Subversion Repositories HelenOS

Rev

Rev 2125 | Rev 2133 | Go to most recent revision | Only display areas with differences | Regard whitespace | Details | Blame | Last modification | View Log | RSS feed

Rev 2125 Rev 2126
1
/*
1
/*
2
 * Copyright (c) 2001-2006 Jakub Jermar
2
 * Copyright (c) 2001-2006 Jakub Jermar
3
 * All rights reserved.
3
 * All rights reserved.
4
 *
4
 *
5
 * Redistribution and use in source and binary forms, with or without
5
 * Redistribution and use in source and binary forms, with or without
6
 * modification, are permitted provided that the following conditions
6
 * modification, are permitted provided that the following conditions
7
 * are met:
7
 * are met:
8
 *
8
 *
9
 * - Redistributions of source code must retain the above copyright
9
 * - Redistributions of source code must retain the above copyright
10
 *   notice, this list of conditions and the following disclaimer.
10
 *   notice, this list of conditions and the following disclaimer.
11
 * - Redistributions in binary form must reproduce the above copyright
11
 * - Redistributions in binary form must reproduce the above copyright
12
 *   notice, this list of conditions and the following disclaimer in the
12
 *   notice, this list of conditions and the following disclaimer in the
13
 *   documentation and/or other materials provided with the distribution.
13
 *   documentation and/or other materials provided with the distribution.
14
 * - The name of the author may not be used to endorse or promote products
14
 * - The name of the author may not be used to endorse or promote products
15
 *   derived from this software without specific prior written permission.
15
 *   derived from this software without specific prior written permission.
16
 *
16
 *
17
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
 */
27
 */
28
 
28
 
29
/** @addtogroup genericmm
29
/** @addtogroup genericmm
30
 * @{
30
 * @{
31
 */
31
 */
32
 
32
 
33
/**
33
/**
34
 * @file
34
 * @file
35
 * @brief   Address space related functions.
35
 * @brief   Address space related functions.
36
 *
36
 *
37
 * This file contains address space manipulation functions.
37
 * This file contains address space manipulation functions.
38
 * Roughly speaking, this is a higher-level client of
38
 * Roughly speaking, this is a higher-level client of
39
 * Virtual Address Translation (VAT) subsystem.
39
 * Virtual Address Translation (VAT) subsystem.
40
 *
40
 *
41
 * Functionality provided by this file allows one to
41
 * Functionality provided by this file allows one to
42
 * create address spaces and create, resize and share
42
 * create address spaces and create, resize and share
43
 * address space areas.
43
 * address space areas.
44
 *
44
 *
45
 * @see page.c
45
 * @see page.c
46
 *
46
 *
47
 */
47
 */
48
 
48
 
49
#include <mm/as.h>
49
#include <mm/as.h>
50
#include <arch/mm/as.h>
50
#include <arch/mm/as.h>
51
#include <mm/page.h>
51
#include <mm/page.h>
52
#include <mm/frame.h>
52
#include <mm/frame.h>
53
#include <mm/slab.h>
53
#include <mm/slab.h>
54
#include <mm/tlb.h>
54
#include <mm/tlb.h>
55
#include <arch/mm/page.h>
55
#include <arch/mm/page.h>
56
#include <genarch/mm/page_pt.h>
56
#include <genarch/mm/page_pt.h>
57
#include <genarch/mm/page_ht.h>
57
#include <genarch/mm/page_ht.h>
58
#include <mm/asid.h>
58
#include <mm/asid.h>
59
#include <arch/mm/asid.h>
59
#include <arch/mm/asid.h>
60
#include <synch/spinlock.h>
60
#include <synch/spinlock.h>
61
#include <synch/mutex.h>
61
#include <synch/mutex.h>
62
#include <adt/list.h>
62
#include <adt/list.h>
63
#include <adt/btree.h>
63
#include <adt/btree.h>
64
#include <proc/task.h>
64
#include <proc/task.h>
65
#include <proc/thread.h>
65
#include <proc/thread.h>
66
#include <arch/asm.h>
66
#include <arch/asm.h>
67
#include <panic.h>
67
#include <panic.h>
68
#include <debug.h>
68
#include <debug.h>
69
#include <print.h>
69
#include <print.h>
70
#include <memstr.h>
70
#include <memstr.h>
71
#include <macros.h>
71
#include <macros.h>
72
#include <arch.h>
72
#include <arch.h>
73
#include <errno.h>
73
#include <errno.h>
74
#include <config.h>
74
#include <config.h>
75
#include <align.h>
75
#include <align.h>
76
#include <arch/types.h>
76
#include <arch/types.h>
77
#include <syscall/copy.h>
77
#include <syscall/copy.h>
78
#include <arch/interrupt.h>
78
#include <arch/interrupt.h>
79
 
79
 
80
#ifdef CONFIG_VIRT_IDX_DCACHE
80
#ifdef CONFIG_VIRT_IDX_DCACHE
81
#include <arch/mm/cache.h>
81
#include <arch/mm/cache.h>
82
#endif /* CONFIG_VIRT_IDX_DCACHE */
82
#endif /* CONFIG_VIRT_IDX_DCACHE */
83
 
83
 
84
#ifndef __OBJC__
84
#ifndef __OBJC__
85
/**
85
/**
86
 * Each architecture decides what functions will be used to carry out
86
 * Each architecture decides what functions will be used to carry out
87
 * address space operations such as creating or locking page tables.
87
 * address space operations such as creating or locking page tables.
88
 */
88
 */
89
as_operations_t *as_operations = NULL;
89
as_operations_t *as_operations = NULL;
90
#endif
-
 
91
 
90
 
92
/**
91
/**
93
 * Slab for as_t objects.
92
 * Slab for as_t objects.
94
 */
93
 */
95
static slab_cache_t *as_slab;
94
static slab_cache_t *as_slab;
-
 
95
#endif
96
 
96
 
97
/**
97
/**
98
 * This lock protects inactive_as_with_asid_head list. It must be acquired
98
 * This lock protects inactive_as_with_asid_head list. It must be acquired
99
 * before as_t mutex.
99
 * before as_t mutex.
100
 */
100
 */
101
SPINLOCK_INITIALIZE(inactive_as_with_asid_lock);
101
SPINLOCK_INITIALIZE(inactive_as_with_asid_lock);
102
 
102
 
103
/**
103
/**
104
 * This list contains address spaces that are not active on any
104
 * This list contains address spaces that are not active on any
105
 * processor and that have valid ASID.
105
 * processor and that have valid ASID.
106
 */
106
 */
107
LIST_INITIALIZE(inactive_as_with_asid_head);
107
LIST_INITIALIZE(inactive_as_with_asid_head);
108
 
108
 
109
/** Kernel address space. */
109
/** Kernel address space. */
110
as_t *AS_KERNEL = NULL;
110
as_t *AS_KERNEL = NULL;
111
 
111
 
112
static int area_flags_to_page_flags(int aflags);
112
static int area_flags_to_page_flags(int aflags);
113
static as_area_t *find_area_and_lock(as_t *as, uintptr_t va);
113
static as_area_t *find_area_and_lock(as_t *as, uintptr_t va);
114
static bool check_area_conflicts(as_t *as, uintptr_t va, size_t size,
114
static bool check_area_conflicts(as_t *as, uintptr_t va, size_t size,
115
    as_area_t *avoid_area);
115
    as_area_t *avoid_area);
116
static void sh_info_remove_reference(share_info_t *sh_info);
116
static void sh_info_remove_reference(share_info_t *sh_info);
117
 
117
 
-
 
118
#ifndef __OBJC__
118
static int as_constructor(void *obj, int flags)
119
static int as_constructor(void *obj, int flags)
119
{
120
{
120
    as_t *as = (as_t *) obj;
121
    as_t *as = (as_t *) obj;
121
    int rc;
122
    int rc;
122
 
123
 
123
    link_initialize(&as->inactive_as_with_asid_link);
124
    link_initialize(&as->inactive_as_with_asid_link);
124
    mutex_initialize(&as->lock);   
125
    mutex_initialize(&as->lock);   
125
   
126
   
126
    rc = as_constructor_arch(as, flags);
127
    rc = as_constructor_arch(as, flags);
127
   
128
   
128
    return rc;
129
    return rc;
129
}
130
}
130
 
131
 
131
static int as_destructor(void *obj)
132
static int as_destructor(void *obj)
132
{
133
{
133
    as_t *as = (as_t *) obj;
134
    as_t *as = (as_t *) obj;
134
 
135
 
135
    return as_destructor_arch(as);
136
    return as_destructor_arch(as);
136
}
137
}
-
 
138
#endif
137
 
139
 
138
/** Initialize address space subsystem. */
140
/** Initialize address space subsystem. */
139
void as_init(void)
141
void as_init(void)
140
{
142
{
141
    as_arch_init();
143
    as_arch_init();
142
   
144
 
-
 
145
#ifndef __OBJC__
143
    as_slab = slab_cache_create("as_slab", sizeof(as_t), 0,
146
    as_slab = slab_cache_create("as_slab", sizeof(as_t), 0,
144
        as_constructor, as_destructor, SLAB_CACHE_MAGDEFERRED);
147
        as_constructor, as_destructor, SLAB_CACHE_MAGDEFERRED);
-
 
148
#endif
145
   
149
   
146
    AS_KERNEL = as_create(FLAG_AS_KERNEL);
150
    AS_KERNEL = as_create(FLAG_AS_KERNEL);
147
    if (!AS_KERNEL)
151
    if (!AS_KERNEL)
148
        panic("can't create kernel address space\n");
152
        panic("can't create kernel address space\n");
149
   
153
   
150
}
154
}
151
 
155
 
152
/** Create address space.
156
/** Create address space.
153
 *
157
 *
154
 * @param flags Flags that influence way in wich the address space is created.
158
 * @param flags Flags that influence way in wich the address space is created.
155
 */
159
 */
156
as_t *as_create(int flags)
160
as_t *as_create(int flags)
157
{
161
{
158
    as_t *as;
162
    as_t *as;
159
 
163
 
-
 
164
#ifdef __OBJC__
-
 
165
    as = [as_t new];
-
 
166
    link_initialize(&as->inactive_as_with_asid_link);
-
 
167
    mutex_initialize(&as->lock);   
-
 
168
    (void) as_constructor_arch(as, flags);
-
 
169
#else
160
    as = (as_t *) slab_alloc(as_slab, 0);
170
    as = (as_t *) slab_alloc(as_slab, 0);
-
 
171
#endif
161
    (void) as_create_arch(as, 0);
172
    (void) as_create_arch(as, 0);
162
   
173
   
163
    btree_create(&as->as_area_btree);
174
    btree_create(&as->as_area_btree);
164
   
175
   
165
    if (flags & FLAG_AS_KERNEL)
176
    if (flags & FLAG_AS_KERNEL)
166
        as->asid = ASID_KERNEL;
177
        as->asid = ASID_KERNEL;
167
    else
178
    else
168
        as->asid = ASID_INVALID;
179
        as->asid = ASID_INVALID;
169
   
180
   
170
    as->refcount = 0;
181
    as->refcount = 0;
171
    as->cpu_refcount = 0;
182
    as->cpu_refcount = 0;
172
#ifdef AS_PAGE_TABLE
183
#ifdef AS_PAGE_TABLE
173
    as->genarch.page_table = page_table_create(flags);
184
    as->genarch.page_table = page_table_create(flags);
174
#else
185
#else
175
    page_table_create(flags);
186
    page_table_create(flags);
176
#endif
187
#endif
177
 
188
 
178
    return as;
189
    return as;
179
}
190
}
180
 
191
 
181
/** Destroy adress space.
192
/** Destroy adress space.
182
 *
193
 *
183
 * When there are no tasks referencing this address space (i.e. its refcount is
194
 * When there are no tasks referencing this address space (i.e. its refcount is
184
 * zero), the address space can be destroyed.
195
 * zero), the address space can be destroyed.
185
 */
196
 */
186
void as_destroy(as_t *as)
197
void as_destroy(as_t *as)
187
{
198
{
188
    ipl_t ipl;
199
    ipl_t ipl;
189
    bool cond;
200
    bool cond;
190
 
201
 
191
    ASSERT(as->refcount == 0);
202
    ASSERT(as->refcount == 0);
192
   
203
   
193
    /*
204
    /*
194
     * Since there is no reference to this area,
205
     * Since there is no reference to this area,
195
     * it is safe not to lock its mutex.
206
     * it is safe not to lock its mutex.
196
     */
207
     */
197
    ipl = interrupts_disable();
208
    ipl = interrupts_disable();
198
    spinlock_lock(&inactive_as_with_asid_lock);
209
    spinlock_lock(&inactive_as_with_asid_lock);
199
    if (as->asid != ASID_INVALID && as != AS_KERNEL) {
210
    if (as->asid != ASID_INVALID && as != AS_KERNEL) {
200
        if (as != AS && as->cpu_refcount == 0)
211
        if (as != AS && as->cpu_refcount == 0)
201
            list_remove(&as->inactive_as_with_asid_link);
212
            list_remove(&as->inactive_as_with_asid_link);
202
        asid_put(as->asid);
213
        asid_put(as->asid);
203
    }
214
    }
204
    spinlock_unlock(&inactive_as_with_asid_lock);
215
    spinlock_unlock(&inactive_as_with_asid_lock);
205
 
