Subversion Repositories HelenOS-historic

Rev

Rev 76 | Go to most recent revision | Only display areas with differences | Ignore whitespace | Details | Blame | Last modification | View Log | RSS feed

Rev 76 Rev 81
1
/*
1
/*
2
 * Copyright (C) 2001-2004 Jakub Jermar
2
 * Copyright (C) 2001-2004 Jakub Jermar
3
 * All rights reserved.
3
 * All rights reserved.
4
 *
4
 *
5
 * Redistribution and use in source and binary forms, with or without
5
 * Redistribution and use in source and binary forms, with or without
6
 * modification, are permitted provided that the following conditions
6
 * modification, are permitted provided that the following conditions
7
 * are met:
7
 * are met:
8
 *
8
 *
9
 * - Redistributions of source code must retain the above copyright
9
 * - Redistributions of source code must retain the above copyright
10
 *   notice, this list of conditions and the following disclaimer.
10
 *   notice, this list of conditions and the following disclaimer.
11
 * - Redistributions in binary form must reproduce the above copyright
11
 * - Redistributions in binary form must reproduce the above copyright
12
 *   notice, this list of conditions and the following disclaimer in the
12
 *   notice, this list of conditions and the following disclaimer in the
13
 *   documentation and/or other materials provided with the distribution.
13
 *   documentation and/or other materials provided with the distribution.
14
 * - The name of the author may not be used to endorse or promote products
14
 * - The name of the author may not be used to endorse or promote products
15
 *   derived from this software without specific prior written permission.
15
 *   derived from this software without specific prior written permission.
16
 *
16
 *
17
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
 */
27
 */
28
 
28
 
29
#include <proc/scheduler.h>
29
#include <proc/scheduler.h>
30
#include <proc/thread.h>
30
#include <proc/thread.h>
31
#include <proc/task.h>
31
#include <proc/task.h>
32
#include <cpu.h>
32
#include <cpu.h>
33
#include <mm/vm.h>
33
#include <mm/vm.h>
34
#include <config.h>
34
#include <config.h>
35
#include <context.h>
35
#include <context.h>
36
#include <func.h>
36
#include <func.h>
37
#include <arch.h>
37
#include <arch.h>
38
#include <arch/asm.h>
38
#include <arch/asm.h>
39
#include <list.h>
39
#include <list.h>
40
#include <panic.h>
40
#include <panic.h>
41
#include <typedefs.h>
41
#include <typedefs.h>
42
#include <mm/page.h>
42
#include <mm/page.h>
43
#include <synch/spinlock.h>
43
#include <synch/spinlock.h>
44
#include <arch/faddr.h>
44
#include <arch/faddr.h>
45
 
45
 
46
#ifdef __SMP__
46
#ifdef __SMP__
47
#include <arch/smp/atomic.h>
47
#include <arch/smp/atomic.h>
48
#endif /* __SMP__ */
48
#endif /* __SMP__ */
49
 
49
 
50
/*
50
/*
51
 * NOTE ON ATOMIC READS:
51
 * NOTE ON ATOMIC READS:
52
 * Some architectures cannot read __u32 atomically.
52
 * Some architectures cannot read __u32 atomically.
53
 * For that reason, all accesses to nrdy and the likes must be protected by spinlock.
53
 * For that reason, all accesses to nrdy and the likes must be protected by spinlock.
54
 */
54
 */
55
 
55
 
56
spinlock_t nrdylock;
56
spinlock_t nrdylock;
57
volatile int nrdy;
57
volatile int nrdy;
58
 
58
 
59
void before_thread_runs(void)
59
void before_thread_runs(void)
60
{
60
{
61
    before_thread_runs_arch();
61
    before_thread_runs_arch();
62
    fpu_context_restore(&(THREAD->saved_fpu_context));
62
    fpu_context_restore(&(THREAD->saved_fpu_context));
63
}
63
}
64
 
64
 
65
 
65
 
66
void scheduler_init(void)
66
void scheduler_init(void)
67
{
67
{
68
    spinlock_initialize(&nrdylock);
68
    spinlock_initialize(&nrdylock);
69
}
69
}
70
 
