Subversion Repositories HelenOS-historic

Rev

Rev 75 | Go to most recent revision | Only display areas with differences | Ignore whitespace | Details | Blame | Last modification | View Log | RSS feed

Rev 75 Rev 76
1
/*
1
/*
2
 * Copyright (C) 2001-2004 Jakub Jermar
2
 * Copyright (C) 2001-2004 Jakub Jermar
3
 * All rights reserved.
3
 * All rights reserved.
4
 *
4
 *
5
 * Redistribution and use in source and binary forms, with or without
5
 * Redistribution and use in source and binary forms, with or without
6
 * modification, are permitted provided that the following conditions
6
 * modification, are permitted provided that the following conditions
7
 * are met:
7
 * are met:
8
 *
8
 *
9
 * - Redistributions of source code must retain the above copyright
9
 * - Redistributions of source code must retain the above copyright
10
 *   notice, this list of conditions and the following disclaimer.
10
 *   notice, this list of conditions and the following disclaimer.
11
 * - Redistributions in binary form must reproduce the above copyright
11
 * - Redistributions in binary form must reproduce the above copyright
12
 *   notice, this list of conditions and the following disclaimer in the
12
 *   notice, this list of conditions and the following disclaimer in the
13
 *   documentation and/or other materials provided with the distribution.
13
 *   documentation and/or other materials provided with the distribution.
14
 * - The name of the author may not be used to endorse or promote products
14
 * - The name of the author may not be used to endorse or promote products
15
 *   derived from this software without specific prior written permission.
15
 *   derived from this software without specific prior written permission.
16
 *
16
 *
17
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
 */
27
 */
28
 
28
 
29
#include <proc/scheduler.h>
29
#include <proc/scheduler.h>
30
#include <proc/thread.h>
30
#include <proc/thread.h>
31
#include <proc/task.h>
31
#include <proc/task.h>
32
#include <cpu.h>
32
#include <cpu.h>
33
#include <mm/vm.h>
33
#include <mm/vm.h>
34
#include <config.h>
34
#include <config.h>
35
#include <context.h>
35
#include <context.h>
36
#include <func.h>
36
#include <func.h>
37
#include <arch.h>
37
#include <arch.h>
38
#include <arch/asm.h>
38
#include <arch/asm.h>
39
#include <list.h>
39
#include <list.h>
40
#include <panic.h>
40
#include <panic.h>
41
#include <typedefs.h>
41
#include <typedefs.h>
42
#include <mm/page.h>
42
#include <mm/page.h>
43
#include <synch/spinlock.h>
43
#include <synch/spinlock.h>
-
 
44
#include <arch/faddr.h>
44
 
45
 
45
#ifdef __SMP__
46
#ifdef __SMP__
46
#include <arch/smp/atomic.h>
47
#include <arch/smp/atomic.h>
47
#endif /* __SMP__ */
48
#endif /* __SMP__ */
48
 
49
 
49
/*
50
/*
50
 * NOTE ON ATOMIC READS:
51
 * NOTE ON ATOMIC READS:
51
 * Some architectures cannot read __u32 atomically.
52
 * Some architectures cannot read __u32 atomically.
52
 * For that reason, all accesses to nrdy and the likes must be protected by spinlock.
53
 * For that reason, all accesses to nrdy and the likes must be protected by spinlock.
53
 */
54
 */
54
 
55
 
55
spinlock_t nrdylock;
56
spinlock_t nrdylock;
56
volatile int nrdy;
57
volatile int nrdy;
57
 
58
 
58
void before_thread_runs(void)
59
void before_thread_runs(void)
59
{
60
{
60
    before_thread_runs_arch();
61
    before_thread_runs_arch();
61
    fpu_context_restore(&(THREAD->saved_fpu_context));
62
    fpu_context_restore(&(THREAD->saved_fpu_context));
62
}
63
}
63
 
64
 
64
 
65
 
65
void scheduler_init(void)
66
void scheduler_init(void)
66
{
67
{
67
    spinlock_initialize(&nrdylock);
68
    spinlock_initialize(&nrdylock);
68
}
69
}
69
 
70
 
70
/* cpu_priority_high()'d */
71
/* cpu_priority_high()'d */
71
struct thread *find_best_thread(void)
72
struct thread *find_best_thread(void)
72
{
73
{
73
    thread_t *t;
74
    thread_t *t;
74
    runq_t *r;
75
    runq_t *r;
75
    int i, n;
76
    int i, n;
76
 