216
 
206
    /*
217
    /*
207
     * Destroy address space areas of the address space.
218
     * Destroy address space areas of the address space.
208
     * The B+tree must be walked carefully because it is
219
     * The B+tree must be walked carefully because it is
209
     * also being destroyed.
220
     * also being destroyed.
210
     */
221
     */
211
    for (cond = true; cond; ) {
222
    for (cond = true; cond; ) {
212
        btree_node_t *node;
223
        btree_node_t *node;
213
 
224
 
214
        ASSERT(!list_empty(&as->as_area_btree.leaf_head));
225
        ASSERT(!list_empty(&as->as_area_btree.leaf_head));
215
        node = list_get_instance(as->as_area_btree.leaf_head.next,
226
        node = list_get_instance(as->as_area_btree.leaf_head.next,
216
            btree_node_t, leaf_link);
227
            btree_node_t, leaf_link);
217
 
228
 
218
        if ((cond = node->keys)) {
229
        if ((cond = node->keys)) {
219
            as_area_destroy(as, node->key[0]);
230
            as_area_destroy(as, node->key[0]);
220
        }
231
        }
221
    }
232
    }
222
 
233
 
223
    btree_destroy(&as->as_area_btree);
234
    btree_destroy(&as->as_area_btree);
224
#ifdef AS_PAGE_TABLE
235
#ifdef AS_PAGE_TABLE
225
    page_table_destroy(as->genarch.page_table);
236
    page_table_destroy(as->genarch.page_table);
226
#else
237
#else
227
    page_table_destroy(NULL);
238
    page_table_destroy(NULL);
228
#endif
239
#endif
229
 
240
 
230
    interrupts_restore(ipl);
241
    interrupts_restore(ipl);
231
   
242
 
-
 
243
#ifdef __OBJC__
-
 
244
    [as free];
-
 
245
#else
232
    slab_free(as_slab, as);
246
    slab_free(as_slab, as);
-
 
247
#endif
233
}
248
}
234
 
249
 
235
/** Create address space area of common attributes.
250
/** Create address space area of common attributes.
236
 *
251
 *
237
 * The created address space area is added to the target address space.
252
 * The created address space area is added to the target address space.
238
 *
253
 *
239
 * @param as Target address space.
254
 * @param as Target address space.
240
 * @param flags Flags of the area memory.
255
 * @param flags Flags of the area memory.
241
 * @param size Size of area.
256
 * @param size Size of area.
242
 * @param base Base address of area.
257
 * @param base Base address of area.
243
 * @param attrs Attributes of the area.
258
 * @param attrs Attributes of the area.
244
 * @param backend Address space area backend. NULL if no backend is used.
259
 * @param backend Address space area backend. NULL if no backend is used.
245
 * @param backend_data NULL or a pointer to an array holding two void *.
260
 * @param backend_data NULL or a pointer to an array holding two void *.
246
 *
261
 *
247
 * @return Address space area on success or NULL on failure.
262
 * @return Address space area on success or NULL on failure.
248
 */
263
 */
249
as_area_t *
264
as_area_t *
250
as_area_create(as_t *as, int flags, size_t size, uintptr_t base, int attrs,
265
as_area_create(as_t *as, int flags, size_t size, uintptr_t base, int attrs,
251
           mem_backend_t *backend, mem_backend_data_t *backend_data)
266
           mem_backend_t *backend, mem_backend_data_t *backend_data)
252
{
267
{
253
    ipl_t ipl;
268
    ipl_t ipl;
254
    as_area_t *a;
269
    as_area_t *a;
255
   
270
   
256
    if (base % PAGE_SIZE)
271
    if (base % PAGE_SIZE)
257
        return NULL;
272
        return NULL;
258
 
273
 
259
    if (!size)
274
    if (!size)
260
        return NULL;
275
        return NULL;
261
 
276
 
262
    /* Writeable executable areas are not supported. */
277
    /* Writeable executable areas are not supported. */
263
    if ((flags & AS_AREA_EXEC) && (flags & AS_AREA_WRITE))
278
    if ((flags & AS_AREA_EXEC) && (flags & AS_AREA_WRITE))
264
        return NULL;
279
        return NULL;
265
   
280
   
266
    ipl = interrupts_disable();
281
    ipl = interrupts_disable();
267
    mutex_lock(&as->lock);
282
    mutex_lock(&as->lock);
268
   
283
   
269
    if (!check_area_conflicts(as, base, size, NULL)) {
284
    if (!check_area_conflicts(as, base, size, NULL)) {
270
        mutex_unlock(&as->lock);
285
        mutex_unlock(&as->lock);
271
        interrupts_restore(ipl);
286
        interrupts_restore(ipl);
272
        return NULL;
287
        return NULL;
273
    }
288
    }
274
   
289
   
275
    a = (as_area_t *) malloc(sizeof(as_area_t), 0);
290
    a = (as_area_t *) malloc(sizeof(as_area_t), 0);
276
 
291
 
277
    mutex_initialize(&a->lock);
292
    mutex_initialize(&a->lock);
278
   
293
   
279
    a->as = as;
294
    a->as = as;
280
    a->flags = flags;
295
    a->flags = flags;
281
    a->attributes = attrs;
296
    a->attributes = attrs;
282
    a->pages = SIZE2FRAMES(size);
297
    a->pages = SIZE2FRAMES(size);
283
    a->base = base;
298
    a->base = base;
284
    a->sh_info = NULL;
299
    a->sh_info = NULL;
285
    a->backend = backend;
300
    a->backend = backend;
286
    if (backend_data)
301
    if (backend_data)
287
        a->backend_data = *backend_data;
302
        a->backend_data = *backend_data;
288
    else
303
    else
289
        memsetb((uintptr_t) &a->backend_data, sizeof(a->backend_data),
304
        memsetb((uintptr_t) &a->backend_data, sizeof(a->backend_data),
290
            0);
305
            0);
291
 
306
 
292
    btree_create(&a->used_space);
307
    btree_create(&a->used_space);
293
   
308
   
294
    btree_insert(&as->as_area_btree, base, (void *) a, NULL);
309
    btree_insert(&as->as_area_btree, base, (void *) a, NULL);
295
 
310
 
296
    mutex_unlock(&as->lock);
311
    mutex_unlock(&as->lock);
297
    interrupts_restore(ipl);
312
    interrupts_restore(ipl);
298
 
313
 
299
    return a;
314
    return a;
300
}
315
}
301
 
316
 
302
/** Find address space area and change it.
317
/** Find address space area and change it.
303
 *
318
 *
304
 * @param as Address space.
319
 * @param as Address space.
305
 * @param address Virtual address belonging to the area to be changed. Must be
320
 * @param address Virtual address belonging to the area to be changed. Must be
306
 *     page-aligned.
321
 *     page-aligned.
307
 * @param size New size of the virtual memory block starting at address.
322
 * @param size New size of the virtual memory block starting at address.
308
 * @param flags Flags influencing the remap operation. Currently unused.
323
 * @param flags Flags influencing the remap operation. Currently unused.
309
 *
324
 *
310
 * @return Zero on success or a value from @ref errno.h otherwise.
325
 * @return Zero on success or a value from @ref errno.h otherwise.
311
 */
326
 */
312
int as_area_resize(as_t *as, uintptr_t address, size_t size, int flags)
327
int as_area_resize(as_t *as, uintptr_t address, size_t size, int flags)
313
{
328
{
314
    as_area_t *area;
329
    as_area_t *area;
315
    ipl_t ipl;
330
    ipl_t ipl;
316
    size_t pages;
331
    size_t pages;
317
   
332
   
318
    ipl = interrupts_disable();
333
    ipl = interrupts_disable();
319
    mutex_lock(&as->lock);
334
    mutex_lock(&as->lock);
320
   
335
   
321
    /*
336
    /*
322
     * Locate the area.
337
     * Locate the area.
323
     */
338
     */
324
    area = find_area_and_lock(as, address);
339
    area = find_area_and_lock(as, address);
325
    if (!area) {
340
    if (!area) {
326
        mutex_unlock(&as->lock);
341
        mutex_unlock(&as->lock);
327
        interrupts_restore(ipl);
342
        interrupts_restore(ipl);
328
        return ENOENT;
343
        return ENOENT;
329
    }
344
    }
330
 
345
 
331
    if (area->backend == &phys_backend) {
346
    if (area->backend == &phys_backend) {
332
        /*
347
        /*
333
         * Remapping of address space areas associated
348
         * Remapping of address space areas associated
334
         * with memory mapped devices is not supported.
349
         * with memory mapped devices is not supported.
335
         */
350
         */
336
        mutex_unlock(&area->lock);
351
        mutex_unlock(&area->lock);
337
        mutex_unlock(&as->lock);
352
        mutex_unlock(&as->lock);
338
        interrupts_restore(ipl);
353
        interrupts_restore(ipl);
339
        return ENOTSUP;
354
        return ENOTSUP;
340
    }
355
    }
341
    if (area->sh_info) {
356
    if (area->sh_info) {
342
        /*
357
        /*
343
         * Remapping of shared address space areas
358
         * Remapping of shared address space areas
344
         * is not supported.
359
         * is not supported.
345
         */
360
         */
346
        mutex_unlock(&area->lock);
361
        mutex_unlock(&area->lock);
347
        mutex_unlock(&as->lock);
362
        mutex_unlock(&as->lock);
348
        interrupts_restore(ipl);
363
        interrupts_restore(ipl);
349
        return ENOTSUP;
364
        return ENOTSUP;
350
    }
365
    }
351
 
366
 
352
    pages = SIZE2FRAMES((address - area->base) + size);
367
    pages = SIZE2FRAMES((address - area->base) + size);
353
    if (!pages) {
368
    if (!pages) {
354
        /*
369
        /*
355
         * Zero size address space areas are not allowed.
370
         * Zero size address space areas are not allowed.
356
         */
371
         */
357
        mutex_unlock(&area->lock);
372
        mutex_unlock(&area->lock);
358
        mutex_unlock(&as->lock);
373
        mutex_unlock(&as->lock);
359
        interrupts_restore(ipl);
374
        interrupts_restore(ipl);
360
        return EPERM;
375
        return EPERM;
361
    }
376
    }
362
   
377
   
363
    if (pages < area->pages) {
378
    if (pages < area->pages) {
364
        bool cond;
379
        bool cond;
365
        uintptr_t start_free = area->base + pages*PAGE_SIZE;
380
        uintptr_t start_free = area->base + pages*PAGE_SIZE;
366
 
381
 
367
        /*
382
        /*
368
         * Shrinking the area.
383
         * Shrinking the area.
369
         * No need to check for overlaps.
384
         * No need to check for overlaps.
370
         */
385
         */
371
 
386
 
372
        /*
387
        /*
373
         * Start TLB shootdown sequence.
388
         * Start TLB shootdown sequence.
374
         */
389
         */
375
        tlb_shootdown_start(TLB_INVL_PAGES, AS->asid, area->base +
390
        tlb_shootdown_start(TLB_INVL_PAGES, AS->asid, area->base +
376
            pages * PAGE_SIZE, area->pages - pages);
391
            pages * PAGE_SIZE, area->pages - pages);
377
 
392
 
378
        /*
393
        /*
379
         * Remove frames belonging to used space starting from
394
         * Remove frames belonging to used space starting from
380
         * the highest addresses downwards until an overlap with
395
         * the highest addresses downwards until an overlap with
381
         * the resized address space area is found. Note that this
396
         * the resized address space area is found. Note that this
382
         * is also the right way to remove part of the used_space
397
         * is also the right way to remove part of the used_space
383
         * B+tree leaf list.
398
         * B+tree leaf list.
384
         */    
399
         */    
385
        for (cond = true; cond;) {
400
        for (cond = true; cond;) {
386
            btree_node_t *node;
401
            btree_node_t *node;
387
       
402
       
388
            ASSERT(!list_empty(&area->used_space.leaf_head));
403
            ASSERT(!list_empty(&area->used_space.leaf_head));
389
            node =
404
            node =
390
                list_get_instance(area->used_space.leaf_head.prev,
405
                list_get_instance(area->used_space.leaf_head.prev,
391
                btree_node_t, leaf_link);
406
                btree_node_t, leaf_link);
392
            if ((cond = (bool) node->keys)) {
407
            if ((cond = (bool) node->keys)) {
393
                uintptr_t b = node->key[node->keys - 1];
408
                uintptr_t b = node->key[node->keys - 1];
394
                count_t c =
409
                count_t c =
395
                    (count_t) node->value[node->keys - 1];
410
                    (count_t) node->value[node->keys - 1];
396
                int i = 0;
411
                int i = 0;
397
           
412
           
398
                if (overlaps(b, c * PAGE_SIZE, area->base,
413
                if (overlaps(b, c * PAGE_SIZE, area->base,
399
                    pages*PAGE_SIZE)) {
414
                    pages*PAGE_SIZE)) {
400
                   
415
                   
401
                    if (b + c * PAGE_SIZE <= start_free) {
416
                    if (b + c * PAGE_SIZE <= start_free) {
402
                        /*
417
                        /*
403
                         * The whole interval fits
418
                         * The whole interval fits
404
                         * completely in the resized
419
                         * completely in the resized
405
                         * address space area.
420
                         * address space area.
406
                         */
421
                         */
407
                        break;
422
                        break;
408
                    }
423
                    }
409
       