70
 
71
/* cpu_priority_high()'d */
71
/* cpu_priority_high()'d */
72
struct thread *find_best_thread(void)
72
struct thread *find_best_thread(void)
73
{
73
{
74
    thread_t *t;
74
    thread_t *t;
75
    runq_t *r;
75
    runq_t *r;
76
    int i, n;
76
    int i, n;
77
 
77
 
78
loop:
78
loop:
79
    cpu_priority_high();
79
    cpu_priority_high();
80
 
80
 
81
    spinlock_lock(&CPU->lock);
81
    spinlock_lock(&CPU->lock);
82
    n = CPU->nrdy;
82
    n = CPU->nrdy;
83
    spinlock_unlock(&CPU->lock);
83
    spinlock_unlock(&CPU->lock);
84
 
84
 
85
    cpu_priority_low();
85
    cpu_priority_low();
86
   
86
   
87
    if (n == 0) {
87
    if (n == 0) {
88
        #ifdef __SMP__
88
        #ifdef __SMP__
89
        /*
89
        /*
90
         * If the load balancing thread is not running, wake it up and
90
         * If the load balancing thread is not running, wake it up and
91
         * set CPU-private flag that the kcpulb has been started.
91
         * set CPU-private flag that the kcpulb has been started.
92
         */
92
         */
93
        if (test_and_set(&CPU->kcpulbstarted) == 0) {
93
        if (test_and_set(&CPU->kcpulbstarted) == 0) {
94
                waitq_wakeup(&CPU->kcpulb_wq, 0);
94
                waitq_wakeup(&CPU->kcpulb_wq, 0);
95
            goto loop;
95
            goto loop;
96
        }
96
        }
97
        #endif /* __SMP__ */
97
        #endif /* __SMP__ */
98
       
98
       
99
        /*
99
        /*
100
         * For there was nothing to run, the CPU goes to sleep
100
         * For there was nothing to run, the CPU goes to sleep
101
         * until a hardware interrupt or an IPI comes.
101
         * until a hardware interrupt or an IPI comes.
102
         * This improves energy saving and hyperthreading.
102
         * This improves energy saving and hyperthreading.
103
         * On the other hand, several hardware interrupts can be ignored.
103
         * On the other hand, several hardware interrupts can be ignored.
104
         */
104
         */
105
         cpu_sleep();
105
         cpu_sleep();
106
         goto loop;
106
         goto loop;
107
    }
107
    }
108
 
108
 
109
    cpu_priority_high();
109
    cpu_priority_high();
110
 
110
 
111
    for (i = 0; i<RQ_COUNT; i++) {
111
    for (i = 0; i<RQ_COUNT; i++) {
112
        r = &CPU->rq[i];
112
        r = &CPU->rq[i];
113
        spinlock_lock(&r->lock);
113
        spinlock_lock(&r->lock);
114
        if (r->n == 0) {
114
        if (r->n == 0) {
115
            /*
115
            /*
116
             * If this queue is empty, try a lower-priority queue.
116
             * If this queue is empty, try a lower-priority queue.
117
             */
117
             */
118
            spinlock_unlock(&r->lock);
118
            spinlock_unlock(&r->lock);
119
            continue;
119
            continue;
120
        }
120
        }
121
   
121
   
122
        spinlock_lock(&nrdylock);
122
        spinlock_lock(&nrdylock);
123
        nrdy--;
123
        nrdy--;
124
        spinlock_unlock(&nrdylock);    
124
        spinlock_unlock(&nrdylock);    
125
 
125
 
126
        spinlock_lock(&CPU->lock);
126
        spinlock_lock(&CPU->lock);
127
        CPU->nrdy--;
127
        CPU->nrdy--;
128
        spinlock_unlock(&CPU->lock);
128
        spinlock_unlock(&CPU->lock);
129
 
129
 
130
        r->n--;
130
        r->n--;
131
 
131
 
132
        /*
132
        /*
133
         * Take the first thread from the queue.
133
         * Take the first thread from the queue.
134
         */
134
         */
135
        t = list_get_instance(r->rq_head.next, thread_t, rq_link);
135
        t = list_get_instance(r->rq_head.next, thread_t, rq_link);
136
        list_remove(&t->rq_link);
136
        list_remove(&t->rq_link);
137
 
137
 
138
        spinlock_unlock(&r->lock);
138
        spinlock_unlock(&r->lock);
139
 
