Subversion Repositories HelenOS

Rev

Rev 4055 | Rev 4420 | Go to most recent revision | Only display areas with differences | Ignore whitespace | Details | Blame | Last modification | View Log | RSS feed

Rev 4055 Rev 4201
1
/*
1
/*
2
 * Copyright (c) 2006 Ondrej Palkovsky
2
 * Copyright (c) 2006 Ondrej Palkovsky
3
 * All rights reserved.
3
 * All rights reserved.
4
 *
4
 *
5
 * Redistribution and use in source and binary forms, with or without
5
 * Redistribution and use in source and binary forms, with or without
6
 * modification, are permitted provided that the following conditions
6
 * modification, are permitted provided that the following conditions
7
 * are met:
7
 * are met:
8
 *
8
 *
9
 * - Redistributions of source code must retain the above copyright
9
 * - Redistributions of source code must retain the above copyright
10
 *   notice, this list of conditions and the following disclaimer.
10
 *   notice, this list of conditions and the following disclaimer.
11
 * - Redistributions in binary form must reproduce the above copyright
11
 * - Redistributions in binary form must reproduce the above copyright
12
 *   notice, this list of conditions and the following disclaimer in the
12
 *   notice, this list of conditions and the following disclaimer in the
13
 *   documentation and/or other materials provided with the distribution.
13
 *   documentation and/or other materials provided with the distribution.
14
 * - The name of the author may not be used to endorse or promote products
14
 * - The name of the author may not be used to endorse or promote products
15
 *   derived from this software without specific prior written permission.
15
 *   derived from this software without specific prior written permission.
16
 *
16
 *
17
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
 */
27
 */
28
 
28
 
29
/** @addtogroup genericmm
29
/** @addtogroup genericmm
30
 * @{
30
 * @{
31
 */
31
 */
32
 
32
 
33
/**
33
/**
34
 * @file
34
 * @file
35
 * @brief   Slab allocator.
35
 * @brief   Slab allocator.
36
 *
36
 *
37
 * The slab allocator is closely modelled after OpenSolaris slab allocator.
37
 * The slab allocator is closely modelled after OpenSolaris slab allocator.
38
 * @see http://www.usenix.org/events/usenix01/full_papers/bonwick/bonwick_html/
38
 * @see http://www.usenix.org/events/usenix01/full_papers/bonwick/bonwick_html/
39
 *
39
 *
40
 * with the following exceptions:
40
 * with the following exceptions:
41
 * @li empty slabs are deallocated immediately
41
 * @li empty slabs are deallocated immediately
42
 *     (in Linux they are kept in linked list, in Solaris ???)
42
 *     (in Linux they are kept in linked list, in Solaris ???)
43
 * @li empty magazines are deallocated when not needed
43
 * @li empty magazines are deallocated when not needed
44
 *     (in Solaris they are held in linked list in slab cache)
44
 *     (in Solaris they are held in linked list in slab cache)
45
 *
45
 *
46
 * Following features are not currently supported but would be easy to do:
46
 * Following features are not currently supported but would be easy to do:
47
 * @li cache coloring
47
 * @li cache coloring
48
 * @li dynamic magazine growing (different magazine sizes are already
48
 * @li dynamic magazine growing (different magazine sizes are already
49
 *     supported, but we would need to adjust allocation strategy)
49
 *     supported, but we would need to adjust allocation strategy)
50
 *
50
 *
51
 * The slab allocator supports per-CPU caches ('magazines') to facilitate
51
 * The slab allocator supports per-CPU caches ('magazines') to facilitate
52
 * good SMP scaling.
52
 * good SMP scaling.
53
 *
53
 *
54
 * When a new object is being allocated, it is first checked, if it is
54
 * When a new object is being allocated, it is first checked, if it is
55
 * available in a CPU-bound magazine. If it is not found there, it is
55
 * available in a CPU-bound magazine. If it is not found there, it is
56
 * allocated from a CPU-shared slab - if a partially full one is found,
56
 * allocated from a CPU-shared slab - if a partially full one is found,
57
 * it is used, otherwise a new one is allocated.
57
 * it is used, otherwise a new one is allocated.
58
 *
58
 *
59
 * When an object is being deallocated, it is put to a CPU-bound magazine.
59
 * When an object is being deallocated, it is put to a CPU-bound magazine.
60
 * If there is no such magazine, a new one is allocated (if this fails,
60
 * If there is no such magazine, a new one is allocated (if this fails,
61
 * the object is deallocated into slab). If the magazine is full, it is
61
 * the object is deallocated into slab). If the magazine is full, it is
62
 * put into cpu-shared list of magazines and a new one is allocated.
62
 * put into cpu-shared list of magazines and a new one is allocated.
63
 *
63
 *
64
 * The CPU-bound magazine is actually a pair of magazines in order to avoid
64
 * The CPU-bound magazine is actually a pair of magazines in order to avoid
65
 * thrashing when somebody is allocating/deallocating 1 item at the magazine
65
 * thrashing when somebody is allocating/deallocating 1 item at the magazine
66
 * size boundary. LIFO order is enforced, which should avoid fragmentation
66
 * size boundary. LIFO order is enforced, which should avoid fragmentation
67
 * as much as possible.
67
 * as much as possible.
68
 *  
68
 *  
69
 * Every cache contains list of full slabs and list of partially full slabs.
69
 * Every cache contains list of full slabs and list of partially full slabs.
70
 * Empty slabs are immediately freed (thrashing will be avoided because
70
 * Empty slabs are immediately freed (thrashing will be avoided because
71
 * of magazines).
71
 * of magazines).
72
 *
72
 *
73
 * The slab information structure is kept inside the data area, if possible.
73
 * The slab information structure is kept inside the data area, if possible.
74
 * The cache can be marked that it should not use magazines. This is used
74
 * The cache can be marked that it should not use magazines. This is used
75
 * only for slab related caches to avoid deadlocks and infinite recursion
75
 * only for slab related caches to avoid deadlocks and infinite recursion
76
 * (the slab allocator uses itself for allocating all it's control structures).
76
 * (the slab allocator uses itself for allocating all it's control structures).
77
 *
77
 *
78
 * The slab allocator allocates a lot of space and does not free it. When
78
 * The slab allocator allocates a lot of space and does not free it. When
79
 * the frame allocator fails to allocate a frame, it calls slab_reclaim().
79
 * the frame allocator fails to allocate a frame, it calls slab_reclaim().
80
 * It tries 'light reclaim' first, then brutal reclaim. The light reclaim
80
 * It tries 'light reclaim' first, then brutal reclaim. The light reclaim
81
 * releases slabs from cpu-shared magazine-list, until at least 1 slab
81
 * releases slabs from cpu-shared magazine-list, until at least 1 slab
82
 * is deallocated in each cache (this algorithm should probably change).
82
 * is deallocated in each cache (this algorithm should probably change).
83
 * The brutal reclaim removes all cached objects, even from CPU-bound
83
 * The brutal reclaim removes all cached objects, even from CPU-bound
84
 * magazines.
84
 * magazines.
85
 *
85
 *
86
 * @todo
86
 * @todo
87
 * For better CPU-scaling the magazine allocation strategy should
87
 * For better CPU-scaling the magazine allocation strategy should
88
 * be extended. Currently, if the cache does not have magazine, it asks
88
 * be extended. Currently, if the cache does not have magazine, it asks
89
 * for non-cpu cached magazine cache to provide one. It might be feasible
89
 * for non-cpu cached magazine cache to provide one. It might be feasible
90
 * to add cpu-cached magazine cache (which would allocate it's magazines
90
 * to add cpu-cached magazine cache (which would allocate it's magazines
91
 * from non-cpu-cached mag. cache). This would provide a nice per-cpu
91
 * from non-cpu-cached mag. cache). This would provide a nice per-cpu
92
 * buffer. The other possibility is to use the per-cache
92
 * buffer. The other possibility is to use the per-cache
93
 * 'empty-magazine-list', which decreases competing for 1 per-system
93
 * 'empty-magazine-list', which decreases competing for 1 per-system
94
 * magazine cache.
94
 * magazine cache.
95
 *
95
 *
96
 * @todo
96
 * @todo
97
 * it might be good to add granularity of locks even to slab level,
97
 * it might be good to add granularity of locks even to slab level,
98
 * we could then try_spinlock over all partial slabs and thus improve
98
 * we could then try_spinlock over all partial slabs and thus improve
99
 * scalability even on slab level
99
 * scalability even on slab level
100
 */
100
 */
101
 
101
 
102
#include <synch/spinlock.h>
102
#include <synch/spinlock.h>
103
#include <mm/slab.h>
103
#include <mm/slab.h>
104
#include <adt/list.h>
104
#include <adt/list.h>
105
#include <memstr.h>
105
#include <memstr.h>
106
#include <align.h>
106
#include <align.h>
107
#include <mm/frame.h>
107
#include <mm/frame.h>
108
#include <config.h>
108
#include <config.h>
109
#include <print.h>
109
#include <print.h>
110
#include <arch.h>
110
#include <arch.h>
111
#include <panic.h>
111
#include <panic.h>
112
#include <debug.h>
112
#include <debug.h>
113
#include <bitops.h>
113
#include <bitops.h>
114
#include <macros.h>
114
#include <macros.h>
115
 