77
 
77
loop:
78
loop:
78
    cpu_priority_high();
79
    cpu_priority_high();
79
 
80
 
80
    spinlock_lock(&CPU->lock);
81
    spinlock_lock(&CPU->lock);
81
    n = CPU->nrdy;
82
    n = CPU->nrdy;
82
    spinlock_unlock(&CPU->lock);
83
    spinlock_unlock(&CPU->lock);
83
 
84
 
84
    cpu_priority_low();
85
    cpu_priority_low();
85
   
86
   
86
    if (n == 0) {
87
    if (n == 0) {
87
        #ifdef __SMP__
88
        #ifdef __SMP__
88
        /*
89
        /*
89
         * If the load balancing thread is not running, wake it up and
90
         * If the load balancing thread is not running, wake it up and
90
         * set CPU-private flag that the kcpulb has been started.
91
         * set CPU-private flag that the kcpulb has been started.
91
         */
92
         */
92
        if (test_and_set(&CPU->kcpulbstarted) == 0) {
93
        if (test_and_set(&CPU->kcpulbstarted) == 0) {
93
                waitq_wakeup(&CPU->kcpulb_wq, 0);
94
                waitq_wakeup(&CPU->kcpulb_wq, 0);
94
            goto loop;
95
            goto loop;
95
        }
96
        }
96
        #endif /* __SMP__ */
97
        #endif /* __SMP__ */
97
       
98
       
98
        /*
99
        /*
99
         * For there was nothing to run, the CPU goes to sleep
100
         * For there was nothing to run, the CPU goes to sleep
100
         * until a hardware interrupt or an IPI comes.
101
         * until a hardware interrupt or an IPI comes.
101
         * This improves energy saving and hyperthreading.
102
         * This improves energy saving and hyperthreading.
102
         * On the other hand, several hardware interrupts can be ignored.
103
         * On the other hand, several hardware interrupts can be ignored.
103
         */
104
         */
104
         cpu_sleep();
105
         cpu_sleep();
105
         goto loop;
106
         goto loop;
106
    }
107
    }
107
 
108
 
108
    cpu_priority_high();
109
    cpu_priority_high();
109
 
110
 
110
    for (i = 0; i<RQ_COUNT; i++) {
111
    for (i = 0; i<RQ_COUNT; i++) {
111
        r = &CPU->rq[i];
112
        r = &CPU->rq[i];
112
        spinlock_lock(&r->lock);
113
        spinlock_lock(&r->lock);
113
        if (r->n == 0) {
114
        if (r->n == 0) {
114
            /*
115
            /*
115
             * If this queue is empty, try a lower-priority queue.
116
             * If this queue is empty, try a lower-priority queue.
116
             */
117
             */
117
            spinlock_unlock(&r->lock);
118
            spinlock_unlock(&r->lock);
118
            continue;
119
            continue;
119
        }
120
        }
120
   
121
   
121
        spinlock_lock(&nrdylock);
122
        spinlock_lock(&nrdylock);
122
        nrdy--;
123
        nrdy--;
123
        spinlock_unlock(&nrdylock);    
124
        spinlock_unlock(&nrdylock);    
124
 
125
 
125
        spinlock_lock(&CPU->lock);
126
        spinlock_lock(&CPU->lock);
126
        CPU->nrdy--;
127
        CPU->nrdy--;
127
        spinlock_unlock(&CPU->lock);
128
        spinlock_unlock(&CPU->lock);
128
 
129
 
129
        r->n--;
130
        r->n--;
130
 
131
 
131
        /*
132
        /*
132
         * Take the first thread from the queue.
133
         * Take the first thread from the queue.
133
         */
134
         */
134
        t = list_get_instance(r->rq_head.next, thread_t, rq_link);
135
        t = list_get_instance(r->rq_head.next, thread_t, rq_link);
135
        list_remove(&t->rq_link);
136
        list_remove(&t->rq_link);
136
 
137
 
137
        spinlock_unlock(&r->lock);
138
        spinlock_unlock(&r->lock);
138
 