139
 
140
        spinlock_lock(&t->lock);
140
        spinlock_lock(&t->lock);
141
        t->cpu = CPU;
141
        t->cpu = CPU;
142
 
142
 
143
        t->ticks = us2ticks((i+1)*10000);
143
        t->ticks = us2ticks((i+1)*10000);
144
        t->pri = i; /* eventually correct rq index */
144
        t->pri = i; /* eventually correct rq index */
145
 
145
 
146
        /*
146
        /*
147
         * Clear the X_STOLEN flag so that t can be migrated when load balancing needs emerge.
147
         * Clear the X_STOLEN flag so that t can be migrated when load balancing needs emerge.
148
         */
148
         */
149
        t->flags &= ~X_STOLEN;
149
        t->flags &= ~X_STOLEN;
150
        spinlock_unlock(&t->lock);
150
        spinlock_unlock(&t->lock);
151
 
151
 
152
        return t;
152
        return t;
153
    }
153
    }
154
    goto loop;
154
    goto loop;
155
 
155
 
156
}
156
}
157
 
157
 
158
/*
158
/*
159
 * This function prevents low priority threads from starving in rq's.
159
 * This function prevents low priority threads from starving in rq's.
160
 * When it decides to relink rq's, it reconnects respective pointers
160
 * When it decides to relink rq's, it reconnects respective pointers
161
 * so that in result threads with 'pri' greater or equal 'start' are
161
 * so that in result threads with 'pri' greater or equal 'start' are
162
 * moved to a higher-priority queue.
162
 * moved to a higher-priority queue.
163
 */
163
 */
164
void relink_rq(int start)
164
void relink_rq(int start)
165
{
165
{
166
    link_t head;
166
    link_t head;
167
    runq_t *r;
167
    runq_t *r;
168
    int i, n;
168
    int i, n;
169
 
169
 
170
    list_initialize(&head);
170
    list_initialize(&head);
171
    spinlock_lock(&CPU->lock);
171
    spinlock_lock(&CPU->lock);
172
    if (CPU->needs_relink > NEEDS_RELINK_MAX) {
172
    if (CPU->needs_relink > NEEDS_RELINK_MAX) {
173
        for (i = start; i<RQ_COUNT-1; i++) {
173
        for (i = start; i<RQ_COUNT-1; i++) {
174
            /* remember and empty rq[i + 1] */
174
            /* remember and empty rq[i + 1] */
175
            r = &CPU->rq[i + 1];
175
            r = &CPU->rq[i + 1];
176
            spinlock_lock(&r->lock);
176
            spinlock_lock(&r->lock);
177
            list_concat(&head, &r->rq_head);
177
            list_concat(&head, &r->rq_head);
178
            n = r->n;
178
            n = r->n;
179
            r->n = 0;
179
            r->n = 0;
180
            spinlock_unlock(&r->lock);
180
            spinlock_unlock(&r->lock);
181
       
181
       
182
            /* append rq[i + 1] to rq[i] */
182
            /* append rq[i + 1] to rq[i] */
183
            r = &CPU->rq[i];
183
            r = &CPU->rq[i];
184
            spinlock_lock(&r->lock);
184
            spinlock_lock(&r->lock);
185
            list_concat(&r->rq_head, &head);
185
            list_concat(&r->rq_head, &head);
186
            r->n += n;
186
            r->n += n;
187
            spinlock_unlock(&r->lock);
187
            spinlock_unlock(&r->lock);
188
        }
188
        }
189
        CPU->needs_relink = 0;
189
        CPU->needs_relink = 0;
190
    }
190
    }
191
    spinlock_unlock(&CPU->lock);               
191
    spinlock_unlock(&CPU->lock);               
192
 
192
 
193
}
193
}
194
 
194
 
195
/*
195
/*
196
 * The scheduler.
196
 * The scheduler.
197
 */
197
 */
198
void scheduler(void)
198
void scheduler(void)
199
{
199
{
200
    volatile pri_t pri;
200
    volatile pri_t pri;
201
 
201
 
202
    pri = cpu_priority_high();
202
    pri = cpu_priority_high();
203
 
203
 
204
    if (haltstate)
204
    if (haltstate)
205
        halt();
205
        halt();
206
 
