Subversion Repositories HelenOS

Rev

Rev 2556 | Rev 2745 | Go to most recent revision | Only display areas with differences | Ignore whitespace | Details | Blame | Last modification | View Log | RSS feed

Rev 2556 Rev 2647
1
/*
1
/*
2
 * Copyright (c) 2001-2006 Jakub Jermar
2
 * Copyright (c) 2001-2006 Jakub Jermar
3
 * All rights reserved.
3
 * All rights reserved.
4
 *
4
 *
5
 * Redistribution and use in source and binary forms, with or without
5
 * Redistribution and use in source and binary forms, with or without
6
 * modification, are permitted provided that the following conditions
6
 * modification, are permitted provided that the following conditions
7
 * are met:
7
 * are met:
8
 *
8
 *
9
 * - Redistributions of source code must retain the above copyright
9
 * - Redistributions of source code must retain the above copyright
10
 *   notice, this list of conditions and the following disclaimer.
10
 *   notice, this list of conditions and the following disclaimer.
11
 * - Redistributions in binary form must reproduce the above copyright
11
 * - Redistributions in binary form must reproduce the above copyright
12
 *   notice, this list of conditions and the following disclaimer in the
12
 *   notice, this list of conditions and the following disclaimer in the
13
 *   documentation and/or other materials provided with the distribution.
13
 *   documentation and/or other materials provided with the distribution.
14
 * - The name of the author may not be used to endorse or promote products
14
 * - The name of the author may not be used to endorse or promote products
15
 *   derived from this software without specific prior written permission.
15
 *   derived from this software without specific prior written permission.
16
 *
16
 *
17
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
 */
27
 */
28
 
28
 
29
/** @addtogroup genericmm
29
/** @addtogroup genericmm
30
 * @{
30
 * @{
31
 */
31
 */
32
 
32
 
33
/**
33
/**
34
 * @file
34
 * @file
35
 * @brief   Address space related functions.
35
 * @brief   Address space related functions.
36
 *
36
 *
37
 * This file contains address space manipulation functions.
37
 * This file contains address space manipulation functions.
38
 * Roughly speaking, this is a higher-level client of
38
 * Roughly speaking, this is a higher-level client of
39
 * Virtual Address Translation (VAT) subsystem.
39
 * Virtual Address Translation (VAT) subsystem.
40
 *
40
 *
41
 * Functionality provided by this file allows one to
41
 * Functionality provided by this file allows one to
42
 * create address spaces and create, resize and share
42
 * create address spaces and create, resize and share
43
 * address space areas.
43
 * address space areas.
44
 *
44
 *
45
 * @see page.c
45
 * @see page.c
46
 *
46
 *
47
 */
47
 */
48
 
48
 
49
#include <mm/as.h>
49
#include <mm/as.h>
50
#include <arch/mm/as.h>
50
#include <arch/mm/as.h>
51
#include <mm/page.h>
51
#include <mm/page.h>
52
#include <mm/frame.h>
52
#include <mm/frame.h>
53
#include <mm/slab.h>
53
#include <mm/slab.h>
54
#include <mm/tlb.h>
54
#include <mm/tlb.h>
55
#include <arch/mm/page.h>
55
#include <arch/mm/page.h>
56
#include <genarch/mm/page_pt.h>
56
#include <genarch/mm/page_pt.h>
57
#include <genarch/mm/page_ht.h>
57
#include <genarch/mm/page_ht.h>
58
#include <mm/asid.h>
58
#include <mm/asid.h>
59
#include <arch/mm/asid.h>
59
#include <arch/mm/asid.h>
60
#include <preemption.h>
60
#include <preemption.h>
61
#include <synch/spinlock.h>
61
#include <synch/spinlock.h>
62
#include <synch/mutex.h>
62
#include <synch/mutex.h>
63
#include <adt/list.h>
63
#include <adt/list.h>
64
#include <adt/btree.h>
64
#include <adt/btree.h>
65
#include <proc/task.h>
65
#include <proc/task.h>
66
#include <proc/thread.h>
66
#include <proc/thread.h>
67
#include <arch/asm.h>
67
#include <arch/asm.h>
68
#include <panic.h>
68
#include <panic.h>
69
#include <debug.h>
69
#include <debug.h>
70
#include <print.h>
70
#include <print.h>
71
#include <memstr.h>
71
#include <memstr.h>
72
#include <macros.h>
72
#include <macros.h>
73
#include <arch.h>
73
#include <arch.h>
74
#include <errno.h>
74
#include <errno.h>
75
#include <config.h>
75
#include <config.h>
76
#include <align.h>
76
#include <align.h>
77
#include <arch/types.h>
77
#include <arch/types.h>
78
#include <syscall/copy.h>
78
#include <syscall/copy.h>
79
#include <arch/interrupt.h>
79
#include <arch/interrupt.h>
80
 
80
 
81
#ifdef CONFIG_VIRT_IDX_DCACHE
81
#ifdef CONFIG_VIRT_IDX_DCACHE
82
#include <arch/mm/cache.h>
82
#include <arch/mm/cache.h>
83
#endif /* CONFIG_VIRT_IDX_DCACHE */
83
#endif /* CONFIG_VIRT_IDX_DCACHE */
84
 
84
 
85
#ifndef __OBJC__
85
#ifndef __OBJC__
86
/**
86
/**
87
 * Each architecture decides what functions will be used to carry out
87
 * Each architecture decides what functions will be used to carry out
88
 * address space operations such as creating or locking page tables.
88
 * address space operations such as creating or locking page tables.
89
 */
89
 */
90
as_operations_t *as_operations = NULL;
90
as_operations_t *as_operations = NULL;
91
 
91
 
92
/**
92
/**
93
 * Slab for as_t objects.
93
 * Slab for as_t objects.
94
 */
94
 */
95
static slab_cache_t *as_slab;
95
static slab_cache_t *as_slab;
96
#endif
96
#endif
97
 
97
 
98
/**
98
/**
99
 * This lock serializes access to the ASID subsystem.
99
 * This lock serializes access to the ASID subsystem.
100
 * It protects:
100
 * It protects:
101
 * - inactive_as_with_asid_head list
101
 * - inactive_as_with_asid_head list
102
 * - as->asid for each as of the as_t type
102
 * - as->asid for each as of the as_t type
103
 * - asids_allocated counter
103
 * - asids_allocated counter
104
 */
104
 */
105
SPINLOCK_INITIALIZE(asidlock);
105
SPINLOCK_INITIALIZE(asidlock);
106
 
106
 
107
/**
107
/**
108
 * This list contains address spaces that are not active on any
108
 * This list contains address spaces that are not active on any
109
 * processor and that have valid ASID.
109
 * processor and that have valid ASID.
110
 */
110
 */
111
LIST_INITIALIZE(inactive_as_with_asid_head);
111
LIST_INITIALIZE(inactive_as_with_asid_head);
112
 
112
 
113
/** Kernel address space. */
113
/** Kernel address space. */
114
as_t *AS_KERNEL = NULL;
114
as_t *AS_KERNEL = NULL;
115
 
115
 
116
static int area_flags_to_page_flags(int aflags);
116
static int area_flags_to_page_flags(int aflags);
117
static as_area_t *find_area_and_lock(as_t *as, uintptr_t va);
117
static as_area_t *find_area_and_lock(as_t *as, uintptr_t va);
118
static bool check_area_conflicts(as_t *as, uintptr_t va, size_t size,
118
static bool check_area_conflicts(as_t *as, uintptr_t va, size_t size,
119
    as_area_t *avoid_area);
119
    as_area_t *avoid_area);
120
static void sh_info_remove_reference(share_info_t *sh_info);
120
static void sh_info_remove_reference(share_info_t *sh_info);
121
 
121
 
122
#ifndef __OBJC__
122
#ifndef __OBJC__
123
static int as_constructor(void *obj, int flags)
123
static int as_constructor(void *obj, int flags)
124
{
124
{
125
    as_t *as = (as_t *) obj;
125
    as_t *as = (as_t *) obj;
126
    int rc;
126
    int rc;
127
 
127
 
128
    link_initialize(&as->inactive_as_with_asid_link);
128
    link_initialize(&as->inactive_as_with_asid_link);
129
    mutex_initialize(&as->lock);   
129
    mutex_initialize(&as->lock);   
130
   
130
   
131
    rc = as_constructor_arch(as, flags);
131
    rc = as_constructor_arch(as, flags);
132
   
132
   
133
    return rc;
133
    return rc;
134
}
134
}
135
 
135
 
136
static int as_destructor(void *obj)
136
static int as_destructor(void *obj)
137
{
137
{
138
    as_t *as = (as_t *) obj;
138
    as_t *as = (as_t *) obj;
139
 
139
 
140
    return as_destructor_arch(as);
140
    return as_destructor_arch(as);
141
}
141
}
142
#endif
142
#endif
143
 
143
 
144
/** Initialize address space subsystem. */
144
/** Initialize address space subsystem. */
145
void as_init(void)
145
void as_init(void)
146
{
146
{
147
    as_arch_init();
147
    as_arch_init();
148
 
148
 
149
#ifndef __OBJC__
149
#ifndef __OBJC__
150
    as_slab = slab_cache_create("as_slab", sizeof(as_t), 0,
150
    as_slab = slab_cache_create("as_slab", sizeof(as_t), 0,
151
        as_constructor, as_destructor, SLAB_CACHE_MAGDEFERRED);
151
        as_constructor, as_destructor, SLAB_CACHE_MAGDEFERRED);
152
#endif
152
#endif
153
   
153
   
154
    AS_KERNEL = as_create(FLAG_AS_KERNEL);
154
    AS_KERNEL = as_create(FLAG_AS_KERNEL);
155
    if (!AS_KERNEL)
155
    if (!AS_KERNEL)
156
        panic("can't create kernel address space\n");
156
        panic("can't create kernel address space\n");
157
   
157
   
158
}
158
}
159
 
159
 
160
/** Create address space.
160
/** Create address space.
161
 *
161
 *
162
 * @param flags Flags that influence way in wich the address space is created.
162
 * @param flags Flags that influence way in wich the address space is created.
163
 */
163
 */
164
as_t *as_create(int flags)
164
as_t *as_create(int flags)
165
{
165
{
166
    as_t *as;
166
    as_t *as;
167
 
167
 
168
#ifdef __OBJC__
168
#ifdef __OBJC__
169
    as = [as_t new];
169
    as = [as_t new];
170
    link_initialize(&as->inactive_as_with_asid_link);
170
    link_initialize(&as->inactive_as_with_asid_link);
171
    mutex_initialize(&as->lock);   
171
    mutex_initialize(&as->lock);   
172
    (void) as_constructor_arch(as, flags);
172
    (void) as_constructor_arch(as, flags);
173
#else
173
#else
174
    as = (as_t *) slab_alloc(as_slab, 0);
174
    as = (as_t *) slab_alloc(as_slab, 0);
175
#endif
175
#endif
176
    (void) as_create_arch(as, 0);
176
    (void) as_create_arch(as, 0);
177
   
177
   
178
    btree_create(&as->as_area_btree);
178
    btree_create(&as->as_area_btree);
179
   
179
   
180
    if (flags & FLAG_AS_KERNEL)
180
    if (flags & FLAG_AS_KERNEL)
181
        as->asid = ASID_KERNEL;
181
        as->asid = ASID_KERNEL;
182
    else
182
    else
183
        as->asid = ASID_INVALID;
183
        as->asid = ASID_INVALID;
184
   
184
   
185
    atomic_set(&as->refcount, 0);
185
    atomic_set(&as->refcount, 0);
186
    as->cpu_refcount = 0;
186
    as->cpu_refcount = 0;
187
#ifdef AS_PAGE_TABLE
187
#ifdef AS_PAGE_TABLE
188
    as->genarch.page_table = page_table_create(flags);
188
    as->genarch.page_table = page_table_create(flags);
189
#else
189
#else
190
    page_table_create(flags);
190
    page_table_create(flags);
191
#endif
191
#endif
192
 
192
 
193
    return as;
193
    return as;
194
}
194
}
195
 
195
 
196
/** Destroy adress space.
196
/** Destroy adress space.
197
 *
197
 *
198
 * When there are no tasks referencing this address space (i.e. its refcount is
198
 * When there are no tasks referencing this address space (i.e. its refcount is
199
 * zero), the address space can be destroyed.
199
 * zero), the address space can be destroyed.
200
 *
200
 *
201
 * We know that we don't hold any spinlock.
201
 * We know that we don't hold any spinlock.
202
 */
202
 */
203
void as_destroy(as_t *as)
203
void as_destroy(as_t *as)
204
{
204
{
205
    ipl_t ipl;
205
    ipl_t ipl;
206
    bool cond;
206
    bool cond;
207
    DEADLOCK_PROBE_INIT(p_asidlock);
207
    DEADLOCK_PROBE_INIT(p_asidlock);
208
 
208
 
209
    ASSERT(atomic_get(&as->refcount) == 0);
209
    ASSERT(atomic_get(&as->refcount) == 0);
210
   
210
   
211
    /*
211
    /*
212
     * Since there is no reference to this area,
212
     * Since there is no reference to this area,
213
     * it is safe not to lock its mutex.
213
     * it is safe not to lock its mutex.
214
     */
214
     */
215
 
215
 
216
    /*
216
    /*
217
     * We need to avoid deadlock between TLB shootdown and asidlock.
217
     * We need to avoid deadlock between TLB shootdown and asidlock.
218
     * We therefore try to take asid conditionally and if we don't succeed,
218
     * We therefore try to take asid conditionally and if we don't succeed,
219
     * we enable interrupts and try again. This is done while preemption is
219
     * we enable interrupts and try again. This is done while preemption is
220
     * disabled to prevent nested context switches. We also depend on the
220
     * disabled to prevent nested context switches. We also depend on the
221
     * fact that so far no spinlocks are held.
221
     * fact that so far no spinlocks are held.
222
     */
222
     */
223
    preemption_disable();
223
    preemption_disable();
224
    ipl = interrupts_read();
224
    ipl = interrupts_read();
225
retry:
225
retry:
226
    interrupts_disable();
226
    interrupts_disable();
227
    if (!spinlock_trylock(&asidlock)) {
227
    if (!spinlock_trylock(&asidlock)) {
228
        interrupts_enable();
228
        interrupts_enable();
229
        DEADLOCK_PROBE(p_asidlock, DEADLOCK_THRESHOLD);
229
        DEADLOCK_PROBE(p_asidlock, DEADLOCK_THRESHOLD);
230
        goto retry;
230
        goto retry;
231
    }
231
    }
232
    preemption_enable();    /* Interrupts disabled, enable preemption */
232
    preemption_enable();    /* Interrupts disabled, enable preemption */
233
    if (as->asid != ASID_INVALID && as != AS_KERNEL) {
233
    if (as->asid != ASID_INVALID && as != AS_KERNEL) {
234
        if (as != AS && as->cpu_refcount == 0)
234
        if (as != AS && as->cpu_refcount == 0)
235
            list_remove(&as->inactive_as_with_asid_link);
235
            list_remove(&as->inactive_as_with_asid_link);
236
        asid_put(as->asid);
236
        asid_put(as->asid);
237
    }
237
    }
238
    spinlock_unlock(&asidlock);
238
    spinlock_unlock(&asidlock);
239
 
239
 
240
    /*
240
    /*
241
     * Destroy address space areas of the address space.
241
     * Destroy address space areas of the address space.
242
     * The B+tree must be walked carefully because it is
242
     * The B+tree must be walked carefully because it is
243
     * also being destroyed.
243
     * also being destroyed.
244
     */
244
     */
245
    for (cond = true; cond; ) {
245
    for (cond = true; cond; ) {
246
        btree_node_t *node;
246
        btree_node_t *node;
247
 
