Subversion Repositories HelenOS

Rev

Rev 4341 | Go to most recent revision | Only display areas with differences | Ignore whitespace | Details | Blame | Last modification | View Log | RSS feed

Rev 4341 Rev 4342
1
/*
1
/*
2
 * Copyright (c) 2005 Martin Decky
2
 * Copyright (c) 2005 Martin Decky
3
 * Copyright (c) 2006 Jakub Jermar
3
 * Copyright (c) 2006 Jakub Jermar
4
 * All rights reserved.
4
 * All rights reserved.
5
 *
5
 *
6
 * Redistribution and use in source and binary forms, with or without
6
 * Redistribution and use in source and binary forms, with or without
7
 * modification, are permitted provided that the following conditions
7
 * modification, are permitted provided that the following conditions
8
 * are met:
8
 * are met:
9
 *
9
 *
10
 * - Redistributions of source code must retain the above copyright
10
 * - Redistributions of source code must retain the above copyright
11
 *   notice, this list of conditions and the following disclaimer.
11
 *   notice, this list of conditions and the following disclaimer.
12
 * - Redistributions in binary form must reproduce the above copyright
12
 * - Redistributions in binary form must reproduce the above copyright
13
 *   notice, this list of conditions and the following disclaimer in the
13
 *   notice, this list of conditions and the following disclaimer in the
14
 *   documentation and/or other materials provided with the distribution.
14
 *   documentation and/or other materials provided with the distribution.
15
 * - The name of the author may not be used to endorse or promote products
15
 * - The name of the author may not be used to endorse or promote products
16
 *   derived from this software without specific prior written permission.
16
 *   derived from this software without specific prior written permission.
17
 *
17
 *
18
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
23
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
27
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28
 */
28
 */
29
 
29
 
30
#include "main.h" 
30
#include "main.h" 
31
#include <printf.h>
31
#include <printf.h>
32
#include "asm.h"
32
#include "asm.h"
33
#include "_components.h"
33
#include "_components.h"
34
#include <balloc.h>
34
#include <balloc.h>
35
#include <ofw.h>
35
#include <ofw.h>
36
#include <ofw_tree.h>
36
#include <ofw_tree.h>
37
#include "ofwarch.h"
37
#include "ofwarch.h"
38
#include <align.h>
38
#include <align.h>
-
 
39
#include <macros.h>
-
 
40
#include <string.h>
39
 
41
 
40
bootinfo_t bootinfo;
42
bootinfo_t bootinfo;
41
 
43
 
42
component_t components[COMPONENTS];
44
component_t components[COMPONENTS];
43
 
45
 
44
char *release = RELEASE;
46
char *release = STRING(RELEASE);
45
 
47
 
46
#ifdef REVISION
48
#ifdef REVISION
47
    char *revision = ", revision " REVISION;
49
    char *revision = ", revision " STRING(REVISION);
48
#else
50
#else
49
    char *revision = "";
51
    char *revision = "";
50
#endif
52
#endif
51
 
53
 
52
#ifdef TIMESTAMP
54
#ifdef TIMESTAMP
53
    char *timestamp = "\nBuilt on " TIMESTAMP;
55
    char *timestamp = "\nBuilt on " STRING(TIMESTAMP);
54
#else
56
#else
55
    char *timestamp = "";
57
    char *timestamp = "";
56
#endif
58
#endif
57
 
59
 
58
/** UltraSPARC subarchitecture - 1 for US, 3 for US3 */
60
/** UltraSPARC subarchitecture - 1 for US, 3 for US3 */
59
uint8_t subarchitecture;
61
uint8_t subarchitecture;
60
 
62
 
61
/**
63
/**
62
 * mask of the MID field inside the ICBUS_CONFIG register shifted by
64
 * mask of the MID field inside the ICBUS_CONFIG register shifted by
63
 * MID_SHIFT bits to the right
65
 * MID_SHIFT bits to the right
64
 */
66
 */
65
uint16_t mid_mask;
67
uint16_t mid_mask;
66
 
68
 
67
/** Print version information. */
69
/** Print version information. */
68
static void version_print(void)
70
static void version_print(void)
69
{
71
{
70
    printf("HelenOS SPARC64 Bootloader\nRelease %s%s%s\n"
72
    printf("HelenOS SPARC64 Bootloader\nRelease %s%s%s\n"
71
        "Copyright (c) 2006 HelenOS project\n",
73
        "Copyright (c) 2006 HelenOS project\n",
72
        release, revision, timestamp);
74
        release, revision, timestamp);
73
}
75
}
74
 