206
 
207
    if (THREAD) {
207
    if (THREAD) {
208
        spinlock_lock(&THREAD->lock);
208
        spinlock_lock(&THREAD->lock);
209
        fpu_context_save(&(THREAD->saved_fpu_context));
209
        fpu_context_save(&(THREAD->saved_fpu_context));
210
        if (!context_save(&THREAD->saved_context)) {
210
        if (!context_save(&THREAD->saved_context)) {
211
            /*
211
            /*
212
             * This is the place where threads leave scheduler();
212
             * This is the place where threads leave scheduler();
213
             */
213
             */
214
            before_thread_runs();
214
            before_thread_runs();
215
                spinlock_unlock(&THREAD->lock);
215
                spinlock_unlock(&THREAD->lock);
216
            cpu_priority_restore(THREAD->saved_context.pri);
216
            cpu_priority_restore(THREAD->saved_context.pri);
217
            return;
217
            return;
218
        }
218
        }
219
        THREAD->saved_context.pri = pri;
219
        THREAD->saved_context.pri = pri;
220
    }
220
    }
221
 
221
 
222
    /*
222
    /*
223
     * We may not keep the old stack.
223
     * We may not keep the old stack.
224
     * Reason: If we kept the old stack and got blocked, for instance, in
224
     * Reason: If we kept the old stack and got blocked, for instance, in
225
     * find_best_thread(), the old thread could get rescheduled by another
225
     * find_best_thread(), the old thread could get rescheduled by another
226
     * CPU and overwrite the part of its own stack that was also used by
226
     * CPU and overwrite the part of its own stack that was also used by
227
     * the scheduler on this CPU.
227
     * the scheduler on this CPU.
228
     *
228
     *
229
     * Moreover, we have to bypass the compiler-generated POP sequence
229
     * Moreover, we have to bypass the compiler-generated POP sequence
230
     * which is fooled by SP being set to the very top of the stack.
230
     * which is fooled by SP being set to the very top of the stack.
231
     * Therefore the scheduler() function continues in
231
     * Therefore the scheduler() function continues in
232
     * scheduler_separated_stack().
232
     * scheduler_separated_stack().
233
     */
233
     */
234
    context_save(&CPU->saved_context);
234
    context_save(&CPU->saved_context);
235
    CPU->saved_context.sp = (__address) &CPU->stack[CPU_STACK_SIZE-8];
235
    CPU->saved_context.sp = (__address) &CPU->stack[CPU_STACK_SIZE-SP_DELTA];
236
    CPU->saved_context.pc = FADDR(scheduler_separated_stack);
236
    CPU->saved_context.pc = FADDR(scheduler_separated_stack);
237
    context_restore(&CPU->saved_context);
237
    context_restore(&CPU->saved_context);
238
    /* not reached */
238
    /* not reached */
239
}
239
}
240
 
240
 
241
void scheduler_separated_stack(void)
241
void scheduler_separated_stack(void)
242
{
242
{
243
    int priority;
243
    int priority;
244
 
244
 
245
    if (THREAD) {
245
    if (THREAD) {
246
        switch (THREAD->state) {
246
        switch (THREAD->state) {
247
            case Running:
247
            case Running:
248
                THREAD->state = Ready;
248
                THREAD->state = Ready;
249
                spinlock_unlock(&THREAD->lock);
249
                spinlock_unlock(&THREAD->lock);
250
                thread_ready(THREAD);
250
                thread_ready(THREAD);
251
                break;
251
                break;
252
 
252
 
253
            case Exiting:
253
            case Exiting:
254
                frame_free((__address) THREAD->kstack);
254
                frame_free((__address) THREAD->kstack);
255
                if (THREAD->ustack) {
255
                if (THREAD->ustack) {
256
                    frame_free((__address) THREAD->ustack);
256
                    frame_free((__address) THREAD->ustack);
257
                }
257
                }
258
               
258
               
259
                /*
259
                /*
260
                 * Detach from the containing task.
260
                 * Detach from the containing task.
261
                 */
261
                 */
262
                spinlock_lock(&TASK->lock);
262
                spinlock_lock(&TASK->lock);
263
                list_remove(&THREAD->th_link);
263
                list_remove(&THREAD->th_link);
264
                spinlock_unlock(&TASK->lock);
264
                spinlock_unlock(&TASK->lock);
265
 
265
 
266
                spinlock_unlock(&THREAD->lock);
266
                spinlock_unlock(&THREAD->lock);
267
               