247
 
248
        ASSERT(!list_empty(&as->as_area_btree.leaf_head));
248
        ASSERT(!list_empty(&as->as_area_btree.leaf_head));
249
        node = list_get_instance(as->as_area_btree.leaf_head.next,
249
        node = list_get_instance(as->as_area_btree.leaf_head.next,
250
            btree_node_t, leaf_link);
250
            btree_node_t, leaf_link);
251
 
251
 
252
        if ((cond = node->keys)) {
252
        if ((cond = node->keys)) {
253
            as_area_destroy(as, node->key[0]);
253
            as_area_destroy(as, node->key[0]);
254
        }
254
        }
255
    }
255
    }
256
 
256
 
257
    btree_destroy(&as->as_area_btree);
257
    btree_destroy(&as->as_area_btree);
258
#ifdef AS_PAGE_TABLE
258
#ifdef AS_PAGE_TABLE
259
    page_table_destroy(as->genarch.page_table);
259
    page_table_destroy(as->genarch.page_table);
260
#else
260
#else
261
    page_table_destroy(NULL);
261
    page_table_destroy(NULL);
262
#endif
262
#endif
263
 
263
 
264
    interrupts_restore(ipl);
264
    interrupts_restore(ipl);
265
 
265
 
266
#ifdef __OBJC__
266
#ifdef __OBJC__
267
    [as free];
267
    [as free];
268
#else
268
#else
269
    slab_free(as_slab, as);
269
    slab_free(as_slab, as);
270
#endif
270
#endif
271
}
271
}
272
 
272
 
273
/** Create address space area of common attributes.
273
/** Create address space area of common attributes.
274
 *
274
 *
275
 * The created address space area is added to the target address space.
275
 * The created address space area is added to the target address space.
276
 *
276
 *
277
 * @param as Target address space.
277
 * @param as Target address space.
278
 * @param flags Flags of the area memory.
278
 * @param flags Flags of the area memory.
279
 * @param size Size of area.
279
 * @param size Size of area.
280
 * @param base Base address of area.
280
 * @param base Base address of area.
281
 * @param attrs Attributes of the area.
281
 * @param attrs Attributes of the area.
282
 * @param backend Address space area backend. NULL if no backend is used.
282
 * @param backend Address space area backend. NULL if no backend is used.
283
 * @param backend_data NULL or a pointer to an array holding two void *.
283
 * @param backend_data NULL or a pointer to an array holding two void *.
284
 *
284
 *
285
 * @return Address space area on success or NULL on failure.
285
 * @return Address space area on success or NULL on failure.
286
 */
286
 */
287
as_area_t *
287
as_area_t *
288
as_area_create(as_t *as, int flags, size_t size, uintptr_t base, int attrs,
288
as_area_create(as_t *as, int flags, size_t size, uintptr_t base, int attrs,
289
           mem_backend_t *backend, mem_backend_data_t *backend_data)
289
           mem_backend_t *backend, mem_backend_data_t *backend_data)
290
{
290
{
291
    ipl_t ipl;
291
    ipl_t ipl;
292
    as_area_t *a;
292
    as_area_t *a;
293
   
293
   
294
    if (base % PAGE_SIZE)
294
    if (base % PAGE_SIZE)
295
        return NULL;
295
        return NULL;
296
 
296
 
297
    if (!size)
297
    if (!size)
298
        return NULL;
298
        return NULL;
299
 
299
 
300
    /* Writeable executable areas are not supported. */
300
    /* Writeable executable areas are not supported. */
301
    if ((flags & AS_AREA_EXEC) && (flags & AS_AREA_WRITE))
301
    if ((flags & AS_AREA_EXEC) && (flags & AS_AREA_WRITE))
302
        return NULL;
302
        return NULL;
303
   
303
   
304
    ipl = interrupts_disable();
304
    ipl = interrupts_disable();
305
    mutex_lock(&as->lock);
305
    mutex_lock(&as->lock);
306
   
306
   
307
    if (!check_area_conflicts(as, base, size, NULL)) {
307
    if (!check_area_conflicts(as, base, size, NULL)) {
308
        mutex_unlock(&as->lock);
308
        mutex_unlock(&as->lock);
309
        interrupts_restore(ipl);
309
        interrupts_restore(ipl);
310
        return NULL;
310
        return NULL;
311
    }
311
    }
312
   
312
   
313
    a = (as_area_t *) malloc(sizeof(as_area_t), 0);
313
    a = (as_area_t *) malloc(sizeof(as_area_t), 0);
314
 
314
 
315
    mutex_initialize(&a->lock);
315
    mutex_initialize(&a->lock);
316
   
316
   
317
    a->as = as;
317
    a->as = as;
318
    a->flags = flags;
318
    a->flags = flags;
319
    a->attributes = attrs;
319
    a->attributes = attrs;
320
    a->pages = SIZE2FRAMES(size);
320
    a->pages = SIZE2FRAMES(size);
321
    a->base = base;
321
    a->base = base;
322
    a->sh_info = NULL;
322
    a->sh_info = NULL;
323
    a->backend = backend;
323
    a->backend = backend;
324
    if (backend_data)
324
    if (backend_data)
325
        a->backend_data = *backend_data;
325
        a->backend_data = *backend_data;
326
    else
326
    else
327
        memsetb((uintptr_t) &a->backend_data, sizeof(a->backend_data),
327
        memsetb((uintptr_t) &a->backend_data, sizeof(a->backend_data),
328
            0);
328
            0);
329
 
329
 
330
    btree_create(&a->used_space);
330
    btree_create(&a->used_space);
331
   
331
   
332
    btree_insert(&as->as_area_btree, base, (void *) a, NULL);
332
    btree_insert(&as->as_area_btree, base, (void *) a, NULL);
333
 
333
 
334
    mutex_unlock(&as->lock);
334
    mutex_unlock(&as->lock);
335
    interrupts_restore(ipl);
335
    interrupts_restore(ipl);
336
 
336
 
337
    return a;
337
    return a;
338
}
338
}
339
 
339
 
340
/** Find address space area and change it.
340
/** Find address space area and change it.
341
 *
341
 *
342
 * @param as Address space.
342
 * @param as Address space.
343
 * @param address Virtual address belonging to the area to be changed. Must be
343
 * @param address Virtual address belonging to the area to be changed. Must be
344
 *     page-aligned.
344
 *     page-aligned.
345
 * @param size New size of the virtual memory block starting at address.
345
 * @param size New size of the virtual memory block starting at address.
346
 * @param flags Flags influencing the remap operation. Currently unused.
346
 * @param flags Flags influencing the remap operation. Currently unused.
347
 *
347
 *
348
 * @return Zero on success or a value from @ref errno.h otherwise.
348
 * @return Zero on success or a value from @ref errno.h otherwise.
349
 */
349
 */
350
int as_area_resize(as_t *as, uintptr_t address, size_t size, int flags)
350
int as_area_resize(as_t *as, uintptr_t address, size_t size, int flags)
351
{
351
{
352
    as_area_t *area;
352
    as_area_t *area;
353
    ipl_t ipl;
353
    ipl_t ipl;
354
    size_t pages;
354
    size_t pages;
355
   
355
   
356
    ipl = interrupts_disable();
356
    ipl = interrupts_disable();
357
    mutex_lock(&as->lock);
357
    mutex_lock(&as->lock);
358
   
358
   
359
    /*
359
    /*
360
     * Locate the area.
360
     * Locate the area.
361
     */
361
     */
362
    area = find_area_and_lock(as, address);
362
    area = find_area_and_lock(as, address);
363
    if (!area) {
363
    if (!area) {
364
        mutex_unlock(&as->lock);
364
        mutex_unlock(&as->lock);
365
        interrupts_restore(ipl);
365
        interrupts_restore(ipl);
366
        return ENOENT;
366
        return ENOENT;
367
    }
367
    }
368
 
368
 
369
    if (area->backend == &phys_backend) {
369
    if (area->backend == &phys_backend) {
370
        /*
370
        /*
371
         * Remapping of address space areas associated
371
         * Remapping of address space areas associated
372
         * with memory mapped devices is not supported.
372
         * with memory mapped devices is not supported.
373
         */
373
         */
374
        mutex_unlock(&area->lock);
374
        mutex_unlock(&area->lock);
375
        mutex_unlock(&as->lock);
375
        mutex_unlock(&as->lock);
376
        interrupts_restore(ipl);
376
        interrupts_restore(ipl);
377
        return ENOTSUP;
377
        return ENOTSUP;
378
    }
378
    }
379
    if (area->sh_info) {
379
    if (area->sh_info) {
380
        /*
380
        /*
381
         * Remapping of shared address space areas
381
         * Remapping of shared address space areas
382
         * is not supported.
382
         * is not supported.
383
         */
383
         */
384
        mutex_unlock(&area->lock);
384
        mutex_unlock(&area->lock);
385
        mutex_unlock(&as->lock);
385
        mutex_unlock(&as->lock);
386
        interrupts_restore(ipl);
386
        interrupts_restore(ipl);
387
        return ENOTSUP;
387
        return ENOTSUP;
388
    }
388
    }
389
 
389
 
390
    pages = SIZE2FRAMES((address - area->base) + size);
390
    pages = SIZE2FRAMES((address - area->base) + size);
391
    if (!pages) {
391
    if (!pages) {
392
        /*
392
        /*
393
         * Zero size address space areas are not allowed.
393
         * Zero size address space areas are not allowed.
394
         */
394
         */
395
        mutex_unlock(&area->lock);
395
        mutex_unlock(&area->lock);
396
        mutex_unlock(&as->lock);
396
        mutex_unlock(&as->lock);
397
        interrupts_restore(ipl);
397
        interrupts_restore(ipl);
398
        return EPERM;
398
        return EPERM;
399
    }
399
    }
400
   
400
   
401
    if (pages < area->pages) {
401
    if (pages < area->pages) {
402
        bool cond;
402
        bool cond;
403
        uintptr_t start_free = area->base + pages*PAGE_SIZE;
403
        uintptr_t start_free = area->base + pages*PAGE_SIZE;
404
 
404
 
405
        /*
405
        /*
406
         * Shrinking the area.
406
         * Shrinking the area.
407
         * No need to check for overlaps.
407
         * No need to check for overlaps.
408
         */
408
         */
409
 
409
 
410
        /*
410
        /*
411
         * Start TLB shootdown sequence.
411
         * Start TLB shootdown sequence.
412
         */
412
         */
413
        tlb_shootdown_start(TLB_INVL_PAGES, AS->asid, area->base +
413
        tlb_shootdown_start(TLB_INVL_PAGES, AS->asid, area->base +
414
            pages * PAGE_SIZE, area->pages - pages);
414
            pages * PAGE_SIZE, area->pages - pages);
415
 
415
 
416
        /*
416
        /*
417
         * Remove frames belonging to used space starting from
417
         * Remove frames belonging to used space starting from
418
         * the highest addresses downwards until an overlap with
418
         * the highest addresses downwards until an overlap with
419
         * the resized address space area is found. Note that this
419
         * the resized address space area is found. Note that this
420
         * is also the right way to remove part of the used_space
420
         * is also the right way to remove part of the used_space
421
         * B+tree leaf list.
421
         * B+tree leaf list.
422
         */    
422
         */    
423
        for (cond = true; cond;) {
423
        for (cond = true; cond;) {
424
            btree_node_t *node;
424
            btree_node_t *node;
425
       
425
       
426
            ASSERT(!list_empty(&area->used_space.leaf_head));
426
            ASSERT(!list_empty(&area->used_space.leaf_head));
427
            node =
427
            node =
428
                list_get_instance(area->used_space.leaf_head.prev,
428
                list_get_instance(area->used_space.leaf_head.prev,
429
                btree_node_t, leaf_link);
429
                btree_node_t, leaf_link);
430
            if ((cond = (bool) node->keys)) {
430
            if ((cond = (bool) node->keys)) {
431
                uintptr_t b = node->key[node->keys - 1];
431
                uintptr_t b = node->key[node->keys - 1];
432
                count_t c =
432
                count_t c =
433
                    (count_t) node->value[node->keys - 1];
433
                    (count_t) node->value[node->keys - 1];
434
                int i = 0;
434
                int i = 0;
435
           
435
           
436
                if (overlaps(b, c * PAGE_SIZE, area->base,
436
                if (overlaps(b, c * PAGE_SIZE, area->base,
437
                    pages * PAGE_SIZE)) {
437
                    pages * PAGE_SIZE)) {
438
                   
438
                   
439
                    if (b + c * PAGE_SIZE <= start_free) {
439
                    if (b + c * PAGE_SIZE <= start_free) {
440
                        /*
440
                        /*
441
                         * The whole interval fits
441
                         * The whole interval fits
442
                         * completely in the resized
442
                         * completely in the resized
443
                         * address space area.
443
                         * address space area.
444
                         */
444
                         */
445
                        break;
445
                        break;
446
                    }
446
                    }
447
       
447
       
448
                    /*
448
                    /*
449
                     * Part of the interval corresponding
449
                     * Part of the interval corresponding
450
                     * to b and c overlaps with the resized
450
                     * to b and c overlaps with the resized
451
                     * address space area.
451
                     * address space area.
452
                     */
452
                     */
453
       
453
       
454
                    cond = false;   /* we are almost done */
454
                    cond = false;   /* we are almost done */
455
                    i = (start_free - b) >> PAGE_WIDTH;
455
                    i = (start_free - b) >> PAGE_WIDTH;
456
                    if (!used_space_remove(area, start_free,
456
                    if (!used_space_remove(area, start_free,
457
                        c - i))
457
                        c - i))
458
                        panic("Could not remove used "
458
                        panic("Could not remove used "
459
                            "space.\n");
459
                            "space.\n");
460
                } else {
460
                } else {
461
                    /*
461
                    /*
462
                     * The interval of used space can be
462
                     * The interval of used space can be
463
                     * completely removed.
463
                     * completely removed.
464
                     */
464
                     */
465
                    if (!used_space_remove(area, b, c))
465
                    if (!used_space_remove(area, b, c))
466
                        panic("Could not remove used "
466
                        panic("Could not remove used "
467
                            "space.\n");
467
                            "space.\n");
468
                }
468
                }
469
           
469
           
470
                for (; i < c; i++) {
470
                for (; i < c; i++) {
471
                    pte_t *pte;
471
                    pte_t *pte;
472
           
472
           
473
                    page_table_lock(as, false);
473
                    page_table_lock(as, false);
474
                    pte = page_mapping_find(as, b +
474
                    pte = page_mapping_find(as, b +
475
                        i * PAGE_SIZE);
475
                        i * PAGE_SIZE);
476
                    ASSERT(pte && PTE_VALID(pte) &&
476
                    ASSERT(pte && PTE_VALID(pte) &&
477
                        PTE_PRESENT(pte));
477
                        PTE_PRESENT(pte));
478
                    if (area->backend &&
478
                    if (area->backend &&
479
                        area->backend->frame_free) {
479
                        area->backend->frame_free) {
480
                        area->backend->frame_free(area,
480
                        area->backend->frame_free(area,
481
                            b + i * PAGE_SIZE,
481
                            b + i * PAGE_SIZE,
482
                            PTE_GET_FRAME(pte));
482
                            PTE_GET_FRAME(pte));
483
                    }
483
                    }
484
                    page_mapping_remove(as, b +
484
                    page_mapping_remove(as, b +
485
                        i * PAGE_SIZE);
485
                        i * PAGE_SIZE);
486
                    page_table_unlock(as, false);
486
                    page_table_unlock(as, false);
487
                }
487
                }
488
            }
488
            }
489
        }
489
        }
490
 