76
 
75
/* the lowest ID (read from the VER register) of some US3 CPU model */
77
/* the lowest ID (read from the VER register) of some US3 CPU model */
76
#define FIRST_US3_CPU   0x14
78
#define FIRST_US3_CPU   0x14
77
 
79
 
78
/* the greatest ID (read from the VER register) of some US3 CPU model */
80
/* the greatest ID (read from the VER register) of some US3 CPU model */
79
#define LAST_US3_CPU    0x19
81
#define LAST_US3_CPU    0x19
80
 
82
 
81
/* UltraSPARC IIIi processor implementation code */
83
/* UltraSPARC IIIi processor implementation code */
82
#define US_IIIi_CODE    0x15
84
#define US_IIIi_CODE    0x15
83
 
85
 
84
/**
86
/**
85
 * Sets the global variables "subarchitecture" and "mid_mask" to
87
 * Sets the global variables "subarchitecture" and "mid_mask" to
86
 * correct values.
88
 * correct values.
87
 */
89
 */
88
static void detect_subarchitecture(void)
90
static void detect_subarchitecture(void)
89
{
91
{
90
    uint64_t v;
92
    uint64_t v;
91
    asm volatile ("rdpr %%ver, %0\n" : "=r" (v));
93
    asm volatile ("rdpr %%ver, %0\n" : "=r" (v));
92
   
94
   
93
    v = (v << 16) >> 48;
95
    v = (v << 16) >> 48;
94
    if ((v >= FIRST_US3_CPU) && (v <= LAST_US3_CPU)) {
96
    if ((v >= FIRST_US3_CPU) && (v <= LAST_US3_CPU)) {
95
        subarchitecture = SUBARCH_US3;
97
        subarchitecture = SUBARCH_US3;
96
        if (v == US_IIIi_CODE)
98
        if (v == US_IIIi_CODE)
97
            mid_mask = (1 << 5) - 1;
99
            mid_mask = (1 << 5) - 1;
98
        else
100
        else
99
            mid_mask = (1 << 10) - 1;
101
            mid_mask = (1 << 10) - 1;
100
    } else if (v < FIRST_US3_CPU) {
102
    } else if (v < FIRST_US3_CPU) {
101
        subarchitecture = SUBARCH_US;
103
        subarchitecture = SUBARCH_US;
102
        mid_mask = (1 << 5) - 1;
104
        mid_mask = (1 << 5) - 1;
103
    } else {
105
    } else {
104
        printf("\nThis CPU is not supported by HelenOS.");
106
        printf("\nThis CPU is not supported by HelenOS.");
105
    }
107
    }
106
}
108
}
107
 
109
 
108
void bootstrap(void)
110
void bootstrap(void)
109
{
111
{
110
    void *base = (void *) KERNEL_VIRTUAL_ADDRESS;
112
    void *base = (void *) KERNEL_VIRTUAL_ADDRESS;
111
    void *balloc_base;
113
    void *balloc_base;
112
    unsigned int top = 0;
114
    unsigned int top = 0;
113
    int i, j;
115
    int i, j;
114
 
116
 
115
    version_print();
117
    version_print();
116
   
118
   
117
    detect_subarchitecture();
119
    detect_subarchitecture();
118
    init_components(components);
120
    init_components(components);
119
 
121
 
120
    if (!ofw_get_physmem_start(&bootinfo.physmem_start)) {
122
    if (!ofw_get_physmem_start(&bootinfo.physmem_start)) {
121
        printf("Error: unable to get start of physical memory.\n");
123
        printf("Error: unable to get start of physical memory.\n");
122
        halt();
124
        halt();
123
    }
125
    }
124
 
126
 
125
    if (!ofw_memmap(&bootinfo.memmap)) {
127
    if (!ofw_memmap(&bootinfo.memmap)) {
126
        printf("Error: unable to get memory map, halting.\n");
128
        printf("Error: unable to get memory map, halting.\n");
127
        halt();
129
        halt();
128
    }
130
    }
129
 
131
 
130
    if (bootinfo.memmap.total == 0) {
132
    if (bootinfo.memmap.total == 0) {
131
        printf("Error: no memory detected, halting.\n");
133
        printf("Error: no memory detected, halting.\n");
132
        halt();
134
        halt();
133
    }
135
    }
134
 