267
               
268
                spinlock_lock(&threads_lock);
268
                spinlock_lock(&threads_lock);
269
                list_remove(&THREAD->threads_link);
269
                list_remove(&THREAD->threads_link);
270
                spinlock_unlock(&threads_lock);
270
                spinlock_unlock(&threads_lock);
271
 
271
 
272
                spinlock_lock(&THREAD->cpu->lock);
272
                spinlock_lock(&THREAD->cpu->lock);
273
                if(THREAD->cpu->fpu_owner==THREAD) THREAD->cpu->fpu_owner=NULL;
273
                if(THREAD->cpu->fpu_owner==THREAD) THREAD->cpu->fpu_owner=NULL;
274
                spinlock_unlock(&THREAD->cpu->lock);
274
                spinlock_unlock(&THREAD->cpu->lock);
275
 
275
 
276
               
276
               
277
                free(THREAD);
277
                free(THREAD);
278
               
278
               
279
                break;
279
                break;
280
               
280
               
281
            case Sleeping:
281
            case Sleeping:
282
                /*
282
                /*
283
                 * Prefer the thread after it's woken up.
283
                 * Prefer the thread after it's woken up.
284
                 */
284
                 */
285
                THREAD->pri = -1;
285
                THREAD->pri = -1;
286
 
286
 
287
                /*
287
                /*
288
                 * We need to release wq->lock which we locked in waitq_sleep().
288
                 * We need to release wq->lock which we locked in waitq_sleep().
289
                 * Address of wq->lock is kept in THREAD->sleep_queue.
289
                 * Address of wq->lock is kept in THREAD->sleep_queue.
290
                 */
290
                 */
291
                spinlock_unlock(&THREAD->sleep_queue->lock);
291
                spinlock_unlock(&THREAD->sleep_queue->lock);
292
 
292
 
293
                /*
293
                /*
294
                 * Check for possible requests for out-of-context invocation.
294
                 * Check for possible requests for out-of-context invocation.
295
                 */
295
                 */
296
                if (THREAD->call_me) {
296
                if (THREAD->call_me) {
297
                    THREAD->call_me(THREAD->call_me_with);
297
                    THREAD->call_me(THREAD->call_me_with);
298
                    THREAD->call_me = NULL;
298
                    THREAD->call_me = NULL;
299
                    THREAD->call_me_with = NULL;
299
                    THREAD->call_me_with = NULL;
300
                }
300
                }
301
 
301
 
302
                spinlock_unlock(&THREAD->lock);
302
                spinlock_unlock(&THREAD->lock);
303
               
303
               
304
                break;
304
                break;
305
 
305
 
306
            default:
306
            default:
307
                /*
307
                /*
308
                 * Entering state is unexpected.
308
                 * Entering state is unexpected.
309
                 */
309
                 */
310
                panic("tid%d: unexpected state %s\n", THREAD->tid, thread_states[THREAD->state]);
310
                panic("tid%d: unexpected state %s\n", THREAD->tid, thread_states[THREAD->state]);
311
                break;
311
                break;
312
        }
312
        }
313
        THREAD = NULL;
313
        THREAD = NULL;
314
    }
314
    }
315
   
315
   
316
    THREAD = find_best_thread();
316
    THREAD = find_best_thread();
317
   
317
   
318
    spinlock_lock(&THREAD->lock);
318
    spinlock_lock(&THREAD->lock);
319
    priority = THREAD->pri;
319
    priority = THREAD->pri;
320
    spinlock_unlock(&THREAD->lock);
320
    spinlock_unlock(&THREAD->lock);
321
   
321
   
322
    relink_rq(priority);       
322
    relink_rq(priority);       
323
 
323
 
324
    spinlock_lock(&THREAD->lock);  
324
    spinlock_lock(&THREAD->lock);  
325
 
325
 
326
    /*
326
    /*
327
     * If both the old and the new task are the same, lots of work is avoided.
327
     * If both the old and the new task are the same, lots of work is avoided.
328
     */
328
     */
329
    if (TASK != THREAD->task) {
329
    if (TASK != THREAD->task) {
330
        vm_t *m1 = NULL;
330
        vm_t *m1 = NULL;
331
        vm_t *m2;
331
        vm_t *m2;
332
 