115
 
116
SPINLOCK_INITIALIZE(slab_cache_lock);
116
SPINLOCK_INITIALIZE(slab_cache_lock);
117
static LIST_INITIALIZE(slab_cache_list);
117
static LIST_INITIALIZE(slab_cache_list);
118
 
118
 
119
/** Magazine cache */
119
/** Magazine cache */
120
static slab_cache_t mag_cache;
120
static slab_cache_t mag_cache;
121
/** Cache for cache descriptors */
121
/** Cache for cache descriptors */
122
static slab_cache_t slab_cache_cache;
122
static slab_cache_t slab_cache_cache;
123
/** Cache for external slab descriptors
123
/** Cache for external slab descriptors
124
 * This time we want per-cpu cache, so do not make it static
124
 * This time we want per-cpu cache, so do not make it static
125
 * - using slab for internal slab structures will not deadlock,
125
 * - using slab for internal slab structures will not deadlock,
126
 *   as all slab structures are 'small' - control structures of
126
 *   as all slab structures are 'small' - control structures of
127
 *   their caches do not require further allocation
127
 *   their caches do not require further allocation
128
 */
128
 */
129
static slab_cache_t *slab_extern_cache;
129
static slab_cache_t *slab_extern_cache;
130
/** Caches for malloc */
130
/** Caches for malloc */
131
static slab_cache_t *malloc_caches[SLAB_MAX_MALLOC_W - SLAB_MIN_MALLOC_W + 1];
131
static slab_cache_t *malloc_caches[SLAB_MAX_MALLOC_W - SLAB_MIN_MALLOC_W + 1];
132
char *malloc_names[] =  {
132
static char *malloc_names[] =  {
133
    "malloc-16",
133
    "malloc-16",
134
    "malloc-32",
134
    "malloc-32",
135
    "malloc-64",
135
    "malloc-64",
136
    "malloc-128",
136
    "malloc-128",
137
    "malloc-256",
137
    "malloc-256",
138
    "malloc-512",
138
    "malloc-512",
139
    "malloc-1K",
139
    "malloc-1K",
140
    "malloc-2K",
140
    "malloc-2K",
141
    "malloc-4K",
141
    "malloc-4K",
142
    "malloc-8K",
142
    "malloc-8K",
143
    "malloc-16K",
143
    "malloc-16K",
144
    "malloc-32K",
144
    "malloc-32K",
145
    "malloc-64K",
145
    "malloc-64K",
146
    "malloc-128K",
146
    "malloc-128K",
147
    "malloc-256K"
147
    "malloc-256K",
-
 
148
    "malloc-512K",
-
 
149
    "malloc-1M",
-
 
150
    "malloc-2M",
-
 
151
    "malloc-4M"
148
};
152
};
149
 
153
 
150
/** Slab descriptor */
154
/** Slab descriptor */
151
typedef struct {
155
typedef struct {
152
    slab_cache_t *cache;    /**< Pointer to parent cache. */
156
    slab_cache_t *cache;    /**< Pointer to parent cache. */
153
    link_t link;        /**< List of full/partial slabs. */
157
    link_t link;        /**< List of full/partial slabs. */
154
    void *start;        /**< Start address of first available item. */
158
    void *start;        /**< Start address of first available item. */
155
    count_t available;  /**< Count of available items in this slab. */
159
    count_t available;  /**< Count of available items in this slab. */
156
    index_t nextavail;  /**< The index of next available item. */
160
    index_t nextavail;  /**< The index of next available item. */
157
} slab_t;
161
} slab_t;
158
 
162
 
159
#ifdef CONFIG_DEBUG
163
#ifdef CONFIG_DEBUG
160
static int _slab_initialized = 0;
164
static int _slab_initialized = 0;
161
#endif
165
#endif
162
 
166
 
163
/**************************************/
167
/**************************************/
164
/* Slab allocation functions          */
168
/* Slab allocation functions          */
165
 
169
 
166
/**
170
/**
167
 * Allocate frames for slab space and initialize
171
 * Allocate frames for slab space and initialize
168
 *
172
 *
169
 */
173
 */
170
static slab_t *slab_space_alloc(slab_cache_t *cache, int flags)
174
static slab_t *slab_space_alloc(slab_cache_t *cache, int flags)
171
{
175
{
172
    void *data;
176
    void *data;
173
    slab_t *slab;
177
    slab_t *slab;
174
    size_t fsize;
178
    size_t fsize;
175
    unsigned int i;
179
    unsigned int i;
176
    count_t zone = 0;
180
    count_t zone = 0;
177
   
181
   
178
    data = frame_alloc_generic(cache->order, FRAME_KA | flags, &zone);
182
    data = frame_alloc_generic(cache->order, FRAME_KA | flags, &zone);
179
    if (!data) {
183
    if (!data) {
180
        return NULL;
184
        return NULL;
181
    }
185
    }
182
    if (!(cache->flags & SLAB_CACHE_SLINSIDE)) {
186
    if (!(cache->flags & SLAB_CACHE_SLINSIDE)) {
183
        slab = slab_alloc(slab_extern_cache, flags);
187
        slab = slab_alloc(slab_extern_cache, flags);
184
        if (!slab) {
188
        if (!slab) {
185
            frame_free(KA2PA(data));
189
            frame_free(KA2PA(data));
186
            return NULL;
190
            return NULL;
187
        }
191
        }
188
    } else {
192
    } else {
189
        fsize = (PAGE_SIZE << cache->order);
193
        fsize = (PAGE_SIZE << cache->order);
190
        slab = data + fsize - sizeof(*slab);
194
        slab = data + fsize - sizeof(*slab);
191
    }
195
    }
192
   
196
   
193
    /* Fill in slab structures */
197
    /* Fill in slab structures */
194
    for (i = 0; i < ((unsigned int) 1 << cache->order); i++)
198
    for (i = 0; i < ((unsigned int) 1 << cache->order); i++)
195
        frame_set_parent(ADDR2PFN(KA2PA(data)) + i, slab, zone);
199
        frame_set_parent(ADDR2PFN(KA2PA(data)) + i, slab, zone);
196
 
200
 
197
    slab->start = data;
201
    slab->start = data;
198
    slab->available = cache->objects;
202
    slab->available = cache->objects;
199
    slab->nextavail = 0;
203
    slab->nextavail = 0;
200
    slab->cache = cache;
204
    slab->cache = cache;
201
 
205
 
202
    for (i = 0; i < cache->objects; i++)
206
    for (i = 0; i < cache->objects; i++)
203
        *((int *) (slab->start + i*cache->size)) = i + 1;
207
        *((int *) (slab->start + i*cache->size)) = i + 1;
204
 
208
 
205
    atomic_inc(&cache->allocated_slabs);
209
    atomic_inc(&cache->allocated_slabs);
206
    return slab;
210
    return slab;
207
}
211
}
208
 
212
 
209
/**
213
/**
210
 * Deallocate space associated with slab
214
 * Deallocate space associated with slab
211
 *
215
 *
212
 * @return number of freed frames
216
 * @return number of freed frames
213
 */
217
 */
214
static count_t slab_space_free(slab_cache_t *cache, slab_t *slab)
218
static count_t slab_space_free(slab_cache_t *cache, slab_t *slab)
215
{
219
{
216
    frame_free(KA2PA(slab->start));
220
    frame_free(KA2PA(slab->start));
217
    if (! (cache->flags & SLAB_CACHE_SLINSIDE))
221
    if (! (cache->flags & SLAB_CACHE_SLINSIDE))
218
        slab_free(slab_extern_cache, slab);
222
        slab_free(slab_extern_cache, slab);
219
 
223
 
220
    atomic_dec(&cache->allocated_slabs);
224
    atomic_dec(&cache->allocated_slabs);
221
   
225
   
222
    return 1 << cache->order;
226
    return 1 << cache->order;
223
}
227
}
224
 
228
 
225
/** Map object to slab structure */
229
/** Map object to slab structure */
226
static slab_t * obj2slab(void *obj)
230
static slab_t * obj2slab(void *obj)
227
{
231
{
228
    return (slab_t *) frame_get_parent(ADDR2PFN(KA2PA(obj)), 0);
232
    return (slab_t *) frame_get_parent(ADDR2PFN(KA2PA(obj)), 0);
229
}
233
}
230
 
234
 
231
/**************************************/
235
/**************************************/
232
/* Slab functions */
236
/* Slab functions */
233
 
