.
280
 * @param base Base address of area.
280
 * @param base Base address of area.
281
 * @param attrs Attributes of the area.
281
 * @param attrs Attributes of the area.
282
 * @param backend Address space area backend. NULL if no backend is used.
282
 * @param backend Address space area backend. NULL if no backend is used.
283
 * @param backend_data NULL or a pointer to an array holding two void *.
283
 * @param backend_data NULL or a pointer to an array holding two void *.
284
 *
284
 *
285
 * @return Address space area on success or NULL on failure.
285
 * @return Address space area on success or NULL on failure.
286
 */
286
 */
287
as_area_t *
287
as_area_t *
288
as_area_create(as_t *as, int flags, size_t size, uintptr_t base, int attrs,
288
as_area_create(as_t *as, int flags, size_t size, uintptr_t base, int attrs,
289
           mem_backend_t *backend, mem_backend_data_t *backend_data)
289
           mem_backend_t *backend, mem_backend_data_t *backend_data)
290
{
290
{
291
    ipl_t ipl;
291
    ipl_t ipl;
292
    as_area_t *a;
292
    as_area_t *a;
293
   
293
   
294
    if (base % PAGE_SIZE)
294
    if (base % PAGE_SIZE)
295
        return NULL;
295
        return NULL;
296
 
296
 
297
    if (!size)
297
    if (!size)
298
        return NULL;
298
        return NULL;
299
 
299
 
300
    /* Writeable executable areas are not supported. */
300
    /* Writeable executable areas are not supported. */
301
    if ((flags & AS_AREA_EXEC) && (flags & AS_AREA_WRITE))
301
    if ((flags & AS_AREA_EXEC) && (flags & AS_AREA_WRITE))
302
        return NULL;
302
        return NULL;
303
   
303
   
304
    ipl = interrupts_disable();
304
    ipl = interrupts_disable();
305
    mutex_lock(&as->lock);
305
    mutex_lock(&as->lock);
306
   
306
   
307
    if (!check_area_conflicts(as, base, size, NULL)) {
307
    if (!check_area_conflicts(as, base, size, NULL)) {
308
        mutex_unlock(&as->lock);
308
        mutex_unlock(&as->lock);
309
        interrupts_restore(ipl);
309
        interrupts_restore(ipl);
310
        return NULL;
310
        return NULL;
311
    }
311
    }
312
   
312
   
313
    a = (as_area_t *) malloc(sizeof(as_area_t), 0);
313
    a = (as_area_t *) malloc(sizeof(as_area_t), 0);
314
 
314
 
315
    mutex_initialize(&a->lock);
315
    mutex_initialize(&a->lock);
316
   
316
   
317
    a->as = as;
317
    a->as = as;
318
    a->flags = flags;
318
    a->flags = flags;
319
    a->attributes = attrs;
319
    a->attributes = attrs;
320
    a->pages = SIZE2FRAMES(size);
320
    a->pages = SIZE2FRAMES(size);
321
    a->base = base;
321
    a->base = base;
322
    a->sh_info = NULL;
322
    a->sh_info = NULL;
323
    a->backend = backend;
323
    a->backend = backend;
324
    if (backend_data)
324
    if (backend_data)
325
        a->backend_data = *backend_data;
325
        a->backend_data = *backend_data;
326
    else
326
    else
327
        memsetb((uintptr_t) &a->backend_data, sizeof(a->backend_data),
327
        memsetb(&a->backend_data, sizeof(a->backend_data), 0);
328
            0);
-
 
329
 
328
 
330
    btree_create(&a->used_space);
329
    btree_create(&a->used_space);
331
   
330
   
332
    btree_insert(&as->as_area_btree, base, (void *) a, NULL);
331
    btree_insert(&as->as_area_btree, base, (void *) a, NULL);
333
 
332
 
334
    mutex_unlock(&as->lock);
333
    mutex_unlock(&as->lock);
335
    interrupts_restore(ipl);
334
    interrupts_restore(ipl);
336
 
335
 
337
    return a;
336
    return a;
338
}
337
}
339
 
338
 
340
/** Find address space area and change it.
339
/** Find address space area and change it.
341
 *
340
 *
342
 * @param as Address space.
341
 * @param as Address space.
343
 * @param address Virtual address belonging to the area to be changed. Must be
342
 * @param address Virtual address belonging to the area to be changed. Must be
344
 *     page-aligned.
343
 *     page-aligned.
345
 * @param size New size of the virtual memory block starting at address.
344
 * @param size New size of the virtual memory block starting at address.
346
 * @param flags Flags influencing the remap operation. Currently unused.
345
 * @param flags Flags influencing the remap operation. Currently unused.
347
 *
346
 *
348
 * @return Zero on success or a value from @ref errno.h otherwise.
347
 * @return Zero on success or a value from @ref errno.h otherwise.
349
 */
348
 */
350
int as_area_resize(as_t *as, uintptr_t address, size_t size, int flags)
349
int as_area_resize(as_t *as, uintptr_t address, size_t size, int flags)
351
{
350
{
352
    as_area_t *area;
351
    as_area_t *area;
353
    ipl_t ipl;
352
    ipl_t ipl;
354
    size_t pages;
353
    size_t pages;
355
   
354
   
356
    ipl = interrupts_disable();
355
    ipl = interrupts_disable();
357
    mutex_lock(&as->lock);
356
    mutex_lock(&as->lock);
358
   
357
   
359
    /*
358
    /*
360
     * Locate the area.
359
     * Locate the area.
361
     */
360
     */
362
    area = find_area_and_lock(as, address);
361
    area = find_area_and_lock(as, address);
363
    if (!area) {
362
    if (!area) {
364
        mutex_unlock(&as->lock);
363
        mutex_unlock(&as->lock);
365
        interrupts_restore(ipl);
364
        interrupts_restore(ipl);
366
        return ENOENT;
365
        return ENOENT;
367
    }
366
    }
368
 
367
 
369
    if (area->backend == &phys_backend) {
368
    if (area->backend == &phys_backend) {
370
        /*
369
        /*
371
         * Remapping of address space areas associated
370
         * Remapping of address space areas associated
372
         * with memory mapped devices is not supported.
371
         * with memory mapped devices is not supported.
373
         */
372
         */
374
        mutex_unlock(&area->lock);
373
        mutex_unlock(&area->lock);
375
        mutex_unlock(&as->lock);
374
        mutex_unlock(&as->lock);
376
        interrupts_restore(ipl);
375
        interrupts_restore(ipl);
377
        return ENOTSUP;
376
        return ENOTSUP;
378
    }
377
    }
379
    if (area->sh_info) {
378
    if (area->sh_info) {
380
        /*
379
        /*
381
         * Remapping of shared address space areas
380
         * Remapping of shared address space areas
382
         * is not supported.
381
         * is not supported.
383
         */
382
         */
384
        mutex_unlock(&area->lock);
383
        mutex_unlock(&area->lock);
385
        mutex_unlock(&as->lock);
384
        mutex_unlock(&as->lock);
386
        interrupts_restore(ipl);
385
        interrupts_restore(ipl);
387
        return ENOTSUP;
386
        return ENOTSUP;
388
    }
387
    }
389
 
388
 
390
    pages = SIZE2FRAMES((address - area->base) + size);
389
    pages = SIZE2FRAMES((address - area->base) + size);
391
    if (!pages) {
390
    if (!pages) {
392
        /*
391
        /*
393
         * Zero size address space areas are not allowed.
392
         * Zero size address space areas are not allowed.
394
         */
393
         */
395
        mutex_unlock(&area->lock);
394
        mutex_unlock(&area->lock);
396
        mutex_unlock(&as->lock);
395
        mutex_unlock(&as->lock);
397
        interrupts_restore(ipl);
396
        interrupts_restore(ipl);
398
        return EPERM;
397
        return EPERM;
399
    }
398
    }
400
   
399
   
401
    if (pages < area->pages) {
400
    if (pages < area->pages) {
402
        bool cond;
401
        bool cond;
403
        uintptr_t start_free = area->base + pages*PAGE_SIZE;
402
        uintptr_t start_free = area->base + pages*PAGE_SIZE;
404
 
403
 
405
        /*
404
        /*
406
         * Shrinking the area.
405
         * Shrinking the area.
407
         * No need to check for overlaps.
406
         * No need to check for overlaps.
408
         */
407
         */
409
 
408
 
410
        /*
409
        /*
411
         * Start TLB shootdown sequence.
410
         * Start TLB shootdown sequence.
412
         */
411
         */
413
        tlb_shootdown_start(TLB_INVL_PAGES, AS->asid, area->base +
412
        tlb_shootdown_start(TLB_INVL_PAGES, AS->asid, area->base +
414
            pages * PAGE_SIZE, area->pages - pages);
413
            pages * PAGE_SIZE, area->pages - pages);
415
 
414
 
416
        /*
415
        /*
417
         * Remove frames belonging to used space starting from
416
         * Remove frames belonging to used space starting from
418
         * the highest addresses downwards until an overlap with
417
         * the highest addresses downwards until an overlap with
419
         * the resized address space area is found. Note that this
418
         * the resized address space area is found. Note that this
420
         * is also the right way to remove part of the used_space
419
         * is also the right way to remove part of the used_space
421
         * B+tree leaf list.
420
         * B+tree leaf list.
422
         */    
421
         */    
423
        for (cond = true; cond;) {
422
        for (cond = true; cond;) {
424
            btree_node_t *node;
423
            btree_node_t *node;
425
       
424
       
426
            ASSERT(!list_empty(&area->used_space.leaf_head));
425
            ASSERT(!list_empty(&area->used_space.leaf_head));
427
            node =
426
            node =
428
                list_get_instance(area->used_space.leaf_head.prev,
427
                list_get_instance(area->used_space.leaf_head.prev,
429
                btree_node_t, leaf_link);
428
                btree_node_t, leaf_link);
430
            if ((cond = (bool) node->keys)) {
429
            if ((cond = (bool) node->keys)) {
431
                uintptr_t b = node->key[node->keys - 1];
430
                uintptr_t b = node->key[node->keys - 1];
432
                count_t c =
431
                count_t c =
433
                    (count_t) node->value[node->keys - 1];
432
                    (count_t) node->value[node->keys - 1];
434
                unsigned int i = 0;
433
                unsigned int i = 0;
435
           
434
           
436
                if (overlaps(b, c * PAGE_SIZE, area->base,
435
                if (overlaps(b, c * PAGE_SIZE, area->base,
437
                    pages * PAGE_SIZE)) {
436
                    pages * PAGE_SIZE)) {
438
                   
437
                   
439
                    if (b + c * PAGE_SIZE <= start_free) {
438
                    if (b + c * PAGE_SIZE <= start_free) {
440
                        /*
439
                        /*
441
                         * The whole interval fits
440
                         * The whole interval fits
442
                         * completely in the resized
441
                         * completely in the resized
443
                         * address space area.
442
                         * address space area.
444
                         */
443
                         */
445
                        break;
444
                        break;
446
                    }
445
                    }
447
       
446
       
448
                    /*
447
                    /*
449
                     * Part of the interval corresponding
448
                     * Part of the interval corresponding
450
                     * to b and c overlaps with the resized
449
                     * to b and c overlaps with the resized
451
                     * address space area.
450
                     * address space area.
452
                     */
451
                     */
453
       
452
       
454
                    cond = false;   /* we are almost done */
453
                    cond = false;   /* we are almost done */
455
                    i = (start_free - b) >> PAGE_WIDTH;
454
                    i = (start_free - b) >> PAGE_WIDTH;
456
                    if (!used_space_remove(area, start_free, c - i))
455
                    if (!used_space_remove(area, start_free, c - i))
457
                        panic("Could not remove used space.\n");
456
                        panic("Could not remove used space.\n");
458
                } else {
457
                } else {
459
                    /*
458
                    /*
460
                     * The interval of used space can be
459
                     * The interval of used space can be
461
                     * completely removed.
460
                     * completely removed.
462
                     */
461
                     */
463
                    if (!used_space_remove(area, b, c))
462
                    if (!used_space_remove(area, b, c))
464
                        panic("Could not remove used space.\n");
463
                        panic("Could not remove used space.\n");
465
                }
464
                }
466
           
465
           
467
                for (; i < c; i++) {
466
                for (; i < c; i++) {
468
                    pte_t *pte;
467
                    pte_t *pte;
469
           
468
           
470
                    page_table_lock(as, false);
469
                    page_table_lock(as, false);
471
                    pte = page_mapping_find(as, b +
470
                    pte = page_mapping_find(as, b +
472
                        i * PAGE_SIZE);
471
                        i * PAGE_SIZE);
473
                    ASSERT(pte && PTE_VALID(pte) &&
472
                    ASSERT(pte && PTE_VALID(pte) &&
474
                        PTE_PRESENT(pte));
473
                        PTE_PRESENT(pte));
475
                    if (area->backend &&
474
                    if (area->backend &&
476
                        area->backend->frame_free) {
475
                        area->backend->frame_free) {
477
                        area->backend->frame_free(area,
476
                        area->backend->frame_free(area,
478
                            b + i * PAGE_SIZE,
477
                            b + i * PAGE_SIZE,
479
                            PTE_GET_FRAME(pte));
478
                            PTE_GET_FRAME(pte));
480
                    }
479
                    }
481
                    page_mapping_remove(as, b +
480
                    page_mapping_remove(as, b +
482
                        i * PAGE_SIZE);
481
                        i * PAGE_SIZE);
483
                    page_table_unlock(as, false);
482
                    page_table_unlock(as, false);
484
                }
483
                }
485
            }
484
            }
486
        }
485
        }
487
 
486
 
488
        /*
487
        /*
489
         * Finish TLB shootdown sequence.
488
         * Finish TLB shootdown sequence.
490
         */
489
         */
491
 
490
 
492
        tlb_invalidate_pages(as->asid, area->base + pages * PAGE_SIZE,
491
        tlb_invalidate_pages(as->asid, area->base + pages * PAGE_SIZE,
493
            area->pages - pages);
492
            area->pages - pages);
494
        /*
493
        /*
495
         * Invalidate software translation caches (e.g. TSB on sparc64).
494
         * Invalidate software translation caches (e.g. TSB on sparc64).
496
         */
495
         */
497
        as_invalidate_translation_cache(as, area->base +
496
        as_invalidate_translation_cache(as, area->base +
498
            pages * PAGE_SIZE, area->pages - pages);
497
            pages * PAGE_SIZE, area->pages - pages);
499
        tlb_shootdown_finalize();
498
        tlb_shootdown_finalize();
500
       