332
 
333
        if (TASK) {
333
        if (TASK) {
334
            spinlock_lock(&TASK->lock);
334
            spinlock_lock(&TASK->lock);
335
            m1 = TASK->vm;
335
            m1 = TASK->vm;
336
            spinlock_unlock(&TASK->lock);
336
            spinlock_unlock(&TASK->lock);
337
        }
337
        }
338
 
338
 
339
        spinlock_lock(&THREAD->task->lock);
339
        spinlock_lock(&THREAD->task->lock);
340
        m2 = THREAD->task->vm;
340
        m2 = THREAD->task->vm;
341
        spinlock_unlock(&THREAD->task->lock);
341
        spinlock_unlock(&THREAD->task->lock);
342
       
342
       
343
        /*
343
        /*
344
         * Note that it is possible for two tasks to share one vm mapping.
344
         * Note that it is possible for two tasks to share one vm mapping.
345
         */
345
         */
346
        if (m1 != m2) {
346
        if (m1 != m2) {
347
            /*
347
            /*
348
             * Both tasks and vm mappings are different.
348
             * Both tasks and vm mappings are different.
349
             * Replace the old one with the new one.
349
             * Replace the old one with the new one.
350
             */
350
             */
351
            if (m1) {
351
            if (m1) {
352
                vm_uninstall(m1);
352
                vm_uninstall(m1);
353
            }
353
            }
354
            vm_install(m2);
354
            vm_install(m2);
355
        }
355
        }
356
        TASK = THREAD->task;   
356
        TASK = THREAD->task;   
357
    }
357
    }
358
 
358
 
359
    THREAD->state = Running;
359
    THREAD->state = Running;
360
 
360
 
361
    #ifdef SCHEDULER_VERBOSE
361
    #ifdef SCHEDULER_VERBOSE
362
    printf("cpu%d: tid %d (pri=%d,ticks=%d,nrdy=%d)\n", CPU->id, THREAD->tid, THREAD->pri, THREAD->ticks, CPU->nrdy);
362
    printf("cpu%d: tid %d (pri=%d,ticks=%d,nrdy=%d)\n", CPU->id, THREAD->tid, THREAD->pri, THREAD->ticks, CPU->nrdy);
363
    #endif  
363
    #endif  
364
 
364
 
365
    context_restore(&THREAD->saved_context);
365
    context_restore(&THREAD->saved_context);
366
    /* not reached */
366
    /* not reached */
367
}
367
}
368
 
368
 
369
#ifdef __SMP__
369
#ifdef __SMP__
370
/*
370
/*
371
 * This is the load balancing thread.
371
 * This is the load balancing thread.
372
 * It supervises thread supplies for the CPU it's wired to.
372
 * It supervises thread supplies for the CPU it's wired to.
373
 */
373
 */
374
void kcpulb(void *arg)
374
void kcpulb(void *arg)
375
{
375
{
376
    thread_t *t;
376
    thread_t *t;
377
    int count, i, j, k = 0;
377
    int count, i, j, k = 0;
378
    pri_t pri;
378
    pri_t pri;
379
 
379
 
380
loop:
380
loop:
381
    /*
381
    /*
382
     * Sleep until there's some work to do.
382
     * Sleep until there's some work to do.
383
     */
383
     */
384
    waitq_sleep(&CPU->kcpulb_wq);
384
    waitq_sleep(&CPU->kcpulb_wq);
385
 
385
 
386
not_satisfied:
386
not_satisfied:
387
    /*
387
    /*
388
     * Calculate the number of threads that will be migrated/stolen from
388
     * Calculate the number of threads that will be migrated/stolen from
389
     * other CPU's. Note that situation can have changed between two
389
     * other CPU's. Note that situation can have changed between two
390
     * passes. Each time get the most up to date counts.
390
     * passes. Each time get the most up to date counts.
391
     */
391
     */
392
    pri = cpu_priority_high();
392
    pri = cpu_priority_high();
393
    spinlock_lock(&CPU->lock);
393
    spinlock_lock(&CPU->lock);
394
    count = nrdy / config.cpu_active;
394
    count = nrdy / config.cpu_active;
395
    count -= CPU->nrdy;
395
    count -= CPU->nrdy;
396
    spinlock_unlock(&CPU->lock);
396
    spinlock_unlock(&CPU->lock);
397
    cpu_priority_restore(pri);
397
    cpu_priority_restore(pri);
398
 