237
 
234
 
238
 
235
/**
239
/**
236
 * Return object to slab and call a destructor
240
 * Return object to slab and call a destructor
237
 *
241
 *
238
 * @param slab If the caller knows directly slab of the object, otherwise NULL
242
 * @param slab If the caller knows directly slab of the object, otherwise NULL
239
 *
243
 *
240
 * @return Number of freed pages
244
 * @return Number of freed pages
241
 */
245
 */
242
static count_t slab_obj_destroy(slab_cache_t *cache, void *obj, slab_t *slab)
246
static count_t slab_obj_destroy(slab_cache_t *cache, void *obj, slab_t *slab)
243
{
247
{
244
    int freed = 0;
248
    int freed = 0;
245
 
249
 
246
    if (!slab)
250
    if (!slab)
247
        slab = obj2slab(obj);
251
        slab = obj2slab(obj);
248
 
252
 
249
    ASSERT(slab->cache == cache);
253
    ASSERT(slab->cache == cache);
250
 
254
 
251
    if (cache->destructor)
255
    if (cache->destructor)
252
        freed = cache->destructor(obj);
256
        freed = cache->destructor(obj);
253
   
257
   
254
    spinlock_lock(&cache->slablock);
258
    spinlock_lock(&cache->slablock);
255
    ASSERT(slab->available < cache->objects);
259
    ASSERT(slab->available < cache->objects);
256
 
260
 
257
    *((int *)obj) = slab->nextavail;
261
    *((int *)obj) = slab->nextavail;
258
    slab->nextavail = (obj - slab->start) / cache->size;
262
    slab->nextavail = (obj - slab->start) / cache->size;
259
    slab->available++;
263
    slab->available++;
260
 
264
 
261
    /* Move it to correct list */
265
    /* Move it to correct list */
262
    if (slab->available == cache->objects) {
266
    if (slab->available == cache->objects) {
263
        /* Free associated memory */
267
        /* Free associated memory */
264
        list_remove(&slab->link);
268
        list_remove(&slab->link);
265
        spinlock_unlock(&cache->slablock);
269
        spinlock_unlock(&cache->slablock);
266
 
270
 
267
        return freed + slab_space_free(cache, slab);
271
        return freed + slab_space_free(cache, slab);
268
 
272
 
269
    } else if (slab->available == 1) {
273
    } else if (slab->available == 1) {
270
        /* It was in full, move to partial */
274
        /* It was in full, move to partial */
271
        list_remove(&slab->link);
275
        list_remove(&slab->link);
272
        list_prepend(&slab->link, &cache->partial_slabs);
276
        list_prepend(&slab->link, &cache->partial_slabs);
273
    }
277
    }
274
    spinlock_unlock(&cache->slablock);
278
    spinlock_unlock(&cache->slablock);
275
    return freed;
279
    return freed;
276
}
280
}
277
 
281
 
278
/**
282
/**
279
 * Take new object from slab or create new if needed
283
 * Take new object from slab or create new if needed
280
 *
284
 *
281
 * @return Object address or null
285
 * @return Object address or null
282
 */
286
 */
283
static void *slab_obj_create(slab_cache_t *cache, int flags)
287
static void *slab_obj_create(slab_cache_t *cache, int flags)
284
{
288
{
285
    slab_t *slab;
289
    slab_t *slab;
286
    void *obj;
290
    void *obj;
287
 
291
 
288
    spinlock_lock(&cache->slablock);
292
    spinlock_lock(&cache->slablock);
289
 
293
 
290
    if (list_empty(&cache->partial_slabs)) {
294
    if (list_empty(&cache->partial_slabs)) {
291
        /* Allow recursion and reclaiming
295
        /* Allow recursion and reclaiming
292
         * - this should work, as the slab control structures
296
         * - this should work, as the slab control structures
293
         *   are small and do not need to allocate with anything
297
         *   are small and do not need to allocate with anything
294
         *   other than frame_alloc when they are allocating,
298
         *   other than frame_alloc when they are allocating,
295
         *   that's why we should get recursion at most 1-level deep
299
         *   that's why we should get recursion at most 1-level deep
296
         */
300
         */
297
        spinlock_unlock(&cache->slablock);
301
        spinlock_unlock(&cache->slablock);
298
        slab = slab_space_alloc(cache, flags);
302
        slab = slab_space_alloc(cache, flags);
299
        if (!slab)
303
        if (!slab)
300
            return NULL;
304
            return NULL;
301
        spinlock_lock(&cache->slablock);
305
        spinlock_lock(&cache->slablock);
302
    } else {
306
    } else {
303
        slab = list_get_instance(cache->partial_slabs.next, slab_t,
307
        slab = list_get_instance(cache->partial_slabs.next, slab_t,
304
            link);
308
            link);
305
        list_remove(&slab->link);
309
        list_remove(&slab->link);
306
    }
310
    }
307
    obj = slab->start + slab->nextavail * cache->size;
311
    obj = slab->start + slab->nextavail * cache->size;
308
    slab->nextavail = *((int *)obj);
312
    slab->nextavail = *((int *)obj);
309
    slab->available--;
313
    slab->available--;
310
 
314
 
311
    if (!slab->available)
315
    if (!slab->available)
312
        list_prepend(&slab->link, &cache->full_slabs);
316
        list_prepend(&slab->link, &cache->full_slabs);
313
    else
317
    else
314
        list_prepend(&slab->link, &cache->partial_slabs);
318
        list_prepend(&slab->link, &cache->partial_slabs);
315
 
319
 
316
    spinlock_unlock(&cache->slablock);
320
    spinlock_unlock(&cache->slablock);
317
 
321
 
318
    if (cache->constructor && cache->constructor(obj, flags)) {
322
    if (cache->constructor && cache->constructor(obj, flags)) {
319
        /* Bad, bad, construction failed */
323
        /* Bad, bad, construction failed */
320
        slab_obj_destroy(cache, obj, slab);
324
        slab_obj_destroy(cache, obj, slab);
321
        return NULL;
325
        return NULL;
322
    }
326
    }
323
    return obj;
327
    return obj;
324
}
328
}
325
 
329
 
326
/**************************************/
330
/**************************************/
327
/* CPU-Cache slab functions */
331
/* CPU-Cache slab functions */
328
 
332
 
329
/**
333
/**
330
 * Finds a full magazine in cache, takes it from list
334
 * Finds a full magazine in cache, takes it from list
331
 * and returns it
335
 * and returns it
332
 *
336
 *
333
 * @param first If true, return first, else last mag
337
 * @param first If true, return first, else last mag
334
 */
338
 */
335
static slab_magazine_t *get_mag_from_cache(slab_cache_t *cache, int first)
339
static slab_magazine_t *get_mag_from_cache(slab_cache_t *cache, int first)
336
{
340
{
337
    slab_magazine_t *mag = NULL;
341
    slab_magazine_t *mag = NULL;
338
    link_t *cur;
342
    link_t *cur;
339
 
343
 
340
    spinlock_lock(&cache->maglock);
344
    spinlock_lock(&cache->maglock);
341
    if (!list_empty(&cache->magazines)) {
345
    if (!list_empty(&cache->magazines)) {
342
        if (first)
346
        if (first)
343
            cur = cache->magazines.next;
347
            cur = cache->magazines.next;
344
        else
348
        else
345
            cur = cache->magazines.prev;
349
            cur = cache->magazines.prev;
346
        mag = list_get_instance(cur, slab_magazine_t, link);
350
        mag = list_get_instance(cur, slab_magazine_t, link);
347
        list_remove(&mag->link);
351
        list_remove(&mag->link);
348
        atomic_dec(&cache->magazine_counter);
352
        atomic_dec(&cache->magazine_counter);
349
    }
353
    }
350
    spinlock_unlock(&cache->maglock);
354
    spinlock_unlock(&cache->maglock);
351
    return mag;
355
    return mag;
352
}
356
}
353
 
357
 
354
/** Prepend magazine to magazine list in cache */
358
/** Prepend magazine to magazine list in cache */
355
static void put_mag_to_cache(slab_cache_t *cache, slab_magazine_t *mag)
359
static void put_mag_to_cache(slab_cache_t *cache, slab_magazine_t *mag)
356
{
360
{
357
    spinlock_lock(&cache->maglock);
361
    spinlock_lock(&cache->maglock);
358
 
362
 
359
    list_prepend(&mag->link, &cache->magazines);
363
    list_prepend(&mag->link, &cache->magazines);
360
    atomic_inc(&cache->magazine_counter);
364
    atomic_inc(&cache->magazine_counter);
361
   
365
   
362
    spinlock_unlock(&cache->maglock);
366
    spinlock_unlock(&cache->maglock);
363
}
367
}
364
 
368
 
365
/**
369
/**
366
 * Free all objects in magazine and free memory associated with magazine
370
 * Free all objects in magazine and free memory associated with magazine
367
 *
371
 *
368
 * @return Number of freed pages
372
 * @return Number of freed pages
369
 */
373
 */
370
static count_t magazine_destroy(slab_cache_t *cache, slab_magazine_t *mag)
374
static count_t magazine_destroy(slab_cache_t *cache, slab_magazine_t *mag)
371
{
375
{
372
    unsigned int i;
376
    unsigned int i;
373
    count_t frames = 0;
377
    count_t frames = 0;
374
 