136
 
135
    /*
137
    /*
136
     * SILO for some reason adds 0x400000 and subtracts
138
     * SILO for some reason adds 0x400000 and subtracts
137
     * bootinfo.physmem_start to/from silo_ramdisk_image.
139
     * bootinfo.physmem_start to/from silo_ramdisk_image.
138
     * We just need plain physical address so we fix it up.
140
     * We just need plain physical address so we fix it up.
139
     */
141
     */
140
    if (silo_ramdisk_image) {
142
    if (silo_ramdisk_image) {
141
        silo_ramdisk_image += bootinfo.physmem_start;
143
        silo_ramdisk_image += bootinfo.physmem_start;
142
        silo_ramdisk_image -= 0x400000;
144
        silo_ramdisk_image -= 0x400000;
143
        /* Install 1:1 mapping for the ramdisk. */
145
        /* Install 1:1 mapping for the ramdisk. */
144
        if (ofw_map((void *)((uintptr_t) silo_ramdisk_image),
146
        if (ofw_map((void *)((uintptr_t) silo_ramdisk_image),
145
            (void *)((uintptr_t) silo_ramdisk_image),
147
            (void *)((uintptr_t) silo_ramdisk_image),
146
            silo_ramdisk_size, -1) != 0) {
148
            silo_ramdisk_size, -1) != 0) {
147
            printf("Failed to map ramdisk.\n");
149
            printf("Failed to map ramdisk.\n");
148
            halt();
150
            halt();
149
        }
151
        }
150
    }
152
    }
151
   
153
   
152
    printf("\nSystem info\n");
154
    printf("\nSystem info\n");
153
    printf(" memory: %dM starting at %P\n",
155
    printf(" memory: %dM starting at %P\n",
154
        bootinfo.memmap.total >> 20, bootinfo.physmem_start);
156
        bootinfo.memmap.total >> 20, bootinfo.physmem_start);
155
 
157
 
156
    printf("\nMemory statistics\n");
158
    printf("\nMemory statistics\n");
157
    printf(" kernel entry point at %P\n", KERNEL_VIRTUAL_ADDRESS);
159
    printf(" kernel entry point at %P\n", KERNEL_VIRTUAL_ADDRESS);
158
    printf(" %P: boot info structure\n", &bootinfo);
160
    printf(" %P: boot info structure\n", &bootinfo);
159
   
161
   
160
    /*
162
    /*
161
     * Figure out destination address for each component.
163
     * Figure out destination address for each component.
162
     * In this phase, we don't copy the components yet because we want to
164
     * In this phase, we don't copy the components yet because we want to
163
     * to be careful not to overwrite anything, especially the components
165
     * to be careful not to overwrite anything, especially the components
164
     * which haven't been copied yet.
166
     * which haven't been copied yet.
165
     */
167
     */
166
    bootinfo.taskmap.count = 0;
168
    bootinfo.taskmap.count = 0;
167
    for (i = 0; i < COMPONENTS; i++) {
169
    for (i = 0; i < COMPONENTS; i++) {
168
        printf(" %P: %s image (size %d bytes)\n", components[i].start,
170
        printf(" %P: %s image (size %d bytes)\n", components[i].start,
169
            components[i].name, components[i].size);
171
            components[i].name, components[i].size);
170
        top = ALIGN_UP(top, PAGE_SIZE);
172
        top = ALIGN_UP(top, PAGE_SIZE);
171
        if (i > 0) {
173
        if (i > 0) {
172
            if (bootinfo.taskmap.count == TASKMAP_MAX_RECORDS) {
174
            if (bootinfo.taskmap.count == TASKMAP_MAX_RECORDS) {
173
                printf("Skipping superfluous components.\n");
175
                printf("Skipping superfluous components.\n");
174
                break;
176
                break;
175
            }
177
            }
176
            bootinfo.taskmap.tasks[bootinfo.taskmap.count].addr =
178
            bootinfo.taskmap.tasks[bootinfo.taskmap.count].addr =
177
                base + top;
179
                base + top;
178
            bootinfo.taskmap.tasks[bootinfo.taskmap.count].size =
180
            bootinfo.taskmap.tasks[bootinfo.taskmap.count].size =
179
                components[i].size;
181
                components[i].size;
180
            bootinfo.taskmap.count++;
182
            bootinfo.taskmap.count++;
181
        }
183
        }
182
        top += components[i].size;
184
        top += components[i].size;
183
    }
185
    }
184
 