490
 
491
        /*
491
        /*
492
         * Finish TLB shootdown sequence.
492
         * Finish TLB shootdown sequence.
493
         */
493
         */
494
 
494
 
495
        tlb_invalidate_pages(as->asid, area->base + pages * PAGE_SIZE,
495
        tlb_invalidate_pages(as->asid, area->base + pages * PAGE_SIZE,
496
            area->pages - pages);
496
            area->pages - pages);
497
        /*
497
        /*
498
         * Invalidate software translation caches (e.g. TSB on sparc64).
498
         * Invalidate software translation caches (e.g. TSB on sparc64).
499
         */
499
         */
500
        as_invalidate_translation_cache(as, area->base +
500
        as_invalidate_translation_cache(as, area->base +
501
            pages * PAGE_SIZE, area->pages - pages);
501
            pages * PAGE_SIZE, area->pages - pages);
502
        tlb_shootdown_finalize();
502
        tlb_shootdown_finalize();
503
       
503
       
504
    } else {
504
    } else {
505
        /*
505
        /*
506
         * Growing the area.
506
         * Growing the area.
507
         * Check for overlaps with other address space areas.
507
         * Check for overlaps with other address space areas.
508
         */
508
         */
509
        if (!check_area_conflicts(as, address, pages * PAGE_SIZE,
509
        if (!check_area_conflicts(as, address, pages * PAGE_SIZE,
510
            area)) {
510
            area)) {
511
            mutex_unlock(&area->lock);
511
            mutex_unlock(&area->lock);
512
            mutex_unlock(&as->lock);       
512
            mutex_unlock(&as->lock);       
513
            interrupts_restore(ipl);
513
            interrupts_restore(ipl);
514
            return EADDRNOTAVAIL;
514
            return EADDRNOTAVAIL;
515
        }
515
        }
516
    }
516
    }
517
 
517
 
518
    area->pages = pages;
518
    area->pages = pages;
519
   
519
   
520
    mutex_unlock(&area->lock);
520
    mutex_unlock(&area->lock);
521
    mutex_unlock(&as->lock);
521
    mutex_unlock(&as->lock);
522
    interrupts_restore(ipl);
522
    interrupts_restore(ipl);
523
 
523
 
524
    return 0;
524
    return 0;
525
}
525
}
526
 
526
 
527
/** Destroy address space area.
527
/** Destroy address space area.
528
 *
528
 *
529
 * @param as Address space.
529
 * @param as Address space.
530
 * @param address Address withing the area to be deleted.
530
 * @param address Address withing the area to be deleted.
531
 *
531
 *
532
 * @return Zero on success or a value from @ref errno.h on failure.
532
 * @return Zero on success or a value from @ref errno.h on failure.
533
 */
533
 */
534
int as_area_destroy(as_t *as, uintptr_t address)
534
int as_area_destroy(as_t *as, uintptr_t address)
535
{
535
{
536
    as_area_t *area;
536
    as_area_t *area;
537
    uintptr_t base;
537
    uintptr_t base;
538
    link_t *cur;
538
    link_t *cur;
539
    ipl_t ipl;
539
    ipl_t ipl;
540
 
540
 
541
    ipl = interrupts_disable();
541
    ipl = interrupts_disable();
542
    mutex_lock(&as->lock);
542
    mutex_lock(&as->lock);
543
 
543
 
544
    area = find_area_and_lock(as, address);
544
    area = find_area_and_lock(as, address);
545
    if (!area) {
545
    if (!area) {
546
        mutex_unlock(&as->lock);
546
        mutex_unlock(&as->lock);
547
        interrupts_restore(ipl);
547
        interrupts_restore(ipl);
548
        return ENOENT;
548
        return ENOENT;
549
    }
549
    }
550
 
550
 
551
    base = area->base;
551
    base = area->base;
552
 
552
 
553
    /*
553
    /*
554
     * Start TLB shootdown sequence.
554
     * Start TLB shootdown sequence.
555
     */
555
     */
556
    tlb_shootdown_start(TLB_INVL_PAGES, as->asid, area->base, area->pages);
556
    tlb_shootdown_start(TLB_INVL_PAGES, as->asid, area->base, area->pages);
557
 
557
 
558
    /*
558
    /*
559
     * Visit only the pages mapped by used_space B+tree.
559
     * Visit only the pages mapped by used_space B+tree.
560
     */
560
     */
561
    for (cur = area->used_space.leaf_head.next;
561
    for (cur = area->used_space.leaf_head.next;
562
        cur != &area->used_space.leaf_head; cur = cur->next) {
562
        cur != &area->used_space.leaf_head; cur = cur->next) {
563
        btree_node_t *node;
563
        btree_node_t *node;
564
        int i;
564
        int i;
565
       
565
       
566
        node = list_get_instance(cur, btree_node_t, leaf_link);
566
        node = list_get_instance(cur, btree_node_t, leaf_link);
567
        for (i = 0; i < node->keys; i++) {
567
        for (i = 0; i < node->keys; i++) {
568
            uintptr_t b = node->key[i];
568
            uintptr_t b = node->key[i];
569
            count_t j;
569
            count_t j;
570
            pte_t *pte;
570
            pte_t *pte;
571
           
571
           
572
            for (j = 0; j < (count_t) node->value[i]; j++) {
572
            for (j = 0; j < (count_t) node->value[i]; j++) {
573
                page_table_lock(as, false);
573
                page_table_lock(as, false);
574
                pte = page_mapping_find(as, b + j * PAGE_SIZE);
574
                pte = page_mapping_find(as, b + j * PAGE_SIZE);
575
                ASSERT(pte && PTE_VALID(pte) &&
575
                ASSERT(pte && PTE_VALID(pte) &&
576
                    PTE_PRESENT(pte));
576
                    PTE_PRESENT(pte));
577
                if (area->backend &&
577
                if (area->backend &&
578
                    area->backend->frame_free) {
578
                    area->backend->frame_free) {
579
                    area->backend->frame_free(area, b +
579
                    area->backend->frame_free(area, b +
580
                        j * PAGE_SIZE, PTE_GET_FRAME(pte));
580
                        j * PAGE_SIZE, PTE_GET_FRAME(pte));
581
                }
581
                }
582
                page_mapping_remove(as, b + j * PAGE_SIZE);            
582
                page_mapping_remove(as, b + j * PAGE_SIZE);            
583
                page_table_unlock(as, false);
583
                page_table_unlock(as, false);
584
            }
584
            }
585
        }
585
        }
586
    }
586
    }
587
 
587
 
588
    /*
588
    /*
589
     * Finish TLB shootdown sequence.
589
     * Finish TLB shootdown sequence.
590
     */
590
     */
591
 
591
 
592
    tlb_invalidate_pages(as->asid, area->base, area->pages);
592
    tlb_invalidate_pages(as->asid, area->base, area->pages);
593
    /*
593
    /*
594
     * Invalidate potential software translation caches (e.g. TSB on
594
     * Invalidate potential software translation caches (e.g. TSB on
595
     * sparc64).
595
     * sparc64).
596
     */
596
     */
597
    as_invalidate_translation_cache(as, area->base, area->pages);
597
    as_invalidate_translation_cache(as, area->base, area->pages);
598
    tlb_shootdown_finalize();
598
    tlb_shootdown_finalize();
599
   
599
   
600
    btree_destroy(&area->used_space);
600
    btree_destroy(&area->used_space);
601
 
601
 
602
    area->attributes |= AS_AREA_ATTR_PARTIAL;
602
    area->attributes |= AS_AREA_ATTR_PARTIAL;
603
   
603
   
604
    if (area->sh_info)
604
    if (area->sh_info)
605
        sh_info_remove_reference(area->sh_info);
605
        sh_info_remove_reference(area->sh_info);
606
       
606
       
607
    mutex_unlock(&area->lock);
607
    mutex_unlock(&area->lock);
608
 
608
 
609
    /*
609
    /*
610
     * Remove the empty area from address space.
610
     * Remove the empty area from address space.
611
     */
611
     */
612
    btree_remove(&as->as_area_btree, base, NULL);
612
    btree_remove(&as->as_area_btree, base, NULL);
613
   
613
   
614
    free(area);
614
    free(area);
615
   
615
   
616
    mutex_unlock(&as->lock);
616
    mutex_unlock(&as->lock);
617
    interrupts_restore(ipl);
617
    interrupts_restore(ipl);
618
    return 0;
618
    return 0;
619
}
619
}
620
 
620
 
621
/** Share address space area with another or the same address space.
621
/** Share address space area with another or the same address space.
622
 *
622
 *
623
 * Address space area mapping is shared with a new address space area.
623
 * Address space area mapping is shared with a new address space area.
624
 * If the source address space area has not been shared so far,
624
 * If the source address space area has not been shared so far,
625
 * a new sh_info is created. The new address space area simply gets the
625
 * a new sh_info is created. The new address space area simply gets the
626
 * sh_info of the source area. The process of duplicating the
626
 * sh_info of the source area. The process of duplicating the
627
 * mapping is done through the backend share function.
627
 * mapping is done through the backend share function.
628
 *
628
 *
629
 * @param src_as Pointer to source address space.
629
 * @param src_as Pointer to source address space.
630
 * @param src_base Base address of the source address space area.
630
 * @param src_base Base address of the source address space area.
631
 * @param acc_size Expected size of the source area.
631
 * @param acc_size Expected size of the source area.
632
 * @param dst_as Pointer to destination address space.
632
 * @param dst_as Pointer to destination address space.
633
 * @param dst_base Target base address.
633
 * @param dst_base Target base address.
634
 * @param dst_flags_mask Destination address space area flags mask.
634
 * @param dst_flags_mask Destination address space area flags mask.
635
 *
635
 *
636
 * @return Zero on success or ENOENT if there is no such task or if there is no
636
 * @return Zero on success or ENOENT if there is no such task or if there is no
637
 * such address space area, EPERM if there was a problem in accepting the area
637
 * such address space area, EPERM if there was a problem in accepting the area
638
 * or ENOMEM if there was a problem in allocating destination address space
638
 * or ENOMEM if there was a problem in allocating destination address space
639
 * area. ENOTSUP is returned if the address space area backend does not support
639
 * area. ENOTSUP is returned if the address space area backend does not support
640
 * sharing.
640
 * sharing.
641
 */
641
 */
642
int as_area_share(as_t *src_as, uintptr_t src_base, size_t acc_size,
642
int as_area_share(as_t *src_as, uintptr_t src_base, size_t acc_size,
643
          as_t *dst_as, uintptr_t dst_base, int dst_flags_mask)
643
    as_t *dst_as, uintptr_t dst_base, int dst_flags_mask)
644
{
644
{
645
    ipl_t ipl;
645
    ipl_t ipl;
646
    int src_flags;
646
    int src_flags;
647
    size_t src_size;
647
    size_t src_size;
648
    as_area_t *src_area, *dst_area;
648
    as_area_t *src_area, *dst_area;
649
    share_info_t *sh_info;
649
    share_info_t *sh_info;
650
    mem_backend_t *src_backend;
650
    mem_backend_t *src_backend;
651
    mem_backend_data_t src_backend_data;
651
    mem_backend_data_t src_backend_data;
652
   
652
   
653
    ipl = interrupts_disable();
653
    ipl = interrupts_disable();
654
    mutex_lock(&src_as->lock);
654
    mutex_lock(&src_as->lock);
655
    src_area = find_area_and_lock(src_as, src_base);
655
    src_area = find_area_and_lock(src_as, src_base);
656
    if (!src_area) {
656
    if (!src_area) {
657
        /*
657
        /*
658
         * Could not find the source address space area.
658
         * Could not find the source address space area.
659
         */
659
         */
660
        mutex_unlock(&src_as->lock);
660
        mutex_unlock(&src_as->lock);
661
        interrupts_restore(ipl);
661
        interrupts_restore(ipl);
662
        return ENOENT;
662
        return ENOENT;
663
    }
663
    }
664
 
664
 
665
    if (!src_area->backend || !src_area->backend->share) {
665
    if (!src_area->backend || !src_area->backend->share) {
666
        /*
666
        /*
667
         * There is no backend or the backend does not
667
         * There is no backend or the backend does not
668
         * know how to share the area.
668
         * know how to share the area.
669
         */
669
         */
670
        mutex_unlock(&src_area->lock);
670
        mutex_unlock(&src_area->lock);
671
        mutex_unlock(&src_as->lock);
671
        mutex_unlock(&src_as->lock);
672
        interrupts_restore(ipl);
672
        interrupts_restore(ipl);
673
        return ENOTSUP;
673
        return ENOTSUP;
674
    }
674
    }
675
   
675
   
676
    src_size = src_area->pages * PAGE_SIZE;
676
    src_size = src_area->pages * PAGE_SIZE;
677
    src_flags = src_area->flags;
677
    src_flags = src_area->flags;
678
    src_backend = src_area->backend;
678
    src_backend = src_area->backend;
679
    src_backend_data = src_area->backend_data;
679
    src_backend_data = src_area->backend_data;
680
 
680
 
681
    /* Share the cacheable flag from the original mapping */
681
    /* Share the cacheable flag from the original mapping */
682
    if (src_flags & AS_AREA_CACHEABLE)
682
    if (src_flags & AS_AREA_CACHEABLE)
683
        dst_flags_mask |= AS_AREA_CACHEABLE;
683
        dst_flags_mask |= AS_AREA_CACHEABLE;
684
 
684
 
685
    if (src_size != acc_size ||
685
    if (src_size != acc_size ||
686
        (src_flags & dst_flags_mask) != dst_flags_mask) {
686
        (src_flags & dst_flags_mask) != dst_flags_mask) {
687
        mutex_unlock(&src_area->lock);
687
        mutex_unlock(&src_area->lock);
688
        mutex_unlock(&src_as->lock);
688
        mutex_unlock(&src_as->lock);
689
        interrupts_restore(ipl);
689
        interrupts_restore(ipl);
690
        return EPERM;
690
        return EPERM;
691
    }
691
    }
692
 
692
 
693
    /*
693
    /*
694
     * Now we are committed to sharing the area.
694
     * Now we are committed to sharing the area.
695
     * First, prepare the area for sharing.
695
     * First, prepare the area for sharing.
696
     * Then it will be safe to unlock it.
696
     * Then it will be safe to unlock it.
697
     */
697
     */
698
    sh_info = src_area->sh_info;
698
    sh_info = src_area->sh_info;
699
    if (!sh_info) {
699
    if (!sh_info) {
700
        sh_info = (share_info_t *) malloc(sizeof(share_info_t), 0);
700
        sh_info = (share_info_t *) malloc(sizeof(share_info_t), 0);
701
        mutex_initialize(&sh_info->lock);
701
        mutex_initialize(&sh_info->lock);
702
        sh_info->refcount = 2;
702
        sh_info->refcount = 2;
703
        btree_create(&sh_info->pagemap);
703
        btree_create(&sh_info->pagemap);
704
        src_area->sh_info = sh_info;
704
        src_area->sh_info = sh_info;
-
 
705
        /*
-
 
706
         * Call the backend to setup sharing.
-
 
707
         */
-
 
708
        src_area->backend->share(src_area);
705
    } else {
709
    } else {
706
        mutex_lock(&sh_info->lock);
710
        mutex_lock(&sh_info->lock);
707
        sh_info->refcount++;
711
        sh_info->refcount++;
708
        mutex_unlock(&sh_info->lock);
712
        mutex_unlock(&sh_info->lock);
709
    }
713
    }
710
 