378
 
375
    for (i = 0; i < mag->busy; i++) {
379
    for (i = 0; i < mag->busy; i++) {
376
        frames += slab_obj_destroy(cache, mag->objs[i], NULL);
380
        frames += slab_obj_destroy(cache, mag->objs[i], NULL);
377
        atomic_dec(&cache->cached_objs);
381
        atomic_dec(&cache->cached_objs);
378
    }
382
    }
379
   
383
   
380
    slab_free(&mag_cache, mag);
384
    slab_free(&mag_cache, mag);
381
 
385
 
382
    return frames;
386
    return frames;
383
}
387
}
384
 
388
 
385
/**
389
/**
386
 * Find full magazine, set it as current and return it
390
 * Find full magazine, set it as current and return it
387
 *
391
 *
388
 * Assume cpu_magazine lock is held
392
 * Assume cpu_magazine lock is held
389
 */
393
 */
390
static slab_magazine_t *get_full_current_mag(slab_cache_t *cache)
394
static slab_magazine_t *get_full_current_mag(slab_cache_t *cache)
391
{
395
{
392
    slab_magazine_t *cmag, *lastmag, *newmag;
396
    slab_magazine_t *cmag, *lastmag, *newmag;
393
 
397
 
394
    cmag = cache->mag_cache[CPU->id].current;
398
    cmag = cache->mag_cache[CPU->id].current;
395
    lastmag = cache->mag_cache[CPU->id].last;
399
    lastmag = cache->mag_cache[CPU->id].last;
396
    if (cmag) { /* First try local CPU magazines */
400
    if (cmag) { /* First try local CPU magazines */
397
        if (cmag->busy)
401
        if (cmag->busy)
398
            return cmag;
402
            return cmag;
399
 
403
 
400
        if (lastmag && lastmag->busy) {
404
        if (lastmag && lastmag->busy) {
401
            cache->mag_cache[CPU->id].current = lastmag;
405
            cache->mag_cache[CPU->id].current = lastmag;
402
            cache->mag_cache[CPU->id].last = cmag;
406
            cache->mag_cache[CPU->id].last = cmag;
403
            return lastmag;
407
            return lastmag;
404
        }
408
        }
405
    }
409
    }
406
    /* Local magazines are empty, import one from magazine list */
410
    /* Local magazines are empty, import one from magazine list */
407
    newmag = get_mag_from_cache(cache, 1);
411
    newmag = get_mag_from_cache(cache, 1);
408
    if (!newmag)
412
    if (!newmag)
409
        return NULL;
413
        return NULL;
410
 
414
 
411
    if (lastmag)
415
    if (lastmag)
412
        magazine_destroy(cache, lastmag);
416
        magazine_destroy(cache, lastmag);
413
 
417
 
414
    cache->mag_cache[CPU->id].last = cmag;
418
    cache->mag_cache[CPU->id].last = cmag;
415
    cache->mag_cache[CPU->id].current = newmag;
419
    cache->mag_cache[CPU->id].current = newmag;
416
    return newmag;
420
    return newmag;
417
}
421
}
418
 
422
 
419
/**
423
/**
420
 * Try to find object in CPU-cache magazines
424
 * Try to find object in CPU-cache magazines
421
 *
425
 *
422
 * @return Pointer to object or NULL if not available
426
 * @return Pointer to object or NULL if not available
423
 */
427
 */
424
static void *magazine_obj_get(slab_cache_t *cache)
428
static void *magazine_obj_get(slab_cache_t *cache)
425
{
429
{
426
    slab_magazine_t *mag;
430
    slab_magazine_t *mag;
427
    void *obj;
431
    void *obj;
428
 
432
 
429
    if (!CPU)
433
    if (!CPU)
430
        return NULL;
434
        return NULL;
431
 
435
 
432
    spinlock_lock(&cache->mag_cache[CPU->id].lock);
436
    spinlock_lock(&cache->mag_cache[CPU->id].lock);
433
 
437
 
434
    mag = get_full_current_mag(cache);
438
    mag = get_full_current_mag(cache);
435
    if (!mag) {
439
    if (!mag) {
436
        spinlock_unlock(&cache->mag_cache[CPU->id].lock);
440
        spinlock_unlock(&cache->mag_cache[CPU->id].lock);
437
        return NULL;
441
        return NULL;
438
    }
442
    }
439
    obj = mag->objs[--mag->busy];
443
    obj = mag->objs[--mag->busy];
440
    spinlock_unlock(&cache->mag_cache[CPU->id].lock);
444
    spinlock_unlock(&cache->mag_cache[CPU->id].lock);
441
    atomic_dec(&cache->cached_objs);
445
    atomic_dec(&cache->cached_objs);
442
   
446
   
443
    return obj;
447
    return obj;
444
}
448
}
445
 
449
 
446
/**
450
/**
447
 * Assure that the current magazine is empty, return pointer to it, or NULL if
451
 * Assure that the current magazine is empty, return pointer to it, or NULL if
448
 * no empty magazine is available and cannot be allocated
452
 * no empty magazine is available and cannot be allocated
449
 *
453
 *
450
 * Assume mag_cache[CPU->id].lock is held
454
 * Assume mag_cache[CPU->id].lock is held
451
 *
455
 *
452
 * We have 2 magazines bound to processor.
456
 * We have 2 magazines bound to processor.
453
 * First try the current.
457
 * First try the current.
454
 *  If full, try the last.
458
 *  If full, try the last.
455
 *   If full, put to magazines list.
459
 *   If full, put to magazines list.
456
 *   allocate new, exchange last & current
460
 *   allocate new, exchange last & current
457
 *
461
 *
458
 */
462
 */
459
static slab_magazine_t *make_empty_current_mag(slab_cache_t *cache)
463
static slab_magazine_t *make_empty_current_mag(slab_cache_t *cache)
460
{
464
{
461
    slab_magazine_t *cmag,*lastmag,*newmag;
465
    slab_magazine_t *cmag,*lastmag,*newmag;
462
 
466
 
463
    cmag = cache->mag_cache[CPU->id].current;
467
    cmag = cache->mag_cache[CPU->id].current;
464
    lastmag = cache->mag_cache[CPU->id].last;
468
    lastmag = cache->mag_cache[CPU->id].last;
465
 
469
 
466
    if (cmag) {
470
    if (cmag) {
467
        if (cmag->busy < cmag->size)
471
        if (cmag->busy < cmag->size)
468
            return cmag;
472
            return cmag;
469
        if (lastmag && lastmag->busy < lastmag->size) {
473
        if (lastmag && lastmag->busy < lastmag->size) {
470
            cache->mag_cache[CPU->id].last = cmag;
474
            cache->mag_cache[CPU->id].last = cmag;
471
            cache->mag_cache[CPU->id].current = lastmag;
475
            cache->mag_cache[CPU->id].current = lastmag;
472
            return lastmag;
476
            return lastmag;
473
        }
477
        }
474
    }
478
    }
475
    /* current | last are full | nonexistent, allocate new */
479
    /* current | last are full | nonexistent, allocate new */
476
    /* We do not want to sleep just because of caching */
480
    /* We do not want to sleep just because of caching */
477
    /* Especially we do not want reclaiming to start, as
481
    /* Especially we do not want reclaiming to start, as
478
     * this would deadlock */
482
     * this would deadlock */
479
    newmag = slab_alloc(&mag_cache, FRAME_ATOMIC | FRAME_NO_RECLAIM);
483
    newmag = slab_alloc(&mag_cache, FRAME_ATOMIC | FRAME_NO_RECLAIM);
480
    if (!newmag)
484
    if (!newmag)
481
        return NULL;
485
        return NULL;
482
    newmag->size = SLAB_MAG_SIZE;
486
    newmag->size = SLAB_MAG_SIZE;
483
    newmag->busy = 0;
487
    newmag->busy = 0;
484
 
488
 
485
    /* Flush last to magazine list */
489
    /* Flush last to magazine list */
486
    if (lastmag)
490
    if (lastmag)
487
        put_mag_to_cache(cache, lastmag);
491
        put_mag_to_cache(cache, lastmag);
488
 
492
 
489
    /* Move current as last, save new as current */
493
    /* Move current as last, save new as current */
490
    cache->mag_cache[CPU->id].last = cmag; 
494
    cache->mag_cache[CPU->id].last = cmag; 
491
    cache->mag_cache[CPU->id].current = newmag;
495
    cache->mag_cache[CPU->id].current = newmag;
492
 