499
       
501
    } else {
500
    } else {
502
        /*
501
        /*
503
         * Growing the area.
502
         * Growing the area.
504
         * Check for overlaps with other address space areas.
503
         * Check for overlaps with other address space areas.
505
         */
504
         */
506
        if (!check_area_conflicts(as, address, pages * PAGE_SIZE,
505
        if (!check_area_conflicts(as, address, pages * PAGE_SIZE,
507
            area)) {
506
            area)) {
508
            mutex_unlock(&area->lock);
507
            mutex_unlock(&area->lock);
509
            mutex_unlock(&as->lock);       
508
            mutex_unlock(&as->lock);       
510
            interrupts_restore(ipl);
509
            interrupts_restore(ipl);
511
            return EADDRNOTAVAIL;
510
            return EADDRNOTAVAIL;
512
        }
511
        }
513
    }
512
    }
514
 
513
 
515
    area->pages = pages;
514
    area->pages = pages;
516
   
515
   
517
    mutex_unlock(&area->lock);
516
    mutex_unlock(&area->lock);
518
    mutex_unlock(&as->lock);
517
    mutex_unlock(&as->lock);
519
    interrupts_restore(ipl);
518
    interrupts_restore(ipl);
520
 
519
 
521
    return 0;
520
    return 0;
522
}
521
}
523
 
522
 
524
/** Destroy address space area.
523
/** Destroy address space area.
525
 *
524
 *
526
 * @param as Address space.
525
 * @param as Address space.
527
 * @param address Address withing the area to be deleted.
526
 * @param address Address withing the area to be deleted.
528
 *
527
 *
529
 * @return Zero on success or a value from @ref errno.h on failure.
528
 * @return Zero on success or a value from @ref errno.h on failure.
530
 */
529
 */
531
int as_area_destroy(as_t *as, uintptr_t address)
530
int as_area_destroy(as_t *as, uintptr_t address)
532
{
531
{
533
    as_area_t *area;
532
    as_area_t *area;
534
    uintptr_t base;
533
    uintptr_t base;
535
    link_t *cur;
534
    link_t *cur;
536
    ipl_t ipl;
535
    ipl_t ipl;
537
 
536
 
538
    ipl = interrupts_disable();
537
    ipl = interrupts_disable();
539
    mutex_lock(&as->lock);
538
    mutex_lock(&as->lock);
540
 
539
 
541
    area = find_area_and_lock(as, address);
540
    area = find_area_and_lock(as, address);
542
    if (!area) {
541
    if (!area) {
543
        mutex_unlock(&as->lock);
542
        mutex_unlock(&as->lock);
544
        interrupts_restore(ipl);
543
        interrupts_restore(ipl);
545
        return ENOENT;
544
        return ENOENT;
546
    }
545
    }
547
 
546
 
548
    base = area->base;
547
    base = area->base;
549
 
548
 
550
    /*
549
    /*
551
     * Start TLB shootdown sequence.
550
     * Start TLB shootdown sequence.
552
     */
551
     */
553
    tlb_shootdown_start(TLB_INVL_PAGES, as->asid, area->base, area->pages);
552
    tlb_shootdown_start(TLB_INVL_PAGES, as->asid, area->base, area->pages);
554
 
553
 
555
    /*
554
    /*
556
     * Visit only the pages mapped by used_space B+tree.
555
     * Visit only the pages mapped by used_space B+tree.
557
     */
556
     */
558
    for (cur = area->used_space.leaf_head.next;
557
    for (cur = area->used_space.leaf_head.next;
559
        cur != &area->used_space.leaf_head; cur = cur->next) {
558
        cur != &area->used_space.leaf_head; cur = cur->next) {
560
        btree_node_t *node;
559
        btree_node_t *node;
561
        unsigned int i;
560
        unsigned int i;
562
       
561
       
563
        node = list_get_instance(cur, btree_node_t, leaf_link);
562
        node = list_get_instance(cur, btree_node_t, leaf_link);
564
        for (i = 0; i < node->keys; i++) {
563
        for (i = 0; i < node->keys; i++) {
565
            uintptr_t b = node->key[i];
564
            uintptr_t b = node->key[i];
566
            count_t j;
565
            count_t j;
567
            pte_t *pte;
566
            pte_t *pte;
568
           
567
           
569
            for (j = 0; j < (count_t) node->value[i]; j++) {
568
            for (j = 0; j < (count_t) node->value[i]; j++) {
570
                page_table_lock(as, false);
569
                page_table_lock(as, false);
571
                pte = page_mapping_find(as, b + j * PAGE_SIZE);
570
                pte = page_mapping_find(as, b + j * PAGE_SIZE);
572
                ASSERT(pte && PTE_VALID(pte) &&
571
                ASSERT(pte && PTE_VALID(pte) &&
573
                    PTE_PRESENT(pte));
572
                    PTE_PRESENT(pte));
574
                if (area->backend &&
573
                if (area->backend &&
575
                    area->backend->frame_free) {
574
                    area->backend->frame_free) {
576
                    area->backend->frame_free(area, b +
575
                    area->backend->frame_free(area, b +
577
                        j * PAGE_SIZE, PTE_GET_FRAME(pte));
576
                        j * PAGE_SIZE, PTE_GET_FRAME(pte));
578
                }
577
                }
579
                page_mapping_remove(as, b + j * PAGE_SIZE);            
578
                page_mapping_remove(as, b + j * PAGE_SIZE);            
580
                page_table_unlock(as, false);
579
                page_table_unlock(as, false);
581
            }
580
            }
582
        }
581
        }
583
    }
582
    }
584
 
583
 
585
    /*
584
    /*
586
     * Finish TLB shootdown sequence.
585
     * Finish TLB shootdown sequence.
587
     */
586
     */
588
 
587
 
589
    tlb_invalidate_pages(as->asid, area->base, area->pages);
588
    tlb_invalidate_pages(as->asid, area->base, area->pages);
590
    /*
589
    /*
591
     * Invalidate potential software translation caches (e.g. TSB on
590
     * Invalidate potential software translation caches (e.g. TSB on
592
     * sparc64).
591
     * sparc64).
593
     */
592
     */
594
    as_invalidate_translation_cache(as, area->base, area->pages);
593
    as_invalidate_translation_cache(as, area->base, area->pages);
595
    tlb_shootdown_finalize();
594
    tlb_shootdown_finalize();
596
   
595
   
597
    btree_destroy(&area->used_space);
596
    btree_destroy(&area->used_space);
598
 
597
 
599
    area->attributes |= AS_AREA_ATTR_PARTIAL;
598
    area->attributes |= AS_AREA_ATTR_PARTIAL;
600
   
599
   
601
    if (area->sh_info)
600
    if (area->sh_info)
602
        sh_info_remove_reference(area->sh_info);
601
        sh_info_remove_reference(area->sh_info);
603
       
602
       
604
    mutex_unlock(&area->lock);
603
    mutex_unlock(&area->lock);
605
 
604
 
606
    /*
605
    /*
607
     * Remove the empty area from address space.
606
     * Remove the empty area from address space.
608
     */
607
     */
609
    btree_remove(&as->as_area_btree, base, NULL);
608
    btree_remove(&as->as_area_btree, base, NULL);
610
   
609
   
611
    free(area);
610
    free(area);
612
   
611
   
613
    mutex_unlock(&as->lock);
612
    mutex_unlock(&as->lock);
614
    interrupts_restore(ipl);
613
    interrupts_restore(ipl);
615
    return 0;
614
    return 0;
616
}
615
}
617
 
616
 
618
/** Share address space area with another or the same address space.
617
/** Share address space area with another or the same address space.
619
 *
618
 *
620
 * Address space area mapping is shared with a new address space area.
619
 * Address space area mapping is shared with a new address space area.
621
 * If the source address space area has not been shared so far,
620
 * If the source address space area has not been shared so far,
622
 * a new sh_info is created. The new address space area simply gets the
621
 * a new sh_info is created. The new address space area simply gets the
623
 * sh_info of the source area. The process of duplicating the
622
 * sh_info of the source area. The process of duplicating the
624
 * mapping is done through the backend share function.
623
 * mapping is done through the backend share function.
625
 *
624
 *
626
 * @param src_as Pointer to source address space.
625
 * @param src_as Pointer to source address space.
627
 * @param src_base Base address of the source address space area.
626
 * @param src_base Base address of the source address space area.
628
 * @param acc_size Expected size of the source area.
627
 * @param acc_size Expected size of the source area.
629
 * @param dst_as Pointer to destination address space.
628
 * @param dst_as Pointer to destination address space.
630
 * @param dst_base Target base address.
629
 * @param dst_base Target base address.
631
 * @param dst_flags_mask Destination address space area flags mask.
630
 * @param dst_flags_mask Destination address space area flags mask.
632
 *
631
 *
633
 * @return Zero on success or ENOENT if there is no such task or if there is no
632
 * @return Zero on success or ENOENT if there is no such task or if there is no
634
 * such address space area, EPERM if there was a problem in accepting the area
633
 * such address space area, EPERM if there was a problem in accepting the area
635
 * or ENOMEM if there was a problem in allocating destination address space
634
 * or ENOMEM if there was a problem in allocating destination address space
636
 * area. ENOTSUP is returned if the address space area backend does not support
635
 * area. ENOTSUP is returned if the address space area backend does not support
637
 * sharing.
636
 * sharing.
638
 */
637
 */
639
int as_area_share(as_t *src_as, uintptr_t src_base, size_t acc_size,
638
int as_area_share(as_t *src_as, uintptr_t src_base, size_t acc_size,
640
    as_t *dst_as, uintptr_t dst_base, int dst_flags_mask)
639
    as_t *dst_as, uintptr_t dst_base, int dst_flags_mask)
641
{
640
{
642
    ipl_t ipl;
641
    ipl_t ipl;
643
    int src_flags;
642
    int src_flags;
644
    size_t src_size;
643
    size_t src_size;
645
    as_area_t *src_area, *dst_area;
644
    as_area_t *src_area, *dst_area;
646
    share_info_t *sh_info;
645
    share_info_t *sh_info;
647
    mem_backend_t *src_backend;
646
    mem_backend_t *src_backend;
648
    mem_backend_data_t src_backend_data;
647
    mem_backend_data_t src_backend_data;
649
   
648
   
650
    ipl = interrupts_disable();
649
    ipl = interrupts_disable();
651
    mutex_lock(&src_as->lock);
650
    mutex_lock(&src_as->lock);
652
    src_area = find_area_and_lock(src_as, src_base);
651
    src_area = find_area_and_lock(src_as, src_base);
653
    if (!src_area) {
652
    if (!src_area) {
654
        /*
653
        /*
655
         * Could not find the source address space area.
654
         * Could not find the source address space area.
656
         */
655
         */
657
        mutex_unlock(&src_as->lock);
656
        mutex_unlock(&src_as->lock);
658
        interrupts_restore(ipl);
657
        interrupts_restore(ipl);
659
        return ENOENT;
658
        return ENOENT;
660
    }
659
    }
661
 
660
 
662
    if (!src_area->backend || !src_area->backend->share) {
661
    if (!src_area->backend || !src_area->backend->share) {
663
        /*
662
        /*
664
         * There is no backend or the backend does not
663
         * There is no backend or the backend does not
665
         * know how to share the area.
664
         * know how to share the area.
666
         */
665
         */
667
        mutex_unlock(&src_area->lock);
666
        mutex_unlock(&src_area->lock);
668
        mutex_unlock(&src_as->lock);
667
        mutex_unlock(&src_as->lock);
669
        interrupts_restore(ipl);
668
        interrupts_restore(ipl);
670
        return ENOTSUP;
669
        return ENOTSUP;
671
    }
670
    }
672
   
671
   
673
    src_size = src_area->pages * PAGE_SIZE;
672
    src_size = src_area->pages * PAGE_SIZE;
674
    src_flags = src_area->flags;
673
    src_flags = src_area->flags;
675
    src_backend = src_area->backend;
674
    src_backend = src_area->backend;
676
    src_backend_data = src_area->backend_data;
675
    src_backend_data = src_area->backend_data;
677
 
676
 
678
    /* Share the cacheable flag from the original mapping */
677
    /* Share the cacheable flag from the original mapping */
679
    if (src_flags & AS_AREA_CACHEABLE)
678
    if (src_flags & AS_AREA_CACHEABLE)
680
        dst_flags_mask |= AS_AREA_CACHEABLE;
679
        dst_flags_mask |= AS_AREA_CACHEABLE;
681
 
680
 
682
    if (src_size != acc_size ||
681
    if (src_size != acc_size ||
683
        (src_flags & dst_flags_mask) != dst_flags_mask) {
682
        (src_flags & dst_flags_mask) != dst_flags_mask) {
684
        mutex_unlock(&src_area->lock);
683
        mutex_unlock(&src_area->lock);
685
        mutex_unlock(&src_as->lock);
684
        mutex_unlock(&src_as->lock);
686
        interrupts_restore(ipl);
685
        interrupts_restore(ipl);
687
        return EPERM;
686
        return EPERM;
688
    }
687
    }
689
 
688
 
690
    /*
689
    /*
691
     * Now we are committed to sharing the area.
690
     * Now we are committed to sharing the area.
692
     * First, prepare the area for sharing.
691
     * First, prepare the area for sharing.
693
     * Then it will be safe to unlock it.
692
     * Then it will be safe to unlock it.
694
     */
693
     */
695
    sh_info = src_area->sh_info;
694
    sh_info = src_area->sh_info;
696
    if (!sh_info) {
695
    if (!sh_info) {
697
        sh_info = (share_info_t *) malloc(sizeof(share_info_t), 0);
696
        sh_info = (share_info_t *) malloc(sizeof(share_info_t), 0);
698
        mutex_initialize(&sh_info->lock);
697
        mutex_initialize(&sh_info->lock);
699
        sh_info->refcount = 2;
698
        sh_info->refcount = 2;
700
        btree_create(&sh_info->pagemap);
699
        btree_create(&sh_info->pagemap);
701
        src_area->sh_info = sh_info;
700
        src_area->sh_info = sh_info;
702
        /*
701
        /*
703
         * Call the backend to setup sharing.
702
         * Call the backend to setup sharing.
704
         */
703
         */
705
        src_area->backend->share(src_area);
704
        src_area->backend->share(src_area);
706
    } else {
705
    } else {
707
        mutex_lock(&sh_info->lock);
706
        mutex_lock(&sh_info->lock);
708
        sh_info->refcount++;
707
        sh_info->refcount++;
709
        mutex_unlock(&sh_info->lock);
708
        mutex_unlock(&sh_info->lock);
710
    }
709
    }
711
 