139
 
139
        spinlock_lock(&t->lock);
140
        spinlock_lock(&t->lock);
140
        t->cpu = CPU;
141
        t->cpu = CPU;
141
 
142
 
142
        t->ticks = us2ticks((i+1)*10000);
143
        t->ticks = us2ticks((i+1)*10000);
143
        t->pri = i; /* eventually correct rq index */
144
        t->pri = i; /* eventually correct rq index */
144
 
145
 
145
        /*
146
        /*
146
         * Clear the X_STOLEN flag so that t can be migrated when load balancing needs emerge.
147
         * Clear the X_STOLEN flag so that t can be migrated when load balancing needs emerge.
147
         */
148
         */
148
        t->flags &= ~X_STOLEN;
149
        t->flags &= ~X_STOLEN;
149
        spinlock_unlock(&t->lock);
150
        spinlock_unlock(&t->lock);
150
 
151
 
151
        return t;
152
        return t;
152
    }
153
    }
153
    goto loop;
154
    goto loop;
154
 
155
 
155
}
156
}
156
 
157
 
157
/*
158
/*
158
 * This function prevents low priority threads from starving in rq's.
159
 * This function prevents low priority threads from starving in rq's.
159
 * When it decides to relink rq's, it reconnects respective pointers
160
 * When it decides to relink rq's, it reconnects respective pointers
160
 * so that in result threads with 'pri' greater or equal 'start' are
161
 * so that in result threads with 'pri' greater or equal 'start' are
161
 * moved to a higher-priority queue.
162
 * moved to a higher-priority queue.
162
 */
163
 */
163
void relink_rq(int start)
164
void relink_rq(int start)
164
{
165
{
165
    link_t head;
166
    link_t head;
166
    runq_t *r;
167
    runq_t *r;
167
    int i, n;
168
    int i, n;
168
 
169
 
169
    list_initialize(&head);
170
    list_initialize(&head);
170
    spinlock_lock(&CPU->lock);
171
    spinlock_lock(&CPU->lock);
171
    if (CPU->needs_relink > NEEDS_RELINK_MAX) {
172
    if (CPU->needs_relink > NEEDS_RELINK_MAX) {
172
        for (i = start; i<RQ_COUNT-1; i++) {
173
        for (i = start; i<RQ_COUNT-1; i++) {
173
            /* remember and empty rq[i + 1] */
174
            /* remember and empty rq[i + 1] */
174
            r = &CPU->rq[i + 1];
175
            r = &CPU->rq[i + 1];
175
            spinlock_lock(&r->lock);
176
            spinlock_lock(&r->lock);
176
            list_concat(&head, &r->rq_head);
177
            list_concat(&head, &r->rq_head);
177
            n = r->n;
178
            n = r->n;
178
            r->n = 0;
179
            r->n = 0;
179
            spinlock_unlock(&r->lock);
180
            spinlock_unlock(&r->lock);
180
       
181
       
181
            /* append rq[i + 1] to rq[i] */
182
            /* append rq[i + 1] to rq[i] */
182
            r = &CPU->rq[i];
183
            r = &CPU->rq[i];
183
            spinlock_lock(&r->lock);
184
            spinlock_lock(&r->lock);
184
            list_concat(&r->rq_head, &head);
185
            list_concat(&r->rq_head, &head);
185
            r->n += n;
186
            r->n += n;
186
            spinlock_unlock(&r->lock);
187
            spinlock_unlock(&r->lock);
187
        }
188
        }
188
        CPU->needs_relink = 0;
189
        CPU->needs_relink = 0;
189
    }
190
    }
190
    spinlock_unlock(&CPU->lock);               
191
    spinlock_unlock(&CPU->lock);               
191
 
192
 
192
}
193
}
193
 
194
 
194
/*
195
/*
195
 * The scheduler.
196
 * The scheduler.
196
 */
197
 */
197
void scheduler(void)
198
void scheduler(void)
198
{
199
{
199
    volatile pri_t pri;
200
    volatile pri_t pri;
200
 
201
 
201
    pri = cpu_priority_high();
202
    pri = cpu_priority_high();
202
 
203
 
203
    if (haltstate)
204
    if (haltstate)
204
        halt();
205
        halt();
205
 