424
       
410
                    /*
425
                    /*
411
                     * Part of the interval corresponding
426
                     * Part of the interval corresponding
412
                     * to b and c overlaps with the resized
427
                     * to b and c overlaps with the resized
413
                     * address space area.
428
                     * address space area.
414
                     */
429
                     */
415
       
430
       
416
                    cond = false;   /* we are almost done */
431
                    cond = false;   /* we are almost done */
417
                    i = (start_free - b) >> PAGE_WIDTH;
432
                    i = (start_free - b) >> PAGE_WIDTH;
418
                    if (!used_space_remove(area, start_free,
433
                    if (!used_space_remove(area, start_free,
419
                        c - i))
434
                        c - i))
420
                        panic("Could not remove used "
435
                        panic("Could not remove used "
421
                            "space.\n");
436
                            "space.\n");
422
                } else {
437
                } else {
423
                    /*
438
                    /*
424
                     * The interval of used space can be
439
                     * The interval of used space can be
425
                     * completely removed.
440
                     * completely removed.
426
                     */
441
                     */
427
                    if (!used_space_remove(area, b, c))
442
                    if (!used_space_remove(area, b, c))
428
                        panic("Could not remove used "
443
                        panic("Could not remove used "
429
                            "space.\n");
444
                            "space.\n");
430
                }
445
                }
431
           
446
           
432
                for (; i < c; i++) {
447
                for (; i < c; i++) {
433
                    pte_t *pte;
448
                    pte_t *pte;
434
           
449
           
435
                    page_table_lock(as, false);
450
                    page_table_lock(as, false);
436
                    pte = page_mapping_find(as, b +
451
                    pte = page_mapping_find(as, b +
437
                        i * PAGE_SIZE);
452
                        i * PAGE_SIZE);
438
                    ASSERT(pte && PTE_VALID(pte) &&
453
                    ASSERT(pte && PTE_VALID(pte) &&
439
                        PTE_PRESENT(pte));
454
                        PTE_PRESENT(pte));
440
                    if (area->backend &&
455
                    if (area->backend &&
441
                        area->backend->frame_free) {
456
                        area->backend->frame_free) {
442
                        area->backend->frame_free(area,
457
                        area->backend->frame_free(area,
443
                            b + i * PAGE_SIZE,
458
                            b + i * PAGE_SIZE,
444
                            PTE_GET_FRAME(pte));
459
                            PTE_GET_FRAME(pte));
445
                    }
460
                    }
446
                    page_mapping_remove(as, b +
461
                    page_mapping_remove(as, b +
447
                        i * PAGE_SIZE);
462
                        i * PAGE_SIZE);
448
                    page_table_unlock(as, false);
463
                    page_table_unlock(as, false);
449
                }
464
                }
450
            }
465
            }
451
        }
466
        }
452
 
467
 
453
        /*
468
        /*
454
         * Finish TLB shootdown sequence.
469
         * Finish TLB shootdown sequence.
455
         */
470
         */
456
        tlb_invalidate_pages(as->asid, area->base + pages * PAGE_SIZE,
471
        tlb_invalidate_pages(as->asid, area->base + pages * PAGE_SIZE,
457
            area->pages - pages);
472
            area->pages - pages);
458
        tlb_shootdown_finalize();
473
        tlb_shootdown_finalize();
459
       
474
       
460
        /*
475
        /*
461
         * Invalidate software translation caches (e.g. TSB on sparc64).
476
         * Invalidate software translation caches (e.g. TSB on sparc64).
462
         */
477
         */
463
        as_invalidate_translation_cache(as, area->base +
478
        as_invalidate_translation_cache(as, area->base +
464
            pages * PAGE_SIZE, area->pages - pages);
479
            pages * PAGE_SIZE, area->pages - pages);
465
    } else {
480
    } else {
466
        /*
481
        /*
467
         * Growing the area.
482
         * Growing the area.
468
         * Check for overlaps with other address space areas.
483
         * Check for overlaps with other address space areas.
469
         */
484
         */
470
        if (!check_area_conflicts(as, address, pages * PAGE_SIZE,
485
        if (!check_area_conflicts(as, address, pages * PAGE_SIZE,
471
            area)) {
486
            area)) {
472
            mutex_unlock(&area->lock);
487
            mutex_unlock(&area->lock);
473
            mutex_unlock(&as->lock);       
488
            mutex_unlock(&as->lock);       
474
            interrupts_restore(ipl);
489
            interrupts_restore(ipl);
475
            return EADDRNOTAVAIL;
490
            return EADDRNOTAVAIL;
476
        }
491
        }
477
    }
492
    }
478
 
493
 
479
    area->pages = pages;
494
    area->pages = pages;
480
   
495
   
481
    mutex_unlock(&area->lock);
496
    mutex_unlock(&area->lock);
482
    mutex_unlock(&as->lock);
497
    mutex_unlock(&as->lock);
483
    interrupts_restore(ipl);
498
    interrupts_restore(ipl);
484
 
499
 
485
    return 0;
500
    return 0;
486
}
501
}
487
 
502
 
488
/** Destroy address space area.
503
/** Destroy address space area.
489
 *
504
 *
490
 * @param as Address space.
505
 * @param as Address space.
491
 * @param address Address withing the area to be deleted.
506
 * @param address Address withing the area to be deleted.
492
 *
507
 *
493
 * @return Zero on success or a value from @ref errno.h on failure.
508
 * @return Zero on success or a value from @ref errno.h on failure.
494
 */
509
 */
495
int as_area_destroy(as_t *as, uintptr_t address)
510
int as_area_destroy(as_t *as, uintptr_t address)
496
{
511
{
497
    as_area_t *area;
512
    as_area_t *area;
498
    uintptr_t base;
513
    uintptr_t base;
499
    link_t *cur;
514
    link_t *cur;
500
    ipl_t ipl;
515
    ipl_t ipl;
501
 
516
 
502
    ipl = interrupts_disable();
517
    ipl = interrupts_disable();
503
    mutex_lock(&as->lock);
518
    mutex_lock(&as->lock);
504
 
519
 
505
    area = find_area_and_lock(as, address);
520
    area = find_area_and_lock(as, address);
506
    if (!area) {
521
    if (!area) {
507
        mutex_unlock(&as->lock);
522
        mutex_unlock(&as->lock);
508
        interrupts_restore(ipl);
523
        interrupts_restore(ipl);
509
        return ENOENT;
524
        return ENOENT;
510
    }
525
    }
511
 
526
 
512
    base = area->base;
527
    base = area->base;
513
 
528
 
514
    /*
529
    /*
515
     * Start TLB shootdown sequence.
530
     * Start TLB shootdown sequence.
516
     */
531
     */
517
    tlb_shootdown_start(TLB_INVL_PAGES, as->asid, area->base, area->pages);
532
    tlb_shootdown_start(TLB_INVL_PAGES, as->asid, area->base, area->pages);
518
 
533
 
519
    /*
534
    /*
520
     * Visit only the pages mapped by used_space B+tree.
535
     * Visit only the pages mapped by used_space B+tree.
521
     */
536
     */
522
    for (cur = area->used_space.leaf_head.next;
537
    for (cur = area->used_space.leaf_head.next;
523
        cur != &area->used_space.leaf_head; cur = cur->next) {
538
        cur != &area->used_space.leaf_head; cur = cur->next) {
524
        btree_node_t *node;
539
        btree_node_t *node;
525
        int i;
540
        int i;
526
       
541
       
527
        node = list_get_instance(cur, btree_node_t, leaf_link);
542
        node = list_get_instance(cur, btree_node_t, leaf_link);
528
        for (i = 0; i < node->keys; i++) {
543
        for (i = 0; i < node->keys; i++) {
529
            uintptr_t b = node->key[i];
544
            uintptr_t b = node->key[i];
530
            count_t j;
545
            count_t j;
531
            pte_t *pte;
546
            pte_t *pte;
532
           
547
           
533
            for (j = 0; j < (count_t) node->value[i]; j++) {
548
            for (j = 0; j < (count_t) node->value[i]; j++) {
534
                page_table_lock(as, false);
549
                page_table_lock(as, false);
535
                pte = page_mapping_find(as, b + j * PAGE_SIZE);
550
                pte = page_mapping_find(as, b + j * PAGE_SIZE);
536
                ASSERT(pte && PTE_VALID(pte) &&
551
                ASSERT(pte && PTE_VALID(pte) &&
537
                    PTE_PRESENT(pte));
552
                    PTE_PRESENT(pte));
538
                if (area->backend &&
553
                if (area->backend &&
539
                    area->backend->frame_free) {
554
                    area->backend->frame_free) {
540
                    area->backend->frame_free(area, b +
555
                    area->backend->frame_free(area, b +
541
                    j * PAGE_SIZE, PTE_GET_FRAME(pte));
556
                    j * PAGE_SIZE, PTE_GET_FRAME(pte));
542
                }
557
                }
543
                page_mapping_remove(as, b + j * PAGE_SIZE);            
558
                page_mapping_remove(as, b + j * PAGE_SIZE);            
544
                page_table_unlock(as, false);
559
                page_table_unlock(as, false);
545
            }
560
            }
546
        }
561
        }
547
    }
562
    }
548
 
563
 
549
    /*
564
    /*
550
     * Finish TLB shootdown sequence.
565
     * Finish TLB shootdown sequence.
551
     */
566
     */
552
    tlb_invalidate_pages(as->asid, area->base, area->pages);
567
    tlb_invalidate_pages(as->asid, area->base, area->pages);
553
    tlb_shootdown_finalize();
568
    tlb_shootdown_finalize();
554
   
569
   
555
    /*
570
    /*
556
     * Invalidate potential software translation caches (e.g. TSB on
571
     * Invalidate potential software translation caches (e.g. TSB on
557
     * sparc64).
572
     * sparc64).
558
     */
573
     */
559
    as_invalidate_translation_cache(as, area->base, area->pages);
574
    as_invalidate_translation_cache(as, area->base, area->pages);
560
   
575
   
561
    btree_destroy(&area->used_space);
576
    btree_destroy(&area->used_space);
562
 
577
 
563
    area->attributes |= AS_AREA_ATTR_PARTIAL;
578
    area->attributes |= AS_AREA_ATTR_PARTIAL;
564
   
579
   
565
    if (area->sh_info)
580
    if (area->sh_info)
566
        sh_info_remove_reference(area->sh_info);
581
        sh_info_remove_reference(area->sh_info);
567
       
582
       
568
    mutex_unlock(&area->lock);
583
    mutex_unlock(&area->lock);
569
 
584
 
570
    /*
585
    /*
571
     * Remove the empty area from address space.
586
     * Remove the empty area from address space.
572
     */
587
     */
573
    btree_remove(&as->as_area_btree, base, NULL);
588
    btree_remove(&as->as_area_btree, base, NULL);
574
   
589
   
575
    free(area);
590
    free(area);
576
   
591
   
577
    mutex_unlock(&as->lock);
592
    mutex_unlock(&as->lock);
578
    interrupts_restore(ipl);
593
    interrupts_restore(ipl);
579
    return 0;
594
    return 0;
580
}
595
}
581
 
596
 
582
/** Share address space area with another or the same address space.
597
/** Share address space area with another or the same address space.
583
 *
598
 *
584
 * Address space area mapping is shared with a new address space area.
599
 * Address space area mapping is shared with a new address space area.
585
 * If the source address space area has not been shared so far,
600
 * If the source address space area has not been shared so far,
586
 * a new sh_info is created. The new address space area simply gets the
601
 * a new sh_info is created. The new address space area simply gets the
587
 * sh_info of the source area. The process of duplicating the
602
 * sh_info of the source area. The process of duplicating the
588
 * mapping is done through the backend share function.
603
 * mapping is done through the backend share function.
589
 *
604
 *
590
 * @param src_as Pointer to source address space.
605
 * @param src_as Pointer to source address space.
591
 * @param src_base Base address of the source address space area.
606
 * @param src_base Base address of the source address space area.
592
 * @param acc_size Expected size of the source area.
607
 * @param acc_size Expected size of the source area.
593
 * @param dst_as Pointer to destination address space.
608
 * @param dst_as Pointer to destination address space.
594
 * @param dst_base Target base address.
609
 * @param dst_base Target base address.
595
 * @param dst_flags_mask Destination address space area flags mask.
610
 * @param dst_flags_mask Destination address space area flags mask.
596
 *
611
 *
597
 * @return Zero on success or ENOENT if there is no such task or if there is no
612
 * @return Zero on success or ENOENT if there is no such task or if there is no
598
 * such address space area, EPERM if there was a problem in accepting the area
613
 * such address space area, EPERM if there was a problem in accepting the area
599
 * or ENOMEM if there was a problem in allocating destination address space
614
 * or ENOMEM if there was a problem in allocating destination address space
600
 * area. ENOTSUP is returned if the address space area backend does not support
615
 * area. ENOTSUP is returned if the address space area backend does not support
601
 * sharing or if the kernel detects an attempt to create an illegal address
616
 * sharing or if the kernel detects an attempt to create an illegal address
602
 * alias.
617
 * alias.
603
 */
618
 */
604
int as_area_share(as_t *src_as, uintptr_t src_base, size_t acc_size,
619
int as_area_share(as_t *src_as, uintptr_t src_base, size_t acc_size,
605
          as_t *dst_as, uintptr_t dst_base, int dst_flags_mask)
620
          as_t *dst_as, uintptr_t dst_base, int dst_flags_mask)
606
{
621
{
607
    ipl_t ipl;
622
    ipl_t ipl;
608
    int src_flags;
623
    int src_flags;
609
    size_t src_size;
624
    size_t src_size;
610
    as_area_t *src_area, *dst_area;
625
    as_area_t *src_area, *dst_area;
611
    share_info_t *sh_info;
626
    share_info_t *sh_info;
612
    mem_backend_t *src_backend;
627
    mem_backend_t *src_backend;
613
    mem_backend_data_t src_backend_data;
628
    mem_backend_data_t src_backend_data;
614
   