710
 
712
    mutex_unlock(&src_area->lock);
711
    mutex_unlock(&src_area->lock);
713
    mutex_unlock(&src_as->lock);
712
    mutex_unlock(&src_as->lock);
714
 
713
 
715
    /*
714
    /*
716
     * Create copy of the source address space area.
715
     * Create copy of the source address space area.
717
     * The destination area is created with AS_AREA_ATTR_PARTIAL
716
     * The destination area is created with AS_AREA_ATTR_PARTIAL
718
     * attribute set which prevents race condition with
717
     * attribute set which prevents race condition with
719
     * preliminary as_page_fault() calls.
718
     * preliminary as_page_fault() calls.
720
     * The flags of the source area are masked against dst_flags_mask
719
     * The flags of the source area are masked against dst_flags_mask
721
     * to support sharing in less privileged mode.
720
     * to support sharing in less privileged mode.
722
     */
721
     */
723
    dst_area = as_area_create(dst_as, dst_flags_mask, src_size, dst_base,
722
    dst_area = as_area_create(dst_as, dst_flags_mask, src_size, dst_base,
724
        AS_AREA_ATTR_PARTIAL, src_backend, &src_backend_data);
723
        AS_AREA_ATTR_PARTIAL, src_backend, &src_backend_data);
725
    if (!dst_area) {
724
    if (!dst_area) {
726
        /*
725
        /*
727
         * Destination address space area could not be created.
726
         * Destination address space area could not be created.
728
         */
727
         */
729
        sh_info_remove_reference(sh_info);
728
        sh_info_remove_reference(sh_info);
730
       
729
       
731
        interrupts_restore(ipl);
730
        interrupts_restore(ipl);
732
        return ENOMEM;
731
        return ENOMEM;
733
    }
732
    }
734
 
733
 
735
    /*
734
    /*
736
     * Now the destination address space area has been
735
     * Now the destination address space area has been
737
     * fully initialized. Clear the AS_AREA_ATTR_PARTIAL
736
     * fully initialized. Clear the AS_AREA_ATTR_PARTIAL
738
     * attribute and set the sh_info.
737
     * attribute and set the sh_info.
739
     */
738
     */
740
    mutex_lock(&dst_as->lock); 
739
    mutex_lock(&dst_as->lock); 
741
    mutex_lock(&dst_area->lock);
740
    mutex_lock(&dst_area->lock);
742
    dst_area->attributes &= ~AS_AREA_ATTR_PARTIAL;
741
    dst_area->attributes &= ~AS_AREA_ATTR_PARTIAL;
743
    dst_area->sh_info = sh_info;
742
    dst_area->sh_info = sh_info;
744
    mutex_unlock(&dst_area->lock);
743
    mutex_unlock(&dst_area->lock);
745
    mutex_unlock(&dst_as->lock);   
744
    mutex_unlock(&dst_as->lock);   
746
 
745
 
747
    interrupts_restore(ipl);
746
    interrupts_restore(ipl);
748
   
747
   
749
    return 0;
748
    return 0;
750
}
749
}
751
 
750
 
752
/** Check access mode for address space area.
751
/** Check access mode for address space area.
753
 *
752
 *
754
 * The address space area must be locked prior to this call.
753
 * The address space area must be locked prior to this call.
755
 *
754
 *
756
 * @param area Address space area.
755
 * @param area Address space area.
757
 * @param access Access mode.
756
 * @param access Access mode.
758
 *
757
 *
759
 * @return False if access violates area's permissions, true otherwise.
758
 * @return False if access violates area's permissions, true otherwise.
760
 */
759
 */
761
bool as_area_check_access(as_area_t *area, pf_access_t access)
760
bool as_area_check_access(as_area_t *area, pf_access_t access)
762
{
761
{
763
    int flagmap[] = {
762
    int flagmap[] = {
764
        [PF_ACCESS_READ] = AS_AREA_READ,
763
        [PF_ACCESS_READ] = AS_AREA_READ,
765
        [PF_ACCESS_WRITE] = AS_AREA_WRITE,
764
        [PF_ACCESS_WRITE] = AS_AREA_WRITE,
766
        [PF_ACCESS_EXEC] = AS_AREA_EXEC
765
        [PF_ACCESS_EXEC] = AS_AREA_EXEC
767
    };
766
    };
768
 
767
 
769
    if (!(area->flags & flagmap[access]))
768
    if (!(area->flags & flagmap[access]))
770
        return false;
769
        return false;
771
   
770
   
772
    return true;
771
    return true;
773
}
772
}
774
 
773
 
775
/** Change adress area flags.
774
/** Change adress area flags.
776
 *
775
 *
777
 * The idea is to have the same data, but with a different access mode.
776
 * The idea is to have the same data, but with a different access mode.
778
 * This is needed e.g. for writing code into memory and then executing it.
777
 * This is needed e.g. for writing code into memory and then executing it.
779
 * In order for this to work properly, this may copy the data
778
 * In order for this to work properly, this may copy the data
780
 * into private anonymous memory (unless it's already there).
779
 * into private anonymous memory (unless it's already there).
781
 *
780
 *
782
 * @param as Address space.
781
 * @param as Address space.
783
 * @param flags Flags of the area memory.
782
 * @param flags Flags of the area memory.
784
 * @param address Address withing the area to be changed.
783
 * @param address Address withing the area to be changed.
785
 *
784
 *
786
 * @return Zero on success or a value from @ref errno.h on failure.
785
 * @return Zero on success or a value from @ref errno.h on failure.
787
 */
786
 */
788
int as_area_change_flags(as_t *as, int flags, uintptr_t address)
787
int as_area_change_flags(as_t *as, int flags, uintptr_t address)
789
{
788
{
790
    as_area_t *area;
789
    as_area_t *area;
791
    uintptr_t base;
790
    uintptr_t base;
792
    link_t *cur;
791
    link_t *cur;
793
    ipl_t ipl;
792
    ipl_t ipl;
794
    int page_flags;
793
    int page_flags;
795
    uintptr_t old_frame;
794
    uintptr_t old_frame;
796
 
795
 
797
    /* Flags for the new memory mapping */
796
    /* Flags for the new memory mapping */
798
    page_flags = area_flags_to_page_flags(flags);
797
    page_flags = area_flags_to_page_flags(flags);
799
 
798
 
800
    ipl = interrupts_disable();
799
    ipl = interrupts_disable();
801
    mutex_lock(&as->lock);
800
    mutex_lock(&as->lock);
802
 
801
 
803
    area = find_area_and_lock(as, address);
802
    area = find_area_and_lock(as, address);
804
    if (!area) {
803
    if (!area) {
805
        mutex_unlock(&as->lock);
804
        mutex_unlock(&as->lock);
806
        interrupts_restore(ipl);
805
        interrupts_restore(ipl);
807
        return ENOENT;
806
        return ENOENT;
808
    }
807
    }
809
 
808
 
810
    if (area->sh_info || area->backend != &anon_backend) {
809
    if (area->sh_info || area->backend != &anon_backend) {
811
        /* Copying shared areas not supported yet */
810
        /* Copying shared areas not supported yet */
812
        /* Copying non-anonymous memory not supported yet */
811
        /* Copying non-anonymous memory not supported yet */
813
        mutex_unlock(&area->lock);
812
        mutex_unlock(&area->lock);
814
        mutex_unlock(&as->lock);
813
        mutex_unlock(&as->lock);
815
        interrupts_restore(ipl);
814
        interrupts_restore(ipl);
816
        return ENOTSUP;
815
        return ENOTSUP;
817
    }
816
    }
818
 
817
 
819
    base = area->base;
818
    base = area->base;
820
 
819
 
821
    /*
820
    /*
822
     * Start TLB shootdown sequence.
821
     * Start TLB shootdown sequence.
823
     */
822
     */
824
    tlb_shootdown_start(TLB_INVL_PAGES, as->asid, area->base, area->pages);
823
    tlb_shootdown_start(TLB_INVL_PAGES, as->asid, area->base, area->pages);
825
 
824
 
826
    /*
825
    /*
827
     * Visit only the pages mapped by used_space B+tree.
826
     * Visit only the pages mapped by used_space B+tree.
828
     */
827
     */
829
    for (cur = area->used_space.leaf_head.next;
828
    for (cur = area->used_space.leaf_head.next;
830
        cur != &area->used_space.leaf_head; cur = cur->next) {
829
        cur != &area->used_space.leaf_head; cur = cur->next) {
831
        btree_node_t *node;
830
        btree_node_t *node;
832
        unsigned int i;
831
        unsigned int i;
833
       
832
       
834
        node = list_get_instance(cur, btree_node_t, leaf_link);
833
        node = list_get_instance(cur, btree_node_t, leaf_link);
835
        for (i = 0; i < node->keys; i++) {
834
        for (i = 0; i < node->keys; i++) {
836
            uintptr_t b = node->key[i];
835
            uintptr_t b = node->key[i];
837
            count_t j;
836
            count_t j;
838
            pte_t *pte;
837
            pte_t *pte;
839
           
838
           
840
            for (j = 0; j < (count_t) node->value[i]; j++) {
839
            for (j = 0; j < (count_t) node->value[i]; j++) {
841
                page_table_lock(as, false);
840
                page_table_lock(as, false);
842
                pte = page_mapping_find(as, b + j * PAGE_SIZE);
841
                pte = page_mapping_find(as, b + j * PAGE_SIZE);
843
                ASSERT(pte && PTE_VALID(pte) &&
842
                ASSERT(pte && PTE_VALID(pte) &&
844
                    PTE_PRESENT(pte));
843
                    PTE_PRESENT(pte));
845
                old_frame = PTE_GET_FRAME(pte);
844
                old_frame = PTE_GET_FRAME(pte);
846
 
845
 
847
                /* Remove old mapping and insert the new one */
846
                /* Remove old mapping and insert the new one */
848
                page_mapping_remove(as, b + j * PAGE_SIZE);
847
                page_mapping_remove(as, b + j * PAGE_SIZE);
849
                page_mapping_insert(as, b + j * PAGE_SIZE,
848
                page_mapping_insert(as, b + j * PAGE_SIZE,
850
                    old_frame, page_flags);
849
                    old_frame, page_flags);
851
 
850
 
852
                page_table_unlock(as, false);
851
                page_table_unlock(as, false);
853
            }
852
            }
854
        }
853
        }
855
    }
854
    }
856
 
855
 
857
    /*
856
    /*
858
     * Finish TLB shootdown sequence.
857
     * Finish TLB shootdown sequence.
859
     */
858
     */
860
 
859
 
861
    tlb_invalidate_pages(as->asid, area->base, area->pages);
860
    tlb_invalidate_pages(as->asid, area->base, area->pages);
862
    /*
861
    /*
863
     * Invalidate potential software translation caches (e.g. TSB on
862
     * Invalidate potential software translation caches (e.g. TSB on
864
     * sparc64).
863
     * sparc64).
865
     */
864
     */
866
    as_invalidate_translation_cache(as, area->base, area->pages);
865
    as_invalidate_translation_cache(as, area->base, area->pages);
867
    tlb_shootdown_finalize();
866
    tlb_shootdown_finalize();
868
   
867
   
869
    mutex_unlock(&area->lock);
868
    mutex_unlock(&area->lock);
870
    mutex_unlock(&as->lock);
869
    mutex_unlock(&as->lock);
871
    interrupts_restore(ipl);
870
    interrupts_restore(ipl);
872
 
871
 
873
    return 0;
872
    return 0;
874
}
873
}
875
 
874
 
876
 
875
 
877
/** Handle page fault within the current address space.
876
/** Handle page fault within the current address space.
878
 *
877
 *
879
 * This is the high-level page fault handler. It decides
878
 * This is the high-level page fault handler. It decides
880
 * whether the page fault can be resolved by any backend
879
 * whether the page fault can be resolved by any backend
881
 * and if so, it invokes the backend to resolve the page
880
 * and if so, it invokes the backend to resolve the page
882
 * fault.
881
 * fault.
883
 *
882
 *
884
 * Interrupts are assumed disabled.
883
 * Interrupts are assumed disabled.
885
 *
884
 *
886
 * @param page Faulting page.
885
 * @param page Faulting page.
887
 * @param access Access mode that caused the fault (i.e. read/write/exec).
886
 * @param access Access mode that caused the fault (i.e. read/write/exec).
888
 * @param istate Pointer to interrupted state.
887
 * @param istate Pointer to interrupted state.
889
 *
888
 *
890
 * @return AS_PF_FAULT on page fault, AS_PF_OK on success or AS_PF_DEFER if the
889
 * @return AS_PF_FAULT on page fault, AS_PF_OK on success or AS_PF_DEFER if the
891
 *     fault was caused by copy_to_uspace() or copy_from_uspace().
890
 *     fault was caused by copy_to_uspace() or copy_from_uspace().
892
 */
891
 */
893
int as_page_fault(uintptr_t page, pf_access_t access, istate_t *istate)
892
int as_page_fault(uintptr_t page, pf_access_t access, istate_t *istate)
894
{
893
{
895
    pte_t *pte;
894
    pte_t *pte;
896
    as_area_t *area;
895
    as_area_t *area;
897
   
896
   
898
    if (!THREAD)
897
    if (!THREAD)
899
        return AS_PF_FAULT;
898
        return AS_PF_FAULT;
900
       
899
       
901
    ASSERT(AS);
900
    ASSERT(AS);
902
 
901
 
903
    mutex_lock(&AS->lock);
902
    mutex_lock(&AS->lock);
904
    area = find_area_and_lock(AS, page);   
903
    area = find_area_and_lock(AS, page);   
905
    if (!area) {
904
    if (!area) {
906
        /*
905
        /*
907
         * No area contained mapping for 'page'.
906
         * No area contained mapping for 'page'.
908
         * Signal page fault to low-level handler.
907
         * Signal page fault to low-level handler.
909
         */
908
         */
910
        mutex_unlock(&AS->lock);
909
        mutex_unlock(&AS->lock);
911
        goto page_fault;
910
        goto page_fault;
912
    }
911
    }
913
 