206
 
206
    if (THREAD) {
207
    if (THREAD) {
207
        spinlock_lock(&THREAD->lock);
208
        spinlock_lock(&THREAD->lock);
208
        fpu_context_save(&(THREAD->saved_fpu_context));
209
        fpu_context_save(&(THREAD->saved_fpu_context));
209
        if (!context_save(&THREAD->saved_context)) {
210
        if (!context_save(&THREAD->saved_context)) {
210
            /*
211
            /*
211
             * This is the place where threads leave scheduler();
212
             * This is the place where threads leave scheduler();
212
             */
213
             */
213
            before_thread_runs();
214
            before_thread_runs();
214
                spinlock_unlock(&THREAD->lock);
215
                spinlock_unlock(&THREAD->lock);
215
            cpu_priority_restore(THREAD->saved_context.pri);
216
            cpu_priority_restore(THREAD->saved_context.pri);
216
            return;
217
            return;
217
        }
218
        }
218
        THREAD->saved_context.pri = pri;
219
        THREAD->saved_context.pri = pri;
219
    }
220
    }
220
 
221
 
221
    /*
222
    /*
222
     * We may not keep the old stack.
223
     * We may not keep the old stack.
223
     * Reason: If we kept the old stack and got blocked, for instance, in
224
     * Reason: If we kept the old stack and got blocked, for instance, in
224
     * find_best_thread(), the old thread could get rescheduled by another
225
     * find_best_thread(), the old thread could get rescheduled by another
225
     * CPU and overwrite the part of its own stack that was also used by
226
     * CPU and overwrite the part of its own stack that was also used by
226
     * the scheduler on this CPU.
227
     * the scheduler on this CPU.
227
     *
228
     *
228
     * Moreover, we have to bypass the compiler-generated POP sequence
229
     * Moreover, we have to bypass the compiler-generated POP sequence
229
     * which is fooled by SP being set to the very top of the stack.
230
     * which is fooled by SP being set to the very top of the stack.
230
     * Therefore the scheduler() function continues in
231
     * Therefore the scheduler() function continues in
231
     * scheduler_separated_stack().
232
     * scheduler_separated_stack().
232
     */
233
     */
233
    context_save(&CPU->saved_context);
234
    context_save(&CPU->saved_context);
234
    CPU->saved_context.sp = (__address) &CPU->stack[CPU_STACK_SIZE-8];
235
    CPU->saved_context.sp = (__address) &CPU->stack[CPU_STACK_SIZE-8];
235
    CPU->saved_context.pc = (__address) scheduler_separated_stack;
236
    CPU->saved_context.pc = FADDR(scheduler_separated_stack);
236
    context_restore(&CPU->saved_context);
237
    context_restore(&CPU->saved_context);
237
    /* not reached */
238
    /* not reached */
238
}
239
}
239
 
240
 
240
void scheduler_separated_stack(void)
241
void scheduler_separated_stack(void)
241
{
242
{
242
    int priority;
243
    int priority;
243
 
244
 
244
    if (THREAD) {
245
    if (THREAD) {
245
        switch (THREAD->state) {
246
        switch (THREAD->state) {
246
            case Running:
247
            case Running:
247
                THREAD->state = Ready;
248
                THREAD->state = Ready;
248
                spinlock_unlock(&THREAD->lock);
249
                spinlock_unlock(&THREAD->lock);
249
                thread_ready(THREAD);
250
                thread_ready(THREAD);
250
                break;
251
                break;
251
 
252
 
252
            case Exiting:
253
            case Exiting:
253
                frame_free((__address) THREAD->kstack);
254
                frame_free((__address) THREAD->kstack);
254
                if (THREAD->ustack) {
255
                if (THREAD->ustack) {
255
                    frame_free((__address) THREAD->ustack);
256
                    frame_free((__address) THREAD->ustack);
256
                }
257
                }
257
               
258
               
258
                /*
259
                /*
259
                 * Detach from the containing task.
260
                 * Detach from the containing task.
260
                 */
261
                 */
261
                spinlock_lock(&TASK->lock);
262
                spinlock_lock(&TASK->lock);
262
                list_remove(&THREAD->th_link);
263
                list_remove(&THREAD->th_link);
263
                spinlock_unlock(&TASK->lock);
264
                spinlock_unlock(&TASK->lock);
264
 
265
 
265
                spinlock_unlock(&THREAD->lock);
266
                spinlock_unlock(&THREAD->lock);
266
               