496
 
493
    return newmag;
497
    return newmag;
494
}
498
}
495
 
499
 
496
/**
500
/**
497
 * Put object into CPU-cache magazine
501
 * Put object into CPU-cache magazine
498
 *
502
 *
499
 * @return 0 - success, -1 - could not get memory
503
 * @return 0 - success, -1 - could not get memory
500
 */
504
 */
501
static int magazine_obj_put(slab_cache_t *cache, void *obj)
505
static int magazine_obj_put(slab_cache_t *cache, void *obj)
502
{
506
{
503
    slab_magazine_t *mag;
507
    slab_magazine_t *mag;
504
 
508
 
505
    if (!CPU)
509
    if (!CPU)
506
        return -1;
510
        return -1;
507
 
511
 
508
    spinlock_lock(&cache->mag_cache[CPU->id].lock);
512
    spinlock_lock(&cache->mag_cache[CPU->id].lock);
509
 
513
 
510
    mag = make_empty_current_mag(cache);
514
    mag = make_empty_current_mag(cache);
511
    if (!mag) {
515
    if (!mag) {
512
        spinlock_unlock(&cache->mag_cache[CPU->id].lock);
516
        spinlock_unlock(&cache->mag_cache[CPU->id].lock);
513
        return -1;
517
        return -1;
514
    }
518
    }
515
   
519
   
516
    mag->objs[mag->busy++] = obj;
520
    mag->objs[mag->busy++] = obj;
517
 
521
 
518
    spinlock_unlock(&cache->mag_cache[CPU->id].lock);
522
    spinlock_unlock(&cache->mag_cache[CPU->id].lock);
519
    atomic_inc(&cache->cached_objs);
523
    atomic_inc(&cache->cached_objs);
520
    return 0;
524
    return 0;
521
}
525
}
522
 
526
 
523
 
527
 
524
/**************************************/
528
/**************************************/
525
/* Slab cache functions */
529
/* Slab cache functions */
526
 
530
 
527
/** Return number of objects that fit in certain cache size */
531
/** Return number of objects that fit in certain cache size */
528
static unsigned int comp_objects(slab_cache_t *cache)
532
static unsigned int comp_objects(slab_cache_t *cache)
529
{
533
{
530
    if (cache->flags & SLAB_CACHE_SLINSIDE)
534
    if (cache->flags & SLAB_CACHE_SLINSIDE)
531
        return ((PAGE_SIZE << cache->order) - sizeof(slab_t)) /
535
        return ((PAGE_SIZE << cache->order) - sizeof(slab_t)) /
532
            cache->size;
536
            cache->size;
533
    else
537
    else
534
        return (PAGE_SIZE << cache->order) / cache->size;
538
        return (PAGE_SIZE << cache->order) / cache->size;
535
}
539
}
536
 
540
 
537
/** Return wasted space in slab */
541
/** Return wasted space in slab */
538
static unsigned int badness(slab_cache_t *cache)
542
static unsigned int badness(slab_cache_t *cache)
539
{
543
{
540
    unsigned int objects;
544
    unsigned int objects;
541
    unsigned int ssize;
545
    unsigned int ssize;
542
 
546
 
543
    objects = comp_objects(cache);
547
    objects = comp_objects(cache);
544
    ssize = PAGE_SIZE << cache->order;
548
    ssize = PAGE_SIZE << cache->order;
545
    if (cache->flags & SLAB_CACHE_SLINSIDE)
549
    if (cache->flags & SLAB_CACHE_SLINSIDE)
546
        ssize -= sizeof(slab_t);
550
        ssize -= sizeof(slab_t);
547
    return ssize - objects * cache->size;
551
    return ssize - objects * cache->size;
548
}
552
}
549
 
553
 
550
/**
554
/**
551
 * Initialize mag_cache structure in slab cache
555
 * Initialize mag_cache structure in slab cache
552
 */
556
 */
553
static void make_magcache(slab_cache_t *cache)
557
static void make_magcache(slab_cache_t *cache)
554
{
558
{
555
    unsigned int i;
559
    unsigned int i;
556
   
560
   
557
    ASSERT(_slab_initialized >= 2);
561
    ASSERT(_slab_initialized >= 2);
558
 
562
 
559
    cache->mag_cache = malloc(sizeof(slab_mag_cache_t) * config.cpu_count,
563
    cache->mag_cache = malloc(sizeof(slab_mag_cache_t) * config.cpu_count,
560
        0);
564
        0);
561
    for (i = 0; i < config.cpu_count; i++) {
565
    for (i = 0; i < config.cpu_count; i++) {
562
        memsetb(&cache->mag_cache[i], sizeof(cache->mag_cache[i]), 0);
566
        memsetb(&cache->mag_cache[i], sizeof(cache->mag_cache[i]), 0);
563
        spinlock_initialize(&cache->mag_cache[i].lock,
567
        spinlock_initialize(&cache->mag_cache[i].lock,
564
            "slab_maglock_cpu");
568
            "slab_maglock_cpu");
565
    }
569
    }
566
}
570
}
567
 
571
 
568
/** Initialize allocated memory as a slab cache */
572
/** Initialize allocated memory as a slab cache */
569
static void
573
static void
570
_slab_cache_create(slab_cache_t *cache, char *name, size_t size, size_t align,
574
_slab_cache_create(slab_cache_t *cache, char *name, size_t size, size_t align,
571
    int (*constructor)(void *obj, int kmflag), int (*destructor)(void *obj),
575
    int (*constructor)(void *obj, int kmflag), int (*destructor)(void *obj),
572
    int flags)
576
    int flags)
573
{
577
{
574
    int pages;
578
    int pages;
575
    ipl_t ipl;
579
    ipl_t ipl;
576
 
580
 
577
    memsetb(cache, sizeof(*cache), 0);
581
    memsetb(cache, sizeof(*cache), 0);
578
    cache->name = name;
582
    cache->name = name;
579
 
583
 
580
    if (align < sizeof(unative_t))
584
    if (align < sizeof(unative_t))
581
        align = sizeof(unative_t);
585
        align = sizeof(unative_t);
582
    size = ALIGN_UP(size, align);
586
    size = ALIGN_UP(size, align);
583
       
587
       
584
    cache->size = size;
588
    cache->size = size;
585
 
589
 
586
    cache->constructor = constructor;
590
    cache->constructor = constructor;
587
    cache->destructor = destructor;
591
    cache->destructor = destructor;
588
    cache->flags = flags;
592
    cache->flags = flags;
589
 
593
 
590
    list_initialize(&cache->full_slabs);
594
    list_initialize(&cache->full_slabs);
591
    list_initialize(&cache->partial_slabs);
595
    list_initialize(&cache->partial_slabs);
592
    list_initialize(&cache->magazines);
596
    list_initialize(&cache->magazines);
593
    spinlock_initialize(&cache->slablock, "slab_lock");
597
    spinlock_initialize(&cache->slablock, "slab_lock");
594
    spinlock_initialize(&cache->maglock, "slab_maglock");
598
    spinlock_initialize(&cache->maglock, "slab_maglock");
595
    if (!(cache->flags & SLAB_CACHE_NOMAGAZINE))
599
    if (!(cache->flags & SLAB_CACHE_NOMAGAZINE))
596
        make_magcache(cache);
600
        make_magcache(cache);
597
 
601
 
598
    /* Compute slab sizes, object counts in slabs etc. */
602
    /* Compute slab sizes, object counts in slabs etc. */
599
    if (cache->size < SLAB_INSIDE_SIZE)
603
    if (cache->size < SLAB_INSIDE_SIZE)
600
        cache->flags |= SLAB_CACHE_SLINSIDE;
604
        cache->flags |= SLAB_CACHE_SLINSIDE;
601
 
605
 
602
    /* Minimum slab order */
606
    /* Minimum slab order */
603
    pages = SIZE2FRAMES(cache->size);
607
    pages = SIZE2FRAMES(cache->size);
604
    /* We need the 2^order >= pages */
608
    /* We need the 2^order >= pages */
605
    if (pages == 1)
609
    if (pages == 1)
606
        cache->order = 0;
610
        cache->order = 0;
607
    else
611
    else
608
        cache->order = fnzb(pages - 1) + 1;
612
        cache->order = fnzb(pages - 1) + 1;
609
 
613
 
610
    while (badness(cache) > SLAB_MAX_BADNESS(cache)) {
614
    while (badness(cache) > SLAB_MAX_BADNESS(cache)) {
611
        cache->order += 1;
615
        cache->order += 1;
612
    }
616
    }
613
    cache->objects = comp_objects(cache);
617
    cache->objects = comp_objects(cache);
614
    /* If info fits in, put it inside */
618
    /* If info fits in, put it inside */
615
    if (badness(cache) > sizeof(slab_t))
619
    if (badness(cache) > sizeof(slab_t))
616
        cache->flags |= SLAB_CACHE_SLINSIDE;
620
        cache->flags |= SLAB_CACHE_SLINSIDE;
617
 
621
 
618
    /* Add cache to cache list */
622
    /* Add cache to cache list */
619
    ipl = interrupts_disable();
623
    ipl = interrupts_disable();
620
    spinlock_lock(&slab_cache_lock);
624
    spinlock_lock(&slab_cache_lock);
621
 