629
   
615
    ipl = interrupts_disable();
630
    ipl = interrupts_disable();
616
    mutex_lock(&src_as->lock);
631
    mutex_lock(&src_as->lock);
617
    src_area = find_area_and_lock(src_as, src_base);
632
    src_area = find_area_and_lock(src_as, src_base);
618
    if (!src_area) {
633
    if (!src_area) {
619
        /*
634
        /*
620
         * Could not find the source address space area.
635
         * Could not find the source address space area.
621
         */
636
         */
622
        mutex_unlock(&src_as->lock);
637
        mutex_unlock(&src_as->lock);
623
        interrupts_restore(ipl);
638
        interrupts_restore(ipl);
624
        return ENOENT;
639
        return ENOENT;
625
    }
640
    }
626
 
641
 
627
    if (!src_area->backend || !src_area->backend->share) {
642
    if (!src_area->backend || !src_area->backend->share) {
628
        /*
643
        /*
629
         * There is no backend or the backend does not
644
         * There is no backend or the backend does not
630
         * know how to share the area.
645
         * know how to share the area.
631
         */
646
         */
632
        mutex_unlock(&src_area->lock);
647
        mutex_unlock(&src_area->lock);
633
        mutex_unlock(&src_as->lock);
648
        mutex_unlock(&src_as->lock);
634
        interrupts_restore(ipl);
649
        interrupts_restore(ipl);
635
        return ENOTSUP;
650
        return ENOTSUP;
636
    }
651
    }
637
   
652
   
638
    src_size = src_area->pages * PAGE_SIZE;
653
    src_size = src_area->pages * PAGE_SIZE;
639
    src_flags = src_area->flags;
654
    src_flags = src_area->flags;
640
    src_backend = src_area->backend;
655
    src_backend = src_area->backend;
641
    src_backend_data = src_area->backend_data;
656
    src_backend_data = src_area->backend_data;
642
 
657
 
643
    /* Share the cacheable flag from the original mapping */
658
    /* Share the cacheable flag from the original mapping */
644
    if (src_flags & AS_AREA_CACHEABLE)
659
    if (src_flags & AS_AREA_CACHEABLE)
645
        dst_flags_mask |= AS_AREA_CACHEABLE;
660
        dst_flags_mask |= AS_AREA_CACHEABLE;
646
 
661
 
647
    if (src_size != acc_size ||
662
    if (src_size != acc_size ||
648
        (src_flags & dst_flags_mask) != dst_flags_mask) {
663
        (src_flags & dst_flags_mask) != dst_flags_mask) {
649
        mutex_unlock(&src_area->lock);
664
        mutex_unlock(&src_area->lock);
650
        mutex_unlock(&src_as->lock);
665
        mutex_unlock(&src_as->lock);
651
        interrupts_restore(ipl);
666
        interrupts_restore(ipl);
652
        return EPERM;
667
        return EPERM;
653
    }
668
    }
654
 
669
 
655
#ifdef CONFIG_VIRT_IDX_DCACHE
670
#ifdef CONFIG_VIRT_IDX_DCACHE
656
    if (!(dst_flags_mask & AS_AREA_EXEC)) {
671
    if (!(dst_flags_mask & AS_AREA_EXEC)) {
657
        if (PAGE_COLOR(src_area->base) != PAGE_COLOR(dst_base)) {
672
        if (PAGE_COLOR(src_area->base) != PAGE_COLOR(dst_base)) {
658
            /*
673
            /*
659
             * Refuse to create an illegal address alias.
674
             * Refuse to create an illegal address alias.
660
             */
675
             */
661
            mutex_unlock(&src_area->lock);
676
            mutex_unlock(&src_area->lock);
662
            mutex_unlock(&src_as->lock);
677
            mutex_unlock(&src_as->lock);
663
            interrupts_restore(ipl);
678
            interrupts_restore(ipl);
664
            return ENOTSUP;
679
            return ENOTSUP;
665
        }
680
        }
666
    }
681
    }
667
#endif /* CONFIG_VIRT_IDX_DCACHE */
682
#endif /* CONFIG_VIRT_IDX_DCACHE */
668
 
683
 
669
    /*
684
    /*
670
     * Now we are committed to sharing the area.
685
     * Now we are committed to sharing the area.
671
     * First, prepare the area for sharing.
686
     * First, prepare the area for sharing.
672
     * Then it will be safe to unlock it.
687
     * Then it will be safe to unlock it.
673
     */
688
     */
674
    sh_info = src_area->sh_info;
689
    sh_info = src_area->sh_info;
675
    if (!sh_info) {
690
    if (!sh_info) {
676
        sh_info = (share_info_t *) malloc(sizeof(share_info_t), 0);
691
        sh_info = (share_info_t *) malloc(sizeof(share_info_t), 0);
677
        mutex_initialize(&sh_info->lock);
692
        mutex_initialize(&sh_info->lock);
678
        sh_info->refcount = 2;
693
        sh_info->refcount = 2;
679
        btree_create(&sh_info->pagemap);
694
        btree_create(&sh_info->pagemap);
680
        src_area->sh_info = sh_info;
695
        src_area->sh_info = sh_info;
681
    } else {
696
    } else {
682
        mutex_lock(&sh_info->lock);
697
        mutex_lock(&sh_info->lock);
683
        sh_info->refcount++;
698
        sh_info->refcount++;
684
        mutex_unlock(&sh_info->lock);
699
        mutex_unlock(&sh_info->lock);
685
    }
700
    }
686
 
701
 
687
    src_area->backend->share(src_area);
702
    src_area->backend->share(src_area);
688
 
703
 
689
    mutex_unlock(&src_area->lock);
704
    mutex_unlock(&src_area->lock);
690
    mutex_unlock(&src_as->lock);
705
    mutex_unlock(&src_as->lock);
691
 
706
 
692
    /*
707
    /*
693
     * Create copy of the source address space area.
708
     * Create copy of the source address space area.
694
     * The destination area is created with AS_AREA_ATTR_PARTIAL
709
     * The destination area is created with AS_AREA_ATTR_PARTIAL
695
     * attribute set which prevents race condition with
710
     * attribute set which prevents race condition with
696
     * preliminary as_page_fault() calls.
711
     * preliminary as_page_fault() calls.
697
     * The flags of the source area are masked against dst_flags_mask
712
     * The flags of the source area are masked against dst_flags_mask
698
     * to support sharing in less privileged mode.
713
     * to support sharing in less privileged mode.
699
     */
714
     */
700
    dst_area = as_area_create(dst_as, dst_flags_mask, src_size, dst_base,
715
    dst_area = as_area_create(dst_as, dst_flags_mask, src_size, dst_base,
701
        AS_AREA_ATTR_PARTIAL, src_backend, &src_backend_data);
716
        AS_AREA_ATTR_PARTIAL, src_backend, &src_backend_data);
702
    if (!dst_area) {
717
    if (!dst_area) {
703
        /*
718
        /*
704
         * Destination address space area could not be created.
719
         * Destination address space area could not be created.
705
         */
720
         */
706
        sh_info_remove_reference(sh_info);
721
        sh_info_remove_reference(sh_info);
707
       
722
       
708
        interrupts_restore(ipl);
723
        interrupts_restore(ipl);
709
        return ENOMEM;
724
        return ENOMEM;
710
    }
725
    }
711
 
726
 
712
    /*
727
    /*
713
     * Now the destination address space area has been
728
     * Now the destination address space area has been
714
     * fully initialized. Clear the AS_AREA_ATTR_PARTIAL
729
     * fully initialized. Clear the AS_AREA_ATTR_PARTIAL
715
     * attribute and set the sh_info.
730
     * attribute and set the sh_info.
716
     */
731
     */
717
    mutex_lock(&dst_as->lock); 
732
    mutex_lock(&dst_as->lock); 
718
    mutex_lock(&dst_area->lock);
733
    mutex_lock(&dst_area->lock);
719
    dst_area->attributes &= ~AS_AREA_ATTR_PARTIAL;
734
    dst_area->attributes &= ~AS_AREA_ATTR_PARTIAL;
720
    dst_area->sh_info = sh_info;
735
    dst_area->sh_info = sh_info;
721
    mutex_unlock(&dst_area->lock);
736
    mutex_unlock(&dst_area->lock);
722
    mutex_unlock(&dst_as->lock);   
737
    mutex_unlock(&dst_as->lock);   
723
 
738
 
724
    interrupts_restore(ipl);
739
    interrupts_restore(ipl);
725
   
740
   
726
    return 0;
741
    return 0;
727
}
742
}
728
 
743
 
729
/** Check access mode for address space area.
744
/** Check access mode for address space area.
730
 *
745
 *
731
 * The address space area must be locked prior to this call.
746
 * The address space area must be locked prior to this call.
732
 *
747
 *
733
 * @param area Address space area.
748
 * @param area Address space area.
734
 * @param access Access mode.
749
 * @param access Access mode.
735
 *
750
 *
736
 * @return False if access violates area's permissions, true otherwise.
751
 * @return False if access violates area's permissions, true otherwise.
737
 */
752
 */
738
bool as_area_check_access(as_area_t *area, pf_access_t access)
753
bool as_area_check_access(as_area_t *area, pf_access_t access)
739
{
754
{
740
    int flagmap[] = {
755
    int flagmap[] = {
741
        [PF_ACCESS_READ] = AS_AREA_READ,
756
        [PF_ACCESS_READ] = AS_AREA_READ,
742
        [PF_ACCESS_WRITE] = AS_AREA_WRITE,
757
        [PF_ACCESS_WRITE] = AS_AREA_WRITE,
743
        [PF_ACCESS_EXEC] = AS_AREA_EXEC
758
        [PF_ACCESS_EXEC] = AS_AREA_EXEC
744
    };
759
    };
745
 
760
 
746
    if (!(area->flags & flagmap[access]))
761
    if (!(area->flags & flagmap[access]))
747
        return false;
762
        return false;
748
   
763
   
749
    return true;
764
    return true;
750
}
765
}
751
 
766
 
752
/** Handle page fault within the current address space.
767
/** Handle page fault within the current address space.
753
 *
768
 *
754
 * This is the high-level page fault handler. It decides
769
 * This is the high-level page fault handler. It decides
755
 * whether the page fault can be resolved by any backend
770
 * whether the page fault can be resolved by any backend
756
 * and if so, it invokes the backend to resolve the page
771
 * and if so, it invokes the backend to resolve the page
757
 * fault.
772
 * fault.
758
 *
773
 *
759
 * Interrupts are assumed disabled.
774
 * Interrupts are assumed disabled.
760
 *
775
 *
761
 * @param page Faulting page.
776
 * @param page Faulting page.
762
 * @param access Access mode that caused the fault (i.e. read/write/exec).
777
 * @param access Access mode that caused the fault (i.e. read/write/exec).
763
 * @param istate Pointer to interrupted state.
778
 * @param istate Pointer to interrupted state.
764
 *
779
 *
765
 * @return AS_PF_FAULT on page fault, AS_PF_OK on success or AS_PF_DEFER if the
780
 * @return AS_PF_FAULT on page fault, AS_PF_OK on success or AS_PF_DEFER if the
766
 *     fault was caused by copy_to_uspace() or copy_from_uspace().
781
 *     fault was caused by copy_to_uspace() or copy_from_uspace().
767
 */
782
 */
768
int as_page_fault(uintptr_t page, pf_access_t access, istate_t *istate)
783
int as_page_fault(uintptr_t page, pf_access_t access, istate_t *istate)
769
{
784
{
770
    pte_t *pte;
785
    pte_t *pte;
771
    as_area_t *area;
786
    as_area_t *area;
772
   
787
   
773
    if (!THREAD)
788
    if (!THREAD)
774
        return AS_PF_FAULT;
789
        return AS_PF_FAULT;
775
       
790
       
776
    ASSERT(AS);
791
    ASSERT(AS);
777
 
792
 
778
    mutex_lock(&AS->lock);
793
    mutex_lock(&AS->lock);
779
    area = find_area_and_lock(AS, page);   
794
    area = find_area_and_lock(AS, page);   
780
    if (!area) {
795
    if (!area) {
781
        /*
796
        /*
782
         * No area contained mapping for 'page'.
797
         * No area contained mapping for 'page'.
783
         * Signal page fault to low-level handler.
798
         * Signal page fault to low-level handler.
784
         */
799
         */
785
        mutex_unlock(&AS->lock);
800
        mutex_unlock(&AS->lock);
786
        goto page_fault;
801
        goto page_fault;
787
    }
802
    }
788
 
803
 
789
    if (area->attributes & AS_AREA_ATTR_PARTIAL) {
804
    if (area->attributes & AS_AREA_ATTR_PARTIAL) {
790
        /*
805
        /*
791
         * The address space area is not fully initialized.
806
         * The address space area is not fully initialized.
792
         * Avoid possible race by returning error.
807
         * Avoid possible race by returning error.
793
         */
808
         */
794
        mutex_unlock(&area->lock);
809
        mutex_unlock(&area->lock);
795
        mutex_unlock(&AS->lock);
810
        mutex_unlock(&AS->lock);
796
        goto page_fault;       
811
        goto page_fault;       
797
    }
812
    }
798
 