912
 
914
    if (area->attributes & AS_AREA_ATTR_PARTIAL) {
913
    if (area->attributes & AS_AREA_ATTR_PARTIAL) {
915
        /*
914
        /*
916
         * The address space area is not fully initialized.
915
         * The address space area is not fully initialized.
917
         * Avoid possible race by returning error.
916
         * Avoid possible race by returning error.
918
         */
917
         */
919
        mutex_unlock(&area->lock);
918
        mutex_unlock(&area->lock);
920
        mutex_unlock(&AS->lock);
919
        mutex_unlock(&AS->lock);
921
        goto page_fault;       
920
        goto page_fault;       
922
    }
921
    }
923
 
922
 
924
    if (!area->backend || !area->backend->page_fault) {
923
    if (!area->backend || !area->backend->page_fault) {
925
        /*
924
        /*
926
         * The address space area is not backed by any backend
925
         * The address space area is not backed by any backend
927
         * or the backend cannot handle page faults.
926
         * or the backend cannot handle page faults.
928
         */
927
         */
929
        mutex_unlock(&area->lock);
928
        mutex_unlock(&area->lock);
930
        mutex_unlock(&AS->lock);
929
        mutex_unlock(&AS->lock);
931
        goto page_fault;       
930
        goto page_fault;       
932
    }
931
    }
933
 
932
 
934
    page_table_lock(AS, false);
933
    page_table_lock(AS, false);
935
   
934
   
936
    /*
935
    /*
937
     * To avoid race condition between two page faults
936
     * To avoid race condition between two page faults
938
     * on the same address, we need to make sure
937
     * on the same address, we need to make sure
939
     * the mapping has not been already inserted.
938
     * the mapping has not been already inserted.
940
     */
939
     */
941
    if ((pte = page_mapping_find(AS, page))) {
940
    if ((pte = page_mapping_find(AS, page))) {
942
        if (PTE_PRESENT(pte)) {
941
        if (PTE_PRESENT(pte)) {
943
            if (((access == PF_ACCESS_READ) && PTE_READABLE(pte)) ||
942
            if (((access == PF_ACCESS_READ) && PTE_READABLE(pte)) ||
944
                (access == PF_ACCESS_WRITE && PTE_WRITABLE(pte)) ||
943
                (access == PF_ACCESS_WRITE && PTE_WRITABLE(pte)) ||
945
                (access == PF_ACCESS_EXEC && PTE_EXECUTABLE(pte))) {
944
                (access == PF_ACCESS_EXEC && PTE_EXECUTABLE(pte))) {
946
                page_table_unlock(AS, false);
945
                page_table_unlock(AS, false);
947
                mutex_unlock(&area->lock);
946
                mutex_unlock(&area->lock);
948
                mutex_unlock(&AS->lock);
947
                mutex_unlock(&AS->lock);
949
                return AS_PF_OK;
948
                return AS_PF_OK;
950
            }
949
            }
951
        }
950
        }
952
    }
951
    }
953
   
952
   
954
    /*
953
    /*
955
     * Resort to the backend page fault handler.
954
     * Resort to the backend page fault handler.
956
     */
955
     */
957
    if (area->backend->page_fault(area, page, access) != AS_PF_OK) {
956
    if (area->backend->page_fault(area, page, access) != AS_PF_OK) {
958
        page_table_unlock(AS, false);
957
        page_table_unlock(AS, false);
959
        mutex_unlock(&area->lock);
958
        mutex_unlock(&area->lock);
960
        mutex_unlock(&AS->lock);
959
        mutex_unlock(&AS->lock);
961
        goto page_fault;
960
        goto page_fault;
962
    }
961
    }
963
   
962
   
964
    page_table_unlock(AS, false);
963
    page_table_unlock(AS, false);
965
    mutex_unlock(&area->lock);
964
    mutex_unlock(&area->lock);
966
    mutex_unlock(&AS->lock);
965
    mutex_unlock(&AS->lock);
967
    return AS_PF_OK;
966
    return AS_PF_OK;
968
 
967
 
969
page_fault:
968
page_fault:
970
    if (THREAD->in_copy_from_uspace) {
969
    if (THREAD->in_copy_from_uspace) {
971
        THREAD->in_copy_from_uspace = false;
970
        THREAD->in_copy_from_uspace = false;
972
        istate_set_retaddr(istate,
971
        istate_set_retaddr(istate,
973
            (uintptr_t) &memcpy_from_uspace_failover_address);
972
            (uintptr_t) &memcpy_from_uspace_failover_address);
974
    } else if (THREAD->in_copy_to_uspace) {
973
    } else if (THREAD->in_copy_to_uspace) {
975
        THREAD->in_copy_to_uspace = false;
974
        THREAD->in_copy_to_uspace = false;
976
        istate_set_retaddr(istate,
975
        istate_set_retaddr(istate,
977
            (uintptr_t) &memcpy_to_uspace_failover_address);
976
            (uintptr_t) &memcpy_to_uspace_failover_address);
978
    } else {
977
    } else {
979
        return AS_PF_FAULT;
978
        return AS_PF_FAULT;
980
    }
979
    }
981
 
980
 
982
    return AS_PF_DEFER;
981
    return AS_PF_DEFER;
983
}
982
}
984
 
983
 
985
/** Switch address spaces.
984
/** Switch address spaces.
986
 *
985
 *
987
 * Note that this function cannot sleep as it is essentially a part of
986
 * Note that this function cannot sleep as it is essentially a part of
988
 * scheduling. Sleeping here would lead to deadlock on wakeup. Another
987
 * scheduling. Sleeping here would lead to deadlock on wakeup. Another
989
 * thing which is forbidden in this context is locking the address space.
988
 * thing which is forbidden in this context is locking the address space.
990
 *
989
 *
991
 * When this function is enetered, no spinlocks may be held.
990
 * When this function is enetered, no spinlocks may be held.
992
 *
991
 *
993
 * @param old Old address space or NULL.
992
 * @param old Old address space or NULL.
994
 * @param new New address space.
993
 * @param new New address space.
995
 */
994
 */
996
void as_switch(as_t *old_as, as_t *new_as)
995
void as_switch(as_t *old_as, as_t *new_as)
997
{
996
{
998
    DEADLOCK_PROBE_INIT(p_asidlock);
997
    DEADLOCK_PROBE_INIT(p_asidlock);
999
    preemption_disable();
998
    preemption_disable();
1000
retry:
999
retry:
1001
    (void) interrupts_disable();
1000
    (void) interrupts_disable();
1002
    if (!spinlock_trylock(&asidlock)) {
1001
    if (!spinlock_trylock(&asidlock)) {
1003
        /*
1002
        /*
1004
         * Avoid deadlock with TLB shootdown.
1003
         * Avoid deadlock with TLB shootdown.
1005
         * We can enable interrupts here because
1004
         * We can enable interrupts here because
1006
         * preemption is disabled. We should not be
1005
         * preemption is disabled. We should not be
1007
         * holding any other lock.
1006
         * holding any other lock.
1008
         */
1007
         */
1009
        (void) interrupts_enable();
1008
        (void) interrupts_enable();
1010
        DEADLOCK_PROBE(p_asidlock, DEADLOCK_THRESHOLD);
1009
        DEADLOCK_PROBE(p_asidlock, DEADLOCK_THRESHOLD);
1011
        goto retry;
1010
        goto retry;
1012
    }
1011
    }
1013
    preemption_enable();
1012
    preemption_enable();
1014
 
1013
 
1015
    /*
1014
    /*
1016
     * First, take care of the old address space.
1015
     * First, take care of the old address space.
1017
     */
1016
     */
1018
    if (old_as) {
1017
    if (old_as) {
1019
        ASSERT(old_as->cpu_refcount);
1018
        ASSERT(old_as->cpu_refcount);
1020
        if((--old_as->cpu_refcount == 0) && (old_as != AS_KERNEL)) {
1019
        if((--old_as->cpu_refcount == 0) && (old_as != AS_KERNEL)) {
1021
            /*
1020
            /*
1022
             * The old address space is no longer active on
1021
             * The old address space is no longer active on
1023
             * any processor. It can be appended to the
1022
             * any processor. It can be appended to the
1024
             * list of inactive address spaces with assigned
1023
             * list of inactive address spaces with assigned
1025
             * ASID.
1024
             * ASID.
1026
             */
1025
             */
1027
            ASSERT(old_as->asid != ASID_INVALID);
1026
            ASSERT(old_as->asid != ASID_INVALID);
1028
            list_append(&old_as->inactive_as_with_asid_link,
1027
            list_append(&old_as->inactive_as_with_asid_link,
1029
                &inactive_as_with_asid_head);
1028
                &inactive_as_with_asid_head);
1030
        }
1029
        }
1031
 
1030
 
1032
        /*
1031
        /*
1033
         * Perform architecture-specific tasks when the address space
1032
         * Perform architecture-specific tasks when the address space
1034
         * is being removed from the CPU.
1033
         * is being removed from the CPU.
1035
         */
1034
         */
1036
        as_deinstall_arch(old_as);
1035
        as_deinstall_arch(old_as);
1037
    }
1036
    }
1038
 
1037
 
1039
    /*
1038
    /*
1040
     * Second, prepare the new address space.
1039
     * Second, prepare the new address space.
1041
     */
1040
     */
1042
    if ((new_as->cpu_refcount++ == 0) && (new_as != AS_KERNEL)) {
1041
    if ((new_as->cpu_refcount++ == 0) && (new_as != AS_KERNEL)) {
1043
        if (new_as->asid != ASID_INVALID)
1042
        if (new_as->asid != ASID_INVALID)
1044
            list_remove(&new_as->inactive_as_with_asid_link);
1043
            list_remove(&new_as->inactive_as_with_asid_link);
1045
        else
1044
        else
1046
            new_as->asid = asid_get();
1045
            new_as->asid = asid_get();
1047
    }
1046
    }
1048
#ifdef AS_PAGE_TABLE
1047
#ifdef AS_PAGE_TABLE
1049
    SET_PTL0_ADDRESS(new_as->genarch.page_table);
1048
    SET_PTL0_ADDRESS(new_as->genarch.page_table);
1050
#endif
1049
#endif
1051
   
1050
   
1052
    /*
1051
    /*
1053
     * Perform architecture-specific steps.
1052
     * Perform architecture-specific steps.
1054
     * (e.g. write ASID to hardware register etc.)
1053
     * (e.g. write ASID to hardware register etc.)
1055
     */
1054
     */
1056
    as_install_arch(new_as);
1055
    as_install_arch(new_as);
1057
 
1056
 
1058
    spinlock_unlock(&asidlock);
1057
    spinlock_unlock(&asidlock);
1059
   
1058
   
1060
    AS = new_as;
1059
    AS = new_as;
1061
}
1060
}
1062
 
1061
 
1063
/** Convert address space area flags to page flags.
1062
/** Convert address space area flags to page flags.
1064
 *
1063
 *
1065
 * @param aflags Flags of some address space area.
1064
 * @param aflags Flags of some address space area.
1066
 *
1065
 *
1067
 * @return Flags to be passed to page_mapping_insert().
1066
 * @return Flags to be passed to page_mapping_insert().
1068
 */
1067
 */
1069
int area_flags_to_page_flags(int aflags)
1068
int area_flags_to_page_flags(int aflags)
1070
{
1069
{
1071
    int flags;
1070
    int flags;
1072
 
1071
 
1073
    flags = PAGE_USER | PAGE_PRESENT;
1072
    flags = PAGE_USER | PAGE_PRESENT;
1074
   
1073
   
1075
    if (aflags & AS_AREA_READ)
1074
    if (aflags & AS_AREA_READ)
1076
        flags |= PAGE_READ;
1075
        flags |= PAGE_READ;
1077
       
1076
       
1078
    if (aflags & AS_AREA_WRITE)
1077
    if (aflags & AS_AREA_WRITE)
1079
        flags |= PAGE_WRITE;
1078
        flags |= PAGE_WRITE;
1080
   
1079
   
1081
    if (aflags & AS_AREA_EXEC)
1080
    if (aflags & AS_AREA_EXEC)
1082
        flags |= PAGE_EXEC;
1081
        flags |= PAGE_EXEC;
1083
   
1082
   
1084
    if (aflags & AS_AREA_CACHEABLE)
1083
    if (aflags & AS_AREA_CACHEABLE)
1085
        flags |= PAGE_CACHEABLE;
1084
        flags |= PAGE_CACHEABLE;
1086
       
1085
       
1087
    return flags;
1086
    return flags;
1088
}
1087
}
1089
 
1088
 
1090
/** Compute flags for virtual address translation subsytem.
1089
/** Compute flags for virtual address translation subsytem.
1091
 *
1090
 *
1092
 * The address space area must be locked.
1091
 * The address space area must be locked.
1093
 * Interrupts must be disabled.
1092
 * Interrupts must be disabled.
1094
 *
1093
 *
1095
 * @param a Address space area.
1094
 * @param a Address space area.
1096
 *
1095
 *
1097
 * @return Flags to be used in page_mapping_insert().
1096
 * @return Flags to be used in page_mapping_insert().
1098
 */
1097
 */
1099
int as_area_get_flags(as_area_t *a)
1098
int as_area_get_flags(as_area_t *a)
1100
{
1099
{
1101
    return area_flags_to_page_flags(a->flags);
1100
    return area_flags_to_page_flags(a->flags);
1102
}
1101
}
1103
 
1102
 
1104
/** Create page table.
1103
/** Create page table.
1105
 *
1104
 *
1106
 * Depending on architecture, create either address space
1105
 * Depending on architecture, create either address space
1107
 * private or global page table.
1106
 * private or global page table.
1108
 *
1107
 *
1109
 * @param flags Flags saying whether the page table is for kernel address space.
1108
 * @param flags Flags saying whether the page table is for kernel address space.
1110
 *
1109
 *
1111
 * @return First entry of the page table.
1110
 * @return First entry of the page table.
1112
 */
1111
 */
1113
pte_t *page_table_create(int flags)
1112
pte_t *page_table_create(int flags)
1114
{
1113
{
1115
#ifdef __OBJC__
1114
#ifdef __OBJC__
1116
    return [as_t page_table_create: flags];
1115
    return [as_t page_table_create: flags];
1117
#else
1116
#else
1118
    ASSERT(as_operations);
1117
    ASSERT(as_operations);
1119
    ASSERT(as_operations->page_table_create);
1118
    ASSERT(as_operations->page_table_create);
1120
   