714
 
711
    src_area->backend->share(src_area);
-
 
712
 
-
 
713
    mutex_unlock(&src_area->lock);
715
    mutex_unlock(&src_area->lock);
714
    mutex_unlock(&src_as->lock);
716
    mutex_unlock(&src_as->lock);
715
 
717
 
716
    /*
718
    /*
717
     * Create copy of the source address space area.
719
     * Create copy of the source address space area.
718
     * The destination area is created with AS_AREA_ATTR_PARTIAL
720
     * The destination area is created with AS_AREA_ATTR_PARTIAL
719
     * attribute set which prevents race condition with
721
     * attribute set which prevents race condition with
720
     * preliminary as_page_fault() calls.
722
     * preliminary as_page_fault() calls.
721
     * The flags of the source area are masked against dst_flags_mask
723
     * The flags of the source area are masked against dst_flags_mask
722
     * to support sharing in less privileged mode.
724
     * to support sharing in less privileged mode.
723
     */
725
     */
724
    dst_area = as_area_create(dst_as, dst_flags_mask, src_size, dst_base,
726
    dst_area = as_area_create(dst_as, dst_flags_mask, src_size, dst_base,
725
        AS_AREA_ATTR_PARTIAL, src_backend, &src_backend_data);
727
        AS_AREA_ATTR_PARTIAL, src_backend, &src_backend_data);
726
    if (!dst_area) {
728
    if (!dst_area) {
727
        /*
729
        /*
728
         * Destination address space area could not be created.
730
         * Destination address space area could not be created.
729
         */
731
         */
730
        sh_info_remove_reference(sh_info);
732
        sh_info_remove_reference(sh_info);
731
       
733
       
732
        interrupts_restore(ipl);
734
        interrupts_restore(ipl);
733
        return ENOMEM;
735
        return ENOMEM;
734
    }
736
    }
735
 
737
 
736
    /*
738
    /*
737
     * Now the destination address space area has been
739
     * Now the destination address space area has been
738
     * fully initialized. Clear the AS_AREA_ATTR_PARTIAL
740
     * fully initialized. Clear the AS_AREA_ATTR_PARTIAL
739
     * attribute and set the sh_info.
741
     * attribute and set the sh_info.
740
     */
742
     */
741
    mutex_lock(&dst_as->lock); 
743
    mutex_lock(&dst_as->lock); 
742
    mutex_lock(&dst_area->lock);
744
    mutex_lock(&dst_area->lock);
743
    dst_area->attributes &= ~AS_AREA_ATTR_PARTIAL;
745
    dst_area->attributes &= ~AS_AREA_ATTR_PARTIAL;
744
    dst_area->sh_info = sh_info;
746
    dst_area->sh_info = sh_info;
745
    mutex_unlock(&dst_area->lock);
747
    mutex_unlock(&dst_area->lock);
746
    mutex_unlock(&dst_as->lock);   
748
    mutex_unlock(&dst_as->lock);   
747
 
749
 
748
    interrupts_restore(ipl);
750
    interrupts_restore(ipl);
749
   
751
   
750
    return 0;
752
    return 0;
751
}
753
}
752
 
754
 
753
/** Check access mode for address space area.
755
/** Check access mode for address space area.
754
 *
756
 *
755
 * The address space area must be locked prior to this call.
757
 * The address space area must be locked prior to this call.
756
 *
758
 *
757
 * @param area Address space area.
759
 * @param area Address space area.
758
 * @param access Access mode.
760
 * @param access Access mode.
759
 *
761
 *
760
 * @return False if access violates area's permissions, true otherwise.
762
 * @return False if access violates area's permissions, true otherwise.
761
 */
763
 */
762
bool as_area_check_access(as_area_t *area, pf_access_t access)
764
bool as_area_check_access(as_area_t *area, pf_access_t access)
763
{
765
{
764
    int flagmap[] = {
766
    int flagmap[] = {
765
        [PF_ACCESS_READ] = AS_AREA_READ,
767
        [PF_ACCESS_READ] = AS_AREA_READ,
766
        [PF_ACCESS_WRITE] = AS_AREA_WRITE,
768
        [PF_ACCESS_WRITE] = AS_AREA_WRITE,
767
        [PF_ACCESS_EXEC] = AS_AREA_EXEC
769
        [PF_ACCESS_EXEC] = AS_AREA_EXEC
768
    };
770
    };
769
 
771
 
770
    if (!(area->flags & flagmap[access]))
772
    if (!(area->flags & flagmap[access]))
771
        return false;
773
        return false;
772
   
774
   
773
    return true;
775
    return true;
774
}
776
}
775
 
777
 
776
/** Handle page fault within the current address space.
778
/** Handle page fault within the current address space.
777
 *
779
 *
778
 * This is the high-level page fault handler. It decides
780
 * This is the high-level page fault handler. It decides
779
 * whether the page fault can be resolved by any backend
781
 * whether the page fault can be resolved by any backend
780
 * and if so, it invokes the backend to resolve the page
782
 * and if so, it invokes the backend to resolve the page
781
 * fault.
783
 * fault.
782
 *
784
 *
783
 * Interrupts are assumed disabled.
785
 * Interrupts are assumed disabled.
784
 *
786
 *
785
 * @param page Faulting page.
787
 * @param page Faulting page.
786
 * @param access Access mode that caused the fault (i.e. read/write/exec).
788
 * @param access Access mode that caused the fault (i.e. read/write/exec).
787
 * @param istate Pointer to interrupted state.
789
 * @param istate Pointer to interrupted state.
788
 *
790
 *
789
 * @return AS_PF_FAULT on page fault, AS_PF_OK on success or AS_PF_DEFER if the
791
 * @return AS_PF_FAULT on page fault, AS_PF_OK on success or AS_PF_DEFER if the
790
 *     fault was caused by copy_to_uspace() or copy_from_uspace().
792
 *     fault was caused by copy_to_uspace() or copy_from_uspace().
791
 */
793
 */
792
int as_page_fault(uintptr_t page, pf_access_t access, istate_t *istate)
794
int as_page_fault(uintptr_t page, pf_access_t access, istate_t *istate)
793
{
795
{
794
    pte_t *pte;
796
    pte_t *pte;
795
    as_area_t *area;
797
    as_area_t *area;
796
   
798
   
797
    if (!THREAD)
799
    if (!THREAD)
798
        return AS_PF_FAULT;
800
        return AS_PF_FAULT;
799
       
801
       
800
    ASSERT(AS);
802
    ASSERT(AS);
801
 
803
 
802
    mutex_lock(&AS->lock);
804
    mutex_lock(&AS->lock);
803
    area = find_area_and_lock(AS, page);   
805
    area = find_area_and_lock(AS, page);   
804
    if (!area) {
806
    if (!area) {
805
        /*
807
        /*
806
         * No area contained mapping for 'page'.
808
         * No area contained mapping for 'page'.
807
         * Signal page fault to low-level handler.
809
         * Signal page fault to low-level handler.
808
         */
810
         */
809
        mutex_unlock(&AS->lock);
811
        mutex_unlock(&AS->lock);
810
        goto page_fault;
812
        goto page_fault;
811
    }
813
    }
812
 
814
 
813
    if (area->attributes & AS_AREA_ATTR_PARTIAL) {
815
    if (area->attributes & AS_AREA_ATTR_PARTIAL) {
814
        /*
816
        /*
815
         * The address space area is not fully initialized.
817
         * The address space area is not fully initialized.
816
         * Avoid possible race by returning error.
818
         * Avoid possible race by returning error.
817
         */
819
         */
818
        mutex_unlock(&area->lock);
820
        mutex_unlock(&area->lock);
819
        mutex_unlock(&AS->lock);
821
        mutex_unlock(&AS->lock);
820
        goto page_fault;       
822
        goto page_fault;       
821
    }
823
    }
822
 
824
 
823
    if (!area->backend || !area->backend->page_fault) {
825
    if (!area->backend || !area->backend->page_fault) {
824
        /*
826
        /*
825
         * The address space area is not backed by any backend
827
         * The address space area is not backed by any backend
826
         * or the backend cannot handle page faults.
828
         * or the backend cannot handle page faults.
827
         */
829
         */
828
        mutex_unlock(&area->lock);
830
        mutex_unlock(&area->lock);
829
        mutex_unlock(&AS->lock);
831
        mutex_unlock(&AS->lock);
830
        goto page_fault;       
832
        goto page_fault;       
831
    }
833
    }
832
 
834
 
833
    page_table_lock(AS, false);
835
    page_table_lock(AS, false);
834
   
836
   
835
    /*
837
    /*
836
     * To avoid race condition between two page faults
838
     * To avoid race condition between two page faults
837
     * on the same address, we need to make sure
839
     * on the same address, we need to make sure
838
     * the mapping has not been already inserted.
840
     * the mapping has not been already inserted.
839
     */
841
     */
840
    if ((pte = page_mapping_find(AS, page))) {
842
    if ((pte = page_mapping_find(AS, page))) {
841
        if (PTE_PRESENT(pte)) {
843
        if (PTE_PRESENT(pte)) {
842
            if (((access == PF_ACCESS_READ) && PTE_READABLE(pte)) ||
844
            if (((access == PF_ACCESS_READ) && PTE_READABLE(pte)) ||
843
                (access == PF_ACCESS_WRITE && PTE_WRITABLE(pte)) ||
845
                (access == PF_ACCESS_WRITE && PTE_WRITABLE(pte)) ||
844
                (access == PF_ACCESS_EXEC && PTE_EXECUTABLE(pte))) {
846
                (access == PF_ACCESS_EXEC && PTE_EXECUTABLE(pte))) {
845
                page_table_unlock(AS, false);
847
                page_table_unlock(AS, false);
846
                mutex_unlock(&area->lock);
848
                mutex_unlock(&area->lock);
847
                mutex_unlock(&AS->lock);
849
                mutex_unlock(&AS->lock);
848
                return AS_PF_OK;
850
                return AS_PF_OK;
849
            }
851
            }
850
        }
852
        }
851
    }
853
    }
852
   
854
   
853
    /*
855
    /*
854
     * Resort to the backend page fault handler.
856
     * Resort to the backend page fault handler.
855
     */
857
     */
856
    if (area->backend->page_fault(area, page, access) != AS_PF_OK) {
858
    if (area->backend->page_fault(area, page, access) != AS_PF_OK) {
857
        page_table_unlock(AS, false);
859
        page_table_unlock(AS, false);
858
        mutex_unlock(&area->lock);
860
        mutex_unlock(&area->lock);
859
        mutex_unlock(&AS->lock);
861
        mutex_unlock(&AS->lock);
860
        goto page_fault;
862
        goto page_fault;
861
    }
863
    }
862
   
864
   
863
    page_table_unlock(AS, false);
865
    page_table_unlock(AS, false);
864
    mutex_unlock(&area->lock);
866
    mutex_unlock(&area->lock);
865
    mutex_unlock(&AS->lock);
867
    mutex_unlock(&AS->lock);
866
    return AS_PF_OK;
868
    return AS_PF_OK;
867
 
869
 
868
page_fault:
870
page_fault:
869
    if (THREAD->in_copy_from_uspace) {
871
    if (THREAD->in_copy_from_uspace) {
870
        THREAD->in_copy_from_uspace = false;
872
        THREAD->in_copy_from_uspace = false;
871
        istate_set_retaddr(istate,
873
        istate_set_retaddr(istate,
872
            (uintptr_t) &memcpy_from_uspace_failover_address);
874
            (uintptr_t) &memcpy_from_uspace_failover_address);
873
    } else if (THREAD->in_copy_to_uspace) {
875
    } else if (THREAD->in_copy_to_uspace) {
874
        THREAD->in_copy_to_uspace = false;
876
        THREAD->in_copy_to_uspace = false;
875
        istate_set_retaddr(istate,
877
        istate_set_retaddr(istate,
876
            (uintptr_t) &memcpy_to_uspace_failover_address);
878
            (uintptr_t) &memcpy_to_uspace_failover_address);
877
    } else {
879
    } else {
878
        return AS_PF_FAULT;
880
        return AS_PF_FAULT;
879
    }
881
    }
880
 
882
 
881
    return AS_PF_DEFER;
883
    return AS_PF_DEFER;
882
}
884
}
883
 
885
 
884
/** Switch address spaces.
886
/** Switch address spaces.
885
 *
887
 *
886
 * Note that this function cannot sleep as it is essentially a part of
888
 * Note that this function cannot sleep as it is essentially a part of
887
 * scheduling. Sleeping here would lead to deadlock on wakeup. Another
889
 * scheduling. Sleeping here would lead to deadlock on wakeup. Another
888
 * thing which is forbidden in this context is locking the address space.
890
 * thing which is forbidden in this context is locking the address space.
889
 *
891
 *
890
 * When this function is enetered, no spinlocks may be held.
892
 * When this function is enetered, no spinlocks may be held.
891
 *
893
 *
892
 * @param old Old address space or NULL.
894
 * @param old Old address space or NULL.
893
 * @param new New address space.
895
 * @param new New address space.
894
 */
896
 */
895
void as_switch(as_t *old_as, as_t *new_as)
897
void as_switch(as_t *old_as, as_t *new_as)
896
{
898
{
897
    DEADLOCK_PROBE_INIT(p_asidlock);
899
    DEADLOCK_PROBE_INIT(p_asidlock);
898
    preemption_disable();
900
    preemption_disable();
899
retry:
901
retry:
900
    (void) interrupts_disable();
902
    (void) interrupts_disable();
901
    if (!spinlock_trylock(&asidlock)) {
903
    if (!spinlock_trylock(&asidlock)) {
902
        /*
904
        /*
903
         * Avoid deadlock with TLB shootdown.
905
         * Avoid deadlock with TLB shootdown.
904
         * We can enable interrupts here because
906
         * We can enable interrupts here because
905
         * preemption is disabled. We should not be
907
         * preemption is disabled. We should not be
906
         * holding any other lock.
908
         * holding any other lock.
907
         */
909
         */
908
        (void) interrupts_enable();
910
        (void) interrupts_enable();
909
        DEADLOCK_PROBE(p_asidlock, DEADLOCK_THRESHOLD);
911
        DEADLOCK_PROBE(p_asidlock, DEADLOCK_THRESHOLD);
910
        goto retry;
912
        goto retry;
911
    }
913
    }
912
    preemption_enable();
914
    preemption_enable();
913
 
915
 
914
    /*
916
    /*
915
     * First, take care of the old address space.
917
     * First, take care of the old address space.
916
     */
918
     */
917
    if (old_as) {
919
    if (old_as) {
918
        ASSERT(old_as->cpu_refcount);
920
        ASSERT(old_as->cpu_refcount);
919
        if((--old_as->cpu_refcount == 0) && (old_as != AS_KERNEL)) {
921
        if((--old_as->cpu_refcount == 0) && (old_as != AS_KERNEL)) {
920
            /*
922
            /*
921
             * The old address space is no longer active on
923
             * The old address space is no longer active on
922
             * any processor. It can be appended to the
924
             * any processor. It can be appended to the
923
             * list of inactive address spaces with assigned
925
             * list of inactive address spaces with assigned
924
             * ASID.
926
             * ASID.
925
             */
927
             */
926
            ASSERT(old_as->asid != ASID_INVALID);
928
            ASSERT(old_as->asid != ASID_INVALID);
927
            list_append(&old_as->inactive_as_with_asid_link,
929
            list_append(&old_as->inactive_as_with_asid_link,
928
                &inactive_as_with_asid_head);
930
                &inactive_as_with_asid_head);
929
        }
931
        }
930
 