625
 
622
    list_append(&cache->link, &slab_cache_list);
626
    list_append(&cache->link, &slab_cache_list);
623
 
627
 
624
    spinlock_unlock(&slab_cache_lock);
628
    spinlock_unlock(&slab_cache_lock);
625
    interrupts_restore(ipl);
629
    interrupts_restore(ipl);
626
}
630
}
627
 
631
 
628
/** Create slab cache  */
632
/** Create slab cache  */
629
slab_cache_t *
633
slab_cache_t *
630
slab_cache_create(char *name, size_t size, size_t align,
634
slab_cache_create(char *name, size_t size, size_t align,
631
    int (*constructor)(void *obj, int kmflag), int (*destructor)(void *obj),
635
    int (*constructor)(void *obj, int kmflag), int (*destructor)(void *obj),
632
    int flags)
636
    int flags)
633
{
637
{
634
    slab_cache_t *cache;
638
    slab_cache_t *cache;
635
 
639
 
636
    cache = slab_alloc(&slab_cache_cache, 0);
640
    cache = slab_alloc(&slab_cache_cache, 0);
637
    _slab_cache_create(cache, name, size, align, constructor, destructor,
641
    _slab_cache_create(cache, name, size, align, constructor, destructor,
638
        flags);
642
        flags);
639
    return cache;
643
    return cache;
640
}
644
}
641
 
645
 
642
/**
646
/**
643
 * Reclaim space occupied by objects that are already free
647
 * Reclaim space occupied by objects that are already free
644
 *
648
 *
645
 * @param flags If contains SLAB_RECLAIM_ALL, do aggressive freeing
649
 * @param flags If contains SLAB_RECLAIM_ALL, do aggressive freeing
646
 * @return Number of freed pages
650
 * @return Number of freed pages
647
 */
651
 */
648
static count_t _slab_reclaim(slab_cache_t *cache, int flags)
652
static count_t _slab_reclaim(slab_cache_t *cache, int flags)
649
{
653
{
650
    unsigned int i;
654
    unsigned int i;
651
    slab_magazine_t *mag;
655
    slab_magazine_t *mag;
652
    count_t frames = 0;
656
    count_t frames = 0;
653
    int magcount;
657
    int magcount;
654
   
658
   
655
    if (cache->flags & SLAB_CACHE_NOMAGAZINE)
659
    if (cache->flags & SLAB_CACHE_NOMAGAZINE)
656
        return 0; /* Nothing to do */
660
        return 0; /* Nothing to do */
657
 
661
 
658
    /* We count up to original magazine count to avoid
662
    /* We count up to original magazine count to avoid
659
     * endless loop
663
     * endless loop
660
     */
664
     */
661
    magcount = atomic_get(&cache->magazine_counter);
665
    magcount = atomic_get(&cache->magazine_counter);
662
    while (magcount-- && (mag=get_mag_from_cache(cache, 0))) {
666
    while (magcount-- && (mag=get_mag_from_cache(cache, 0))) {
663
        frames += magazine_destroy(cache,mag);
667
        frames += magazine_destroy(cache,mag);
664
        if (!(flags & SLAB_RECLAIM_ALL) && frames)
668
        if (!(flags & SLAB_RECLAIM_ALL) && frames)
665
            break;
669
            break;
666
    }
670
    }
667
   
671
   
668
    if (flags & SLAB_RECLAIM_ALL) {
672
    if (flags & SLAB_RECLAIM_ALL) {
669
        /* Free cpu-bound magazines */
673
        /* Free cpu-bound magazines */
670
        /* Destroy CPU magazines */
674
        /* Destroy CPU magazines */
671
        for (i = 0; i < config.cpu_count; i++) {
675
        for (i = 0; i < config.cpu_count; i++) {
672
            spinlock_lock(&cache->mag_cache[i].lock);
676
            spinlock_lock(&cache->mag_cache[i].lock);
673
 
677
 
674
            mag = cache->mag_cache[i].current;
678
            mag = cache->mag_cache[i].current;
675
            if (mag)
679
            if (mag)
676
                frames += magazine_destroy(cache, mag);
680
                frames += magazine_destroy(cache, mag);
677
            cache->mag_cache[i].current = NULL;
681
            cache->mag_cache[i].current = NULL;
678
           
682
           
679
            mag = cache->mag_cache[i].last;
683
            mag = cache->mag_cache[i].last;
680
            if (mag)
684
            if (mag)
681
                frames += magazine_destroy(cache, mag);
685
                frames += magazine_destroy(cache, mag);
682
            cache->mag_cache[i].last = NULL;
686
            cache->mag_cache[i].last = NULL;
683
 
687
 
684
            spinlock_unlock(&cache->mag_cache[i].lock);
688
            spinlock_unlock(&cache->mag_cache[i].lock);
685
        }
689
        }
686
    }
690
    }
687
 
691
 
688
    return frames;
692
    return frames;
689
}
693
}
690
 
694
 
691
/** Check that there are no slabs and remove cache from system  */
695
/** Check that there are no slabs and remove cache from system  */
692
void slab_cache_destroy(slab_cache_t *cache)
696
void slab_cache_destroy(slab_cache_t *cache)
693
{
697
{
694
    ipl_t ipl;
698
    ipl_t ipl;
695
 
699
 
696
    /* First remove cache from link, so that we don't need
700
    /* First remove cache from link, so that we don't need
697
     * to disable interrupts later
701
     * to disable interrupts later
698
     */
702
     */
699
 
703
 
700
    ipl = interrupts_disable();
704
    ipl = interrupts_disable();
701
    spinlock_lock(&slab_cache_lock);
705
    spinlock_lock(&slab_cache_lock);
702
 
706
 
703
    list_remove(&cache->link);
707
    list_remove(&cache->link);
704
 
708
 
705
    spinlock_unlock(&slab_cache_lock);
709
    spinlock_unlock(&slab_cache_lock);
706
    interrupts_restore(ipl);
710
    interrupts_restore(ipl);
707
 
711
 
708
    /* Do not lock anything, we assume the software is correct and
712
    /* Do not lock anything, we assume the software is correct and
709
     * does not touch the cache when it decides to destroy it */
713
     * does not touch the cache when it decides to destroy it */
710
   
714
   
711
    /* Destroy all magazines */
715
    /* Destroy all magazines */
712
    _slab_reclaim(cache, SLAB_RECLAIM_ALL);
716
    _slab_reclaim(cache, SLAB_RECLAIM_ALL);
713
 
717
 
714
    /* All slabs must be empty */
718
    /* All slabs must be empty */
715
    if (!list_empty(&cache->full_slabs) ||
719
    if (!list_empty(&cache->full_slabs) ||
716
        !list_empty(&cache->partial_slabs))
720
        !list_empty(&cache->partial_slabs))
717
        panic("Destroying cache that is not empty.");
721
        panic("Destroying cache that is not empty.");
718
 
722
 
719
    if (!(cache->flags & SLAB_CACHE_NOMAGAZINE))
723
    if (!(cache->flags & SLAB_CACHE_NOMAGAZINE))
720
        free(cache->mag_cache);
724
        free(cache->mag_cache);
721
    slab_free(&slab_cache_cache, cache);
725
    slab_free(&slab_cache_cache, cache);
722
}
726
}
723
 
727
 
724
/** Allocate new object from cache - if no flags given, always returns memory */
728
/** Allocate new object from cache - if no flags given, always returns memory */
725
void *slab_alloc(slab_cache_t *cache, int flags)
729
void *slab_alloc(slab_cache_t *cache, int flags)
726
{
730
{
727
    ipl_t ipl;
731
    ipl_t ipl;
728
    void *result = NULL;
732
    void *result = NULL;
729
   
733
   
730
    /* Disable interrupts to avoid deadlocks with interrupt handlers */
734
    /* Disable interrupts to avoid deadlocks with interrupt handlers */
731
    ipl = interrupts_disable();
735
    ipl = interrupts_disable();
732
 
736
 
733
    if (!(cache->flags & SLAB_CACHE_NOMAGAZINE)) {
737
    if (!(cache->flags & SLAB_CACHE_NOMAGAZINE)) {
734
        result = magazine_obj_get(cache);
738
        result = magazine_obj_get(cache);
735
    }
739
    }
736
    if (!result)
740
    if (!result)
737
        result = slab_obj_create(cache, flags);
741
        result = slab_obj_create(cache, flags);
738
 
742
 
739
    interrupts_restore(ipl);
743
    interrupts_restore(ipl);
740
 
744
 
741
    if (result)
745
    if (result)
742
        atomic_inc(&cache->allocated_objs);
746
        atomic_inc(&cache->allocated_objs);
743
 
747
 
744
    return result;
748
    return result;
745
}
749
}
746
 
750
 
747
/** Return object to cache, use slab if known  */
751
/** Return object to cache, use slab if known  */
748
static void _slab_free(slab_cache_t *cache, void *obj, slab_t *slab)
752
static void _slab_free(slab_cache_t *cache, void *obj, slab_t *slab)
749
{
753
{
750
    ipl_t ipl;
754
    ipl_t ipl;
751
 