1119
   
1121
    return as_operations->page_table_create(flags);
1120
    return as_operations->page_table_create(flags);
1122
#endif
1121
#endif
1123
}
1122
}
1124
 
1123
 
1125
/** Destroy page table.
1124
/** Destroy page table.
1126
 *
1125
 *
1127
 * Destroy page table in architecture specific way.
1126
 * Destroy page table in architecture specific way.
1128
 *
1127
 *
1129
 * @param page_table Physical address of PTL0.
1128
 * @param page_table Physical address of PTL0.
1130
 */
1129
 */
1131
void page_table_destroy(pte_t *page_table)
1130
void page_table_destroy(pte_t *page_table)
1132
{
1131
{
1133
#ifdef __OBJC__
1132
#ifdef __OBJC__
1134
    return [as_t page_table_destroy: page_table];
1133
    return [as_t page_table_destroy: page_table];
1135
#else
1134
#else
1136
    ASSERT(as_operations);
1135
    ASSERT(as_operations);
1137
    ASSERT(as_operations->page_table_destroy);
1136
    ASSERT(as_operations->page_table_destroy);
1138
   
1137
   
1139
    as_operations->page_table_destroy(page_table);
1138
    as_operations->page_table_destroy(page_table);
1140
#endif
1139
#endif
1141
}
1140
}
1142
 
1141
 
1143
/** Lock page table.
1142
/** Lock page table.
1144
 *
1143
 *
1145
 * This function should be called before any page_mapping_insert(),
1144
 * This function should be called before any page_mapping_insert(),
1146
 * page_mapping_remove() and page_mapping_find().
1145
 * page_mapping_remove() and page_mapping_find().
1147
 *
1146
 *
1148
 * Locking order is such that address space areas must be locked
1147
 * Locking order is such that address space areas must be locked
1149
 * prior to this call. Address space can be locked prior to this
1148
 * prior to this call. Address space can be locked prior to this
1150
 * call in which case the lock argument is false.
1149
 * call in which case the lock argument is false.
1151
 *
1150
 *
1152
 * @param as Address space.
1151
 * @param as Address space.
1153
 * @param lock If false, do not attempt to lock as->lock.
1152
 * @param lock If false, do not attempt to lock as->lock.
1154
 */
1153
 */
1155
void page_table_lock(as_t *as, bool lock)
1154
void page_table_lock(as_t *as, bool lock)
1156
{
1155
{
1157
#ifdef __OBJC__
1156
#ifdef __OBJC__
1158
    [as page_table_lock: lock];
1157
    [as page_table_lock: lock];
1159
#else
1158
#else
1160
    ASSERT(as_operations);
1159
    ASSERT(as_operations);
1161
    ASSERT(as_operations->page_table_lock);
1160
    ASSERT(as_operations->page_table_lock);
1162
   
1161
   
1163
    as_operations->page_table_lock(as, lock);
1162
    as_operations->page_table_lock(as, lock);
1164
#endif
1163
#endif
1165
}
1164
}
1166
 
1165
 
1167
/** Unlock page table.
1166
/** Unlock page table.
1168
 *
1167
 *
1169
 * @param as Address space.
1168
 * @param as Address space.
1170
 * @param unlock If false, do not attempt to unlock as->lock.
1169
 * @param unlock If false, do not attempt to unlock as->lock.
1171
 */
1170
 */
1172
void page_table_unlock(as_t *as, bool unlock)
1171
void page_table_unlock(as_t *as, bool unlock)
1173
{
1172
{
1174
#ifdef __OBJC__
1173
#ifdef __OBJC__
1175
    [as page_table_unlock: unlock];
1174
    [as page_table_unlock: unlock];
1176
#else
1175
#else
1177
    ASSERT(as_operations);
1176
    ASSERT(as_operations);
1178
    ASSERT(as_operations->page_table_unlock);
1177
    ASSERT(as_operations->page_table_unlock);
1179
   
1178
   
1180
    as_operations->page_table_unlock(as, unlock);
1179
    as_operations->page_table_unlock(as, unlock);
1181
#endif
1180
#endif
1182
}
1181
}
1183
 
1182
 
1184
 
1183
 
1185
/** Find address space area and lock it.
1184
/** Find address space area and lock it.
1186
 *
1185
 *
1187
 * The address space must be locked and interrupts must be disabled.
1186
 * The address space must be locked and interrupts must be disabled.
1188
 *
1187
 *
1189
 * @param as Address space.
1188
 * @param as Address space.
1190
 * @param va Virtual address.
1189
 * @param va Virtual address.
1191
 *
1190
 *
1192
 * @return Locked address space area containing va on success or NULL on
1191
 * @return Locked address space area containing va on success or NULL on
1193
 *     failure.
1192
 *     failure.
1194
 */
1193
 */
1195
as_area_t *find_area_and_lock(as_t *as, uintptr_t va)
1194
as_area_t *find_area_and_lock(as_t *as, uintptr_t va)
1196
{
1195
{
1197
    as_area_t *a;
1196
    as_area_t *a;
1198
    btree_node_t *leaf, *lnode;
1197
    btree_node_t *leaf, *lnode;
1199
    unsigned int i;
1198
    unsigned int i;
1200
   
1199
   
1201
    a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf);
1200
    a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf);
1202
    if (a) {
1201
    if (a) {
1203
        /* va is the base address of an address space area */
1202
        /* va is the base address of an address space area */
1204
        mutex_lock(&a->lock);
1203
        mutex_lock(&a->lock);
1205
        return a;
1204
        return a;
1206
    }
1205
    }
1207
   
1206
   
1208
    /*
1207
    /*
1209
     * Search the leaf node and the righmost record of its left neighbour
1208
     * Search the leaf node and the righmost record of its left neighbour
1210
     * to find out whether this is a miss or va belongs to an address
1209
     * to find out whether this is a miss or va belongs to an address
1211
     * space area found there.
1210
     * space area found there.
1212
     */
1211
     */
1213
   
1212
   
1214
    /* First, search the leaf node itself. */
1213
    /* First, search the leaf node itself. */
1215
    for (i = 0; i < leaf->keys; i++) {
1214
    for (i = 0; i < leaf->keys; i++) {
1216
        a = (as_area_t *) leaf->value[i];
1215
        a = (as_area_t *) leaf->value[i];
1217
        mutex_lock(&a->lock);
1216
        mutex_lock(&a->lock);
1218
        if ((a->base <= va) && (va < a->base + a->pages * PAGE_SIZE)) {
1217
        if ((a->base <= va) && (va < a->base + a->pages * PAGE_SIZE)) {
1219
            return a;
1218
            return a;
1220
        }
1219
        }
1221
        mutex_unlock(&a->lock);
1220
        mutex_unlock(&a->lock);
1222
    }
1221
    }
1223
 
1222
 
1224
    /*
1223
    /*
1225
     * Second, locate the left neighbour and test its last record.
1224
     * Second, locate the left neighbour and test its last record.
1226
     * Because of its position in the B+tree, it must have base < va.
1225
     * Because of its position in the B+tree, it must have base < va.
1227
     */
1226
     */
1228
    lnode = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf);
1227
    lnode = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf);
1229
    if (lnode) {
1228
    if (lnode) {
1230
        a = (as_area_t *) lnode->value[lnode->keys - 1];
1229
        a = (as_area_t *) lnode->value[lnode->keys - 1];
1231
        mutex_lock(&a->lock);
1230
        mutex_lock(&a->lock);
1232
        if (va < a->base + a->pages * PAGE_SIZE) {
1231
        if (va < a->base + a->pages * PAGE_SIZE) {
1233
            return a;
1232
            return a;
1234
        }
1233
        }
1235
        mutex_unlock(&a->lock);
1234
        mutex_unlock(&a->lock);
1236
    }
1235
    }
1237
 
1236
 
1238
    return NULL;
1237
    return NULL;
1239
}
1238
}
1240
 
1239
 
1241
/** Check area conflicts with other areas.
1240
/** Check area conflicts with other areas.
1242
 *
1241
 *
1243
 * The address space must be locked and interrupts must be disabled.
1242
 * The address space must be locked and interrupts must be disabled.
1244
 *
1243
 *
1245
 * @param as Address space.
1244
 * @param as Address space.
1246
 * @param va Starting virtual address of the area being tested.
1245
 * @param va Starting virtual address of the area being tested.
1247
 * @param size Size of the area being tested.
1246
 * @param size Size of the area being tested.
1248
 * @param avoid_area Do not touch this area.
1247
 * @param avoid_area Do not touch this area.
1249
 *
1248
 *
1250
 * @return True if there is no conflict, false otherwise.
1249
 * @return True if there is no conflict, false otherwise.
1251
 */
1250
 */
1252
bool check_area_conflicts(as_t *as, uintptr_t va, size_t size,
1251
bool check_area_conflicts(as_t *as, uintptr_t va, size_t size,
1253
              as_area_t *avoid_area)
1252
              as_area_t *avoid_area)
1254
{
1253
{
1255
    as_area_t *a;
1254
    as_area_t *a;
1256
    btree_node_t *leaf, *node;
1255
    btree_node_t *leaf, *node;
1257
    unsigned int i;
1256
    unsigned int i;
1258
   
1257
   
1259
    /*
1258
    /*
1260
     * We don't want any area to have conflicts with NULL page.
1259
     * We don't want any area to have conflicts with NULL page.
1261
     */
1260
     */
1262
    if (overlaps(va, size, NULL, PAGE_SIZE))
1261
    if (overlaps(va, size, NULL, PAGE_SIZE))
1263
        return false;
1262
        return false;
1264
   
1263
   
1265
    /*
1264
    /*
1266
     * The leaf node is found in O(log n), where n is proportional to
1265
     * The leaf node is found in O(log n), where n is proportional to
1267
     * the number of address space areas belonging to as.
1266
     * the number of address space areas belonging to as.
1268
     * The check for conflicts is then attempted on the rightmost
1267
     * The check for conflicts is then attempted on the rightmost
1269
     * record in the left neighbour, the leftmost record in the right
1268
     * record in the left neighbour, the leftmost record in the right
1270
     * neighbour and all records in the leaf node itself.
1269
     * neighbour and all records in the leaf node itself.
1271
     */
1270
     */
1272
   
1271
   
1273
    if ((a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf))) {
1272
    if ((a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf))) {
1274
        if (a != avoid_area)
1273
        if (a != avoid_area)
1275
            return false;
1274
            return false;
1276
    }
1275
    }
1277
   
1276
   
1278
    /* First, check the two border cases. */
1277
    /* First, check the two border cases. */
1279
    if ((node = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf))) {
1278
    if ((node = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf))) {
1280
        a = (as_area_t *) node->value[node->keys - 1];
1279
        a = (as_area_t *) node->value[node->keys - 1];
1281
        mutex_lock(&a->lock);
1280
        mutex_lock(&a->lock);
1282
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1281
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1283
            mutex_unlock(&a->lock);
1282
            mutex_unlock(&a->lock);
1284
            return false;
1283
            return false;
1285
        }
1284
        }
1286
        mutex_unlock(&a->lock);
1285
        mutex_unlock(&a->lock);
1287
    }
1286
    }
1288
    node = btree_leaf_node_right_neighbour(&as->as_area_btree, leaf);
1287
    node = btree_leaf_node_right_neighbour(&as->as_area_btree, leaf);
1289
    if (node) {
1288
    if (node) {
1290
        a = (as_area_t *) node->value[0];
1289
        a = (as_area_t *) node->value[0];
1291
        mutex_lock(&a->lock);
1290
        mutex_lock(&a->lock);
1292
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1291
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1293
            mutex_unlock(&a->lock);
1292
            mutex_unlock(&a->lock);
1294
            return false;
1293
            return false;
1295
        }
1294
        }
1296
        mutex_unlock(&a->lock);
1295
        mutex_unlock(&a->lock);
1297
    }
1296
    }
1298
   
1297
   
1299
    /* Second, check the leaf node. */
1298
    /* Second, check the leaf node. */
1300
    for (i = 0; i < leaf->keys; i++) {
1299
    for (i = 0; i < leaf->keys; i++) {
1301
        a = (as_area_t *) leaf->value[i];
1300
        a = (as_area_t *) leaf->value[i];
1302
   
1301
   
1303
        if (a == avoid_area)
1302
        if (a == avoid_area)
1304
            continue;
1303
            continue;
1305
   
1304
   
1306
        mutex_lock(&a->lock);
1305
        mutex_lock(&a->lock);
1307
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1306
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1308
            mutex_unlock(&a->lock);
1307
            mutex_unlock(&a->lock);
1309
            return false;
1308
            return false;
1310
        }
1309
        }
1311
        mutex_unlock(&a->lock);
1310
        mutex_unlock(&a->lock);
1312
    }
1311
    }
1313
 
1312
 
1314
    /*
1313
    /*
1315
     * So far, the area does not conflict with other areas.
1314
     * So far, the area does not conflict with other areas.
1316
     * Check if it doesn't conflict with kernel address space.
1315
     * Check if it doesn't conflict with kernel address space.
1317
     */  
1316
     */  
1318
    if (!KERNEL_ADDRESS_SPACE_SHADOWED) {
1317
    if (!KERNEL_ADDRESS_SPACE_SHADOWED) {
1319
        return !overlaps(va, size,
1318
        return !overlaps(va, size,
1320
            KERNEL_ADDRESS_SPACE_START,
1319
            KERNEL_ADDRESS_SPACE_START,
1321
            KERNEL_ADDRESS_SPACE_END - KERNEL_ADDRESS_SPACE_START);
1320
            KERNEL_ADDRESS_SPACE_END - KERNEL_ADDRESS_SPACE_START);
1322
    }
1321
    }
1323
 
1322
 
1324
    return true;
1323
    return true;
1325
}
1324
}
1326
 
1325
 
1327
/** Return size of the address space area with given base.
1326
/** Return size of the address space area with given base.
1328
 *
1327
 *
1329
 * @param base      Arbitrary address insede the address space area.
1328
 * @param base      Arbitrary address insede the address space area.
1330
 *
1329
 *
1331
 * @return      Size of the address space area in bytes or zero if it
1330
 * @return      Size of the address space area in bytes or zero if it
1332
 *          does not exist.
1331
 *          does not exist.
1333
 */
1332
 */
1334
size_t as_area_get_size(uintptr_t base)
1333
size_t as_area_get_size(uintptr_t base)
1335
{
1334
{
1336
    ipl_t ipl;
1335
    ipl_t ipl;
1337
    as_area_t *src_area;
1336
    as_area_t *src_area;
1338
    size_t size;
1337
    size_t size;
1339
 