267
               
267
                spinlock_lock(&threads_lock);
268
                spinlock_lock(&threads_lock);
268
                list_remove(&THREAD->threads_link);
269
                list_remove(&THREAD->threads_link);
269
                spinlock_unlock(&threads_lock);
270
                spinlock_unlock(&threads_lock);
270
 
271
 
271
                spinlock_lock(&THREAD->cpu->lock);
272
                spinlock_lock(&THREAD->cpu->lock);
272
                if(THREAD->cpu->fpu_owner==THREAD) THREAD->cpu->fpu_owner=NULL;
273
                if(THREAD->cpu->fpu_owner==THREAD) THREAD->cpu->fpu_owner=NULL;
273
                spinlock_unlock(&THREAD->cpu->lock);
274
                spinlock_unlock(&THREAD->cpu->lock);
274
 
275
 
275
               
276
               
276
                free(THREAD);
277
                free(THREAD);
277
               
278
               
278
                break;
279
                break;
279
               
280
               
280
            case Sleeping:
281
            case Sleeping:
281
                /*
282
                /*
282
                 * Prefer the thread after it's woken up.
283
                 * Prefer the thread after it's woken up.
283
                 */
284
                 */
284
                THREAD->pri = -1;
285
                THREAD->pri = -1;
285
 
286
 
286
                /*
287
                /*
287
                 * We need to release wq->lock which we locked in waitq_sleep().
288
                 * We need to release wq->lock which we locked in waitq_sleep().
288
                 * Address of wq->lock is kept in THREAD->sleep_queue.
289
                 * Address of wq->lock is kept in THREAD->sleep_queue.
289
                 */
290
                 */
290
                spinlock_unlock(&THREAD->sleep_queue->lock);
291
                spinlock_unlock(&THREAD->sleep_queue->lock);
291
 
292
 
292
                /*
293
                /*
293
                 * Check for possible requests for out-of-context invocation.
294
                 * Check for possible requests for out-of-context invocation.
294
                 */
295
                 */
295
                if (THREAD->call_me) {
296
                if (THREAD->call_me) {
296
                    THREAD->call_me(THREAD->call_me_with);
297
                    THREAD->call_me(THREAD->call_me_with);
297
                    THREAD->call_me = NULL;
298
                    THREAD->call_me = NULL;
298
                    THREAD->call_me_with = NULL;
299
                    THREAD->call_me_with = NULL;
299
                }
300
                }
300
 
301
 
301
                spinlock_unlock(&THREAD->lock);
302
                spinlock_unlock(&THREAD->lock);
302
               
303
               
303
                break;
304
                break;
304
 
305
 
305
            default:
306
            default:
306
                /*
307
                /*
307
                 * Entering state is unexpected.
308
                 * Entering state is unexpected.
308
                 */
309
                 */
309
                panic("tid%d: unexpected state %s\n", THREAD->tid, thread_states[THREAD->state]);
310
                panic("tid%d: unexpected state %s\n", THREAD->tid, thread_states[THREAD->state]);
310
                break;
311
                break;
311
        }
312
        }
312
        THREAD = NULL;
313
        THREAD = NULL;
313
    }
314
    }
314
   
315
   
315
    THREAD = find_best_thread();
316
    THREAD = find_best_thread();
316
   
317
   
317
    spinlock_lock(&THREAD->lock);
318
    spinlock_lock(&THREAD->lock);
318
    priority = THREAD->pri;
319
    priority = THREAD->pri;
319
    spinlock_unlock(&THREAD->lock);
320
    spinlock_unlock(&THREAD->lock);
320
   
321
   
321
    relink_rq(priority);       
322
    relink_rq(priority);       
322
 
323
 
323
    spinlock_lock(&THREAD->lock);  
324
    spinlock_lock(&THREAD->lock);  
324
 
325
 
325
    /*
326
    /*
326
     * If both the old and the new task are the same, lots of work is avoided.
327
     * If both the old and the new task are the same, lots of work is avoided.
327
     */
328
     */
328
    if (TASK != THREAD->task) {
329
    if (TASK != THREAD->task) {
329
        vm_t *m1 = NULL;
330
        vm_t *m1 = NULL;
330
        vm_t *m2;
331
        vm_t *m2;
331
 