755
 
752
    ipl = interrupts_disable();
756
    ipl = interrupts_disable();
753
 
757
 
754
    if ((cache->flags & SLAB_CACHE_NOMAGAZINE) ||
758
    if ((cache->flags & SLAB_CACHE_NOMAGAZINE) ||
755
        magazine_obj_put(cache, obj)) {
759
        magazine_obj_put(cache, obj)) {
756
        slab_obj_destroy(cache, obj, slab);
760
        slab_obj_destroy(cache, obj, slab);
757
 
761
 
758
    }
762
    }
759
    interrupts_restore(ipl);
763
    interrupts_restore(ipl);
760
    atomic_dec(&cache->allocated_objs);
764
    atomic_dec(&cache->allocated_objs);
761
}
765
}
762
 
766
 
763
/** Return slab object to cache */
767
/** Return slab object to cache */
764
void slab_free(slab_cache_t *cache, void *obj)
768
void slab_free(slab_cache_t *cache, void *obj)
765
{
769
{
766
    _slab_free(cache, obj, NULL);
770
    _slab_free(cache, obj, NULL);
767
}
771
}
768
 
772
 
769
/* Go through all caches and reclaim what is possible */
773
/* Go through all caches and reclaim what is possible */
770
count_t slab_reclaim(int flags)
774
count_t slab_reclaim(int flags)
771
{
775
{
772
    slab_cache_t *cache;
776
    slab_cache_t *cache;
773
    link_t *cur;
777
    link_t *cur;
774
    count_t frames = 0;
778
    count_t frames = 0;
775
 
779
 
776
    spinlock_lock(&slab_cache_lock);
780
    spinlock_lock(&slab_cache_lock);
777
 
781
 
778
    /* TODO: Add assert, that interrupts are disabled, otherwise
782
    /* TODO: Add assert, that interrupts are disabled, otherwise
779
     * memory allocation from interrupts can deadlock.
783
     * memory allocation from interrupts can deadlock.
780
     */
784
     */
781
 
785
 
782
    for (cur = slab_cache_list.next; cur != &slab_cache_list;
786
    for (cur = slab_cache_list.next; cur != &slab_cache_list;
783
        cur = cur->next) {
787
        cur = cur->next) {
784
        cache = list_get_instance(cur, slab_cache_t, link);
788
        cache = list_get_instance(cur, slab_cache_t, link);
785
        frames += _slab_reclaim(cache, flags);
789
        frames += _slab_reclaim(cache, flags);
786
    }
790
    }
787
 
791
 
788
    spinlock_unlock(&slab_cache_lock);
792
    spinlock_unlock(&slab_cache_lock);
789
 
793
 
790
    return frames;
794
    return frames;
791
}
795
}
792
 
796
 
793
 
797
 
794
/* Print list of slabs */
798
/* Print list of slabs */
795
void slab_print_list(void)
799
void slab_print_list(void)
796
{
800
{
797
    int skip = 0;
801
    int skip = 0;
798
 
802
 
799
    printf("slab name        size     pages  obj/pg slabs  cached allocated"
803
    printf("slab name        size     pages  obj/pg slabs  cached allocated"
800
        " ctl\n");
804
        " ctl\n");
801
    printf("---------------- -------- ------ ------ ------ ------ ---------"
805
    printf("---------------- -------- ------ ------ ------ ------ ---------"
802
        " ---\n");
806
        " ---\n");
803
 
807
 
804
    while (true) {
808
    while (true) {
805
        slab_cache_t *cache;
809
        slab_cache_t *cache;
806
        link_t *cur;
810
        link_t *cur;
807
        ipl_t ipl;
811
        ipl_t ipl;
808
        int i;
812
        int i;
809
 
813
 
810
        /*
814
        /*
811
         * We must not hold the slab_cache_lock spinlock when printing
815
         * We must not hold the slab_cache_lock spinlock when printing
812
         * the statistics. Otherwise we can easily deadlock if the print
816
         * the statistics. Otherwise we can easily deadlock if the print
813
         * needs to allocate memory.
817
         * needs to allocate memory.
814
         *
818
         *
815
         * Therefore, we walk through the slab cache list, skipping some
819
         * Therefore, we walk through the slab cache list, skipping some
816
         * amount of already processed caches during each iteration and
820
         * amount of already processed caches during each iteration and
817
         * gathering statistics about the first unprocessed cache. For
821
         * gathering statistics about the first unprocessed cache. For
818
         * the sake of printing the statistics, we realese the
822
         * the sake of printing the statistics, we realese the
819
         * slab_cache_lock and reacquire it afterwards. Then the walk
823
         * slab_cache_lock and reacquire it afterwards. Then the walk
820
         * starts again.
824
         * starts again.
821
         *
825
         *
822
         * This limits both the efficiency and also accuracy of the
826
         * This limits both the efficiency and also accuracy of the
823
         * obtained statistics. The efficiency is decreased because the
827
         * obtained statistics. The efficiency is decreased because the
824
         * time complexity of the algorithm is quadratic instead of
828
         * time complexity of the algorithm is quadratic instead of
825
         * linear. The accuracy is impacted because we drop the lock
829
         * linear. The accuracy is impacted because we drop the lock
826
         * after processing one cache. If there is someone else
830
         * after processing one cache. If there is someone else
827
         * manipulating the cache list, we might omit an arbitrary
831
         * manipulating the cache list, we might omit an arbitrary
828
         * number of caches or process one cache multiple times.
832
         * number of caches or process one cache multiple times.
829
         * However, we don't bleed for this algorithm for it is only
833
         * However, we don't bleed for this algorithm for it is only
830
         * statistics.
834
         * statistics.
831
         */
835
         */
832
 
836
 
833
        ipl = interrupts_disable();
837
        ipl = interrupts_disable();
834
        spinlock_lock(&slab_cache_lock);
838
        spinlock_lock(&slab_cache_lock);
835
 
839
 
836
        for (i = 0, cur = slab_cache_list.next;
840
        for (i = 0, cur = slab_cache_list.next;
837
            i < skip && cur != &slab_cache_list;
841
            i < skip && cur != &slab_cache_list;
838
            i++, cur = cur->next)
842
            i++, cur = cur->next)
839
            ;
843
            ;
840
 
844
 
841
        if (cur == &slab_cache_list) {
845
        if (cur == &slab_cache_list) {
842
            spinlock_unlock(&slab_cache_lock);
846
            spinlock_unlock(&slab_cache_lock);
843
            interrupts_restore(ipl);
847
            interrupts_restore(ipl);
844
            break;
848
            break;
845
        }
849
        }
846
 
850
 
847
        skip++;
851
        skip++;
848
 
852
 
849
        cache = list_get_instance(cur, slab_cache_t, link);
853
        cache = list_get_instance(cur, slab_cache_t, link);
850
 
854
 
851
        char *name = cache->name;
855
        char *name = cache->name;
852
        uint8_t order = cache->order;
856
        uint8_t order = cache->order;
853
        size_t size = cache->size;
857
        size_t size = cache->size;
854
        unsigned int objects = cache->objects;
858
        unsigned int objects = cache->objects;
855
        long allocated_slabs = atomic_get(&cache->allocated_slabs);
859
        long allocated_slabs = atomic_get(&cache->allocated_slabs);
856
        long cached_objs = atomic_get(&cache->cached_objs);
860
        long cached_objs = atomic_get(&cache->cached_objs);
857
        long allocated_objs = atomic_get(&cache->allocated_objs);
861
        long allocated_objs = atomic_get(&cache->allocated_objs);
858
        int flags = cache->flags;
862
        int flags = cache->flags;
859
       
863
       
860
        spinlock_unlock(&slab_cache_lock);
864
        spinlock_unlock(&slab_cache_lock);
861
        interrupts_restore(ipl);
865
        interrupts_restore(ipl);
862
       
866
       
863
        printf("%-16s %8" PRIs " %6d %6u %6ld %6ld %9ld %-3s\n",
867
        printf("%-16s %8" PRIs " %6d %6u %6ld %6ld %9ld %-3s\n",
864
            name, size, (1 << order), objects, allocated_slabs,
868
            name, size, (1 << order), objects, allocated_slabs,
865
            cached_objs, allocated_objs,
869
            cached_objs, allocated_objs,
866
            flags & SLAB_CACHE_SLINSIDE ? "in" : "out");
870
            flags & SLAB_CACHE_SLINSIDE ? "in" : "out");
867
    }
871
    }
868
}
872
}
869
 
873
 
870
void slab_cache_init(void)
874
void slab_cache_init(void)
871
{
875
{
872
    int i, size;
876
    int i, size;
873
 