1338
 
1340
    ipl = interrupts_disable();
1339
    ipl = interrupts_disable();
1341
    src_area = find_area_and_lock(AS, base);
1340
    src_area = find_area_and_lock(AS, base);
1342
    if (src_area){
1341
    if (src_area){
1343
        size = src_area->pages * PAGE_SIZE;
1342
        size = src_area->pages * PAGE_SIZE;
1344
        mutex_unlock(&src_area->lock);
1343
        mutex_unlock(&src_area->lock);
1345
    } else {
1344
    } else {
1346
        size = 0;
1345
        size = 0;
1347
    }
1346
    }
1348
    interrupts_restore(ipl);
1347
    interrupts_restore(ipl);
1349
    return size;
1348
    return size;
1350
}
1349
}
1351
 
1350
 
1352
/** Mark portion of address space area as used.
1351
/** Mark portion of address space area as used.
1353
 *
1352
 *
1354
 * The address space area must be already locked.
1353
 * The address space area must be already locked.
1355
 *
1354
 *
1356
 * @param a Address space area.
1355
 * @param a Address space area.
1357
 * @param page First page to be marked.
1356
 * @param page First page to be marked.
1358
 * @param count Number of page to be marked.
1357
 * @param count Number of page to be marked.
1359
 *
1358
 *
1360
 * @return 0 on failure and 1 on success.
1359
 * @return 0 on failure and 1 on success.
1361
 */
1360
 */
1362
int used_space_insert(as_area_t *a, uintptr_t page, count_t count)
1361
int used_space_insert(as_area_t *a, uintptr_t page, count_t count)
1363
{
1362
{
1364
    btree_node_t *leaf, *node;
1363
    btree_node_t *leaf, *node;
1365
    count_t pages;
1364
    count_t pages;
1366
    unsigned int i;
1365
    unsigned int i;
1367
 
1366
 
1368
    ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1367
    ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1369
    ASSERT(count);
1368
    ASSERT(count);
1370
 
1369
 
1371
    pages = (count_t) btree_search(&a->used_space, page, &leaf);
1370
    pages = (count_t) btree_search(&a->used_space, page, &leaf);
1372
    if (pages) {
1371
    if (pages) {
1373
        /*
1372
        /*
1374
         * We hit the beginning of some used space.
1373
         * We hit the beginning of some used space.
1375
         */
1374
         */
1376
        return 0;
1375
        return 0;
1377
    }
1376
    }
1378
 
1377
 
1379
    if (!leaf->keys) {
1378
    if (!leaf->keys) {
1380
        btree_insert(&a->used_space, page, (void *) count, leaf);
1379
        btree_insert(&a->used_space, page, (void *) count, leaf);
1381
        return 1;
1380
        return 1;
1382
    }
1381
    }
1383
 
1382
 
1384
    node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1383
    node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1385
    if (node) {
1384
    if (node) {
1386
        uintptr_t left_pg = node->key[node->keys - 1];
1385
        uintptr_t left_pg = node->key[node->keys - 1];
1387
        uintptr_t right_pg = leaf->key[0];
1386
        uintptr_t right_pg = leaf->key[0];
1388
        count_t left_cnt = (count_t) node->value[node->keys - 1];
1387
        count_t left_cnt = (count_t) node->value[node->keys - 1];
1389
        count_t right_cnt = (count_t) leaf->value[0];
1388
        count_t right_cnt = (count_t) leaf->value[0];
1390
       
1389
       
1391
        /*
1390
        /*
1392
         * Examine the possibility that the interval fits
1391
         * Examine the possibility that the interval fits
1393
         * somewhere between the rightmost interval of
1392
         * somewhere between the rightmost interval of
1394
         * the left neigbour and the first interval of the leaf.
1393
         * the left neigbour and the first interval of the leaf.
1395
         */
1394
         */
1396
         
1395
         
1397
        if (page >= right_pg) {
1396
        if (page >= right_pg) {
1398
            /* Do nothing. */
1397
            /* Do nothing. */
1399
        } else if (overlaps(page, count * PAGE_SIZE, left_pg,
1398
        } else if (overlaps(page, count * PAGE_SIZE, left_pg,
1400
            left_cnt * PAGE_SIZE)) {
1399
            left_cnt * PAGE_SIZE)) {
1401
            /* The interval intersects with the left interval. */
1400
            /* The interval intersects with the left interval. */
1402
            return 0;
1401
            return 0;
1403
        } else if (overlaps(page, count * PAGE_SIZE, right_pg,
1402
        } else if (overlaps(page, count * PAGE_SIZE, right_pg,
1404
            right_cnt * PAGE_SIZE)) {
1403
            right_cnt * PAGE_SIZE)) {
1405
            /* The interval intersects with the right interval. */
1404
            /* The interval intersects with the right interval. */
1406
            return 0;          
1405
            return 0;          
1407
        } else if ((page == left_pg + left_cnt * PAGE_SIZE) &&
1406
        } else if ((page == left_pg + left_cnt * PAGE_SIZE) &&
1408
            (page + count * PAGE_SIZE == right_pg)) {
1407
            (page + count * PAGE_SIZE == right_pg)) {
1409
            /*
1408
            /*
1410
             * The interval can be added by merging the two already
1409
             * The interval can be added by merging the two already
1411
             * present intervals.
1410
             * present intervals.
1412
             */
1411
             */
1413
            node->value[node->keys - 1] += count + right_cnt;
1412
            node->value[node->keys - 1] += count + right_cnt;
1414
            btree_remove(&a->used_space, right_pg, leaf);
1413
            btree_remove(&a->used_space, right_pg, leaf);
1415
            return 1;
1414
            return 1;
1416
        } else if (page == left_pg + left_cnt * PAGE_SIZE) {
1415
        } else if (page == left_pg + left_cnt * PAGE_SIZE) {
1417
            /*
1416
            /*
1418
             * The interval can be added by simply growing the left
1417
             * The interval can be added by simply growing the left
1419
             * interval.
1418
             * interval.
1420
             */
1419
             */
1421
            node->value[node->keys - 1] += count;
1420
            node->value[node->keys - 1] += count;
1422
            return 1;
1421
            return 1;
1423
        } else if (page + count * PAGE_SIZE == right_pg) {
1422
        } else if (page + count * PAGE_SIZE == right_pg) {
1424
            /*
1423
            /*
1425
             * The interval can be addded by simply moving base of
1424
             * The interval can be addded by simply moving base of
1426
             * the right interval down and increasing its size
1425
             * the right interval down and increasing its size
1427
             * accordingly.
1426
             * accordingly.
1428
             */
1427
             */
1429
            leaf->value[0] += count;
1428
            leaf->value[0] += count;
1430
            leaf->key[0] = page;
1429
            leaf->key[0] = page;
1431
            return 1;
1430
            return 1;
1432
        } else {
1431
        } else {
1433
            /*
1432
            /*
1434
             * The interval is between both neigbouring intervals,
1433
             * The interval is between both neigbouring intervals,
1435
             * but cannot be merged with any of them.
1434
             * but cannot be merged with any of them.
1436
             */
1435
             */
1437
            btree_insert(&a->used_space, page, (void *) count,
1436
            btree_insert(&a->used_space, page, (void *) count,
1438
                leaf);
1437
                leaf);
1439
            return 1;
1438
            return 1;
1440
        }
1439
        }
1441
    } else if (page < leaf->key[0]) {
1440
    } else if (page < leaf->key[0]) {
1442
        uintptr_t right_pg = leaf->key[0];
1441
        uintptr_t right_pg = leaf->key[0];
1443
        count_t right_cnt = (count_t) leaf->value[0];
1442
        count_t right_cnt = (count_t) leaf->value[0];
1444
   
1443
   
1445
        /*
1444
        /*
1446
         * Investigate the border case in which the left neighbour does
1445
         * Investigate the border case in which the left neighbour does
1447
         * not exist but the interval fits from the left.
1446
         * not exist but the interval fits from the left.
1448
         */
1447
         */
1449
         
1448
         
1450
        if (overlaps(page, count * PAGE_SIZE, right_pg,
1449
        if (overlaps(page, count * PAGE_SIZE, right_pg,
1451
            right_cnt * PAGE_SIZE)) {
1450
            right_cnt * PAGE_SIZE)) {
1452
            /* The interval intersects with the right interval. */
1451
            /* The interval intersects with the right interval. */
1453
            return 0;
1452
            return 0;
1454
        } else if (page + count * PAGE_SIZE == right_pg) {
1453
        } else if (page + count * PAGE_SIZE == right_pg) {
1455
            /*
1454
            /*
1456
             * The interval can be added by moving the base of the
1455
             * The interval can be added by moving the base of the
1457
             * right interval down and increasing its size
1456
             * right interval down and increasing its size
1458
             * accordingly.
1457
             * accordingly.
1459
             */
1458
             */
1460
            leaf->key[0] = page;
1459
            leaf->key[0] = page;
1461
            leaf->value[0] += count;
1460
            leaf->value[0] += count;
1462
            return 1;
1461
            return 1;
1463
        } else {
1462
        } else {
1464
            /*
1463
            /*
1465
             * The interval doesn't adjoin with the right interval.
1464
             * The interval doesn't adjoin with the right interval.
1466
             * It must be added individually.
1465
             * It must be added individually.
1467
             */
1466
             */
1468
            btree_insert(&a->used_space, page, (void *) count,
1467
            btree_insert(&a->used_space, page, (void *) count,
1469
                leaf);
1468
                leaf);
1470
            return 1;
1469
            return 1;
1471
        }
1470
        }
1472
    }
1471
    }
1473
 
1472
 
1474
    node = btree_leaf_node_right_neighbour(&a->used_space, leaf);
1473
    node = btree_leaf_node_right_neighbour(&a->used_space, leaf);
1475
    if (node) {
1474
    if (node) {
1476
        uintptr_t left_pg = leaf->key[leaf->keys - 1];
1475
        uintptr_t left_pg = leaf->key[leaf->keys - 1];
1477
        uintptr_t right_pg = node->key[0];
1476
        uintptr_t right_pg = node->key[0];
1478
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1477
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1479
        count_t right_cnt = (count_t) node->value[0];
1478
        count_t right_cnt = (count_t) node->value[0];
1480
       
1479
       
1481
        /*
1480
        /*
1482
         * Examine the possibility that the interval fits
1481
         * Examine the possibility that the interval fits
1483
         * somewhere between the leftmost interval of
1482
         * somewhere between the leftmost interval of
1484
         * the right neigbour and the last interval of the leaf.
1483
         * the right neigbour and the last interval of the leaf.
1485
         */
1484
         */
1486
 
1485
 
1487
        if (page < left_pg) {
1486
        if (page < left_pg) {
1488
            /* Do nothing. */
1487
            /* Do nothing. */
1489
        } else if (overlaps(page, count * PAGE_SIZE, left_pg,
1488
        } else if (overlaps(page, count * PAGE_SIZE, left_pg,
1490
            left_cnt * PAGE_SIZE)) {
1489
            left_cnt * PAGE_SIZE)) {
1491
            /* The interval intersects with the left interval. */
1490
            /* The interval intersects with the left interval. */
1492
            return 0;
1491
            return 0;
1493
        } else if (overlaps(page, count * PAGE_SIZE, right_pg,
1492
        } else if (overlaps(page, count * PAGE_SIZE, right_pg,
1494
            right_cnt * PAGE_SIZE)) {
1493
            right_cnt * PAGE_SIZE)) {
1495
            /* The interval intersects with the right interval. */
1494
            /* The interval intersects with the right interval. */
1496
            return 0;          
1495
            return 0;          
1497
        } else if ((page == left_pg + left_cnt * PAGE_SIZE) &&
1496
        } else if ((page == left_pg + left_cnt * PAGE_SIZE) &&
1498
            (page + count * PAGE_SIZE == right_pg)) {
1497
            (page + count * PAGE_SIZE == right_pg)) {
1499
            /*
1498
            /*
1500
             * The interval can be added by merging the two already
1499
             * The interval can be added by merging the two already
1501
             * present intervals.
1500
             * present intervals.
1502
             * */
1501
             * */
1503
            leaf->value[leaf->keys - 1] += count + right_cnt;
1502
            leaf->value[leaf->keys - 1] += count + right_cnt;
1504
            btree_remove(&a->used_space, right_pg, node);
1503
            btree_remove(&a->used_space, right_pg, node);
1505
            return 1;
1504
            return 1;
1506
        } else if (page == left_pg + left_cnt * PAGE_SIZE) {
1505
        } else if (page == left_pg + left_cnt * PAGE_SIZE) {
1507
            /*
1506
            /*
1508
             * The interval can be added by simply growing the left
1507
             * The interval can be added by simply growing the left
1509
             * interval.
1508
             * interval.
1510
             * */
1509
             * */
1511
            leaf->value[leaf->keys - 1] +=  count;
1510
            leaf->value[leaf->keys - 1] +=  count;
1512
            return 1;
1511
            return 1;
1513
        } else if (page + count * PAGE_SIZE == right_pg) {
1512
        } else if (page + count * PAGE_SIZE == right_pg) {
1514
            /*
1513
            /*
1515
             * The interval can be addded by simply moving base of
1514
             * The interval can be addded by simply moving base of
1516
             * the right interval down and increasing its size
1515
             * the right interval down and increasing its size
1517
             * accordingly.
1516
             * accordingly.
1518
             */
1517
             */
1519
            node->value[0] += count;
1518
            node->value[0] += count;
1520
            node->key[0] = page;
1519
            node->key[0] = page;
1521
            return 1;
1520
            return 1;
1522
        } else {
1521
        } else {
1523
            /*
1522
            /*
1524
             * The interval is between both neigbouring intervals,
1523
             * The interval is between both neigbouring intervals,
1525
             * but cannot be merged with any of them.
1524
             * but cannot be merged with any of them.
1526
             */
1525
             */
1527
            btree_insert(&a->used_space, page, (void *) count,
1526
            btree_insert(&a->used_space, page, (void *) count,
1528
                leaf);
1527
                leaf);
1529
            return 1;
1528
            return 1;
1530
        }
1529
        }
1531
    } else if (page >= leaf->key[leaf->keys - 1]) {
1530
    } else if (page >= leaf->key[leaf->keys - 1]) {
1532
        uintptr_t left_pg = leaf->key[leaf->keys - 1];
1531
        uintptr_t left_pg = leaf->key[leaf->keys - 1];
1533
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1532
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1534
   