398
 
399
    if (count <= 0)
399
    if (count <= 0)
400
        goto satisfied;
400
        goto satisfied;
401
 
401
 
402
    /*
402
    /*
403
     * Searching least priority queues on all CPU's first and most priority queues on all CPU's last.
403
     * Searching least priority queues on all CPU's first and most priority queues on all CPU's last.
404
     */
404
     */
405
    for (j=RQ_COUNT-1; j >= 0; j--) {
405
    for (j=RQ_COUNT-1; j >= 0; j--) {
406
        for (i=0; i < config.cpu_active; i++) {
406
        for (i=0; i < config.cpu_active; i++) {
407
            link_t *l;
407
            link_t *l;
408
            runq_t *r;
408
            runq_t *r;
409
            cpu_t *cpu;
409
            cpu_t *cpu;
410
 
410
 
411
            cpu = &cpus[(i + k) % config.cpu_active];
411
            cpu = &cpus[(i + k) % config.cpu_active];
412
            r = &cpu->rq[j];
412
            r = &cpu->rq[j];
413
 
413
 
414
            /*
414
            /*
415
             * Not interested in ourselves.
415
             * Not interested in ourselves.
416
             * Doesn't require interrupt disabling for kcpulb is X_WIRED.
416
             * Doesn't require interrupt disabling for kcpulb is X_WIRED.
417
             */
417
             */
418
            if (CPU == cpu)
418
            if (CPU == cpu)
419
                continue;
419
                continue;
420
 
420
 
421
restart:        pri = cpu_priority_high();
421
restart:        pri = cpu_priority_high();
422
            spinlock_lock(&r->lock);
422
            spinlock_lock(&r->lock);
423
            if (r->n == 0) {
423
            if (r->n == 0) {
424
                spinlock_unlock(&r->lock);
424
                spinlock_unlock(&r->lock);
425
                cpu_priority_restore(pri);
425
                cpu_priority_restore(pri);
426
                continue;
426
                continue;
427
            }
427
            }
428
       
428
       
429
            t = NULL;
429
            t = NULL;
430
            l = r->rq_head.prev;    /* search rq from the back */
430
            l = r->rq_head.prev;    /* search rq from the back */
431
            while (l != &r->rq_head) {
431
            while (l != &r->rq_head) {
432
                t = list_get_instance(l, thread_t, rq_link);
432
                t = list_get_instance(l, thread_t, rq_link);
433
                /*
433
                /*
434
                     * We don't want to steal CPU-wired threads neither threads already stolen.
434
                     * We don't want to steal CPU-wired threads neither threads already stolen.
435
                 * The latter prevents threads from migrating between CPU's without ever being run.
435
                 * The latter prevents threads from migrating between CPU's without ever being run.
436
                     * We don't want to steal threads whose FPU context is still in CPU
436
                     * We don't want to steal threads whose FPU context is still in CPU
437
                 */
437
                 */
438
                spinlock_lock(&t->lock);
438
                spinlock_lock(&t->lock);
439
                if ( (!(t->flags & (X_WIRED | X_STOLEN))) && (!(t->fpu_context_engaged)) ) {
439
                if ( (!(t->flags & (X_WIRED | X_STOLEN))) && (!(t->fpu_context_engaged)) ) {
440
                    /*
440
                    /*
441
                     * Remove t from r.
441
                     * Remove t from r.
442
                     */
442
                     */
443
 
443
 
444
                    spinlock_unlock(&t->lock);
444
                    spinlock_unlock(&t->lock);
445
                   
445
                   
446
                    /*
446
                    /*
447
                     * Here we have to avoid deadlock with relink_rq(),
447
                     * Here we have to avoid deadlock with relink_rq(),
448
                     * because it locks cpu and r in a different order than we do.
448
                     * because it locks cpu and r in a different order than we do.
449
                     */
449
                     */
450
                    if (!spinlock_trylock(&cpu->lock)) {
450
                    if (!spinlock_trylock(&cpu->lock)) {
451
                        /* Release all locks and try again. */
451
                        /* Release all locks and try again. */
452
                        spinlock_unlock(&r->lock);
452
                        spinlock_unlock(&r->lock);
453
                        cpu_priority_restore(pri);
453
                        cpu_priority_restore(pri);
454
                        goto restart;
454
                        goto restart;
455
                    }
455
                    }
456
                    cpu->nrdy--;
456
                    cpu->nrdy--;
457
                    spinlock_unlock(&cpu->lock);
457
                    spinlock_unlock(&cpu->lock);
458
 