813
 
799
    if (!area->backend || !area->backend->page_fault) {
814
    if (!area->backend || !area->backend->page_fault) {
800
        /*
815
        /*
801
         * The address space area is not backed by any backend
816
         * The address space area is not backed by any backend
802
         * or the backend cannot handle page faults.
817
         * or the backend cannot handle page faults.
803
         */
818
         */
804
        mutex_unlock(&area->lock);
819
        mutex_unlock(&area->lock);
805
        mutex_unlock(&AS->lock);
820
        mutex_unlock(&AS->lock);
806
        goto page_fault;       
821
        goto page_fault;       
807
    }
822
    }
808
 
823
 
809
    page_table_lock(AS, false);
824
    page_table_lock(AS, false);
810
   
825
   
811
    /*
826
    /*
812
     * To avoid race condition between two page faults
827
     * To avoid race condition between two page faults
813
     * on the same address, we need to make sure
828
     * on the same address, we need to make sure
814
     * the mapping has not been already inserted.
829
     * the mapping has not been already inserted.
815
     */
830
     */
816
    if ((pte = page_mapping_find(AS, page))) {
831
    if ((pte = page_mapping_find(AS, page))) {
817
        if (PTE_PRESENT(pte)) {
832
        if (PTE_PRESENT(pte)) {
818
            if (((access == PF_ACCESS_READ) && PTE_READABLE(pte)) ||
833
            if (((access == PF_ACCESS_READ) && PTE_READABLE(pte)) ||
819
                (access == PF_ACCESS_WRITE && PTE_WRITABLE(pte)) ||
834
                (access == PF_ACCESS_WRITE && PTE_WRITABLE(pte)) ||
820
                (access == PF_ACCESS_EXEC && PTE_EXECUTABLE(pte))) {
835
                (access == PF_ACCESS_EXEC && PTE_EXECUTABLE(pte))) {
821
                page_table_unlock(AS, false);
836
                page_table_unlock(AS, false);
822
                mutex_unlock(&area->lock);
837
                mutex_unlock(&area->lock);
823
                mutex_unlock(&AS->lock);
838
                mutex_unlock(&AS->lock);
824
                return AS_PF_OK;
839
                return AS_PF_OK;
825
            }
840
            }
826
        }
841
        }
827
    }
842
    }
828
   
843
   
829
    /*
844
    /*
830
     * Resort to the backend page fault handler.
845
     * Resort to the backend page fault handler.
831
     */
846
     */
832
    if (area->backend->page_fault(area, page, access) != AS_PF_OK) {
847
    if (area->backend->page_fault(area, page, access) != AS_PF_OK) {
833
        page_table_unlock(AS, false);
848
        page_table_unlock(AS, false);
834
        mutex_unlock(&area->lock);
849
        mutex_unlock(&area->lock);
835
        mutex_unlock(&AS->lock);
850
        mutex_unlock(&AS->lock);
836
        goto page_fault;
851
        goto page_fault;
837
    }
852
    }
838
   
853
   
839
    page_table_unlock(AS, false);
854
    page_table_unlock(AS, false);
840
    mutex_unlock(&area->lock);
855
    mutex_unlock(&area->lock);
841
    mutex_unlock(&AS->lock);
856
    mutex_unlock(&AS->lock);
842
    return AS_PF_OK;
857
    return AS_PF_OK;
843
 
858
 
844
page_fault:
859
page_fault:
845
    if (THREAD->in_copy_from_uspace) {
860
    if (THREAD->in_copy_from_uspace) {
846
        THREAD->in_copy_from_uspace = false;
861
        THREAD->in_copy_from_uspace = false;
847
        istate_set_retaddr(istate,
862
        istate_set_retaddr(istate,
848
            (uintptr_t) &memcpy_from_uspace_failover_address);
863
            (uintptr_t) &memcpy_from_uspace_failover_address);
849
    } else if (THREAD->in_copy_to_uspace) {
864
    } else if (THREAD->in_copy_to_uspace) {
850
        THREAD->in_copy_to_uspace = false;
865
        THREAD->in_copy_to_uspace = false;
851
        istate_set_retaddr(istate,
866
        istate_set_retaddr(istate,
852
            (uintptr_t) &memcpy_to_uspace_failover_address);
867
            (uintptr_t) &memcpy_to_uspace_failover_address);
853
    } else {
868
    } else {
854
        return AS_PF_FAULT;
869
        return AS_PF_FAULT;
855
    }
870
    }
856
 
871
 
857
    return AS_PF_DEFER;
872
    return AS_PF_DEFER;
858
}
873
}
859
 
874
 
860
/** Switch address spaces.
875
/** Switch address spaces.
861
 *
876
 *
862
 * Note that this function cannot sleep as it is essentially a part of
877
 * Note that this function cannot sleep as it is essentially a part of
863
 * scheduling. Sleeping here would lead to deadlock on wakeup.
878
 * scheduling. Sleeping here would lead to deadlock on wakeup.
864
 *
879
 *
865
 * @param old Old address space or NULL.
880
 * @param old Old address space or NULL.
866
 * @param new New address space.
881
 * @param new New address space.
867
 */
882
 */
868
void as_switch(as_t *old_as, as_t *new_as)
883
void as_switch(as_t *old_as, as_t *new_as)
869
{
884
{
870
    ipl_t ipl;
885
    ipl_t ipl;
871
    bool needs_asid = false;
886
    bool needs_asid = false;
872
   
887
   
873
    ipl = interrupts_disable();
888
    ipl = interrupts_disable();
874
    spinlock_lock(&inactive_as_with_asid_lock);
889
    spinlock_lock(&inactive_as_with_asid_lock);
875
 
890
 
876
    /*
891
    /*
877
     * First, take care of the old address space.
892
     * First, take care of the old address space.
878
     */
893
     */
879
    if (old_as) {
894
    if (old_as) {
880
        mutex_lock_active(&old_as->lock);
895
        mutex_lock_active(&old_as->lock);
881
        ASSERT(old_as->cpu_refcount);
896
        ASSERT(old_as->cpu_refcount);
882
        if((--old_as->cpu_refcount == 0) && (old_as != AS_KERNEL)) {
897
        if((--old_as->cpu_refcount == 0) && (old_as != AS_KERNEL)) {
883
            /*
898
            /*
884
             * The old address space is no longer active on
899
             * The old address space is no longer active on
885
             * any processor. It can be appended to the
900
             * any processor. It can be appended to the
886
             * list of inactive address spaces with assigned
901
             * list of inactive address spaces with assigned
887
             * ASID.
902
             * ASID.
888
             */
903
             */
889
             ASSERT(old_as->asid != ASID_INVALID);
904
             ASSERT(old_as->asid != ASID_INVALID);
890
             list_append(&old_as->inactive_as_with_asid_link,
905
             list_append(&old_as->inactive_as_with_asid_link,
891
                 &inactive_as_with_asid_head);
906
                 &inactive_as_with_asid_head);
892
        }
907
        }
893
        mutex_unlock(&old_as->lock);
908
        mutex_unlock(&old_as->lock);
894
 
909
 
895
        /*
910
        /*
896
         * Perform architecture-specific tasks when the address space
911
         * Perform architecture-specific tasks when the address space
897
         * is being removed from the CPU.
912
         * is being removed from the CPU.
898
         */
913
         */
899
        as_deinstall_arch(old_as);
914
        as_deinstall_arch(old_as);
900
    }
915
    }
901
 
916
 
902
    /*
917
    /*
903
     * Second, prepare the new address space.
918
     * Second, prepare the new address space.
904
     */
919
     */
905
    mutex_lock_active(&new_as->lock);
920
    mutex_lock_active(&new_as->lock);
906
    if ((new_as->cpu_refcount++ == 0) && (new_as != AS_KERNEL)) {
921
    if ((new_as->cpu_refcount++ == 0) && (new_as != AS_KERNEL)) {
907
        if (new_as->asid != ASID_INVALID) {
922
        if (new_as->asid != ASID_INVALID) {
908
            list_remove(&new_as->inactive_as_with_asid_link);
923
            list_remove(&new_as->inactive_as_with_asid_link);
909
        } else {
924
        } else {
910
            /*
925
            /*
911
             * Defer call to asid_get() until new_as->lock is released.
926
             * Defer call to asid_get() until new_as->lock is released.
912
             */
927
             */
913
            needs_asid = true;
928
            needs_asid = true;
914
        }
929
        }
915
    }
930
    }
916
#ifdef AS_PAGE_TABLE
931
#ifdef AS_PAGE_TABLE
917
    SET_PTL0_ADDRESS(new_as->genarch.page_table);
932
    SET_PTL0_ADDRESS(new_as->genarch.page_table);
918
#endif
933
#endif
919
    mutex_unlock(&new_as->lock);
934
    mutex_unlock(&new_as->lock);
920
 
935
 
921
    if (needs_asid) {
936
    if (needs_asid) {
922
        /*
937
        /*
923
         * Allocation of new ASID was deferred
938
         * Allocation of new ASID was deferred
924
         * until now in order to avoid deadlock.
939
         * until now in order to avoid deadlock.
925
         */
940
         */
926
        asid_t asid;
941
        asid_t asid;
927
       
942
       
928
        asid = asid_get();
943
        asid = asid_get();
929
        mutex_lock_active(&new_as->lock);
944
        mutex_lock_active(&new_as->lock);
930
        new_as->asid = asid;
945
        new_as->asid = asid;
931
        mutex_unlock(&new_as->lock);
946
        mutex_unlock(&new_as->lock);
932
    }
947
    }
933
    spinlock_unlock(&inactive_as_with_asid_lock);
948
    spinlock_unlock(&inactive_as_with_asid_lock);
934
    interrupts_restore(ipl);
949
    interrupts_restore(ipl);
935
   
950
   
936
    /*
951
    /*
937
     * Perform architecture-specific steps.
952
     * Perform architecture-specific steps.
938
     * (e.g. write ASID to hardware register etc.)
953
     * (e.g. write ASID to hardware register etc.)
939
     */
954
     */
940
    as_install_arch(new_as);
955
    as_install_arch(new_as);
941
   
956
   
942
    AS = new_as;
957
    AS = new_as;
943
}
958
}
944
 
959
 
945
/** Convert address space area flags to page flags.
960
/** Convert address space area flags to page flags.
946
 *
961
 *
947
 * @param aflags Flags of some address space area.
962
 * @param aflags Flags of some address space area.
948
 *
963
 *
949
 * @return Flags to be passed to page_mapping_insert().
964
 * @return Flags to be passed to page_mapping_insert().
950
 */
965
 */
951
int area_flags_to_page_flags(int aflags)
966
int area_flags_to_page_flags(int aflags)
952
{
967
{
953
    int flags;
968
    int flags;
954
 
969
 
955
    flags = PAGE_USER | PAGE_PRESENT;
970
    flags = PAGE_USER | PAGE_PRESENT;
956
   
971
   
957
    if (aflags & AS_AREA_READ)
972
    if (aflags & AS_AREA_READ)
958
        flags |= PAGE_READ;
973
        flags |= PAGE_READ;
959
       
974
       
960
    if (aflags & AS_AREA_WRITE)
975
    if (aflags & AS_AREA_WRITE)
961
        flags |= PAGE_WRITE;
976
        flags |= PAGE_WRITE;
962
   
977
   
963
    if (aflags & AS_AREA_EXEC)
978
    if (aflags & AS_AREA_EXEC)
964
        flags |= PAGE_EXEC;
979
        flags |= PAGE_EXEC;
965
   
980
   
966
    if (aflags & AS_AREA_CACHEABLE)
981
    if (aflags & AS_AREA_CACHEABLE)
967
        flags |= PAGE_CACHEABLE;
982
        flags |= PAGE_CACHEABLE;
968
       
983
       
969
    return flags;
984
    return flags;
970
}
985
}
971
 
986
 
972
/** Compute flags for virtual address translation subsytem.
987
/** Compute flags for virtual address translation subsytem.
973
 *
988
 *
974
 * The address space area must be locked.
989
 * The address space area must be locked.
975
 * Interrupts must be disabled.
990
 * Interrupts must be disabled.
976
 *
991
 *
977
 * @param a Address space area.
992
 * @param a Address space area.
978
 *
993
 *
979
 * @return Flags to be used in page_mapping_insert().
994
 * @return Flags to be used in page_mapping_insert().
980
 */
995
 */
981
int as_area_get_flags(as_area_t *a)
996
int as_area_get_flags(as_area_t *a)
982
{
997
{
983
    return area_flags_to_page_flags(a->flags);
998
    return area_flags_to_page_flags(a->flags);
984
}
999
}
985
 