186
 
185
    j = bootinfo.taskmap.count - 1; /* do not consider ramdisk */
187
    j = bootinfo.taskmap.count - 1; /* do not consider ramdisk */
186
 
188
 
187
    if (silo_ramdisk_image) {
189
    if (silo_ramdisk_image) {
188
        /* Treat the ramdisk as the last bootinfo task. */
190
        /* Treat the ramdisk as the last bootinfo task. */
189
        if (bootinfo.taskmap.count == TASKMAP_MAX_RECORDS) {
191
        if (bootinfo.taskmap.count == TASKMAP_MAX_RECORDS) {
190
            printf("Skipping ramdisk.\n");
192
            printf("Skipping ramdisk.\n");
191
            goto skip_ramdisk;
193
            goto skip_ramdisk;
192
        }
194
        }
193
        top = ALIGN_UP(top, PAGE_SIZE);
195
        top = ALIGN_UP(top, PAGE_SIZE);
194
        bootinfo.taskmap.tasks[bootinfo.taskmap.count].addr =
196
        bootinfo.taskmap.tasks[bootinfo.taskmap.count].addr =
195
            base + top;
197
            base + top;
196
        bootinfo.taskmap.tasks[bootinfo.taskmap.count].size =
198
        bootinfo.taskmap.tasks[bootinfo.taskmap.count].size =
197
            silo_ramdisk_size;
199
            silo_ramdisk_size;
198
        bootinfo.taskmap.count++;
200
        bootinfo.taskmap.count++;
199
        printf("\nCopying ramdisk...");
201
        printf("\nCopying ramdisk...");
200
        /*
202
        /*
201
         * Claim and map the whole ramdisk as it may exceed the area
203
         * Claim and map the whole ramdisk as it may exceed the area
202
         * given to us by SILO.
204
         * given to us by SILO.
203
         */
205
         */
204
        (void) ofw_claim_phys(base + top, silo_ramdisk_size);
206
        (void) ofw_claim_phys(base + top, silo_ramdisk_size);
205
        (void) ofw_map(bootinfo.physmem_start + base + top, base + top,
207
        (void) ofw_map(bootinfo.physmem_start + base + top, base + top,
206
            silo_ramdisk_size, -1);
208
            silo_ramdisk_size, -1);
207
        /*
209
        /*
208
         * FIXME If the source and destination overlap, it may be
210
         * FIXME If the source and destination overlap, it may be
209
         * desirable to copy in reverse order, depending on how the two
211
         * desirable to copy in reverse order, depending on how the two
210
         * regions overlap.
212
         * regions overlap.
211
         */
213
         */
212
        memcpy(base + top, (void *)((uintptr_t)silo_ramdisk_image),
214
        memcpy(base + top, (void *)((uintptr_t)silo_ramdisk_image),
213
            silo_ramdisk_size);
215
            silo_ramdisk_size);
214
        printf("done.\n");
216
        printf("done.\n");
215
        top += silo_ramdisk_size;
217
        top += silo_ramdisk_size;
216
    }
218
    }
217
skip_ramdisk:
219
skip_ramdisk:
218
 
220
 
219
    /*
221
    /*
220
     * Now we can proceed to copy the components. We do it in reverse order
222
     * Now we can proceed to copy the components. We do it in reverse order
221
     * so that we don't overwrite anything even if the components overlap
223
     * so that we don't overwrite anything even if the components overlap
222
     * with base.
224
     * with base.
223
     */
225
     */
224
    printf("\nCopying bootinfo tasks\n");
226
    printf("\nCopying bootinfo tasks\n");
225
    for (i = COMPONENTS - 1; i > 0; i--, j--) {
227
    for (i = COMPONENTS - 1; i > 0; i--, j--) {
226
        printf(" %s...", components[i].name);
228
        printf(" %s...", components[i].name);
227
 