332
 
332
        if (TASK) {
333
        if (TASK) {
333
            spinlock_lock(&TASK->lock);
334
            spinlock_lock(&TASK->lock);
334
            m1 = TASK->vm;
335
            m1 = TASK->vm;
335
            spinlock_unlock(&TASK->lock);
336
            spinlock_unlock(&TASK->lock);
336
        }
337
        }
337
 
338
 
338
        spinlock_lock(&THREAD->task->lock);
339
        spinlock_lock(&THREAD->task->lock);
339
        m2 = THREAD->task->vm;
340
        m2 = THREAD->task->vm;
340
        spinlock_unlock(&THREAD->task->lock);
341
        spinlock_unlock(&THREAD->task->lock);
341
       
342
       
342
        /*
343
        /*
343
         * Note that it is possible for two tasks to share one vm mapping.
344
         * Note that it is possible for two tasks to share one vm mapping.
344
         */
345
         */
345
        if (m1 != m2) {
346
        if (m1 != m2) {
346
            /*
347
            /*
347
             * Both tasks and vm mappings are different.
348
             * Both tasks and vm mappings are different.
348
             * Replace the old one with the new one.
349
             * Replace the old one with the new one.
349
             */
350
             */
350
            if (m1) {
351
            if (m1) {
351
                vm_uninstall(m1);
352
                vm_uninstall(m1);
352
            }
353
            }
353
            vm_install(m2);
354
            vm_install(m2);
354
        }
355
        }
355
        TASK = THREAD->task;   
356
        TASK = THREAD->task;   
356
    }
357
    }
357
 
358
 
358
    THREAD->state = Running;
359
    THREAD->state = Running;
359
 
360
 
360
    #ifdef SCHEDULER_VERBOSE
361
    #ifdef SCHEDULER_VERBOSE
361
    printf("cpu%d: tid %d (pri=%d,ticks=%d,nrdy=%d)\n", CPU->id, THREAD->tid, THREAD->pri, THREAD->ticks, CPU->nrdy);
362
    printf("cpu%d: tid %d (pri=%d,ticks=%d,nrdy=%d)\n", CPU->id, THREAD->tid, THREAD->pri, THREAD->ticks, CPU->nrdy);
362
    #endif  
363
    #endif  
363
 
364
 
364
    context_restore(&THREAD->saved_context);
365
    context_restore(&THREAD->saved_context);
365
    /* not reached */
366
    /* not reached */
366
}
367
}
367
 
368
 
368
#ifdef __SMP__
369
#ifdef __SMP__
369
/*
370
/*
370
 * This is the load balancing thread.
371
 * This is the load balancing thread.
371
 * It supervises thread supplies for the CPU it's wired to.
372
 * It supervises thread supplies for the CPU it's wired to.
372
 */
373
 */
373
void kcpulb(void *arg)
374
void kcpulb(void *arg)
374
{
375
{
375
    thread_t *t;
376
    thread_t *t;
376
    int count, i, j, k = 0;
377
    int count, i, j, k = 0;
377
    pri_t pri;
378
    pri_t pri;
378
 
379
 
379
loop:
380
loop:
380
    /*
381
    /*
381
     * Sleep until there's some work to do.
382
     * Sleep until there's some work to do.
382
     */
383
     */
383
    waitq_sleep(&CPU->kcpulb_wq);
384
    waitq_sleep(&CPU->kcpulb_wq);
384
 
385
 
385
not_satisfied:
386
not_satisfied:
386
    /*
387
    /*
387
     * Calculate the number of threads that will be migrated/stolen from
388
     * Calculate the number of threads that will be migrated/stolen from
388
     * other CPU's. Note that situation can have changed between two
389
     * other CPU's. Note that situation can have changed between two
389
     * passes. Each time get the most up to date counts.
390
     * passes. Each time get the most up to date counts.
390
     */
391
     */
391
    pri = cpu_priority_high();
392
    pri = cpu_priority_high();
392
    spinlock_lock(&CPU->lock);
393
    spinlock_lock(&CPU->lock);
393
    count = nrdy / config.cpu_active;
394
    count = nrdy / config.cpu_active;
394
    count -= CPU->nrdy;
395
    count -= CPU->nrdy;
395
    spinlock_unlock(&CPU->lock);
396
    spinlock_unlock(&CPU->lock);
396
    cpu_priority_restore(pri);
397
    cpu_priority_restore(pri);
397
 