458
 
459
                    spinlock_lock(&nrdylock);
459
                    spinlock_lock(&nrdylock);
460
                    nrdy--;
460
                    nrdy--;
461
                    spinlock_unlock(&nrdylock);                
461
                    spinlock_unlock(&nrdylock);                
462
 
462
 
463
                        r->n--;
463
                        r->n--;
464
                    list_remove(&t->rq_link);
464
                    list_remove(&t->rq_link);
465
 
465
 
466
                    break;
466
                    break;
467
                }
467
                }
468
                spinlock_unlock(&t->lock);
468
                spinlock_unlock(&t->lock);
469
                l = l->prev;
469
                l = l->prev;
470
                t = NULL;
470
                t = NULL;
471
            }
471
            }
472
            spinlock_unlock(&r->lock);
472
            spinlock_unlock(&r->lock);
473
 
473
 
474
            if (t) {
474
            if (t) {
475
                /*
475
                /*
476
                 * Ready t on local CPU
476
                 * Ready t on local CPU
477
                 */
477
                 */
478
                spinlock_lock(&t->lock);
478
                spinlock_lock(&t->lock);
479
                #ifdef KCPULB_VERBOSE
479
                #ifdef KCPULB_VERBOSE
480
                printf("kcpulb%d: TID %d -> cpu%d, nrdy=%d, avg=%d\n", CPU->id, t->tid, CPU->id, CPU->nrdy, nrdy / config.cpu_active);
480
                printf("kcpulb%d: TID %d -> cpu%d, nrdy=%d, avg=%d\n", CPU->id, t->tid, CPU->id, CPU->nrdy, nrdy / config.cpu_active);
481
                #endif
481
                #endif
482
                t->flags |= X_STOLEN;
482
                t->flags |= X_STOLEN;
483
                spinlock_unlock(&t->lock);
483
                spinlock_unlock(&t->lock);
484
   
484
   
485
                thread_ready(t);
485
                thread_ready(t);
486
 
486
 
487
                cpu_priority_restore(pri);
487
                cpu_priority_restore(pri);
488
   
488
   
489
                if (--count == 0)
489
                if (--count == 0)
490
                    goto satisfied;
490
                    goto satisfied;
491
                   
491
                   
492
                /*
492
                /*
493
                             * We are not satisfied yet, focus on another CPU next time.
493
                             * We are not satisfied yet, focus on another CPU next time.
494
                 */
494
                 */
495
                k++;
495
                k++;
496
               
496
               
497
                continue;
497
                continue;
498
            }
498
            }
499
            cpu_priority_restore(pri);
499
            cpu_priority_restore(pri);
500
        }
500
        }
501
    }
501
    }
502
 
502
 
503
    if (CPU->nrdy) {
503
    if (CPU->nrdy) {
504
        /*
504
        /*
505
         * Be a little bit light-weight and let migrated threads run.
505
         * Be a little bit light-weight and let migrated threads run.
506
         */
506
         */
507
        scheduler();
507
        scheduler();
508
    }
508
    }
509
    else {
509
    else {
510
        /*
510
        /*
511
         * We failed to migrate a single thread.
511
         * We failed to migrate a single thread.
512
         * Something more sophisticated should be done.
512
         * Something more sophisticated should be done.
513
         */
513
         */
514
        scheduler();
514
        scheduler();
515
    }
515
    }
516
       
516
       
517
    goto not_satisfied;
517
    goto not_satisfied;
518
   
518
   
519
satisfied:
519
satisfied:
520
    /*
520
    /*
521
     * Tell find_best_thread() to wake us up later again.
521
     * Tell find_best_thread() to wake us up later again.
522
     */
522
     */
523
    CPU->kcpulbstarted = 0;
523
    CPU->kcpulbstarted = 0;
524
    goto loop;
524
    goto loop;
525
}
525
}
526
 
526
 
527
#endif /* __SMP__ */
527
#endif /* __SMP__ */
528
 
528