932
 
931
        /*
933
        /*
932
         * Perform architecture-specific tasks when the address space
934
         * Perform architecture-specific tasks when the address space
933
         * is being removed from the CPU.
935
         * is being removed from the CPU.
934
         */
936
         */
935
        as_deinstall_arch(old_as);
937
        as_deinstall_arch(old_as);
936
    }
938
    }
937
 
939
 
938
    /*
940
    /*
939
     * Second, prepare the new address space.
941
     * Second, prepare the new address space.
940
     */
942
     */
941
    if ((new_as->cpu_refcount++ == 0) && (new_as != AS_KERNEL)) {
943
    if ((new_as->cpu_refcount++ == 0) && (new_as != AS_KERNEL)) {
942
        if (new_as->asid != ASID_INVALID)
944
        if (new_as->asid != ASID_INVALID)
943
            list_remove(&new_as->inactive_as_with_asid_link);
945
            list_remove(&new_as->inactive_as_with_asid_link);
944
        else
946
        else
945
            new_as->asid = asid_get();
947
            new_as->asid = asid_get();
946
    }
948
    }
947
#ifdef AS_PAGE_TABLE
949
#ifdef AS_PAGE_TABLE
948
    SET_PTL0_ADDRESS(new_as->genarch.page_table);
950
    SET_PTL0_ADDRESS(new_as->genarch.page_table);
949
#endif
951
#endif
950
   
952
   
951
    /*
953
    /*
952
     * Perform architecture-specific steps.
954
     * Perform architecture-specific steps.
953
     * (e.g. write ASID to hardware register etc.)
955
     * (e.g. write ASID to hardware register etc.)
954
     */
956
     */
955
    as_install_arch(new_as);
957
    as_install_arch(new_as);
956
 
958
 
957
    spinlock_unlock(&asidlock);
959
    spinlock_unlock(&asidlock);
958
   
960
   
959
    AS = new_as;
961
    AS = new_as;
960
}
962
}
961
 
963
 
962
/** Convert address space area flags to page flags.
964
/** Convert address space area flags to page flags.
963
 *
965
 *
964
 * @param aflags Flags of some address space area.
966
 * @param aflags Flags of some address space area.
965
 *
967
 *
966
 * @return Flags to be passed to page_mapping_insert().
968
 * @return Flags to be passed to page_mapping_insert().
967
 */
969
 */
968
int area_flags_to_page_flags(int aflags)
970
int area_flags_to_page_flags(int aflags)
969
{
971
{
970
    int flags;
972
    int flags;
971
 
973
 
972
    flags = PAGE_USER | PAGE_PRESENT;
974
    flags = PAGE_USER | PAGE_PRESENT;
973
   
975
   
974
    if (aflags & AS_AREA_READ)
976
    if (aflags & AS_AREA_READ)
975
        flags |= PAGE_READ;
977
        flags |= PAGE_READ;
976
       
978
       
977
    if (aflags & AS_AREA_WRITE)
979
    if (aflags & AS_AREA_WRITE)
978
        flags |= PAGE_WRITE;
980
        flags |= PAGE_WRITE;
979
   
981
   
980
    if (aflags & AS_AREA_EXEC)
982
    if (aflags & AS_AREA_EXEC)
981
        flags |= PAGE_EXEC;
983
        flags |= PAGE_EXEC;
982
   
984
   
983
    if (aflags & AS_AREA_CACHEABLE)
985
    if (aflags & AS_AREA_CACHEABLE)
984
        flags |= PAGE_CACHEABLE;
986
        flags |= PAGE_CACHEABLE;
985
       
987
       
986
    return flags;
988
    return flags;
987
}
989
}
988
 
990
 
989
/** Compute flags for virtual address translation subsytem.
991
/** Compute flags for virtual address translation subsytem.
990
 *
992
 *
991
 * The address space area must be locked.
993
 * The address space area must be locked.
992
 * Interrupts must be disabled.
994
 * Interrupts must be disabled.
993
 *
995
 *
994
 * @param a Address space area.
996
 * @param a Address space area.
995
 *
997
 *
996
 * @return Flags to be used in page_mapping_insert().
998
 * @return Flags to be used in page_mapping_insert().
997
 */
999
 */
998
int as_area_get_flags(as_area_t *a)
1000
int as_area_get_flags(as_area_t *a)
999
{
1001
{
1000
    return area_flags_to_page_flags(a->flags);
1002
    return area_flags_to_page_flags(a->flags);
1001
}
1003
}
1002
 
1004
 
1003
/** Create page table.
1005
/** Create page table.
1004
 *
1006
 *
1005
 * Depending on architecture, create either address space
1007
 * Depending on architecture, create either address space
1006
 * private or global page table.
1008
 * private or global page table.
1007
 *
1009
 *
1008
 * @param flags Flags saying whether the page table is for kernel address space.
1010
 * @param flags Flags saying whether the page table is for kernel address space.
1009
 *
1011
 *
1010
 * @return First entry of the page table.
1012
 * @return First entry of the page table.
1011
 */
1013
 */
1012
pte_t *page_table_create(int flags)
1014
pte_t *page_table_create(int flags)
1013
{
1015
{
1014
#ifdef __OBJC__
1016
#ifdef __OBJC__
1015
    return [as_t page_table_create: flags];
1017
    return [as_t page_table_create: flags];
1016
#else
1018
#else
1017
    ASSERT(as_operations);
1019
    ASSERT(as_operations);
1018
    ASSERT(as_operations->page_table_create);
1020
    ASSERT(as_operations->page_table_create);
1019
   
1021
   
1020
    return as_operations->page_table_create(flags);
1022
    return as_operations->page_table_create(flags);
1021
#endif
1023
#endif
1022
}
1024
}
1023
 
1025
 
1024
/** Destroy page table.
1026
/** Destroy page table.
1025
 *
1027
 *
1026
 * Destroy page table in architecture specific way.
1028
 * Destroy page table in architecture specific way.
1027
 *
1029
 *
1028
 * @param page_table Physical address of PTL0.
1030
 * @param page_table Physical address of PTL0.
1029
 */
1031
 */
1030
void page_table_destroy(pte_t *page_table)
1032
void page_table_destroy(pte_t *page_table)
1031
{
1033
{
1032
#ifdef __OBJC__
1034
#ifdef __OBJC__
1033
    return [as_t page_table_destroy: page_table];
1035
    return [as_t page_table_destroy: page_table];
1034
#else
1036
#else
1035
    ASSERT(as_operations);
1037
    ASSERT(as_operations);
1036
    ASSERT(as_operations->page_table_destroy);
1038
    ASSERT(as_operations->page_table_destroy);
1037
   
1039
   
1038
    as_operations->page_table_destroy(page_table);
1040
    as_operations->page_table_destroy(page_table);
1039
#endif
1041
#endif
1040
}
1042
}
1041
 
1043
 
1042
/** Lock page table.
1044
/** Lock page table.
1043
 *
1045
 *
1044
 * This function should be called before any page_mapping_insert(),
1046
 * This function should be called before any page_mapping_insert(),
1045
 * page_mapping_remove() and page_mapping_find().
1047
 * page_mapping_remove() and page_mapping_find().
1046
 *
1048
 *
1047
 * Locking order is such that address space areas must be locked
1049
 * Locking order is such that address space areas must be locked
1048
 * prior to this call. Address space can be locked prior to this
1050
 * prior to this call. Address space can be locked prior to this
1049
 * call in which case the lock argument is false.
1051
 * call in which case the lock argument is false.
1050
 *
1052
 *
1051
 * @param as Address space.
1053
 * @param as Address space.
1052
 * @param lock If false, do not attempt to lock as->lock.
1054
 * @param lock If false, do not attempt to lock as->lock.
1053
 */
1055
 */
1054
void page_table_lock(as_t *as, bool lock)
1056
void page_table_lock(as_t *as, bool lock)
1055
{
1057
{
1056
#ifdef __OBJC__
1058
#ifdef __OBJC__
1057
    [as page_table_lock: lock];
1059
    [as page_table_lock: lock];
1058
#else
1060
#else
1059
    ASSERT(as_operations);
1061
    ASSERT(as_operations);
1060
    ASSERT(as_operations->page_table_lock);
1062
    ASSERT(as_operations->page_table_lock);
1061
   
1063
   
1062
    as_operations->page_table_lock(as, lock);
1064
    as_operations->page_table_lock(as, lock);
1063
#endif
1065
#endif
1064
}
1066
}
1065
 
1067
 
1066
/** Unlock page table.
1068
/** Unlock page table.
1067
 *
1069
 *
1068
 * @param as Address space.
1070
 * @param as Address space.
1069
 * @param unlock If false, do not attempt to unlock as->lock.
1071
 * @param unlock If false, do not attempt to unlock as->lock.
1070
 */
1072
 */
1071
void page_table_unlock(as_t *as, bool unlock)
1073
void page_table_unlock(as_t *as, bool unlock)
1072
{
1074
{
1073
#ifdef __OBJC__
1075
#ifdef __OBJC__
1074
    [as page_table_unlock: unlock];
1076
    [as page_table_unlock: unlock];
1075
#else
1077
#else
1076
    ASSERT(as_operations);
1078
    ASSERT(as_operations);
1077
    ASSERT(as_operations->page_table_unlock);
1079
    ASSERT(as_operations->page_table_unlock);
1078
   
1080
   
1079
    as_operations->page_table_unlock(as, unlock);
1081
    as_operations->page_table_unlock(as, unlock);
1080
#endif
1082
#endif
1081
}
1083
}
1082
 
1084
 
1083
 
1085
 
1084
/** Find address space area and lock it.
1086
/** Find address space area and lock it.
1085
 *
1087
 *
1086
 * The address space must be locked and interrupts must be disabled.
1088
 * The address space must be locked and interrupts must be disabled.
1087
 *
1089
 *
1088
 * @param as Address space.
1090
 * @param as Address space.
1089
 * @param va Virtual address.
1091
 * @param va Virtual address.
1090
 *
1092
 *
1091
 * @return Locked address space area containing va on success or NULL on
1093
 * @return Locked address space area containing va on success or NULL on
1092
 *     failure.
1094
 *     failure.
1093
 */
1095
 */
1094
as_area_t *find_area_and_lock(as_t *as, uintptr_t va)
1096
as_area_t *find_area_and_lock(as_t *as, uintptr_t va)
1095
{
1097
{
1096
    as_area_t *a;
1098
    as_area_t *a;
1097
    btree_node_t *leaf, *lnode;
1099
    btree_node_t *leaf, *lnode;
1098
    int i;
1100
    int i;
1099
   
1101
   
1100
    a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf);
1102
    a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf);
1101
    if (a) {
1103
    if (a) {
1102
        /* va is the base address of an address space area */
1104
        /* va is the base address of an address space area */
1103
        mutex_lock(&a->lock);
1105
        mutex_lock(&a->lock);
1104
        return a;
1106
        return a;
1105
    }
1107
    }
1106
   
1108
   
1107
    /*
1109
    /*
1108
     * Search the leaf node and the righmost record of its left neighbour
1110
     * Search the leaf node and the righmost record of its left neighbour
1109
     * to find out whether this is a miss or va belongs to an address
1111
     * to find out whether this is a miss or va belongs to an address
1110
     * space area found there.
1112
     * space area found there.
1111
     */
1113
     */
1112
   
1114
   
1113
    /* First, search the leaf node itself. */
1115
    /* First, search the leaf node itself. */
1114
    for (i = 0; i < leaf->keys; i++) {
1116
    for (i = 0; i < leaf->keys; i++) {
1115
        a = (as_area_t *) leaf->value[i];
1117
        a = (as_area_t *) leaf->value[i];
1116
        mutex_lock(&a->lock);
1118
        mutex_lock(&a->lock);
1117
        if ((a->base <= va) && (va < a->base + a->pages * PAGE_SIZE)) {
1119
        if ((a->base <= va) && (va < a->base + a->pages * PAGE_SIZE)) {
1118
            return a;
1120
            return a;
1119
        }
1121
        }
1120
        mutex_unlock(&a->lock);
1122
        mutex_unlock(&a->lock);
1121
    }
1123
    }
1122
 
1124
 
1123
    /*
1125
    /*
1124
     * Second, locate the left neighbour and test its last record.
1126
     * Second, locate the left neighbour and test its last record.
1125
     * Because of its position in the B+tree, it must have base < va.
1127
     * Because of its position in the B+tree, it must have base < va.
1126
     */
1128
     */
1127
    lnode = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf);
1129
    lnode = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf);
1128
    if (lnode) {
1130
    if (lnode) {
1129
        a = (as_area_t *) lnode->value[lnode->keys - 1];
1131
        a = (as_area_t *) lnode->value[lnode->keys - 1];
1130
        mutex_lock(&a->lock);
1132
        mutex_lock(&a->lock);
1131
        if (va < a->base + a->pages * PAGE_SIZE) {
1133
        if (va < a->base + a->pages * PAGE_SIZE) {
1132
            return a;
1134
            return a;
1133
        }
1135
        }
1134
        mutex_unlock(&a->lock);
1136
        mutex_unlock(&a->lock);
1135
    }
1137
    }
1136
 
1138
 
1137
    return NULL;
1139
    return NULL;
1138
}
1140
}
1139
 
1141
 
1140
/** Check area conflicts with other areas.
1142
/** Check area conflicts with other areas.
1141
 *
1143
 *
1142
 * The address space must be locked and interrupts must be disabled.
1144
 * The address space must be locked and interrupts must be disabled.
1143
 *
1145
 *
1144
 * @param as Address space.
1146
 * @param as Address space.
1145
 * @param va Starting virtual address of the area being tested.
1147
 * @param va Starting virtual address of the area being tested.
1146
 * @param size Size of the area being tested.
1148
 * @param size Size of the area being tested.
1147
 * @param avoid_area Do not touch this area.
1149
 * @param avoid_area Do not touch this area.
1148
 *
1150
 *
1149
 * @return True if there is no conflict, false otherwise.
1151
 * @return True if there is no conflict, false otherwise.
1150
 */
1152
 */
1151
bool check_area_conflicts(as_t *as, uintptr_t va, size_t size,
1153
bool check_area_conflicts(as_t *as, uintptr_t va, size_t size,
1152
              as_area_t *avoid_area)
1154
              as_area_t *avoid_area)
1153
{
1155
{
1154
    as_area_t *a;
1156
    as_area_t *a;
1155
    btree_node_t *leaf, *node;
1157
    btree_node_t *leaf, *node;
1156
    int i;
1158
    int i;
1157
   
1159
   
1158
    /*
1160
    /*
1159
     * We don't want any area to have conflicts with NULL page.
1161
     * We don't want any area to have conflicts with NULL page.
1160
     */
1162
     */
1161
    if (overlaps(va, size, NULL, PAGE_SIZE))
1163
    if (overlaps(va, size, NULL, PAGE_SIZE))
1162
        return false;
1164
        return false;
1163
   
1165
   
1164
    /*
1166
    /*
1165
     * The leaf node is found in O(log n), where n is proportional to
1167
     * The leaf node is found in O(log n), where n is proportional to
1166
     * the number of address space areas belonging to as.
1168
     * the number of address space areas belonging to as.
1167
     * The check for conflicts is then attempted on the rightmost
1169
     * The check for conflicts is then attempted on the rightmost
1168
     * record in the left neighbour, the leftmost record in the right
1170
     * record in the left neighbour, the leftmost record in the right
1169
     * neighbour and all records in the leaf node itself.
1171
     * neighbour and all records in the leaf node itself.
1170
     */
1172
     */
1171
   