229
 
228
        /*
230
        /*
229
         * At this point, we claim the physical memory that we are
231
         * At this point, we claim the physical memory that we are
230
         * going to use. We should be safe in case of the virtual
232
         * going to use. We should be safe in case of the virtual
231
         * address space because the OpenFirmware, according to its
233
         * address space because the OpenFirmware, according to its
232
         * SPARC binding, should restrict its use of virtual memory
234
         * SPARC binding, should restrict its use of virtual memory
233
         * to addresses from [0xffd00000; 0xffefffff] and
235
         * to addresses from [0xffd00000; 0xffefffff] and
234
         * [0xfe000000; 0xfeffffff].
236
         * [0xfe000000; 0xfeffffff].
235
         *
237
         *
236
         * XXX We don't map this piece of memory. We simply rely on
238
         * XXX We don't map this piece of memory. We simply rely on
237
         *     SILO to have it done for us already in this case.
239
         *     SILO to have it done for us already in this case.
238
         */
240
         */
239
        (void) ofw_claim_phys(bootinfo.physmem_start +
241
        (void) ofw_claim_phys(bootinfo.physmem_start +
240
            bootinfo.taskmap.tasks[j].addr,
242
            bootinfo.taskmap.tasks[j].addr,
241
            ALIGN_UP(components[i].size, PAGE_SIZE));
243
            ALIGN_UP(components[i].size, PAGE_SIZE));
242
           
244
           
243
        memcpy((void *)bootinfo.taskmap.tasks[j].addr,
245
        memcpy((void *)bootinfo.taskmap.tasks[j].addr,
244
            components[i].start, components[i].size);
246
            components[i].start, components[i].size);
245
        printf("done.\n");
247
        printf("done.\n");
246
    }
248
    }
247
 
249
 
248
    printf("\nCopying kernel...");
250
    printf("\nCopying kernel...");
249
    (void) ofw_claim_phys(bootinfo.physmem_start + base,
251
    (void) ofw_claim_phys(bootinfo.physmem_start + base,
250
        ALIGN_UP(components[0].size, PAGE_SIZE));
252
        ALIGN_UP(components[0].size, PAGE_SIZE));
251
    memcpy(base, components[0].start, components[0].size);
253
    memcpy(base, components[0].start, components[0].size);
252
    printf("done.\n");
254
    printf("done.\n");
253
 
255
 
254
    /*
256
    /*
255
     * Claim and map the physical memory for the boot allocator.
257
     * Claim and map the physical memory for the boot allocator.
256
     * Initialize the boot allocator.
258
     * Initialize the boot allocator.
257
     */
259
     */
258
    balloc_base = base + ALIGN_UP(top, PAGE_SIZE);
260
    balloc_base = base + ALIGN_UP(top, PAGE_SIZE);
259
    (void) ofw_claim_phys(bootinfo.physmem_start + balloc_base,
261
    (void) ofw_claim_phys(bootinfo.physmem_start + balloc_base,
260
        BALLOC_MAX_SIZE);
262
        BALLOC_MAX_SIZE);
261
    (void) ofw_map(bootinfo.physmem_start + balloc_base, balloc_base,
263
    (void) ofw_map(bootinfo.physmem_start + balloc_base, balloc_base,
262
        BALLOC_MAX_SIZE, -1);
264
        BALLOC_MAX_SIZE, -1);
263
    balloc_init(&bootinfo.ballocs, (uintptr_t)balloc_base);
265
    balloc_init(&bootinfo.ballocs, (uintptr_t)balloc_base);
264
 
266
 
265
    printf("\nCanonizing OpenFirmware device tree...");
267
    printf("\nCanonizing OpenFirmware device tree...");
266
    bootinfo.ofw_root = ofw_tree_build();
268
    bootinfo.ofw_root = ofw_tree_build();
267
    printf("done.\n");
269
    printf("done.\n");
268
 
270
 
269
#ifdef CONFIG_AP
271
#ifdef CONFIG_AP
270
    printf("\nChecking for secondary processors...");
272
    printf("\nChecking for secondary processors...");
271
    if (!ofw_cpu())
273
    if (!ofw_cpu())
272
        printf("Error: unable to get CPU properties\n");
274
        printf("Error: unable to get CPU properties\n");
273
    printf("done.\n");
275
    printf("done.\n");
274
#endif
276
#endif
275
 
277
 
276
    setup_palette();
278
    ofw_setup_palette();
277
 
279
 
278
    printf("\nBooting the kernel...\n");
280
    printf("\nBooting the kernel...\n");
279
    jump_to_kernel((void *) KERNEL_VIRTUAL_ADDRESS,
281
    jump_to_kernel((void *) KERNEL_VIRTUAL_ADDRESS,
280
        bootinfo.physmem_start | BSP_PROCESSOR, &bootinfo,
282
        bootinfo.physmem_start | BSP_PROCESSOR, &bootinfo,
281
        sizeof(bootinfo));
283
        sizeof(bootinfo));
282
}
284
}
283
 
285