398
 
398
    if (count <= 0)
399
    if (count <= 0)
399
        goto satisfied;
400
        goto satisfied;
400
 
401
 
401
    /*
402
    /*
402
     * Searching least priority queues on all CPU's first and most priority queues on all CPU's last.
403
     * Searching least priority queues on all CPU's first and most priority queues on all CPU's last.
403
     */
404
     */
404
    for (j=RQ_COUNT-1; j >= 0; j--) {
405
    for (j=RQ_COUNT-1; j >= 0; j--) {
405
        for (i=0; i < config.cpu_active; i++) {
406
        for (i=0; i < config.cpu_active; i++) {
406
            link_t *l;
407
            link_t *l;
407
            runq_t *r;
408
            runq_t *r;
408
            cpu_t *cpu;
409
            cpu_t *cpu;
409
 
410
 
410
            cpu = &cpus[(i + k) % config.cpu_active];
411
            cpu = &cpus[(i + k) % config.cpu_active];
411
            r = &cpu->rq[j];
412
            r = &cpu->rq[j];
412
 
413
 
413
            /*
414
            /*
414
             * Not interested in ourselves.
415
             * Not interested in ourselves.
415
             * Doesn't require interrupt disabling for kcpulb is X_WIRED.
416
             * Doesn't require interrupt disabling for kcpulb is X_WIRED.
416
             */
417
             */
417
            if (CPU == cpu)
418
            if (CPU == cpu)
418
                continue;
419
                continue;
419
 
420
 
420
restart:        pri = cpu_priority_high();
421
restart:        pri = cpu_priority_high();
421
            spinlock_lock(&r->lock);
422
            spinlock_lock(&r->lock);
422
            if (r->n == 0) {
423
            if (r->n == 0) {
423
                spinlock_unlock(&r->lock);
424
                spinlock_unlock(&r->lock);
424
                cpu_priority_restore(pri);
425
                cpu_priority_restore(pri);
425
                continue;
426
                continue;
426
            }
427
            }
427
       
428
       
428
            t = NULL;
429
            t = NULL;
429
            l = r->rq_head.prev;    /* search rq from the back */
430
            l = r->rq_head.prev;    /* search rq from the back */
430
            while (l != &r->rq_head) {
431
            while (l != &r->rq_head) {
431
                t = list_get_instance(l, thread_t, rq_link);
432
                t = list_get_instance(l, thread_t, rq_link);
432
                /*
433
                /*
433
                     * We don't want to steal CPU-wired threads neither threads already stolen.
434
                     * We don't want to steal CPU-wired threads neither threads already stolen.
434
                 * The latter prevents threads from migrating between CPU's without ever being run.
435
                 * The latter prevents threads from migrating between CPU's without ever being run.
435
                     * We don't want to steal threads whose FPU context is still in CPU
436
                     * We don't want to steal threads whose FPU context is still in CPU
436
                 */
437
                 */
437
                spinlock_lock(&t->lock);
438
                spinlock_lock(&t->lock);
438
                if ( (!(t->flags & (X_WIRED | X_STOLEN))) && (!(t->fpu_context_engaged)) ) {
439
                if ( (!(t->flags & (X_WIRED | X_STOLEN))) && (!(t->fpu_context_engaged)) ) {
439
                    /*
440
                    /*
440
                     * Remove t from r.
441
                     * Remove t from r.
441
                     */
442
                     */
442
 
443
 
443
                    spinlock_unlock(&t->lock);
444
                    spinlock_unlock(&t->lock);
444
                   
445
                   
445
                    /*
446
                    /*
446
                     * Here we have to avoid deadlock with relink_rq(),
447
                     * Here we have to avoid deadlock with relink_rq(),
447
                     * because it locks cpu and r in a different order than we do.
448
                     * because it locks cpu and r in a different order than we do.
448
                     */
449
                     */
449
                    if (!spinlock_trylock(&cpu->lock)) {
450
                    if (!spinlock_trylock(&cpu->lock)) {
450
                        /* Release all locks and try again. */
451
                        /* Release all locks and try again. */
451
                        spinlock_unlock(&r->lock);
452
                        spinlock_unlock(&r->lock);
452
                        cpu_priority_restore(pri);
453
                        cpu_priority_restore(pri);
453
                        goto restart;
454
                        goto restart;
454
                    }
455
                    }
455
                    cpu->nrdy--;
456
                    cpu->nrdy--;
456
                    spinlock_unlock(&cpu->lock);
457
                    spinlock_unlock(&cpu->lock);
457
 