877
 
874
    /* Initialize magazine cache */
878
    /* Initialize magazine cache */
875
    _slab_cache_create(&mag_cache, "slab_magazine",
879
    _slab_cache_create(&mag_cache, "slab_magazine",
876
        sizeof(slab_magazine_t) + SLAB_MAG_SIZE * sizeof(void*),
880
        sizeof(slab_magazine_t) + SLAB_MAG_SIZE * sizeof(void*),
877
        sizeof(uintptr_t), NULL, NULL, SLAB_CACHE_NOMAGAZINE |
881
        sizeof(uintptr_t), NULL, NULL, SLAB_CACHE_NOMAGAZINE |
878
        SLAB_CACHE_SLINSIDE);
882
        SLAB_CACHE_SLINSIDE);
879
    /* Initialize slab_cache cache */
883
    /* Initialize slab_cache cache */
880
    _slab_cache_create(&slab_cache_cache, "slab_cache",
884
    _slab_cache_create(&slab_cache_cache, "slab_cache",
881
        sizeof(slab_cache_cache), sizeof(uintptr_t), NULL, NULL,
885
        sizeof(slab_cache_cache), sizeof(uintptr_t), NULL, NULL,
882
        SLAB_CACHE_NOMAGAZINE | SLAB_CACHE_SLINSIDE);
886
        SLAB_CACHE_NOMAGAZINE | SLAB_CACHE_SLINSIDE);
883
    /* Initialize external slab cache */
887
    /* Initialize external slab cache */
884
    slab_extern_cache = slab_cache_create("slab_extern", sizeof(slab_t), 0,
888
    slab_extern_cache = slab_cache_create("slab_extern", sizeof(slab_t), 0,
885
        NULL, NULL, SLAB_CACHE_SLINSIDE | SLAB_CACHE_MAGDEFERRED);
889
        NULL, NULL, SLAB_CACHE_SLINSIDE | SLAB_CACHE_MAGDEFERRED);
886
 
890
 
887
    /* Initialize structures for malloc */
891
    /* Initialize structures for malloc */
888
    for (i = 0, size = (1 << SLAB_MIN_MALLOC_W);
892
    for (i = 0, size = (1 << SLAB_MIN_MALLOC_W);
889
        i < (SLAB_MAX_MALLOC_W - SLAB_MIN_MALLOC_W + 1);
893
        i < (SLAB_MAX_MALLOC_W - SLAB_MIN_MALLOC_W + 1);
890
        i++, size <<= 1) {
894
        i++, size <<= 1) {
891
        malloc_caches[i] = slab_cache_create(malloc_names[i], size, 0,
895
        malloc_caches[i] = slab_cache_create(malloc_names[i], size, 0,
892
            NULL, NULL, SLAB_CACHE_MAGDEFERRED);
896
            NULL, NULL, SLAB_CACHE_MAGDEFERRED);
893
    }
897
    }
894
#ifdef CONFIG_DEBUG       
898
#ifdef CONFIG_DEBUG       
895
    _slab_initialized = 1;
899
    _slab_initialized = 1;
896
#endif
900
#endif
897
}
901
}
898
 
902
 
899
/** Enable cpu_cache
903
/** Enable cpu_cache
900
 *
904
 *
901
 * Kernel calls this function, when it knows the real number of
905
 * Kernel calls this function, when it knows the real number of
902
 * processors.
906
 * processors.
903
 * Allocate slab for cpucache and enable it on all existing
907
 * Allocate slab for cpucache and enable it on all existing
904
 * slabs that are SLAB_CACHE_MAGDEFERRED
908
 * slabs that are SLAB_CACHE_MAGDEFERRED
905
 */
909
 */
906
void slab_enable_cpucache(void)
910
void slab_enable_cpucache(void)
907
{
911
{
908
    link_t *cur;
912
    link_t *cur;
909
    slab_cache_t *s;
913
    slab_cache_t *s;
910
 
914
 
911
#ifdef CONFIG_DEBUG
915
#ifdef CONFIG_DEBUG
912
    _slab_initialized = 2;
916
    _slab_initialized = 2;
913
#endif
917
#endif
914
 
918
 
915
    spinlock_lock(&slab_cache_lock);
919
    spinlock_lock(&slab_cache_lock);
916
   
920
   
917
    for (cur = slab_cache_list.next; cur != &slab_cache_list;
921
    for (cur = slab_cache_list.next; cur != &slab_cache_list;
918
        cur = cur->next){
922
        cur = cur->next){
919
        s = list_get_instance(cur, slab_cache_t, link);
923
        s = list_get_instance(cur, slab_cache_t, link);
920
        if ((s->flags & SLAB_CACHE_MAGDEFERRED) !=
924
        if ((s->flags & SLAB_CACHE_MAGDEFERRED) !=
921
            SLAB_CACHE_MAGDEFERRED)
925
            SLAB_CACHE_MAGDEFERRED)
922
            continue;
926
            continue;
923
        make_magcache(s);
927
        make_magcache(s);
924
        s->flags &= ~SLAB_CACHE_MAGDEFERRED;
928
        s->flags &= ~SLAB_CACHE_MAGDEFERRED;
925
    }
929
    }
926
 
930
 
927
    spinlock_unlock(&slab_cache_lock);
931
    spinlock_unlock(&slab_cache_lock);
928
}
932
}
929
 
933
 
930
/**************************************/
934
/**************************************/
931
/* kalloc/kfree functions             */
935
/* kalloc/kfree functions             */
932
void *malloc(unsigned int size, int flags)
936
void *malloc(unsigned int size, int flags)
933
{
937
{
934
    ASSERT(_slab_initialized);
938
    ASSERT(_slab_initialized);
935
    ASSERT(size && size <= (1 << SLAB_MAX_MALLOC_W));
939
    ASSERT(size && size <= (1 << SLAB_MAX_MALLOC_W));
936
   
940
   
937
    if (size < (1 << SLAB_MIN_MALLOC_W))
941
    if (size < (1 << SLAB_MIN_MALLOC_W))
938
        size = (1 << SLAB_MIN_MALLOC_W);
942
        size = (1 << SLAB_MIN_MALLOC_W);
939
 
943
 
940
    int idx = fnzb(size - 1) - SLAB_MIN_MALLOC_W + 1;
944
    int idx = fnzb(size - 1) - SLAB_MIN_MALLOC_W + 1;
941
 
945
 
942
    return slab_alloc(malloc_caches[idx], flags);
946
    return slab_alloc(malloc_caches[idx], flags);
943
}
947
}
944
 
948
 
945
void *realloc(void *ptr, unsigned int size, int flags)
949
void *realloc(void *ptr, unsigned int size, int flags)
946
{
950
{
947
    ASSERT(_slab_initialized);
951
    ASSERT(_slab_initialized);
948
    ASSERT(size <= (1 << SLAB_MAX_MALLOC_W));
952
    ASSERT(size <= (1 << SLAB_MAX_MALLOC_W));
949
   
953
   
950
    void *new_ptr;
954
    void *new_ptr;
951
   
955
   
952
    if (size > 0) {
956
    if (size > 0) {
953
        if (size < (1 << SLAB_MIN_MALLOC_W))
957
        if (size < (1 << SLAB_MIN_MALLOC_W))
954
            size = (1 << SLAB_MIN_MALLOC_W);
958
            size = (1 << SLAB_MIN_MALLOC_W);
955
        int idx = fnzb(size - 1) - SLAB_MIN_MALLOC_W + 1;
959
        int idx = fnzb(size - 1) - SLAB_MIN_MALLOC_W + 1;
956
       
960
       
957
        new_ptr = slab_alloc(malloc_caches[idx], flags);
961
        new_ptr = slab_alloc(malloc_caches[idx], flags);
958
    } else
962
    } else
959
        new_ptr = NULL;
963
        new_ptr = NULL;
960
   
964
   
961
    if ((new_ptr != NULL) && (ptr != NULL)) {
965
    if ((new_ptr != NULL) && (ptr != NULL)) {
962
        slab_t *slab = obj2slab(ptr);
966
        slab_t *slab = obj2slab(ptr);
963
        memcpy(new_ptr, ptr, min(size, slab->cache->size));
967
        memcpy(new_ptr, ptr, min(size, slab->cache->size));
964
    }
968
    }
965
   
969
   
966
    if (ptr != NULL)
970
    if (ptr != NULL)
967
        free(ptr);
971
        free(ptr);
968
   
972
   
969
    return new_ptr;
973
    return new_ptr;
970
}
974
}
971
 
975
 
972
void free(void *ptr)
976
void free(void *ptr)
973
{
977
{
974
    if (!ptr)
978
    if (!ptr)
975
        return;
979
        return;
976
 
980
 
977
    slab_t *slab = obj2slab(ptr);
981
    slab_t *slab = obj2slab(ptr);
978
    _slab_free(slab->cache, ptr, slab);
982
    _slab_free(slab->cache, ptr, slab);
979
}
983
}
980
 
984
 
981
/** @}
985
/** @}
982
 */
986
 */
983
 
987