1000
 
986
/** Create page table.
1001
/** Create page table.
987
 *
1002
 *
988
 * Depending on architecture, create either address space
1003
 * Depending on architecture, create either address space
989
 * private or global page table.
1004
 * private or global page table.
990
 *
1005
 *
991
 * @param flags Flags saying whether the page table is for kernel address space.
1006
 * @param flags Flags saying whether the page table is for kernel address space.
992
 *
1007
 *
993
 * @return First entry of the page table.
1008
 * @return First entry of the page table.
994
 */
1009
 */
995
pte_t *page_table_create(int flags)
1010
pte_t *page_table_create(int flags)
996
{
1011
{
997
#ifdef __OBJC__
1012
#ifdef __OBJC__
998
    return [as_t page_table_create: flags];
1013
    return [as_t page_table_create: flags];
999
#else
1014
#else
1000
    ASSERT(as_operations);
1015
    ASSERT(as_operations);
1001
    ASSERT(as_operations->page_table_create);
1016
    ASSERT(as_operations->page_table_create);
1002
   
1017
   
1003
    return as_operations->page_table_create(flags);
1018
    return as_operations->page_table_create(flags);
1004
#endif
1019
#endif
1005
}
1020
}
1006
 
1021
 
1007
/** Destroy page table.
1022
/** Destroy page table.
1008
 *
1023
 *
1009
 * Destroy page table in architecture specific way.
1024
 * Destroy page table in architecture specific way.
1010
 *
1025
 *
1011
 * @param page_table Physical address of PTL0.
1026
 * @param page_table Physical address of PTL0.
1012
 */
1027
 */
1013
void page_table_destroy(pte_t *page_table)
1028
void page_table_destroy(pte_t *page_table)
1014
{
1029
{
1015
#ifdef __OBJC__
1030
#ifdef __OBJC__
1016
    return [as_t page_table_destroy: page_table];
1031
    return [as_t page_table_destroy: page_table];
1017
#else
1032
#else
1018
    ASSERT(as_operations);
1033
    ASSERT(as_operations);
1019
    ASSERT(as_operations->page_table_destroy);
1034
    ASSERT(as_operations->page_table_destroy);
1020
   
1035
   
1021
    as_operations->page_table_destroy(page_table);
1036
    as_operations->page_table_destroy(page_table);
1022
#endif
1037
#endif
1023
}
1038
}
1024
 
1039
 
1025
/** Lock page table.
1040
/** Lock page table.
1026
 *
1041
 *
1027
 * This function should be called before any page_mapping_insert(),
1042
 * This function should be called before any page_mapping_insert(),
1028
 * page_mapping_remove() and page_mapping_find().
1043
 * page_mapping_remove() and page_mapping_find().
1029
 *
1044
 *
1030
 * Locking order is such that address space areas must be locked
1045
 * Locking order is such that address space areas must be locked
1031
 * prior to this call. Address space can be locked prior to this
1046
 * prior to this call. Address space can be locked prior to this
1032
 * call in which case the lock argument is false.
1047
 * call in which case the lock argument is false.
1033
 *
1048
 *
1034
 * @param as Address space.
1049
 * @param as Address space.
1035
 * @param lock If false, do not attempt to lock as->lock.
1050
 * @param lock If false, do not attempt to lock as->lock.
1036
 */
1051
 */
1037
void page_table_lock(as_t *as, bool lock)
1052
void page_table_lock(as_t *as, bool lock)
1038
{
1053
{
1039
#ifdef __OBJC__
1054
#ifdef __OBJC__
1040
    [as page_table_lock: lock];
1055
    [as page_table_lock: lock];
1041
#else
1056
#else
1042
    ASSERT(as_operations);
1057
    ASSERT(as_operations);
1043
    ASSERT(as_operations->page_table_lock);
1058
    ASSERT(as_operations->page_table_lock);
1044
   
1059
   
1045
    as_operations->page_table_lock(as, lock);
1060
    as_operations->page_table_lock(as, lock);
1046
#endif
1061
#endif
1047
}
1062
}
1048
 
1063
 
1049
/** Unlock page table.
1064
/** Unlock page table.
1050
 *
1065
 *
1051
 * @param as Address space.
1066
 * @param as Address space.
1052
 * @param unlock If false, do not attempt to unlock as->lock.
1067
 * @param unlock If false, do not attempt to unlock as->lock.
1053
 */
1068
 */
1054
void page_table_unlock(as_t *as, bool unlock)
1069
void page_table_unlock(as_t *as, bool unlock)
1055
{
1070
{
1056
#ifdef __OBJC__
1071
#ifdef __OBJC__
1057
    [as page_table_unlock: unlock];
1072
    [as page_table_unlock: unlock];
1058
#else
1073
#else
1059
    ASSERT(as_operations);
1074
    ASSERT(as_operations);
1060
    ASSERT(as_operations->page_table_unlock);
1075
    ASSERT(as_operations->page_table_unlock);
1061
   
1076
   
1062
    as_operations->page_table_unlock(as, unlock);
1077
    as_operations->page_table_unlock(as, unlock);
1063
#endif
1078
#endif
1064
}
1079
}
1065
 
1080
 
1066
 
1081
 
1067
/** Find address space area and lock it.
1082
/** Find address space area and lock it.
1068
 *
1083
 *
1069
 * The address space must be locked and interrupts must be disabled.
1084
 * The address space must be locked and interrupts must be disabled.
1070
 *
1085
 *
1071
 * @param as Address space.
1086
 * @param as Address space.
1072
 * @param va Virtual address.
1087
 * @param va Virtual address.
1073
 *
1088
 *
1074
 * @return Locked address space area containing va on success or NULL on
1089
 * @return Locked address space area containing va on success or NULL on
1075
 *     failure.
1090
 *     failure.
1076
 */
1091
 */
1077
as_area_t *find_area_and_lock(as_t *as, uintptr_t va)
1092
as_area_t *find_area_and_lock(as_t *as, uintptr_t va)
1078
{
1093
{
1079
    as_area_t *a;
1094
    as_area_t *a;
1080
    btree_node_t *leaf, *lnode;
1095
    btree_node_t *leaf, *lnode;
1081
    int i;
1096
    int i;
1082
   
1097
   
1083
    a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf);
1098
    a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf);
1084
    if (a) {
1099
    if (a) {
1085
        /* va is the base address of an address space area */
1100
        /* va is the base address of an address space area */
1086
        mutex_lock(&a->lock);
1101
        mutex_lock(&a->lock);
1087
        return a;
1102
        return a;
1088
    }
1103
    }
1089
   
1104
   
1090
    /*
1105
    /*
1091
     * Search the leaf node and the righmost record of its left neighbour
1106
     * Search the leaf node and the righmost record of its left neighbour
1092
     * to find out whether this is a miss or va belongs to an address
1107
     * to find out whether this is a miss or va belongs to an address
1093
     * space area found there.
1108
     * space area found there.
1094
     */
1109
     */
1095
   
1110
   
1096
    /* First, search the leaf node itself. */
1111
    /* First, search the leaf node itself. */
1097
    for (i = 0; i < leaf->keys; i++) {
1112
    for (i = 0; i < leaf->keys; i++) {
1098
        a = (as_area_t *) leaf->value[i];
1113
        a = (as_area_t *) leaf->value[i];
1099
        mutex_lock(&a->lock);
1114
        mutex_lock(&a->lock);
1100
        if ((a->base <= va) && (va < a->base + a->pages * PAGE_SIZE)) {
1115
        if ((a->base <= va) && (va < a->base + a->pages * PAGE_SIZE)) {
1101
            return a;
1116
            return a;
1102
        }
1117
        }
1103
        mutex_unlock(&a->lock);
1118
        mutex_unlock(&a->lock);
1104
    }
1119
    }
1105
 
1120
 
1106
    /*
1121
    /*
1107
     * Second, locate the left neighbour and test its last record.
1122
     * Second, locate the left neighbour and test its last record.
1108
     * Because of its position in the B+tree, it must have base < va.
1123
     * Because of its position in the B+tree, it must have base < va.
1109
     */
1124
     */
1110
    lnode = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf);
1125
    lnode = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf);
1111
    if (lnode) {
1126
    if (lnode) {
1112
        a = (as_area_t *) lnode->value[lnode->keys - 1];
1127
        a = (as_area_t *) lnode->value[lnode->keys - 1];
1113
        mutex_lock(&a->lock);
1128
        mutex_lock(&a->lock);
1114
        if (va < a->base + a->pages * PAGE_SIZE) {
1129
        if (va < a->base + a->pages * PAGE_SIZE) {
1115
            return a;
1130
            return a;
1116
        }
1131
        }
1117
        mutex_unlock(&a->lock);
1132
        mutex_unlock(&a->lock);
1118
    }
1133
    }
1119
 
1134
 
1120
    return NULL;
1135
    return NULL;
1121
}
1136
}
1122
 
1137
 
1123
/** Check area conflicts with other areas.
1138
/** Check area conflicts with other areas.
1124
 *
1139
 *
1125
 * The address space must be locked and interrupts must be disabled.
1140
 * The address space must be locked and interrupts must be disabled.
1126
 *
1141
 *
1127
 * @param as Address space.
1142
 * @param as Address space.
1128
 * @param va Starting virtual address of the area being tested.
1143
 * @param va Starting virtual address of the area being tested.
1129
 * @param size Size of the area being tested.
1144
 * @param size Size of the area being tested.
1130
 * @param avoid_area Do not touch this area.
1145
 * @param avoid_area Do not touch this area.
1131
 *
1146
 *
1132
 * @return True if there is no conflict, false otherwise.
1147
 * @return True if there is no conflict, false otherwise.
1133
 */
1148
 */
1134
bool check_area_conflicts(as_t *as, uintptr_t va, size_t size,
1149
bool check_area_conflicts(as_t *as, uintptr_t va, size_t size,
1135
              as_area_t *avoid_area)
1150
              as_area_t *avoid_area)
1136
{
1151
{
1137
    as_area_t *a;
1152
    as_area_t *a;
1138
    btree_node_t *leaf, *node;
1153
    btree_node_t *leaf, *node;
1139
    int i;
1154
    int i;
1140
   
1155
   
1141
    /*
1156
    /*
1142
     * We don't want any area to have conflicts with NULL page.
1157
     * We don't want any area to have conflicts with NULL page.
1143
     */
1158
     */
1144
    if (overlaps(va, size, NULL, PAGE_SIZE))
1159
    if (overlaps(va, size, NULL, PAGE_SIZE))
1145
        return false;
1160
        return false;
1146
   
1161
   
1147
    /*
1162
    /*
1148
     * The leaf node is found in O(log n), where n is proportional to
1163
     * The leaf node is found in O(log n), where n is proportional to
1149
     * the number of address space areas belonging to as.
1164
     * the number of address space areas belonging to as.
1150
     * The check for conflicts is then attempted on the rightmost
1165
     * The check for conflicts is then attempted on the rightmost
1151
     * record in the left neighbour, the leftmost record in the right
1166
     * record in the left neighbour, the leftmost record in the right
1152
     * neighbour and all records in the leaf node itself.
1167
     * neighbour and all records in the leaf node itself.
1153
     */
1168
     */
1154
   
1169
   
1155
    if ((a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf))) {
1170
    if ((a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf))) {
1156
        if (a != avoid_area)
1171
        if (a != avoid_area)
1157
            return false;
1172
            return false;
1158
    }
1173
    }
1159
   
1174
   
1160
    /* First, check the two border cases. */
1175
    /* First, check the two border cases. */
1161
    if ((node = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf))) {
1176
    if ((node = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf))) {
1162
        a = (as_area_t *) node->value[node->keys - 1];
1177
        a = (as_area_t *) node->value[node->keys - 1];
1163
        mutex_lock(&a->lock);
1178
        mutex_lock(&a->lock);
1164
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1179
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1165
            mutex_unlock(&a->lock);
1180
            mutex_unlock(&a->lock);
1166
            return false;
1181
            return false;
1167
        }
1182
        }
1168
        mutex_unlock(&a->lock);
1183
        mutex_unlock(&a->lock);
1169
    }
1184
    }
1170
    node = btree_leaf_node_right_neighbour(&as->as_area_btree, leaf);
1185
    node = btree_leaf_node_right_neighbour(&as->as_area_btree, leaf);
1171
    if (node) {
1186
    if (node) {
1172
        a = (as_area_t *) node->value[0];
1187
        a = (as_area_t *) node->value[0];
1173
        mutex_lock(&a->lock);
1188
        mutex_lock(&a->lock);
1174
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1189
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1175
            mutex_unlock(&a->lock);
1190
            mutex_unlock(&a->lock);
1176
            return false;
1191
            return false;
1177
        }
1192
        }
1178
        mutex_unlock(&a->lock);
1193
        mutex_unlock(&a->lock);
1179
    }
1194
    }
1180
   
1195
   
1181
    /* Second, check the leaf node. */
1196
    /* Second, check the leaf node. */
1182
    for (i = 0; i < leaf->keys; i++) {
1197
    for (i = 0; i < leaf->keys; i++) {
1183
        a = (as_area_t *) leaf->value[i];
1198
        a = (as_area_t *) leaf->value[i];
1184
   
1199
   
1185
        if (a == avoid_area)
1200
        if (a == avoid_area)
1186
            continue;
1201
            continue;
1187
   
1202
   
1188
        mutex_lock(&a->lock);
1203
        mutex_lock(&a->lock);
1189
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1204
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1190
            mutex_unlock(&a->lock);
1205
            mutex_unlock(&a->lock);
1191
            return false;
1206
            return false;
1192
        }
1207
        }
1193
        mutex_unlock(&a->lock);
1208
        mutex_unlock(&a->lock);
1194
    }
1209
    }
1195
 