1173
   
1172
    if ((a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf))) {
1174
    if ((a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf))) {
1173
        if (a != avoid_area)
1175
        if (a != avoid_area)
1174
            return false;
1176
            return false;
1175
    }
1177
    }
1176
   
1178
   
1177
    /* First, check the two border cases. */
1179
    /* First, check the two border cases. */
1178
    if ((node = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf))) {
1180
    if ((node = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf))) {
1179
        a = (as_area_t *) node->value[node->keys - 1];
1181
        a = (as_area_t *) node->value[node->keys - 1];
1180
        mutex_lock(&a->lock);
1182
        mutex_lock(&a->lock);
1181
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1183
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1182
            mutex_unlock(&a->lock);
1184
            mutex_unlock(&a->lock);
1183
            return false;
1185
            return false;
1184
        }
1186
        }
1185
        mutex_unlock(&a->lock);
1187
        mutex_unlock(&a->lock);
1186
    }
1188
    }
1187
    node = btree_leaf_node_right_neighbour(&as->as_area_btree, leaf);
1189
    node = btree_leaf_node_right_neighbour(&as->as_area_btree, leaf);
1188
    if (node) {
1190
    if (node) {
1189
        a = (as_area_t *) node->value[0];
1191
        a = (as_area_t *) node->value[0];
1190
        mutex_lock(&a->lock);
1192
        mutex_lock(&a->lock);
1191
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1193
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1192
            mutex_unlock(&a->lock);
1194
            mutex_unlock(&a->lock);
1193
            return false;
1195
            return false;
1194
        }
1196
        }
1195
        mutex_unlock(&a->lock);
1197
        mutex_unlock(&a->lock);
1196
    }
1198
    }
1197
   
1199
   
1198
    /* Second, check the leaf node. */
1200
    /* Second, check the leaf node. */
1199
    for (i = 0; i < leaf->keys; i++) {
1201
    for (i = 0; i < leaf->keys; i++) {
1200
        a = (as_area_t *) leaf->value[i];
1202
        a = (as_area_t *) leaf->value[i];
1201
   
1203
   
1202
        if (a == avoid_area)
1204
        if (a == avoid_area)
1203
            continue;
1205
            continue;
1204
   
1206
   
1205
        mutex_lock(&a->lock);
1207
        mutex_lock(&a->lock);
1206
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1208
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1207
            mutex_unlock(&a->lock);
1209
            mutex_unlock(&a->lock);
1208
            return false;
1210
            return false;
1209
        }
1211
        }
1210
        mutex_unlock(&a->lock);
1212
        mutex_unlock(&a->lock);
1211
    }
1213
    }
1212
 
1214
 
1213
    /*
1215
    /*
1214
     * So far, the area does not conflict with other areas.
1216
     * So far, the area does not conflict with other areas.
1215
     * Check if it doesn't conflict with kernel address space.
1217
     * Check if it doesn't conflict with kernel address space.
1216
     */  
1218
     */  
1217
    if (!KERNEL_ADDRESS_SPACE_SHADOWED) {
1219
    if (!KERNEL_ADDRESS_SPACE_SHADOWED) {
1218
        return !overlaps(va, size,
1220
        return !overlaps(va, size,
1219
            KERNEL_ADDRESS_SPACE_START,
1221
            KERNEL_ADDRESS_SPACE_START,
1220
            KERNEL_ADDRESS_SPACE_END - KERNEL_ADDRESS_SPACE_START);
1222
            KERNEL_ADDRESS_SPACE_END - KERNEL_ADDRESS_SPACE_START);
1221
    }
1223
    }
1222
 
1224
 
1223
    return true;
1225
    return true;
1224
}
1226
}
1225
 
1227
 
1226
/** Return size of the address space area with given base.
1228
/** Return size of the address space area with given base.
1227
 *
1229
 *
1228
 * @param base      Arbitrary address insede the address space area.
1230
 * @param base      Arbitrary address insede the address space area.
1229
 *
1231
 *
1230
 * @return      Size of the address space area in bytes or zero if it
1232
 * @return      Size of the address space area in bytes or zero if it
1231
 *          does not exist.
1233
 *          does not exist.
1232
 */
1234
 */
1233
size_t as_area_get_size(uintptr_t base)
1235
size_t as_area_get_size(uintptr_t base)
1234
{
1236
{
1235
    ipl_t ipl;
1237
    ipl_t ipl;
1236
    as_area_t *src_area;
1238
    as_area_t *src_area;
1237
    size_t size;
1239
    size_t size;
1238
 
1240
 
1239
    ipl = interrupts_disable();
1241
    ipl = interrupts_disable();
1240
    src_area = find_area_and_lock(AS, base);
1242
    src_area = find_area_and_lock(AS, base);
1241
    if (src_area){
1243
    if (src_area){
1242
        size = src_area->pages * PAGE_SIZE;
1244
        size = src_area->pages * PAGE_SIZE;
1243
        mutex_unlock(&src_area->lock);
1245
        mutex_unlock(&src_area->lock);
1244
    } else {
1246
    } else {
1245
        size = 0;
1247
        size = 0;
1246
    }
1248
    }
1247
    interrupts_restore(ipl);
1249
    interrupts_restore(ipl);
1248
    return size;
1250
    return size;
1249
}
1251
}
1250
 
1252
 
1251
/** Mark portion of address space area as used.
1253
/** Mark portion of address space area as used.
1252
 *
1254
 *
1253
 * The address space area must be already locked.
1255
 * The address space area must be already locked.
1254
 *
1256
 *
1255
 * @param a Address space area.
1257
 * @param a Address space area.
1256
 * @param page First page to be marked.
1258
 * @param page First page to be marked.
1257
 * @param count Number of page to be marked.
1259
 * @param count Number of page to be marked.
1258
 *
1260
 *
1259
 * @return 0 on failure and 1 on success.
1261
 * @return 0 on failure and 1 on success.
1260
 */
1262
 */
1261
int used_space_insert(as_area_t *a, uintptr_t page, count_t count)
1263
int used_space_insert(as_area_t *a, uintptr_t page, count_t count)
1262
{
1264
{
1263
    btree_node_t *leaf, *node;
1265
    btree_node_t *leaf, *node;
1264
    count_t pages;
1266
    count_t pages;
1265
    int i;
1267
    int i;
1266
 
1268
 
1267
    ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1269
    ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1268
    ASSERT(count);
1270
    ASSERT(count);
1269
 
1271
 
1270
    pages = (count_t) btree_search(&a->used_space, page, &leaf);
1272
    pages = (count_t) btree_search(&a->used_space, page, &leaf);
1271
    if (pages) {
1273
    if (pages) {
1272
        /*
1274
        /*
1273
         * We hit the beginning of some used space.
1275
         * We hit the beginning of some used space.
1274
         */
1276
         */
1275
        return 0;
1277
        return 0;
1276
    }
1278
    }
1277
 
1279
 
1278
    if (!leaf->keys) {
1280
    if (!leaf->keys) {
1279
        btree_insert(&a->used_space, page, (void *) count, leaf);
1281
        btree_insert(&a->used_space, page, (void *) count, leaf);
1280
        return 1;
1282
        return 1;
1281
    }
1283
    }
1282
 
1284
 
1283
    node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1285
    node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1284
    if (node) {
1286
    if (node) {
1285
        uintptr_t left_pg = node->key[node->keys - 1];
1287
        uintptr_t left_pg = node->key[node->keys - 1];
1286
        uintptr_t right_pg = leaf->key[0];
1288
        uintptr_t right_pg = leaf->key[0];
1287
        count_t left_cnt = (count_t) node->value[node->keys - 1];
1289
        count_t left_cnt = (count_t) node->value[node->keys - 1];
1288
        count_t right_cnt = (count_t) leaf->value[0];
1290
        count_t right_cnt = (count_t) leaf->value[0];
1289
       
1291
       
1290
        /*
1292
        /*
1291
         * Examine the possibility that the interval fits
1293
         * Examine the possibility that the interval fits
1292
         * somewhere between the rightmost interval of
1294
         * somewhere between the rightmost interval of
1293
         * the left neigbour and the first interval of the leaf.
1295
         * the left neigbour and the first interval of the leaf.
1294
         */
1296
         */
1295
         
1297
         
1296
        if (page >= right_pg) {
1298
        if (page >= right_pg) {
1297
            /* Do nothing. */
1299
            /* Do nothing. */
1298
        } else if (overlaps(page, count * PAGE_SIZE, left_pg,
1300
        } else if (overlaps(page, count * PAGE_SIZE, left_pg,
1299
            left_cnt * PAGE_SIZE)) {
1301
            left_cnt * PAGE_SIZE)) {
1300
            /* The interval intersects with the left interval. */
1302
            /* The interval intersects with the left interval. */
1301
            return 0;
1303
            return 0;
1302
        } else if (overlaps(page, count * PAGE_SIZE, right_pg,
1304
        } else if (overlaps(page, count * PAGE_SIZE, right_pg,
1303
            right_cnt * PAGE_SIZE)) {
1305
            right_cnt * PAGE_SIZE)) {
1304
            /* The interval intersects with the right interval. */
1306
            /* The interval intersects with the right interval. */
1305
            return 0;          
1307
            return 0;          
1306
        } else if ((page == left_pg + left_cnt * PAGE_SIZE) &&
1308
        } else if ((page == left_pg + left_cnt * PAGE_SIZE) &&
1307
            (page + count * PAGE_SIZE == right_pg)) {
1309
            (page + count * PAGE_SIZE == right_pg)) {
1308
            /*
1310
            /*
1309
             * The interval can be added by merging the two already
1311
             * The interval can be added by merging the two already
1310
             * present intervals.
1312
             * present intervals.
1311
             */
1313
             */
1312
            node->value[node->keys - 1] += count + right_cnt;
1314
            node->value[node->keys - 1] += count + right_cnt;
1313
            btree_remove(&a->used_space, right_pg, leaf);
1315
            btree_remove(&a->used_space, right_pg, leaf);
1314
            return 1;
1316
            return 1;
1315
        } else if (page == left_pg + left_cnt * PAGE_SIZE) {
1317
        } else if (page == left_pg + left_cnt * PAGE_SIZE) {
1316
            /*
1318
            /*
1317
             * The interval can be added by simply growing the left
1319
             * The interval can be added by simply growing the left
1318
             * interval.
1320
             * interval.
1319
             */
1321
             */
1320
            node->value[node->keys - 1] += count;
1322
            node->value[node->keys - 1] += count;
1321
            return 1;
1323
            return 1;
1322
        } else if (page + count * PAGE_SIZE == right_pg) {
1324
        } else if (page + count * PAGE_SIZE == right_pg) {
1323
            /*
1325
            /*
1324
             * The interval can be addded by simply moving base of
1326
             * The interval can be addded by simply moving base of
1325
             * the right interval down and increasing its size
1327
             * the right interval down and increasing its size
1326
             * accordingly.
1328
             * accordingly.
1327
             */
1329
             */
1328
            leaf->value[0] += count;
1330
            leaf->value[0] += count;
1329
            leaf->key[0] = page;
1331
            leaf->key[0] = page;
1330
            return 1;
1332
            return 1;
1331
        } else {
1333
        } else {
1332
            /*
1334
            /*
1333
             * The interval is between both neigbouring intervals,
1335
             * The interval is between both neigbouring intervals,
1334
             * but cannot be merged with any of them.
1336
             * but cannot be merged with any of them.
1335
             */
1337
             */
1336
            btree_insert(&a->used_space, page, (void *) count,
1338
            btree_insert(&a->used_space, page, (void *) count,
1337
                leaf);
1339
                leaf);
1338
            return 1;
1340
            return 1;
1339
        }
1341
        }
1340
    } else if (page < leaf->key[0]) {
1342
    } else if (page < leaf->key[0]) {
1341
        uintptr_t right_pg = leaf->key[0];
1343
        uintptr_t right_pg = leaf->key[0];
1342
        count_t right_cnt = (count_t) leaf->value[0];
1344
        count_t right_cnt = (count_t) leaf->value[0];
1343
   
1345
   
1344
        /*
1346
        /*
1345
         * Investigate the border case in which the left neighbour does
1347
         * Investigate the border case in which the left neighbour does
1346
         * not exist but the interval fits from the left.
1348
         * not exist but the interval fits from the left.
1347
         */
1349
         */
1348
         
1350
         
1349
        if (overlaps(page, count * PAGE_SIZE, right_pg,
1351
        if (overlaps(page, count * PAGE_SIZE, right_pg,
1350
            right_cnt * PAGE_SIZE)) {
1352
            right_cnt * PAGE_SIZE)) {
1351
            /* The interval intersects with the right interval. */
1353
            /* The interval intersects with the right interval. */
1352
            return 0;
1354
            return 0;
1353
        } else if (page + count * PAGE_SIZE == right_pg) {
1355
        } else if (page + count * PAGE_SIZE == right_pg) {
1354
            /*
1356
            /*
1355
             * The interval can be added by moving the base of the
1357
             * The interval can be added by moving the base of the
1356
             * right interval down and increasing its size
1358
             * right interval down and increasing its size
1357
             * accordingly.
1359
             * accordingly.
1358
             */
1360
             */
1359
            leaf->key[0] = page;
1361
            leaf->key[0] = page;
1360
            leaf->value[0] += count;
1362
            leaf->value[0] += count;
1361
            return 1;
1363
            return 1;
1362
        } else {
1364
        } else {
1363
            /*
1365
            /*
1364
             * The interval doesn't adjoin with the right interval.
1366
             * The interval doesn't adjoin with the right interval.
1365
             * It must be added individually.
1367
             * It must be added individually.
1366
             */
1368
             */
1367
            btree_insert(&a->used_space, page, (void *) count,
1369
            btree_insert(&a->used_space, page, (void *) count,
1368
                leaf);
1370
                leaf);
1369
            return 1;
1371
            return 1;
1370
        }
1372
        }
1371
    }
1373
    }
1372
 
1374
 
1373
    node = btree_leaf_node_right_neighbour(&a->used_space, leaf);
1375
    node = btree_leaf_node_right_neighbour(&a->used_space, leaf);
1374
    if (node) {
1376
    if (node) {
1375
        uintptr_t left_pg = leaf->key[leaf->keys - 1];
1377
        uintptr_t left_pg = leaf->key[leaf->keys - 1];
1376
        uintptr_t right_pg = node->key[0];
1378
        uintptr_t right_pg = node->key[0];
1377
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1379
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1378
        count_t right_cnt = (count_t) node->value[0];
1380
        count_t right_cnt = (count_t) node->value[0];
1379
       
1381
       
1380
        /*
1382
        /*
1381
         * Examine the possibility that the interval fits
1383
         * Examine the possibility that the interval fits
1382
         * somewhere between the leftmost interval of
1384
         * somewhere between the leftmost interval of
1383
         * the right neigbour and the last interval of the leaf.
1385
         * the right neigbour and the last interval of the leaf.
1384
         */
1386
         */
1385
 