458
 
458
                    spinlock_lock(&nrdylock);
459
                    spinlock_lock(&nrdylock);
459
                    nrdy--;
460
                    nrdy--;
460
                    spinlock_unlock(&nrdylock);                
461
                    spinlock_unlock(&nrdylock);                
461
 
462
 
462
                        r->n--;
463
                        r->n--;
463
                    list_remove(&t->rq_link);
464
                    list_remove(&t->rq_link);
464
 
465
 
465
                    break;
466
                    break;
466
                }
467
                }
467
                spinlock_unlock(&t->lock);
468
                spinlock_unlock(&t->lock);
468
                l = l->prev;
469
                l = l->prev;
469
                t = NULL;
470
                t = NULL;
470
            }
471
            }
471
            spinlock_unlock(&r->lock);
472
            spinlock_unlock(&r->lock);
472
 
473
 
473
            if (t) {
474
            if (t) {
474
                /*
475
                /*
475
                 * Ready t on local CPU
476
                 * Ready t on local CPU
476
                 */
477
                 */
477
                spinlock_lock(&t->lock);
478
                spinlock_lock(&t->lock);
478
                #ifdef KCPULB_VERBOSE
479
                #ifdef KCPULB_VERBOSE
479
                printf("kcpulb%d: TID %d -> cpu%d, nrdy=%d, avg=%d\n", CPU->id, t->tid, CPU->id, CPU->nrdy, nrdy / config.cpu_active);
480
                printf("kcpulb%d: TID %d -> cpu%d, nrdy=%d, avg=%d\n", CPU->id, t->tid, CPU->id, CPU->nrdy, nrdy / config.cpu_active);
480
                #endif
481
                #endif
481
                t->flags |= X_STOLEN;
482
                t->flags |= X_STOLEN;
482
                spinlock_unlock(&t->lock);
483
                spinlock_unlock(&t->lock);
483
   
484
   
484
                thread_ready(t);
485
                thread_ready(t);
485
 
486
 
486
                cpu_priority_restore(pri);
487
                cpu_priority_restore(pri);
487
   
488
   
488
                if (--count == 0)
489
                if (--count == 0)
489
                    goto satisfied;
490
                    goto satisfied;
490
                   
491
                   
491
                /*
492
                /*
492
                             * We are not satisfied yet, focus on another CPU next time.
493
                             * We are not satisfied yet, focus on another CPU next time.
493
                 */
494
                 */
494
                k++;
495
                k++;
495
               
496
               
496
                continue;
497
                continue;
497
            }
498
            }
498
            cpu_priority_restore(pri);
499
            cpu_priority_restore(pri);
499
        }
500
        }
500
    }
501
    }
501
 
502
 
502
    if (CPU->nrdy) {
503
    if (CPU->nrdy) {
503
        /*
504
        /*
504
         * Be a little bit light-weight and let migrated threads run.
505
         * Be a little bit light-weight and let migrated threads run.
505
         */
506
         */
506
        scheduler();
507
        scheduler();
507
    }
508
    }
508
    else {
509
    else {
509
        /*
510
        /*
510
         * We failed to migrate a single thread.
511
         * We failed to migrate a single thread.
511
         * Something more sophisticated should be done.
512
         * Something more sophisticated should be done.
512
         */
513
         */
513
        scheduler();
514
        scheduler();
514
    }
515
    }
515
       
516
       
516
    goto not_satisfied;
517
    goto not_satisfied;
517
   
518
   
518
satisfied:
519
satisfied:
519
    /*
520
    /*
520
     * Tell find_best_thread() to wake us up later again.
521
     * Tell find_best_thread() to wake us up later again.
521
     */
522
     */
522
    CPU->kcpulbstarted = 0;
523
    CPU->kcpulbstarted = 0;
523
    goto loop;
524
    goto loop;
524
}
525
}
525
 
526
 
526
#endif /* __SMP__ */
527
#endif /* __SMP__ */
527
 
528