1533
   
1535
        /*
1534
        /*
1536
         * Investigate the border case in which the right neighbour
1535
         * Investigate the border case in which the right neighbour
1537
         * does not exist but the interval fits from the right.
1536
         * does not exist but the interval fits from the right.
1538
         */
1537
         */
1539
         
1538
         
1540
        if (overlaps(page, count * PAGE_SIZE, left_pg,
1539
        if (overlaps(page, count * PAGE_SIZE, left_pg,
1541
            left_cnt * PAGE_SIZE)) {
1540
            left_cnt * PAGE_SIZE)) {
1542
            /* The interval intersects with the left interval. */
1541
            /* The interval intersects with the left interval. */
1543
            return 0;
1542
            return 0;
1544
        } else if (left_pg + left_cnt * PAGE_SIZE == page) {
1543
        } else if (left_pg + left_cnt * PAGE_SIZE == page) {
1545
            /*
1544
            /*
1546
             * The interval can be added by growing the left
1545
             * The interval can be added by growing the left
1547
             * interval.
1546
             * interval.
1548
             */
1547
             */
1549
            leaf->value[leaf->keys - 1] += count;
1548
            leaf->value[leaf->keys - 1] += count;
1550
            return 1;
1549
            return 1;
1551
        } else {
1550
        } else {
1552
            /*
1551
            /*
1553
             * The interval doesn't adjoin with the left interval.
1552
             * The interval doesn't adjoin with the left interval.
1554
             * It must be added individually.
1553
             * It must be added individually.
1555
             */
1554
             */
1556
            btree_insert(&a->used_space, page, (void *) count,
1555
            btree_insert(&a->used_space, page, (void *) count,
1557
                leaf);
1556
                leaf);
1558
            return 1;
1557
            return 1;
1559
        }
1558
        }
1560
    }
1559
    }
1561
   
1560
   
1562
    /*
1561
    /*
1563
     * Note that if the algorithm made it thus far, the interval can fit
1562
     * Note that if the algorithm made it thus far, the interval can fit
1564
     * only between two other intervals of the leaf. The two border cases
1563
     * only between two other intervals of the leaf. The two border cases
1565
     * were already resolved.
1564
     * were already resolved.
1566
     */
1565
     */
1567
    for (i = 1; i < leaf->keys; i++) {
1566
    for (i = 1; i < leaf->keys; i++) {
1568
        if (page < leaf->key[i]) {
1567
        if (page < leaf->key[i]) {
1569
            uintptr_t left_pg = leaf->key[i - 1];
1568
            uintptr_t left_pg = leaf->key[i - 1];
1570
            uintptr_t right_pg = leaf->key[i];
1569
            uintptr_t right_pg = leaf->key[i];
1571
            count_t left_cnt = (count_t) leaf->value[i - 1];
1570
            count_t left_cnt = (count_t) leaf->value[i - 1];
1572
            count_t right_cnt = (count_t) leaf->value[i];
1571
            count_t right_cnt = (count_t) leaf->value[i];
1573
 
1572
 
1574
            /*
1573
            /*
1575
             * The interval fits between left_pg and right_pg.
1574
             * The interval fits between left_pg and right_pg.
1576
             */
1575
             */
1577
 
1576
 
1578
            if (overlaps(page, count * PAGE_SIZE, left_pg,
1577
            if (overlaps(page, count * PAGE_SIZE, left_pg,
1579
                left_cnt * PAGE_SIZE)) {
1578
                left_cnt * PAGE_SIZE)) {
1580
                /*
1579
                /*
1581
                 * The interval intersects with the left
1580
                 * The interval intersects with the left
1582
                 * interval.
1581
                 * interval.
1583
                 */
1582
                 */
1584
                return 0;
1583
                return 0;
1585
            } else if (overlaps(page, count * PAGE_SIZE, right_pg,
1584
            } else if (overlaps(page, count * PAGE_SIZE, right_pg,
1586
                right_cnt * PAGE_SIZE)) {
1585
                right_cnt * PAGE_SIZE)) {
1587
                /*
1586
                /*
1588
                 * The interval intersects with the right
1587
                 * The interval intersects with the right
1589
                 * interval.
1588
                 * interval.
1590
                 */
1589
                 */
1591
                return 0;          
1590
                return 0;          
1592
            } else if ((page == left_pg + left_cnt * PAGE_SIZE) &&
1591
            } else if ((page == left_pg + left_cnt * PAGE_SIZE) &&
1593
                (page + count * PAGE_SIZE == right_pg)) {
1592
                (page + count * PAGE_SIZE == right_pg)) {
1594
                /*
1593
                /*
1595
                 * The interval can be added by merging the two
1594
                 * The interval can be added by merging the two
1596
                 * already present intervals.
1595
                 * already present intervals.
1597
                 */
1596
                 */
1598
                leaf->value[i - 1] += count + right_cnt;
1597
                leaf->value[i - 1] += count + right_cnt;
1599
                btree_remove(&a->used_space, right_pg, leaf);
1598
                btree_remove(&a->used_space, right_pg, leaf);
1600
                return 1;
1599
                return 1;
1601
            } else if (page == left_pg + left_cnt * PAGE_SIZE) {
1600
            } else if (page == left_pg + left_cnt * PAGE_SIZE) {
1602
                /*
1601
                /*
1603
                 * The interval can be added by simply growing
1602
                 * The interval can be added by simply growing
1604
                 * the left interval.
1603
                 * the left interval.
1605
                 */
1604
                 */
1606
                leaf->value[i - 1] += count;
1605
                leaf->value[i - 1] += count;
1607
                return 1;
1606
                return 1;
1608
            } else if (page + count * PAGE_SIZE == right_pg) {
1607
            } else if (page + count * PAGE_SIZE == right_pg) {
1609
                /*
1608
                /*
1610
                     * The interval can be addded by simply moving
1609
                     * The interval can be addded by simply moving
1611
                 * base of the right interval down and
1610
                 * base of the right interval down and
1612
                 * increasing its size accordingly.
1611
                 * increasing its size accordingly.
1613
                 */
1612
                 */
1614
                leaf->value[i] += count;
1613
                leaf->value[i] += count;
1615
                leaf->key[i] = page;
1614
                leaf->key[i] = page;
1616
                return 1;
1615
                return 1;
1617
            } else {
1616
            } else {
1618
                /*
1617
                /*
1619
                 * The interval is between both neigbouring
1618
                 * The interval is between both neigbouring
1620
                 * intervals, but cannot be merged with any of
1619
                 * intervals, but cannot be merged with any of
1621
                 * them.
1620
                 * them.
1622
                 */
1621
                 */
1623
                btree_insert(&a->used_space, page,
1622
                btree_insert(&a->used_space, page,
1624
                    (void *) count, leaf);
1623
                    (void *) count, leaf);
1625
                return 1;
1624
                return 1;
1626
            }
1625
            }
1627
        }
1626
        }
1628
    }
1627
    }
1629
 
1628
 
1630
    panic("Inconsistency detected while adding %" PRIc " pages of used space at "
1629
    panic("Inconsistency detected while adding %" PRIc " pages of used space at "
1631
        "%p.\n", count, page);
1630
        "%p.\n", count, page);
1632
}
1631
}
1633
 
1632
 
1634
/** Mark portion of address space area as unused.
1633
/** Mark portion of address space area as unused.
1635
 *
1634
 *
1636
 * The address space area must be already locked.
1635
 * The address space area must be already locked.
1637
 *
1636
 *
1638
 * @param a Address space area.
1637
 * @param a Address space area.
1639
 * @param page First page to be marked.
1638
 * @param page First page to be marked.
1640
 * @param count Number of page to be marked.
1639
 * @param count Number of page to be marked.
1641
 *
1640
 *
1642
 * @return 0 on failure and 1 on success.
1641
 * @return 0 on failure and 1 on success.
1643
 */
1642
 */
1644
int used_space_remove(as_area_t *a, uintptr_t page, count_t count)
1643
int used_space_remove(as_area_t *a, uintptr_t page, count_t count)
1645
{
1644
{
1646
    btree_node_t *leaf, *node;
1645
    btree_node_t *leaf, *node;
1647
    count_t pages;
1646
    count_t pages;
1648
    unsigned int i;
1647
    unsigned int i;
1649
 
1648
 
1650
    ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1649
    ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1651
    ASSERT(count);
1650
    ASSERT(count);
1652
 
1651
 
1653
    pages = (count_t) btree_search(&a->used_space, page, &leaf);
1652
    pages = (count_t) btree_search(&a->used_space, page, &leaf);
1654
    if (pages) {
1653
    if (pages) {
1655
        /*
1654
        /*
1656
         * We are lucky, page is the beginning of some interval.
1655
         * We are lucky, page is the beginning of some interval.
1657
         */
1656
         */
1658
        if (count > pages) {
1657
        if (count > pages) {
1659
            return 0;
1658
            return 0;
1660
        } else if (count == pages) {
1659
        } else if (count == pages) {
1661
            btree_remove(&a->used_space, page, leaf);
1660
            btree_remove(&a->used_space, page, leaf);
1662
            return 1;
1661
            return 1;
1663
        } else {
1662
        } else {
1664
            /*
1663
            /*
1665
             * Find the respective interval.
1664
             * Find the respective interval.
1666
             * Decrease its size and relocate its start address.
1665
             * Decrease its size and relocate its start address.
1667
             */
1666
             */
1668
            for (i = 0; i < leaf->keys; i++) {
1667
            for (i = 0; i < leaf->keys; i++) {
1669
                if (leaf->key[i] == page) {
1668
                if (leaf->key[i] == page) {
1670
                    leaf->key[i] += count * PAGE_SIZE;
1669
                    leaf->key[i] += count * PAGE_SIZE;
1671
                    leaf->value[i] -= count;
1670
                    leaf->value[i] -= count;
1672
                    return 1;
1671
                    return 1;
1673
                }
1672
                }
1674
            }
1673
            }
1675
            goto error;
1674
            goto error;
1676
        }
1675
        }
1677
    }
1676
    }
1678
 
1677
 
1679
    node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1678
    node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1680
    if (node && page < leaf->key[0]) {
1679
    if (node && page < leaf->key[0]) {
1681
        uintptr_t left_pg = node->key[node->keys - 1];
1680
        uintptr_t left_pg = node->key[node->keys - 1];
1682
        count_t left_cnt = (count_t) node->value[node->keys - 1];
1681
        count_t left_cnt = (count_t) node->value[node->keys - 1];
1683
 
1682
 
1684
        if (overlaps(left_pg, left_cnt * PAGE_SIZE, page,
1683
        if (overlaps(left_pg, left_cnt * PAGE_SIZE, page,
1685
            count * PAGE_SIZE)) {
1684
            count * PAGE_SIZE)) {
1686
            if (page + count * PAGE_SIZE ==
1685
            if (page + count * PAGE_SIZE ==
1687
                left_pg + left_cnt * PAGE_SIZE) {
1686
                left_pg + left_cnt * PAGE_SIZE) {
1688
                /*
1687
                /*
1689
                 * The interval is contained in the rightmost
1688
                 * The interval is contained in the rightmost
1690
                 * interval of the left neighbour and can be
1689
                 * interval of the left neighbour and can be
1691
                 * removed by updating the size of the bigger
1690
                 * removed by updating the size of the bigger
1692
                 * interval.
1691
                 * interval.
1693
                 */
1692
                 */
1694
                node->value[node->keys - 1] -= count;
1693
                node->value[node->keys - 1] -= count;
1695
                return 1;
1694
                return 1;
1696
            } else if (page + count * PAGE_SIZE <
1695
            } else if (page + count * PAGE_SIZE <
1697
                left_pg + left_cnt*PAGE_SIZE) {
1696
                left_pg + left_cnt*PAGE_SIZE) {
1698
                count_t new_cnt;
1697
                count_t new_cnt;
1699
               
1698
               
1700
                /*
1699
                /*
1701
                 * The interval is contained in the rightmost
1700
                 * The interval is contained in the rightmost
1702
                 * interval of the left neighbour but its
1701
                 * interval of the left neighbour but its
1703
                 * removal requires both updating the size of
1702
                 * removal requires both updating the size of
1704
                 * the original interval and also inserting a
1703
                 * the original interval and also inserting a
1705
                 * new interval.
1704
                 * new interval.
1706
                 */
1705
                 */
1707
                new_cnt = ((left_pg + left_cnt * PAGE_SIZE) -
1706
                new_cnt = ((left_pg + left_cnt * PAGE_SIZE) -
1708
                    (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1707
                    (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1709
                node->value[node->keys - 1] -= count + new_cnt;
1708
                node->value[node->keys - 1] -= count + new_cnt;
1710
                btree_insert(&a->used_space, page +
1709
                btree_insert(&a->used_space, page +
1711
                    count * PAGE_SIZE, (void *) new_cnt, leaf);
1710
                    count * PAGE_SIZE, (void *) new_cnt, leaf);
1712
                return 1;
1711
                return 1;
1713
            }
1712
            }
1714
        }
1713
        }
1715
        return 0;
1714
        return 0;
1716
    } else if (page < leaf->key[0]) {
1715
    } else if (page < leaf->key[0]) {
1717
        return 0;
1716
        return 0;
1718
    }
1717
    }
1719
   
1718
   
1720
    if (page > leaf->key[leaf->keys - 1]) {
1719
    if (page > leaf->key[leaf->keys - 1]) {
1721
        uintptr_t left_pg = leaf->key[leaf->keys - 1];
1720
        uintptr_t left_pg = leaf->key[leaf->keys - 1];
1722
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1721
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1723
 