1210
 
1196
    /*
1211
    /*
1197
     * So far, the area does not conflict with other areas.
1212
     * So far, the area does not conflict with other areas.
1198
     * Check if it doesn't conflict with kernel address space.
1213
     * Check if it doesn't conflict with kernel address space.
1199
     */  
1214
     */  
1200
    if (!KERNEL_ADDRESS_SPACE_SHADOWED) {
1215
    if (!KERNEL_ADDRESS_SPACE_SHADOWED) {
1201
        return !overlaps(va, size,
1216
        return !overlaps(va, size,
1202
            KERNEL_ADDRESS_SPACE_START,
1217
            KERNEL_ADDRESS_SPACE_START,
1203
            KERNEL_ADDRESS_SPACE_END - KERNEL_ADDRESS_SPACE_START);
1218
            KERNEL_ADDRESS_SPACE_END - KERNEL_ADDRESS_SPACE_START);
1204
    }
1219
    }
1205
 
1220
 
1206
    return true;
1221
    return true;
1207
}
1222
}
1208
 
1223
 
1209
/** Return size of the address space area with given base.  */
1224
/** Return size of the address space area with given base.  */
1210
size_t as_get_size(uintptr_t base)
1225
size_t as_get_size(uintptr_t base)
1211
{
1226
{
1212
    ipl_t ipl;
1227
    ipl_t ipl;
1213
    as_area_t *src_area;
1228
    as_area_t *src_area;
1214
    size_t size;
1229
    size_t size;
1215
 
1230
 
1216
    ipl = interrupts_disable();
1231
    ipl = interrupts_disable();
1217
    src_area = find_area_and_lock(AS, base);
1232
    src_area = find_area_and_lock(AS, base);
1218
    if (src_area){
1233
    if (src_area){
1219
        size = src_area->pages * PAGE_SIZE;
1234
        size = src_area->pages * PAGE_SIZE;
1220
        mutex_unlock(&src_area->lock);
1235
        mutex_unlock(&src_area->lock);
1221
    } else {
1236
    } else {
1222
        size = 0;
1237
        size = 0;
1223
    }
1238
    }
1224
    interrupts_restore(ipl);
1239
    interrupts_restore(ipl);
1225
    return size;
1240
    return size;
1226
}
1241
}
1227
 
1242
 
1228
/** Mark portion of address space area as used.
1243
/** Mark portion of address space area as used.
1229
 *
1244
 *
1230
 * The address space area must be already locked.
1245
 * The address space area must be already locked.
1231
 *
1246
 *
1232
 * @param a Address space area.
1247
 * @param a Address space area.
1233
 * @param page First page to be marked.
1248
 * @param page First page to be marked.
1234
 * @param count Number of page to be marked.
1249
 * @param count Number of page to be marked.
1235
 *
1250
 *
1236
 * @return 0 on failure and 1 on success.
1251
 * @return 0 on failure and 1 on success.
1237
 */
1252
 */
1238
int used_space_insert(as_area_t *a, uintptr_t page, count_t count)
1253
int used_space_insert(as_area_t *a, uintptr_t page, count_t count)
1239
{
1254
{
1240
    btree_node_t *leaf, *node;
1255
    btree_node_t *leaf, *node;
1241
    count_t pages;
1256
    count_t pages;
1242
    int i;
1257
    int i;
1243
 
1258
 
1244
    ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1259
    ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1245
    ASSERT(count);
1260
    ASSERT(count);
1246
 
1261
 
1247
    pages = (count_t) btree_search(&a->used_space, page, &leaf);
1262
    pages = (count_t) btree_search(&a->used_space, page, &leaf);
1248
    if (pages) {
1263
    if (pages) {
1249
        /*
1264
        /*
1250
         * We hit the beginning of some used space.
1265
         * We hit the beginning of some used space.
1251
         */
1266
         */
1252
        return 0;
1267
        return 0;
1253
    }
1268
    }
1254
 
1269
 
1255
    if (!leaf->keys) {
1270
    if (!leaf->keys) {
1256
        btree_insert(&a->used_space, page, (void *) count, leaf);
1271
        btree_insert(&a->used_space, page, (void *) count, leaf);
1257
        return 1;
1272
        return 1;
1258
    }
1273
    }
1259
 
1274
 
1260
    node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1275
    node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1261
    if (node) {
1276
    if (node) {
1262
        uintptr_t left_pg = node->key[node->keys - 1];
1277
        uintptr_t left_pg = node->key[node->keys - 1];
1263
        uintptr_t right_pg = leaf->key[0];
1278
        uintptr_t right_pg = leaf->key[0];
1264
        count_t left_cnt = (count_t) node->value[node->keys - 1];
1279
        count_t left_cnt = (count_t) node->value[node->keys - 1];
1265
        count_t right_cnt = (count_t) leaf->value[0];
1280
        count_t right_cnt = (count_t) leaf->value[0];
1266
       
1281
       
1267
        /*
1282
        /*
1268
         * Examine the possibility that the interval fits
1283
         * Examine the possibility that the interval fits
1269
         * somewhere between the rightmost interval of
1284
         * somewhere between the rightmost interval of
1270
         * the left neigbour and the first interval of the leaf.
1285
         * the left neigbour and the first interval of the leaf.
1271
         */
1286
         */
1272
         
1287
         
1273
        if (page >= right_pg) {
1288
        if (page >= right_pg) {
1274
            /* Do nothing. */
1289
            /* Do nothing. */
1275
        } else if (overlaps(page, count * PAGE_SIZE, left_pg,
1290
        } else if (overlaps(page, count * PAGE_SIZE, left_pg,
1276
            left_cnt * PAGE_SIZE)) {
1291
            left_cnt * PAGE_SIZE)) {
1277
            /* The interval intersects with the left interval. */
1292
            /* The interval intersects with the left interval. */
1278
            return 0;
1293
            return 0;
1279
        } else if (overlaps(page, count * PAGE_SIZE, right_pg,
1294
        } else if (overlaps(page, count * PAGE_SIZE, right_pg,
1280
            right_cnt * PAGE_SIZE)) {
1295
            right_cnt * PAGE_SIZE)) {
1281
            /* The interval intersects with the right interval. */
1296
            /* The interval intersects with the right interval. */
1282
            return 0;          
1297
            return 0;          
1283
        } else if ((page == left_pg + left_cnt * PAGE_SIZE) &&
1298
        } else if ((page == left_pg + left_cnt * PAGE_SIZE) &&
1284
            (page + count * PAGE_SIZE == right_pg)) {
1299
            (page + count * PAGE_SIZE == right_pg)) {
1285
            /*
1300
            /*
1286
             * The interval can be added by merging the two already
1301
             * The interval can be added by merging the two already
1287
             * present intervals.
1302
             * present intervals.
1288
             */
1303
             */
1289
            node->value[node->keys - 1] += count + right_cnt;
1304
            node->value[node->keys - 1] += count + right_cnt;
1290
            btree_remove(&a->used_space, right_pg, leaf);
1305
            btree_remove(&a->used_space, right_pg, leaf);
1291
            return 1;
1306
            return 1;
1292
        } else if (page == left_pg + left_cnt * PAGE_SIZE) {
1307
        } else if (page == left_pg + left_cnt * PAGE_SIZE) {
1293
            /*
1308
            /*
1294
             * The interval can be added by simply growing the left
1309
             * The interval can be added by simply growing the left
1295
             * interval.
1310
             * interval.
1296
             */
1311
             */
1297
            node->value[node->keys - 1] += count;
1312
            node->value[node->keys - 1] += count;
1298
            return 1;
1313
            return 1;
1299
        } else if (page + count * PAGE_SIZE == right_pg) {
1314
        } else if (page + count * PAGE_SIZE == right_pg) {
1300
            /*
1315
            /*
1301
             * The interval can be addded by simply moving base of
1316
             * The interval can be addded by simply moving base of
1302
             * the right interval down and increasing its size
1317
             * the right interval down and increasing its size
1303
             * accordingly.
1318
             * accordingly.
1304
             */
1319
             */
1305
            leaf->value[0] += count;
1320
            leaf->value[0] += count;
1306
            leaf->key[0] = page;
1321
            leaf->key[0] = page;
1307
            return 1;
1322
            return 1;
1308
        } else {
1323
        } else {
1309
            /*
1324
            /*
1310
             * The interval is between both neigbouring intervals,
1325
             * The interval is between both neigbouring intervals,
1311
             * but cannot be merged with any of them.
1326
             * but cannot be merged with any of them.
1312
             */
1327
             */
1313
            btree_insert(&a->used_space, page, (void *) count,
1328
            btree_insert(&a->used_space, page, (void *) count,
1314
                leaf);
1329
                leaf);
1315
            return 1;
1330
            return 1;
1316
        }
1331
        }
1317
    } else if (page < leaf->key[0]) {
1332
    } else if (page < leaf->key[0]) {
1318
        uintptr_t right_pg = leaf->key[0];
1333
        uintptr_t right_pg = leaf->key[0];
1319
        count_t right_cnt = (count_t) leaf->value[0];
1334
        count_t right_cnt = (count_t) leaf->value[0];
1320
   
1335
   
1321
        /*
1336
        /*
1322
         * Investigate the border case in which the left neighbour does
1337
         * Investigate the border case in which the left neighbour does
1323
         * not exist but the interval fits from the left.
1338
         * not exist but the interval fits from the left.
1324
         */
1339
         */
1325
         
1340
         
1326
        if (overlaps(page, count * PAGE_SIZE, right_pg,
1341
        if (overlaps(page, count * PAGE_SIZE, right_pg,
1327
            right_cnt * PAGE_SIZE)) {
1342
            right_cnt * PAGE_SIZE)) {
1328
            /* The interval intersects with the right interval. */
1343
            /* The interval intersects with the right interval. */
1329
            return 0;
1344
            return 0;
1330
        } else if (page + count * PAGE_SIZE == right_pg) {
1345
        } else if (page + count * PAGE_SIZE == right_pg) {
1331
            /*
1346
            /*
1332
             * The interval can be added by moving the base of the
1347
             * The interval can be added by moving the base of the
1333
             * right interval down and increasing its size
1348
             * right interval down and increasing its size
1334
             * accordingly.
1349
             * accordingly.
1335
             */
1350
             */
1336
            leaf->key[0] = page;
1351
            leaf->key[0] = page;
1337
            leaf->value[0] += count;
1352
            leaf->value[0] += count;
1338
            return 1;
1353
            return 1;
1339
        } else {
1354
        } else {
1340
            /*
1355
            /*
1341
             * The interval doesn't adjoin with the right interval.
1356
             * The interval doesn't adjoin with the right interval.
1342
             * It must be added individually.
1357
             * It must be added individually.
1343
             */
1358
             */
1344
            btree_insert(&a->used_space, page, (void *) count,
1359
            btree_insert(&a->used_space, page, (void *) count,
1345
                leaf);
1360
                leaf);
1346
            return 1;
1361
            return 1;
1347
        }
1362
        }
1348
    }
1363
    }
1349
 
1364
 
1350
    node = btree_leaf_node_right_neighbour(&a->used_space, leaf);
1365
    node = btree_leaf_node_right_neighbour(&a->used_space, leaf);
1351
    if (node) {
1366
    if (node) {
1352
        uintptr_t left_pg = leaf->key[leaf->keys - 1];
1367
        uintptr_t left_pg = leaf->key[leaf->keys - 1];
1353
        uintptr_t right_pg = node->key[0];
1368
        uintptr_t right_pg = node->key[0];
1354
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1369
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1355
        count_t right_cnt = (count_t) node->value[0];
1370
        count_t right_cnt = (count_t) node->value[0];
1356
       
1371
       
1357
        /*
1372
        /*
1358
         * Examine the possibility that the interval fits
1373
         * Examine the possibility that the interval fits
1359
         * somewhere between the leftmost interval of
1374
         * somewhere between the leftmost interval of
1360
         * the right neigbour and the last interval of the leaf.
1375
         * the right neigbour and the last interval of the leaf.
1361
         */
1376
         */
1362
 