1387
 
1386
        if (page < left_pg) {
1388
        if (page < left_pg) {
1387
            /* Do nothing. */
1389
            /* Do nothing. */
1388
        } else if (overlaps(page, count * PAGE_SIZE, left_pg,
1390
        } else if (overlaps(page, count * PAGE_SIZE, left_pg,
1389
            left_cnt * PAGE_SIZE)) {
1391
            left_cnt * PAGE_SIZE)) {
1390
            /* The interval intersects with the left interval. */
1392
            /* The interval intersects with the left interval. */
1391
            return 0;
1393
            return 0;
1392
        } else if (overlaps(page, count * PAGE_SIZE, right_pg,
1394
        } else if (overlaps(page, count * PAGE_SIZE, right_pg,
1393
            right_cnt * PAGE_SIZE)) {
1395
            right_cnt * PAGE_SIZE)) {
1394
            /* The interval intersects with the right interval. */
1396
            /* The interval intersects with the right interval. */
1395
            return 0;          
1397
            return 0;          
1396
        } else if ((page == left_pg + left_cnt * PAGE_SIZE) &&
1398
        } else if ((page == left_pg + left_cnt * PAGE_SIZE) &&
1397
            (page + count * PAGE_SIZE == right_pg)) {
1399
            (page + count * PAGE_SIZE == right_pg)) {
1398
            /*
1400
            /*
1399
             * The interval can be added by merging the two already
1401
             * The interval can be added by merging the two already
1400
             * present intervals.
1402
             * present intervals.
1401
             * */
1403
             * */
1402
            leaf->value[leaf->keys - 1] += count + right_cnt;
1404
            leaf->value[leaf->keys - 1] += count + right_cnt;
1403
            btree_remove(&a->used_space, right_pg, node);
1405
            btree_remove(&a->used_space, right_pg, node);
1404
            return 1;
1406
            return 1;
1405
        } else if (page == left_pg + left_cnt * PAGE_SIZE) {
1407
        } else if (page == left_pg + left_cnt * PAGE_SIZE) {
1406
            /*
1408
            /*
1407
             * The interval can be added by simply growing the left
1409
             * The interval can be added by simply growing the left
1408
             * interval.
1410
             * interval.
1409
             * */
1411
             * */
1410
            leaf->value[leaf->keys - 1] +=  count;
1412
            leaf->value[leaf->keys - 1] +=  count;
1411
            return 1;
1413
            return 1;
1412
        } else if (page + count * PAGE_SIZE == right_pg) {
1414
        } else if (page + count * PAGE_SIZE == right_pg) {
1413
            /*
1415
            /*
1414
             * The interval can be addded by simply moving base of
1416
             * The interval can be addded by simply moving base of
1415
             * the right interval down and increasing its size
1417
             * the right interval down and increasing its size
1416
             * accordingly.
1418
             * accordingly.
1417
             */
1419
             */
1418
            node->value[0] += count;
1420
            node->value[0] += count;
1419
            node->key[0] = page;
1421
            node->key[0] = page;
1420
            return 1;
1422
            return 1;
1421
        } else {
1423
        } else {
1422
            /*
1424
            /*
1423
             * The interval is between both neigbouring intervals,
1425
             * The interval is between both neigbouring intervals,
1424
             * but cannot be merged with any of them.
1426
             * but cannot be merged with any of them.
1425
             */
1427
             */
1426
            btree_insert(&a->used_space, page, (void *) count,
1428
            btree_insert(&a->used_space, page, (void *) count,
1427
                leaf);
1429
                leaf);
1428
            return 1;
1430
            return 1;
1429
        }
1431
        }
1430
    } else if (page >= leaf->key[leaf->keys - 1]) {
1432
    } else if (page >= leaf->key[leaf->keys - 1]) {
1431
        uintptr_t left_pg = leaf->key[leaf->keys - 1];
1433
        uintptr_t left_pg = leaf->key[leaf->keys - 1];
1432
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1434
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1433
   
1435
   
1434
        /*
1436
        /*
1435
         * Investigate the border case in which the right neighbour
1437
         * Investigate the border case in which the right neighbour
1436
         * does not exist but the interval fits from the right.
1438
         * does not exist but the interval fits from the right.
1437
         */
1439
         */
1438
         
1440
         
1439
        if (overlaps(page, count * PAGE_SIZE, left_pg,
1441
        if (overlaps(page, count * PAGE_SIZE, left_pg,
1440
            left_cnt * PAGE_SIZE)) {
1442
            left_cnt * PAGE_SIZE)) {
1441
            /* The interval intersects with the left interval. */
1443
            /* The interval intersects with the left interval. */
1442
            return 0;
1444
            return 0;
1443
        } else if (left_pg + left_cnt * PAGE_SIZE == page) {
1445
        } else if (left_pg + left_cnt * PAGE_SIZE == page) {
1444
            /*
1446
            /*
1445
             * The interval can be added by growing the left
1447
             * The interval can be added by growing the left
1446
             * interval.
1448
             * interval.
1447
             */
1449
             */
1448
            leaf->value[leaf->keys - 1] += count;
1450
            leaf->value[leaf->keys - 1] += count;
1449
            return 1;
1451
            return 1;
1450
        } else {
1452
        } else {
1451
            /*
1453
            /*
1452
             * The interval doesn't adjoin with the left interval.
1454
             * The interval doesn't adjoin with the left interval.
1453
             * It must be added individually.
1455
             * It must be added individually.
1454
             */
1456
             */
1455
            btree_insert(&a->used_space, page, (void *) count,
1457
            btree_insert(&a->used_space, page, (void *) count,
1456
                leaf);
1458
                leaf);
1457
            return 1;
1459
            return 1;
1458
        }
1460
        }
1459
    }
1461
    }
1460
   
1462
   
1461
    /*
1463
    /*
1462
     * Note that if the algorithm made it thus far, the interval can fit
1464
     * Note that if the algorithm made it thus far, the interval can fit
1463
     * only between two other intervals of the leaf. The two border cases
1465
     * only between two other intervals of the leaf. The two border cases
1464
     * were already resolved.
1466
     * were already resolved.
1465
     */
1467
     */
1466
    for (i = 1; i < leaf->keys; i++) {
1468
    for (i = 1; i < leaf->keys; i++) {
1467
        if (page < leaf->key[i]) {
1469
        if (page < leaf->key[i]) {
1468
            uintptr_t left_pg = leaf->key[i - 1];
1470
            uintptr_t left_pg = leaf->key[i - 1];
1469
            uintptr_t right_pg = leaf->key[i];
1471
            uintptr_t right_pg = leaf->key[i];
1470
            count_t left_cnt = (count_t) leaf->value[i - 1];
1472
            count_t left_cnt = (count_t) leaf->value[i - 1];
1471
            count_t right_cnt = (count_t) leaf->value[i];
1473
            count_t right_cnt = (count_t) leaf->value[i];
1472
 
1474
 
1473
            /*
1475
            /*
1474
             * The interval fits between left_pg and right_pg.
1476
             * The interval fits between left_pg and right_pg.
1475
             */
1477
             */
1476
 
1478
 
1477
            if (overlaps(page, count * PAGE_SIZE, left_pg,
1479
            if (overlaps(page, count * PAGE_SIZE, left_pg,
1478
                left_cnt * PAGE_SIZE)) {
1480
                left_cnt * PAGE_SIZE)) {
1479
                /*
1481
                /*
1480
                 * The interval intersects with the left
1482
                 * The interval intersects with the left
1481
                 * interval.
1483
                 * interval.
1482
                 */
1484
                 */
1483
                return 0;
1485
                return 0;
1484
            } else if (overlaps(page, count * PAGE_SIZE, right_pg,
1486
            } else if (overlaps(page, count * PAGE_SIZE, right_pg,
1485
                right_cnt * PAGE_SIZE)) {
1487
                right_cnt * PAGE_SIZE)) {
1486
                /*
1488
                /*
1487
                 * The interval intersects with the right
1489
                 * The interval intersects with the right
1488
                 * interval.
1490
                 * interval.
1489
                 */
1491
                 */
1490
                return 0;          
1492
                return 0;          
1491
            } else if ((page == left_pg + left_cnt * PAGE_SIZE) &&
1493
            } else if ((page == left_pg + left_cnt * PAGE_SIZE) &&
1492
                (page + count * PAGE_SIZE == right_pg)) {
1494
                (page + count * PAGE_SIZE == right_pg)) {
1493
                /*
1495
                /*
1494
                 * The interval can be added by merging the two
1496
                 * The interval can be added by merging the two
1495
                 * already present intervals.
1497
                 * already present intervals.
1496
                 */
1498
                 */
1497
                leaf->value[i - 1] += count + right_cnt;
1499
                leaf->value[i - 1] += count + right_cnt;
1498
                btree_remove(&a->used_space, right_pg, leaf);
1500
                btree_remove(&a->used_space, right_pg, leaf);
1499
                return 1;
1501
                return 1;
1500
            } else if (page == left_pg + left_cnt * PAGE_SIZE) {
1502
            } else if (page == left_pg + left_cnt * PAGE_SIZE) {
1501
                /*
1503
                /*
1502
                 * The interval can be added by simply growing
1504
                 * The interval can be added by simply growing
1503
                 * the left interval.
1505
                 * the left interval.
1504
                 */
1506
                 */
1505
                leaf->value[i - 1] += count;
1507
                leaf->value[i - 1] += count;
1506
                return 1;
1508
                return 1;
1507
            } else if (page + count * PAGE_SIZE == right_pg) {
1509
            } else if (page + count * PAGE_SIZE == right_pg) {
1508
                /*
1510
                /*
1509
                     * The interval can be addded by simply moving
1511
                     * The interval can be addded by simply moving
1510
                 * base of the right interval down and
1512
                 * base of the right interval down and
1511
                 * increasing its size accordingly.
1513
                 * increasing its size accordingly.
1512
                 */
1514
                 */
1513
                leaf->value[i] += count;
1515
                leaf->value[i] += count;
1514
                leaf->key[i] = page;
1516
                leaf->key[i] = page;
1515
                return 1;
1517
                return 1;
1516
            } else {
1518
            } else {
1517
                /*
1519
                /*
1518
                 * The interval is between both neigbouring
1520
                 * The interval is between both neigbouring
1519
                 * intervals, but cannot be merged with any of
1521
                 * intervals, but cannot be merged with any of
1520
                 * them.
1522
                 * them.
1521
                 */
1523
                 */
1522
                btree_insert(&a->used_space, page,
1524
                btree_insert(&a->used_space, page,
1523
                    (void *) count, leaf);
1525
                    (void *) count, leaf);
1524
                return 1;
1526
                return 1;
1525
            }
1527
            }
1526
        }
1528
        }
1527
    }
1529
    }
1528
 
1530
 
1529
    panic("Inconsistency detected while adding %d pages of used space at "
1531
    panic("Inconsistency detected while adding %d pages of used space at "
1530
        "%p.\n", count, page);
1532
        "%p.\n", count, page);
1531
}
1533
}
1532
 
1534
 
1533
/** Mark portion of address space area as unused.
1535
/** Mark portion of address space area as unused.
1534
 *
1536
 *
1535
 * The address space area must be already locked.
1537
 * The address space area must be already locked.
1536
 *
1538
 *
1537
 * @param a Address space area.
1539
 * @param a Address space area.
1538
 * @param page First page to be marked.
1540
 * @param page First page to be marked.
1539
 * @param count Number of page to be marked.
1541
 * @param count Number of page to be marked.
1540
 *
1542
 *
1541
 * @return 0 on failure and 1 on success.
1543
 * @return 0 on failure and 1 on success.
1542
 */
1544
 */
1543
int used_space_remove(as_area_t *a, uintptr_t page, count_t count)
1545
int used_space_remove(as_area_t *a, uintptr_t page, count_t count)
1544
{
1546
{
1545
    btree_node_t *leaf, *node;
1547
    btree_node_t *leaf, *node;
1546
    count_t pages;
1548
    count_t pages;
1547
    int i;
1549
    int i;
1548
 
1550
 
1549
    ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1551
    ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1550
    ASSERT(count);
1552
    ASSERT(count);
1551
 
1553
 
1552
    pages = (count_t) btree_search(&a->used_space, page, &leaf);
1554
    pages = (count_t) btree_search(&a->used_space, page, &leaf);
1553
    if (pages) {
1555
    if (pages) {
1554
        /*
1556
        /*
1555
         * We are lucky, page is the beginning of some interval.
1557
         * We are lucky, page is the beginning of some interval.
1556
         */
1558
         */
1557
        if (count > pages) {
1559
        if (count > pages) {
1558
            return 0;
1560
            return 0;
1559
        } else if (count == pages) {
1561
        } else if (count == pages) {
1560
            btree_remove(&a->used_space, page, leaf);
1562
            btree_remove(&a->used_space, page, leaf);
1561
            return 1;
1563
            return 1;
1562
        } else {
1564
        } else {
1563
            /*
1565
            /*
1564
             * Find the respective interval.
1566
             * Find the respective interval.
1565
             * Decrease its size and relocate its start address.
1567
             * Decrease its size and relocate its start address.
1566
             */
1568
             */
1567
            for (i = 0; i < leaf->keys; i++) {
1569
            for (i = 0; i < leaf->keys; i++) {
1568
                if (leaf->key[i] == page) {
1570
                if (leaf->key[i] == page) {
1569
                    leaf->key[i] += count * PAGE_SIZE;
1571
                    leaf->key[i] += count * PAGE_SIZE;
1570
                    leaf->value[i] -= count;
1572
                    leaf->value[i] -= count;
1571
                    return 1;
1573
                    return 1;
1572
                }
1574
                }
1573
            }
1575
            }
1574
            goto error;
1576
            goto error;
1575
        }
1577
        }
1576
    }
1578
    }
1577
 
1579
 
1578
    node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1580
    node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1579
    if (node && page < leaf->key[0]) {
1581
    if (node && page < leaf->key[0]) {
1580
        uintptr_t left_pg = node->key[node->keys - 1];
1582
        uintptr_t left_pg = node->key[node->keys - 1];
1581
        count_t left_cnt = (count_t) node->value[node->keys - 1];
1583
        count_t left_cnt = (count_t) node->value[node->keys - 1];
1582
 
1584
 
1583
        if (overlaps(left_pg, left_cnt * PAGE_SIZE, page,
1585
        if (overlaps(left_pg, left_cnt * PAGE_SIZE, page,
1584
            count * PAGE_SIZE)) {
1586
            count * PAGE_SIZE)) {
1585
            if (page + count * PAGE_SIZE ==
1587
            if (page + count * PAGE_SIZE ==
1586
                left_pg + left_cnt * PAGE_SIZE) {
1588
                left_pg + left_cnt * PAGE_SIZE) {
1587
                /*
1589
                /*
1588
                 * The interval is contained in the rightmost
1590
                 * The interval is contained in the rightmost
1589
                 * interval of the left neighbour and can be
1591
                 * interval of the left neighbour and can be
1590
                 * removed by updating the size of the bigger
1592
                 * removed by updating the size of the bigger
1591
                 * interval.
1593
                 * interval.
1592
                 */
1594
                 */
1593
                node->value[node->keys - 1] -= count;
1595
                node->value[node->keys - 1] -= count;
1594
                return 1;
1596
                return 1;
1595
            } else if (page + count * PAGE_SIZE <
1597
            } else if (page + count * PAGE_SIZE <
1596
                left_pg + left_cnt*PAGE_SIZE) {
1598
                left_pg + left_cnt*PAGE_SIZE) {
1597
                count_t new_cnt;
1599
                count_t new_cnt;
1598
               