1722
 
1724
        if (overlaps(left_pg, left_cnt * PAGE_SIZE, page,
1723
        if (overlaps(left_pg, left_cnt * PAGE_SIZE, page,
1725
            count * PAGE_SIZE)) {
1724
            count * PAGE_SIZE)) {
1726
            if (page + count * PAGE_SIZE ==
1725
            if (page + count * PAGE_SIZE ==
1727
                left_pg + left_cnt * PAGE_SIZE) {
1726
                left_pg + left_cnt * PAGE_SIZE) {
1728
                /*
1727
                /*
1729
                 * The interval is contained in the rightmost
1728
                 * The interval is contained in the rightmost
1730
                 * interval of the leaf and can be removed by
1729
                 * interval of the leaf and can be removed by
1731
                 * updating the size of the bigger interval.
1730
                 * updating the size of the bigger interval.
1732
                 */
1731
                 */
1733
                leaf->value[leaf->keys - 1] -= count;
1732
                leaf->value[leaf->keys - 1] -= count;
1734
                return 1;
1733
                return 1;
1735
            } else if (page + count * PAGE_SIZE < left_pg +
1734
            } else if (page + count * PAGE_SIZE < left_pg +
1736
                left_cnt * PAGE_SIZE) {
1735
                left_cnt * PAGE_SIZE) {
1737
                count_t new_cnt;
1736
                count_t new_cnt;
1738
               
1737
               
1739
                /*
1738
                /*
1740
                 * The interval is contained in the rightmost
1739
                 * The interval is contained in the rightmost
1741
                 * interval of the leaf but its removal
1740
                 * interval of the leaf but its removal
1742
                 * requires both updating the size of the
1741
                 * requires both updating the size of the
1743
                 * original interval and also inserting a new
1742
                 * original interval and also inserting a new
1744
                 * interval.
1743
                 * interval.
1745
                 */
1744
                 */
1746
                new_cnt = ((left_pg + left_cnt * PAGE_SIZE) -
1745
                new_cnt = ((left_pg + left_cnt * PAGE_SIZE) -
1747
                    (page + count * PAGE_SIZE)) >> PAGE_WIDTH;
1746
                    (page + count * PAGE_SIZE)) >> PAGE_WIDTH;
1748
                leaf->value[leaf->keys - 1] -= count + new_cnt;
1747
                leaf->value[leaf->keys - 1] -= count + new_cnt;
1749
                btree_insert(&a->used_space, page +
1748
                btree_insert(&a->used_space, page +
1750
                    count * PAGE_SIZE, (void *) new_cnt, leaf);
1749
                    count * PAGE_SIZE, (void *) new_cnt, leaf);
1751
                return 1;
1750
                return 1;
1752
            }
1751
            }
1753
        }
1752
        }
1754
        return 0;
1753
        return 0;
1755
    }  
1754
    }  
1756
   
1755
   
1757
    /*
1756
    /*
1758
     * The border cases have been already resolved.
1757
     * The border cases have been already resolved.
1759
     * Now the interval can be only between intervals of the leaf.
1758
     * Now the interval can be only between intervals of the leaf.
1760
     */
1759
     */
1761
    for (i = 1; i < leaf->keys - 1; i++) {
1760
    for (i = 1; i < leaf->keys - 1; i++) {
1762
        if (page < leaf->key[i]) {
1761
        if (page < leaf->key[i]) {
1763
            uintptr_t left_pg = leaf->key[i - 1];
1762
            uintptr_t left_pg = leaf->key[i - 1];
1764
            count_t left_cnt = (count_t) leaf->value[i - 1];
1763
            count_t left_cnt = (count_t) leaf->value[i - 1];
1765
 
1764
 
1766
            /*
1765
            /*
1767
             * Now the interval is between intervals corresponding
1766
             * Now the interval is between intervals corresponding
1768
             * to (i - 1) and i.
1767
             * to (i - 1) and i.
1769
             */
1768
             */
1770
            if (overlaps(left_pg, left_cnt * PAGE_SIZE, page,
1769
            if (overlaps(left_pg, left_cnt * PAGE_SIZE, page,
1771
                count * PAGE_SIZE)) {
1770
                count * PAGE_SIZE)) {
1772
                if (page + count * PAGE_SIZE ==
1771
                if (page + count * PAGE_SIZE ==
1773
                    left_pg + left_cnt*PAGE_SIZE) {
1772
                    left_pg + left_cnt*PAGE_SIZE) {
1774
                    /*
1773
                    /*
1775
                     * The interval is contained in the
1774
                     * The interval is contained in the
1776
                     * interval (i - 1) of the leaf and can
1775
                     * interval (i - 1) of the leaf and can
1777
                     * be removed by updating the size of
1776
                     * be removed by updating the size of
1778
                     * the bigger interval.
1777
                     * the bigger interval.
1779
                     */
1778
                     */
1780
                    leaf->value[i - 1] -= count;
1779
                    leaf->value[i - 1] -= count;
1781
                    return 1;
1780
                    return 1;
1782
                } else if (page + count * PAGE_SIZE <
1781
                } else if (page + count * PAGE_SIZE <
1783
                    left_pg + left_cnt * PAGE_SIZE) {
1782
                    left_pg + left_cnt * PAGE_SIZE) {
1784
                    count_t new_cnt;
1783
                    count_t new_cnt;
1785
               
1784
               
1786
                    /*
1785
                    /*
1787
                     * The interval is contained in the
1786
                     * The interval is contained in the
1788
                     * interval (i - 1) of the leaf but its
1787
                     * interval (i - 1) of the leaf but its
1789
                     * removal requires both updating the
1788
                     * removal requires both updating the
1790
                     * size of the original interval and
1789
                     * size of the original interval and
1791
                     * also inserting a new interval.
1790
                     * also inserting a new interval.
1792
                     */
1791
                     */
1793
                    new_cnt = ((left_pg +
1792
                    new_cnt = ((left_pg +
1794
                        left_cnt * PAGE_SIZE) -
1793
                        left_cnt * PAGE_SIZE) -
1795
                        (page + count * PAGE_SIZE)) >>
1794
                        (page + count * PAGE_SIZE)) >>
1796
                        PAGE_WIDTH;
1795
                        PAGE_WIDTH;
1797
                    leaf->value[i - 1] -= count + new_cnt;
1796
                    leaf->value[i - 1] -= count + new_cnt;
1798
                    btree_insert(&a->used_space, page +
1797
                    btree_insert(&a->used_space, page +
1799
                        count * PAGE_SIZE, (void *) new_cnt,
1798
                        count * PAGE_SIZE, (void *) new_cnt,
1800
                        leaf);
1799
                        leaf);
1801
                    return 1;
1800
                    return 1;
1802
                }
1801
                }
1803
            }
1802
            }
1804
            return 0;
1803
            return 0;
1805
        }
1804
        }
1806
    }
1805
    }
1807
 
1806
 
1808
error:
1807
error:
1809
    panic("Inconsistency detected while removing %" PRIc " pages of used space "
1808
    panic("Inconsistency detected while removing %" PRIc " pages of used space "
1810
        "from %p.\n", count, page);
1809
        "from %p.\n", count, page);
1811
}
1810
}
1812
 
1811
 
1813
/** Remove reference to address space area share info.
1812
/** Remove reference to address space area share info.
1814
 *
1813
 *
1815
 * If the reference count drops to 0, the sh_info is deallocated.
1814
 * If the reference count drops to 0, the sh_info is deallocated.
1816
 *
1815
 *
1817
 * @param sh_info Pointer to address space area share info.
1816
 * @param sh_info Pointer to address space area share info.
1818
 */
1817
 */
1819
void sh_info_remove_reference(share_info_t *sh_info)
1818
void sh_info_remove_reference(share_info_t *sh_info)
1820
{
1819
{
1821
    bool dealloc = false;
1820
    bool dealloc = false;
1822
 
1821
 
1823
    mutex_lock(&sh_info->lock);
1822
    mutex_lock(&sh_info->lock);
1824
    ASSERT(sh_info->refcount);
1823
    ASSERT(sh_info->refcount);
1825
    if (--sh_info->refcount == 0) {
1824
    if (--sh_info->refcount == 0) {
1826
        dealloc = true;
1825
        dealloc = true;
1827
        link_t *cur;
1826
        link_t *cur;
1828
       
1827
       
1829
        /*
1828
        /*
1830
         * Now walk carefully the pagemap B+tree and free/remove
1829
         * Now walk carefully the pagemap B+tree and free/remove
1831
         * reference from all frames found there.
1830
         * reference from all frames found there.
1832
         */
1831
         */
1833
        for (cur = sh_info->pagemap.leaf_head.next;
1832
        for (cur = sh_info->pagemap.leaf_head.next;
1834
            cur != &sh_info->pagemap.leaf_head; cur = cur->next) {
1833
            cur != &sh_info->pagemap.leaf_head; cur = cur->next) {
1835
            btree_node_t *node;
1834
            btree_node_t *node;
1836
            unsigned int i;
1835
            unsigned int i;
1837
           
1836
           
1838
            node = list_get_instance(cur, btree_node_t, leaf_link);
1837
            node = list_get_instance(cur, btree_node_t, leaf_link);
1839
            for (i = 0; i < node->keys; i++)
1838
            for (i = 0; i < node->keys; i++)
1840
                frame_free((uintptr_t) node->value[i]);
1839
                frame_free((uintptr_t) node->value[i]);
1841
        }
1840
        }
1842
       
1841
       
1843
    }
1842
    }
1844
    mutex_unlock(&sh_info->lock);
1843
    mutex_unlock(&sh_info->lock);
1845
   
1844
   
1846
    if (dealloc) {
1845
    if (dealloc) {
1847
        btree_destroy(&sh_info->pagemap);
1846
        btree_destroy(&sh_info->pagemap);
1848
        free(sh_info);
1847
        free(sh_info);
1849
    }
1848
    }
1850
}
1849
}
1851
 
1850
 
1852
/*
1851
/*
1853
 * Address space related syscalls.
1852
 * Address space related syscalls.
1854
 */
1853
 */
1855
 
1854
 
1856
/** Wrapper for as_area_create(). */
1855
/** Wrapper for as_area_create(). */
1857
unative_t sys_as_area_create(uintptr_t address, size_t size, int flags)
1856
unative_t sys_as_area_create(uintptr_t address, size_t size, int flags)
1858
{
1857
{
1859
    if (as_area_create(AS, flags | AS_AREA_CACHEABLE, size, address,
1858
    if (as_area_create(AS, flags | AS_AREA_CACHEABLE, size, address,
1860
        AS_AREA_ATTR_NONE, &anon_backend, NULL))
1859
        AS_AREA_ATTR_NONE, &anon_backend, NULL))
1861
        return (unative_t) address;
1860
        return (unative_t) address;
1862
    else
1861
    else
1863
        return (unative_t) -1;
1862
        return (unative_t) -1;
1864
}
1863
}
1865
 
1864
 
1866
/** Wrapper for as_area_resize(). */
1865
/** Wrapper for as_area_resize(). */
1867
unative_t sys_as_area_resize(uintptr_t address, size_t size, int flags)
1866
unative_t sys_as_area_resize(uintptr_t address, size_t size, int flags)
1868
{
1867
{
1869
    return (unative_t) as_area_resize(AS, address, size, 0);
1868
    return (unative_t) as_area_resize(AS, address, size, 0);
1870
}
1869
}
1871
 
1870
 
1872
/** Wrapper for as_area_change_flags(). */
1871
/** Wrapper for as_area_change_flags(). */
1873
unative_t sys_as_area_change_flags(uintptr_t address, int flags)
1872
unative_t sys_as_area_change_flags(uintptr_t address, int flags)
1874
{
1873
{
1875
    return (unative_t) as_area_change_flags(AS, flags, address);
1874
    return (unative_t) as_area_change_flags(AS, flags, address);
1876
}
1875
}
1877
 
1876
 
1878
/** Wrapper for as_area_destroy(). */
1877
/** Wrapper for as_area_destroy(). */
1879
unative_t sys_as_area_destroy(uintptr_t address)
1878
unative_t sys_as_area_destroy(uintptr_t address)
1880
{
1879
{
1881
    return (unative_t) as_area_destroy(AS, address);
1880
    return (unative_t) as_area_destroy(AS, address);
1882
}
1881
}
1883
 
1882
 
1884
/** Print out information about address space.
1883
/** Print out information about address space.
1885
 *
1884
 *
1886
 * @param as Address space.
1885
 * @param as Address space.
1887
 */
1886
 */
1888
void as_print(as_t *as)
1887
void as_print(as_t *as)
1889
{
1888
{
1890
    ipl_t ipl;
1889
    ipl_t ipl;
1891
   
1890
   
1892
    ipl = interrupts_disable();
1891
    ipl = interrupts_disable();
1893
    mutex_lock(&as->lock);
1892
    mutex_lock(&as->lock);
1894
   
1893
   
1895
    /* print out info about address space areas */
1894
    /* print out info about address space areas */
1896
    link_t *cur;
1895
    link_t *cur;
1897
    for (cur = as->as_area_btree.leaf_head.next;
1896
    for (cur = as->as_area_btree.leaf_head.next;
1898
        cur != &as->as_area_btree.leaf_head; cur = cur->next) {
1897
        cur != &as->as_area_btree.leaf_head; cur = cur->next) {
1899
        btree_node_t *node;
1898
        btree_node_t *node;
1900
       
1899
       
1901
        node = list_get_instance(cur, btree_node_t, leaf_link);
1900
        node = list_get_instance(cur, btree_node_t, leaf_link);
1902
       
1901
       
1903
        unsigned int i;
1902
        unsigned int i;
1904
        for (i = 0; i < node->keys; i++) {
1903
        for (i = 0; i < node->keys; i++) {
1905
            as_area_t *area = node->value[i];
1904
            as_area_t *area = node->value[i];
1906
       
1905
       
1907
            mutex_lock(&area->lock);
1906
            mutex_lock(&area->lock);
1908
            printf("as_area: %p, base=%p, pages=%" PRIc " (%p - %p)\n",
1907
            printf("as_area: %p, base=%p, pages=%" PRIc " (%p - %p)\n",
1909
                area, area->base, area->pages, area->base,
1908
                area, area->base, area->pages, area->base,
1910
                area->base + FRAMES2SIZE(area->pages));
1909
                area->base + FRAMES2SIZE(area->pages));
1911
            mutex_unlock(&area->lock);
1910
            mutex_unlock(&area->lock);
1912
        }
1911
        }
1913
    }
1912
    }
1914
   
1913
   
1915
    mutex_unlock(&as->lock);
1914
    mutex_unlock(&as->lock);
1916
    interrupts_restore(ipl);
1915
    interrupts_restore(ipl);
1917
}
1916
}
1918
 
1917
 
1919
/** @}
1918
/** @}
1920
 */
1919
 */
1921
 
1920