1600
               
1599
                /*
1601
                /*
1600
                 * The interval is contained in the rightmost
1602
                 * The interval is contained in the rightmost
1601
                 * interval of the left neighbour but its
1603
                 * interval of the left neighbour but its
1602
                 * removal requires both updating the size of
1604
                 * removal requires both updating the size of
1603
                 * the original interval and also inserting a
1605
                 * the original interval and also inserting a
1604
                 * new interval.
1606
                 * new interval.
1605
                 */
1607
                 */
1606
                new_cnt = ((left_pg + left_cnt * PAGE_SIZE) -
1608
                new_cnt = ((left_pg + left_cnt * PAGE_SIZE) -
1607
                    (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1609
                    (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1608
                node->value[node->keys - 1] -= count + new_cnt;
1610
                node->value[node->keys - 1] -= count + new_cnt;
1609
                btree_insert(&a->used_space, page +
1611
                btree_insert(&a->used_space, page +
1610
                    count * PAGE_SIZE, (void *) new_cnt, leaf);
1612
                    count * PAGE_SIZE, (void *) new_cnt, leaf);
1611
                return 1;
1613
                return 1;
1612
            }
1614
            }
1613
        }
1615
        }
1614
        return 0;
1616
        return 0;
1615
    } else if (page < leaf->key[0]) {
1617
    } else if (page < leaf->key[0]) {
1616
        return 0;
1618
        return 0;
1617
    }
1619
    }
1618
   
1620
   
1619
    if (page > leaf->key[leaf->keys - 1]) {
1621
    if (page > leaf->key[leaf->keys - 1]) {
1620
        uintptr_t left_pg = leaf->key[leaf->keys - 1];
1622
        uintptr_t left_pg = leaf->key[leaf->keys - 1];
1621
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1623
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1622
 
1624
 
1623
        if (overlaps(left_pg, left_cnt * PAGE_SIZE, page,
1625
        if (overlaps(left_pg, left_cnt * PAGE_SIZE, page,
1624
            count * PAGE_SIZE)) {
1626
            count * PAGE_SIZE)) {
1625
            if (page + count * PAGE_SIZE ==
1627
            if (page + count * PAGE_SIZE ==
1626
                left_pg + left_cnt * PAGE_SIZE) {
1628
                left_pg + left_cnt * PAGE_SIZE) {
1627
                /*
1629
                /*
1628
                 * The interval is contained in the rightmost
1630
                 * The interval is contained in the rightmost
1629
                 * interval of the leaf and can be removed by
1631
                 * interval of the leaf and can be removed by
1630
                 * updating the size of the bigger interval.
1632
                 * updating the size of the bigger interval.
1631
                 */
1633
                 */
1632
                leaf->value[leaf->keys - 1] -= count;
1634
                leaf->value[leaf->keys - 1] -= count;
1633
                return 1;
1635
                return 1;
1634
            } else if (page + count * PAGE_SIZE < left_pg +
1636
            } else if (page + count * PAGE_SIZE < left_pg +
1635
                left_cnt * PAGE_SIZE) {
1637
                left_cnt * PAGE_SIZE) {
1636
                count_t new_cnt;
1638
                count_t new_cnt;
1637
               
1639
               
1638
                /*
1640
                /*
1639
                 * The interval is contained in the rightmost
1641
                 * The interval is contained in the rightmost
1640
                 * interval of the leaf but its removal
1642
                 * interval of the leaf but its removal
1641
                 * requires both updating the size of the
1643
                 * requires both updating the size of the
1642
                 * original interval and also inserting a new
1644
                 * original interval and also inserting a new
1643
                 * interval.
1645
                 * interval.
1644
                 */
1646
                 */
1645
                new_cnt = ((left_pg + left_cnt * PAGE_SIZE) -
1647
                new_cnt = ((left_pg + left_cnt * PAGE_SIZE) -
1646
                    (page + count * PAGE_SIZE)) >> PAGE_WIDTH;
1648
                    (page + count * PAGE_SIZE)) >> PAGE_WIDTH;
1647
                leaf->value[leaf->keys - 1] -= count + new_cnt;
1649
                leaf->value[leaf->keys - 1] -= count + new_cnt;
1648
                btree_insert(&a->used_space, page +
1650
                btree_insert(&a->used_space, page +
1649
                    count * PAGE_SIZE, (void *) new_cnt, leaf);
1651
                    count * PAGE_SIZE, (void *) new_cnt, leaf);
1650
                return 1;
1652
                return 1;
1651
            }
1653
            }
1652
        }
1654
        }
1653
        return 0;
1655
        return 0;
1654
    }  
1656
    }  
1655
   
1657
   
1656
    /*
1658
    /*
1657
     * The border cases have been already resolved.
1659
     * The border cases have been already resolved.
1658
     * Now the interval can be only between intervals of the leaf.
1660
     * Now the interval can be only between intervals of the leaf.
1659
     */
1661
     */
1660
    for (i = 1; i < leaf->keys - 1; i++) {
1662
    for (i = 1; i < leaf->keys - 1; i++) {
1661
        if (page < leaf->key[i]) {
1663
        if (page < leaf->key[i]) {
1662
            uintptr_t left_pg = leaf->key[i - 1];
1664
            uintptr_t left_pg = leaf->key[i - 1];
1663
            count_t left_cnt = (count_t) leaf->value[i - 1];
1665
            count_t left_cnt = (count_t) leaf->value[i - 1];
1664
 
1666
 
1665
            /*
1667
            /*
1666
             * Now the interval is between intervals corresponding
1668
             * Now the interval is between intervals corresponding
1667
             * to (i - 1) and i.
1669
             * to (i - 1) and i.
1668
             */
1670
             */
1669
            if (overlaps(left_pg, left_cnt * PAGE_SIZE, page,
1671
            if (overlaps(left_pg, left_cnt * PAGE_SIZE, page,
1670
                count * PAGE_SIZE)) {
1672
                count * PAGE_SIZE)) {
1671
                if (page + count * PAGE_SIZE ==
1673
                if (page + count * PAGE_SIZE ==
1672
                    left_pg + left_cnt*PAGE_SIZE) {
1674
                    left_pg + left_cnt*PAGE_SIZE) {
1673
                    /*
1675
                    /*
1674
                     * The interval is contained in the
1676
                     * The interval is contained in the
1675
                     * interval (i - 1) of the leaf and can
1677
                     * interval (i - 1) of the leaf and can
1676
                     * be removed by updating the size of
1678
                     * be removed by updating the size of
1677
                     * the bigger interval.
1679
                     * the bigger interval.
1678
                     */
1680
                     */
1679
                    leaf->value[i - 1] -= count;
1681
                    leaf->value[i - 1] -= count;
1680
                    return 1;
1682
                    return 1;
1681
                } else if (page + count * PAGE_SIZE <
1683
                } else if (page + count * PAGE_SIZE <
1682
                    left_pg + left_cnt * PAGE_SIZE) {
1684
                    left_pg + left_cnt * PAGE_SIZE) {
1683
                    count_t new_cnt;
1685
                    count_t new_cnt;
1684
               
1686
               
1685
                    /*
1687
                    /*
1686
                     * The interval is contained in the
1688
                     * The interval is contained in the
1687
                     * interval (i - 1) of the leaf but its
1689
                     * interval (i - 1) of the leaf but its
1688
                     * removal requires both updating the
1690
                     * removal requires both updating the
1689
                     * size of the original interval and
1691
                     * size of the original interval and
1690
                     * also inserting a new interval.
1692
                     * also inserting a new interval.
1691
                     */
1693
                     */
1692
                    new_cnt = ((left_pg +
1694
                    new_cnt = ((left_pg +
1693
                        left_cnt * PAGE_SIZE) -
1695
                        left_cnt * PAGE_SIZE) -
1694
                        (page + count * PAGE_SIZE)) >>
1696
                        (page + count * PAGE_SIZE)) >>
1695
                        PAGE_WIDTH;
1697
                        PAGE_WIDTH;
1696
                    leaf->value[i - 1] -= count + new_cnt;
1698
                    leaf->value[i - 1] -= count + new_cnt;
1697
                    btree_insert(&a->used_space, page +
1699
                    btree_insert(&a->used_space, page +
1698
                        count * PAGE_SIZE, (void *) new_cnt,
1700
                        count * PAGE_SIZE, (void *) new_cnt,
1699
                        leaf);
1701
                        leaf);
1700
                    return 1;
1702
                    return 1;
1701
                }
1703
                }
1702
            }
1704
            }
1703
            return 0;
1705
            return 0;
1704
        }
1706
        }
1705
    }
1707
    }
1706
 
1708
 
1707
error:
1709
error:
1708
    panic("Inconsistency detected while removing %d pages of used space "
1710
    panic("Inconsistency detected while removing %d pages of used space "
1709
        "from %p.\n", count, page);
1711
        "from %p.\n", count, page);
1710
}
1712
}
1711
 
1713
 
1712
/** Remove reference to address space area share info.
1714
/** Remove reference to address space area share info.
1713
 *
1715
 *
1714
 * If the reference count drops to 0, the sh_info is deallocated.
1716
 * If the reference count drops to 0, the sh_info is deallocated.
1715
 *
1717
 *
1716
 * @param sh_info Pointer to address space area share info.
1718
 * @param sh_info Pointer to address space area share info.
1717
 */
1719
 */
1718
void sh_info_remove_reference(share_info_t *sh_info)
1720
void sh_info_remove_reference(share_info_t *sh_info)
1719
{
1721
{
1720
    bool dealloc = false;
1722
    bool dealloc = false;
1721
 
1723
 
1722
    mutex_lock(&sh_info->lock);
1724
    mutex_lock(&sh_info->lock);
1723
    ASSERT(sh_info->refcount);
1725
    ASSERT(sh_info->refcount);
1724
    if (--sh_info->refcount == 0) {
1726
    if (--sh_info->refcount == 0) {
1725
        dealloc = true;
1727
        dealloc = true;
1726
        link_t *cur;
1728
        link_t *cur;
1727
       
1729
       
1728
        /*
1730
        /*
1729
         * Now walk carefully the pagemap B+tree and free/remove
1731
         * Now walk carefully the pagemap B+tree and free/remove
1730
         * reference from all frames found there.
1732
         * reference from all frames found there.
1731
         */
1733
         */
1732
        for (cur = sh_info->pagemap.leaf_head.next;
1734
        for (cur = sh_info->pagemap.leaf_head.next;
1733
            cur != &sh_info->pagemap.leaf_head; cur = cur->next) {
1735
            cur != &sh_info->pagemap.leaf_head; cur = cur->next) {
1734
            btree_node_t *node;
1736
            btree_node_t *node;
1735
            int i;
1737
            int i;
1736
           
1738
           
1737
            node = list_get_instance(cur, btree_node_t, leaf_link);
1739
            node = list_get_instance(cur, btree_node_t, leaf_link);
1738
            for (i = 0; i < node->keys; i++)
1740
            for (i = 0; i < node->keys; i++)
1739
                frame_free((uintptr_t) node->value[i]);
1741
                frame_free((uintptr_t) node->value[i]);
1740
        }
1742
        }
1741
       
1743
       
1742
    }
1744
    }
1743
    mutex_unlock(&sh_info->lock);
1745
    mutex_unlock(&sh_info->lock);
1744
   
1746
   
1745
    if (dealloc) {
1747
    if (dealloc) {
1746
        btree_destroy(&sh_info->pagemap);
1748
        btree_destroy(&sh_info->pagemap);
1747
        free(sh_info);
1749
        free(sh_info);
1748
    }
1750
    }
1749
}
1751
}
1750
 
1752
 
1751
/*
1753
/*
1752
 * Address space related syscalls.
1754
 * Address space related syscalls.
1753
 */
1755
 */
1754
 
1756
 
1755
/** Wrapper for as_area_create(). */
1757
/** Wrapper for as_area_create(). */
1756
unative_t sys_as_area_create(uintptr_t address, size_t size, int flags)
1758
unative_t sys_as_area_create(uintptr_t address, size_t size, int flags)
1757
{
1759
{
1758
    if (as_area_create(AS, flags | AS_AREA_CACHEABLE, size, address,
1760
    if (as_area_create(AS, flags | AS_AREA_CACHEABLE, size, address,
1759
        AS_AREA_ATTR_NONE, &anon_backend, NULL))
1761
        AS_AREA_ATTR_NONE, &anon_backend, NULL))
1760
        return (unative_t) address;
1762
        return (unative_t) address;
1761
    else
1763
    else
1762
        return (unative_t) -1;
1764
        return (unative_t) -1;
1763
}
1765
}
1764
 
1766
 
1765
/** Wrapper for as_area_resize(). */
1767
/** Wrapper for as_area_resize(). */
1766
unative_t sys_as_area_resize(uintptr_t address, size_t size, int flags)
1768
unative_t sys_as_area_resize(uintptr_t address, size_t size, int flags)
1767
{
1769
{
1768
    return (unative_t) as_area_resize(AS, address, size, 0);
1770
    return (unative_t) as_area_resize(AS, address, size, 0);
1769
}
1771
}
1770
 
1772
 
1771
/** Wrapper for as_area_destroy(). */
1773
/** Wrapper for as_area_destroy(). */
1772
unative_t sys_as_area_destroy(uintptr_t address)
1774
unative_t sys_as_area_destroy(uintptr_t address)
1773
{
1775
{
1774
    return (unative_t) as_area_destroy(AS, address);
1776
    return (unative_t) as_area_destroy(AS, address);
1775
}
1777
}
1776
 
1778
 
1777
/** Print out information about address space.
1779
/** Print out information about address space.
1778
 *
1780
 *
1779
 * @param as Address space.
1781
 * @param as Address space.
1780
 */
1782
 */
1781
void as_print(as_t *as)
1783
void as_print(as_t *as)
1782
{
1784
{
1783
    ipl_t ipl;
1785
    ipl_t ipl;
1784
   
1786
   
1785
    ipl = interrupts_disable();
1787
    ipl = interrupts_disable();
1786
    mutex_lock(&as->lock);
1788
    mutex_lock(&as->lock);
1787
   
1789
   
1788
    /* print out info about address space areas */
1790
    /* print out info about address space areas */
1789
    link_t *cur;
1791
    link_t *cur;
1790
    for (cur = as->as_area_btree.leaf_head.next;
1792
    for (cur = as->as_area_btree.leaf_head.next;
1791
        cur != &as->as_area_btree.leaf_head; cur = cur->next) {
1793
        cur != &as->as_area_btree.leaf_head; cur = cur->next) {
1792
        btree_node_t *node;
1794
        btree_node_t *node;
1793
       
1795
       
1794
        node = list_get_instance(cur, btree_node_t, leaf_link);
1796
        node = list_get_instance(cur, btree_node_t, leaf_link);
1795
       
1797
       
1796
        int i;
1798
        int i;
1797
        for (i = 0; i < node->keys; i++) {
1799
        for (i = 0; i < node->keys; i++) {
1798
            as_area_t *area = node->value[i];
1800
            as_area_t *area = node->value[i];
1799
       
1801
       
1800
            mutex_lock(&area->lock);
1802
            mutex_lock(&area->lock);
1801
            printf("as_area: %p, base=%p, pages=%d (%p - %p)\n",
1803
            printf("as_area: %p, base=%p, pages=%d (%p - %p)\n",
1802
                area, area->base, area->pages, area->base,
1804
                area, area->base, area->pages, area->base,
1803
                area->base + area->pages*PAGE_SIZE);
1805
                area->base + area->pages*PAGE_SIZE);
1804
            mutex_unlock(&area->lock);
1806
            mutex_unlock(&area->lock);
1805
        }
1807
        }
1806
    }
1808
    }
1807
   
1809
   
1808
    mutex_unlock(&as->lock);
1810
    mutex_unlock(&as->lock);
1809
    interrupts_restore(ipl);
1811
    interrupts_restore(ipl);
1810
}
1812
}
1811
 
1813
 
1812
/** @}
1814
/** @}
1813
 */
1815
 */
1814
 
1816