1377
 
1363
        if (page < left_pg) {
1378
        if (page < left_pg) {
1364
            /* Do nothing. */
1379
            /* Do nothing. */
1365
        } else if (overlaps(page, count * PAGE_SIZE, left_pg,
1380
        } else if (overlaps(page, count * PAGE_SIZE, left_pg,
1366
            left_cnt * PAGE_SIZE)) {
1381
            left_cnt * PAGE_SIZE)) {
1367
            /* The interval intersects with the left interval. */
1382
            /* The interval intersects with the left interval. */
1368
            return 0;
1383
            return 0;
1369
        } else if (overlaps(page, count * PAGE_SIZE, right_pg,
1384
        } else if (overlaps(page, count * PAGE_SIZE, right_pg,
1370
            right_cnt * PAGE_SIZE)) {
1385
            right_cnt * PAGE_SIZE)) {
1371
            /* The interval intersects with the right interval. */
1386
            /* The interval intersects with the right interval. */
1372
            return 0;          
1387
            return 0;          
1373
        } else if ((page == left_pg + left_cnt * PAGE_SIZE) &&
1388
        } else if ((page == left_pg + left_cnt * PAGE_SIZE) &&
1374
            (page + count * PAGE_SIZE == right_pg)) {
1389
            (page + count * PAGE_SIZE == right_pg)) {
1375
            /*
1390
            /*
1376
             * The interval can be added by merging the two already
1391
             * The interval can be added by merging the two already
1377
             * present intervals.
1392
             * present intervals.
1378
             * */
1393
             * */
1379
            leaf->value[leaf->keys - 1] += count + right_cnt;
1394
            leaf->value[leaf->keys - 1] += count + right_cnt;
1380
            btree_remove(&a->used_space, right_pg, node);
1395
            btree_remove(&a->used_space, right_pg, node);
1381
            return 1;
1396
            return 1;
1382
        } else if (page == left_pg + left_cnt * PAGE_SIZE) {
1397
        } else if (page == left_pg + left_cnt * PAGE_SIZE) {
1383
            /*
1398
            /*
1384
             * The interval can be added by simply growing the left
1399
             * The interval can be added by simply growing the left
1385
             * interval.
1400
             * interval.
1386
             * */
1401
             * */
1387
            leaf->value[leaf->keys - 1] +=  count;
1402
            leaf->value[leaf->keys - 1] +=  count;
1388
            return 1;
1403
            return 1;
1389
        } else if (page + count * PAGE_SIZE == right_pg) {
1404
        } else if (page + count * PAGE_SIZE == right_pg) {
1390
            /*
1405
            /*
1391
             * The interval can be addded by simply moving base of
1406
             * The interval can be addded by simply moving base of
1392
             * the right interval down and increasing its size
1407
             * the right interval down and increasing its size
1393
             * accordingly.
1408
             * accordingly.
1394
             */
1409
             */
1395
            node->value[0] += count;
1410
            node->value[0] += count;
1396
            node->key[0] = page;
1411
            node->key[0] = page;
1397
            return 1;
1412
            return 1;
1398
        } else {
1413
        } else {
1399
            /*
1414
            /*
1400
             * The interval is between both neigbouring intervals,
1415
             * The interval is between both neigbouring intervals,
1401
             * but cannot be merged with any of them.
1416
             * but cannot be merged with any of them.
1402
             */
1417
             */
1403
            btree_insert(&a->used_space, page, (void *) count,
1418
            btree_insert(&a->used_space, page, (void *) count,
1404
                leaf);
1419
                leaf);
1405
            return 1;
1420
            return 1;
1406
        }
1421
        }
1407
    } else if (page >= leaf->key[leaf->keys - 1]) {
1422
    } else if (page >= leaf->key[leaf->keys - 1]) {
1408
        uintptr_t left_pg = leaf->key[leaf->keys - 1];
1423
        uintptr_t left_pg = leaf->key[leaf->keys - 1];
1409
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1424
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1410
   
1425
   
1411
        /*
1426
        /*
1412
         * Investigate the border case in which the right neighbour
1427
         * Investigate the border case in which the right neighbour
1413
         * does not exist but the interval fits from the right.
1428
         * does not exist but the interval fits from the right.
1414
         */
1429
         */
1415
         
1430
         
1416
        if (overlaps(page, count * PAGE_SIZE, left_pg,
1431
        if (overlaps(page, count * PAGE_SIZE, left_pg,
1417
            left_cnt * PAGE_SIZE)) {
1432
            left_cnt * PAGE_SIZE)) {
1418
            /* The interval intersects with the left interval. */
1433
            /* The interval intersects with the left interval. */
1419
            return 0;
1434
            return 0;
1420
        } else if (left_pg + left_cnt * PAGE_SIZE == page) {
1435
        } else if (left_pg + left_cnt * PAGE_SIZE == page) {
1421
            /*
1436
            /*
1422
             * The interval can be added by growing the left
1437
             * The interval can be added by growing the left
1423
             * interval.
1438
             * interval.
1424
             */
1439
             */
1425
            leaf->value[leaf->keys - 1] += count;
1440
            leaf->value[leaf->keys - 1] += count;
1426
            return 1;
1441
            return 1;
1427
        } else {
1442
        } else {
1428
            /*
1443
            /*
1429
             * The interval doesn't adjoin with the left interval.
1444
             * The interval doesn't adjoin with the left interval.
1430
             * It must be added individually.
1445
             * It must be added individually.
1431
             */
1446
             */
1432
            btree_insert(&a->used_space, page, (void *) count,
1447
            btree_insert(&a->used_space, page, (void *) count,
1433
                leaf);
1448
                leaf);
1434
            return 1;
1449
            return 1;
1435
        }
1450
        }
1436
    }
1451
    }
1437
   
1452
   
1438
    /*
1453
    /*
1439
     * Note that if the algorithm made it thus far, the interval can fit
1454
     * Note that if the algorithm made it thus far, the interval can fit
1440
     * only between two other intervals of the leaf. The two border cases
1455
     * only between two other intervals of the leaf. The two border cases
1441
     * were already resolved.
1456
     * were already resolved.
1442
     */
1457
     */
1443
    for (i = 1; i < leaf->keys; i++) {
1458
    for (i = 1; i < leaf->keys; i++) {
1444
        if (page < leaf->key[i]) {
1459
        if (page < leaf->key[i]) {
1445
            uintptr_t left_pg = leaf->key[i - 1];
1460
            uintptr_t left_pg = leaf->key[i - 1];
1446
            uintptr_t right_pg = leaf->key[i];
1461
            uintptr_t right_pg = leaf->key[i];
1447
            count_t left_cnt = (count_t) leaf->value[i - 1];
1462
            count_t left_cnt = (count_t) leaf->value[i - 1];
1448
            count_t right_cnt = (count_t) leaf->value[i];
1463
            count_t right_cnt = (count_t) leaf->value[i];
1449
 
1464
 
1450
            /*
1465
            /*
1451
             * The interval fits between left_pg and right_pg.
1466
             * The interval fits between left_pg and right_pg.
1452
             */
1467
             */
1453
 
1468
 
1454
            if (overlaps(page, count * PAGE_SIZE, left_pg,
1469
            if (overlaps(page, count * PAGE_SIZE, left_pg,
1455
                left_cnt * PAGE_SIZE)) {
1470
                left_cnt * PAGE_SIZE)) {
1456
                /*
1471
                /*
1457
                 * The interval intersects with the left
1472
                 * The interval intersects with the left
1458
                 * interval.
1473
                 * interval.
1459
                 */
1474
                 */
1460
                return 0;
1475
                return 0;
1461
            } else if (overlaps(page, count * PAGE_SIZE, right_pg,
1476
            } else if (overlaps(page, count * PAGE_SIZE, right_pg,
1462
                right_cnt * PAGE_SIZE)) {
1477
                right_cnt * PAGE_SIZE)) {
1463
                /*
1478
                /*
1464
                 * The interval intersects with the right
1479
                 * The interval intersects with the right
1465
                 * interval.
1480
                 * interval.
1466
                 */
1481
                 */
1467
                return 0;          
1482
                return 0;          
1468
            } else if ((page == left_pg + left_cnt * PAGE_SIZE) &&
1483
            } else if ((page == left_pg + left_cnt * PAGE_SIZE) &&
1469
                (page + count * PAGE_SIZE == right_pg)) {
1484
                (page + count * PAGE_SIZE == right_pg)) {
1470
                /*
1485
                /*
1471
                 * The interval can be added by merging the two
1486
                 * The interval can be added by merging the two
1472
                 * already present intervals.
1487
                 * already present intervals.
1473
                 */
1488
                 */
1474
                leaf->value[i - 1] += count + right_cnt;
1489
                leaf->value[i - 1] += count + right_cnt;
1475
                btree_remove(&a->used_space, right_pg, leaf);
1490
                btree_remove(&a->used_space, right_pg, leaf);
1476
                return 1;
1491
                return 1;
1477
            } else if (page == left_pg + left_cnt * PAGE_SIZE) {
1492
            } else if (page == left_pg + left_cnt * PAGE_SIZE) {
1478
                /*
1493
                /*
1479
                 * The interval can be added by simply growing
1494
                 * The interval can be added by simply growing
1480
                 * the left interval.
1495
                 * the left interval.
1481
                 */
1496
                 */
1482
                leaf->value[i - 1] += count;
1497
                leaf->value[i - 1] += count;
1483
                return 1;
1498
                return 1;
1484
            } else if (page + count * PAGE_SIZE == right_pg) {
1499
            } else if (page + count * PAGE_SIZE == right_pg) {
1485
                /*
1500
                /*
1486
                     * The interval can be addded by simply moving
1501
                     * The interval can be addded by simply moving
1487
                 * base of the right interval down and
1502
                 * base of the right interval down and
1488
                 * increasing its size accordingly.
1503
                 * increasing its size accordingly.
1489
                 */
1504
                 */
1490
                leaf->value[i] += count;
1505
                leaf->value[i] += count;
1491
                leaf->key[i] = page;
1506
                leaf->key[i] = page;
1492
                return 1;
1507
                return 1;
1493
            } else {
1508
            } else {
1494
                /*
1509
                /*
1495
                 * The interval is between both neigbouring
1510
                 * The interval is between both neigbouring
1496
                 * intervals, but cannot be merged with any of
1511
                 * intervals, but cannot be merged with any of
1497
                 * them.
1512
                 * them.
1498
                 */
1513
                 */
1499
                btree_insert(&a->used_space, page,
1514
                btree_insert(&a->used_space, page,
1500
                    (void *) count, leaf);
1515
                    (void *) count, leaf);
1501
                return 1;
1516
                return 1;
1502
            }
1517
            }
1503
        }
1518
        }
1504
    }
1519
    }
1505
 
1520
 
1506
    panic("Inconsistency detected while adding %d pages of used space at "
1521
    panic("Inconsistency detected while adding %d pages of used space at "
1507
        "%p.\n", count, page);
1522
        "%p.\n", count, page);
1508
}
1523
}
1509
 
1524
 
1510
/** Mark portion of address space area as unused.
1525
/** Mark portion of address space area as unused.
1511
 *
1526
 *
1512
 * The address space area must be already locked.
1527
 * The address space area must be already locked.
1513
 *
1528
 *
1514
 * @param a Address space area.
1529
 * @param a Address space area.
1515
 * @param page First page to be marked.
1530
 * @param page First page to be marked.
1516
 * @param count Number of page to be marked.
1531
 * @param count Number of page to be marked.
1517
 *
1532
 *
1518
 * @return 0 on failure and 1 on success.
1533
 * @return 0 on failure and 1 on success.
1519
 */
1534
 */
1520
int used_space_remove(as_area_t *a, uintptr_t page, count_t count)
1535
int used_space_remove(as_area_t *a, uintptr_t page, count_t count)
1521
{
1536
{
1522
    btree_node_t *leaf, *node;
1537
    btree_node_t *leaf, *node;
1523
    count_t pages;
1538
    count_t pages;
1524
    int i;
1539
    int i;
1525
 
1540
 
1526
    ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1541
    ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1527
    ASSERT(count);
1542
    ASSERT(count);
1528
 
1543
 
1529
    pages = (count_t) btree_search(&a->used_space, page, &leaf);
1544
    pages = (count_t) btree_search(&a->used_space, page, &leaf);
1530
    if (pages) {
1545
    if (pages) {
1531
        /*
1546
        /*
1532
         * We are lucky, page is the beginning of some interval.
1547
         * We are lucky, page is the beginning of some interval.
1533
         */
1548
         */
1534
        if (count > pages) {
1549
        if (count > pages) {
1535
            return 0;
1550
            return 0;
1536
        } else if (count == pages) {
1551
        } else if (count == pages) {
1537
            btree_remove(&a->used_space, page, leaf);
1552
            btree_remove(&a->used_space, page, leaf);
1538
            return 1;
1553
            return 1;
1539
        } else {
1554
        } else {
1540
            /*
1555
            /*
1541
             * Find the respective interval.
1556
             * Find the respective interval.
1542
             * Decrease its size and relocate its start address.
1557
             * Decrease its size and relocate its start address.
1543
             */
1558
             */
1544
            for (i = 0; i < leaf->keys; i++) {
1559
            for (i = 0; i < leaf->keys; i++) {
1545
                if (leaf->key[i] == page) {
1560
                if (leaf->key[i] == page) {
1546
                    leaf->key[i] += count * PAGE_SIZE;
1561
                    leaf->key[i] += count * PAGE_SIZE;
1547
                    leaf->value[i] -= count;
1562
                    leaf->value[i] -= count;
1548
                    return 1;
1563
                    return 1;
1549
                }
1564
                }
1550
            }
1565
            }
1551
            goto error;
1566
            goto error;
1552
        }
1567
        }
1553
    }
1568
    }
1554
 
1569
 
1555
    node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1570
    node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1556
    if (node && page < leaf->key[0]) {
1571
    if (node && page < leaf->key[0]) {
1557
        uintptr_t left_pg = node->key[node->keys - 1];
1572
        uintptr_t left_pg = node->key[node->keys - 1];
1558
        count_t left_cnt = (count_t) node->value[node->keys - 1];
1573
        count_t left_cnt = (count_t) node->value[node->keys - 1];
1559
 
1574
 
1560
        if (overlaps(left_pg, left_cnt * PAGE_SIZE, page,
1575
        if (overlaps(left_pg, left_cnt * PAGE_SIZE, page,
1561
            count * PAGE_SIZE)) {
1576
            count * PAGE_SIZE)) {
1562
            if (page + count * PAGE_SIZE ==
1577
            if (page + count * PAGE_SIZE ==
1563
                left_pg + left_cnt * PAGE_SIZE) {
1578
                left_pg + left_cnt * PAGE_SIZE) {
1564
                /*
1579
                /*
1565
                 * The interval is contained in the rightmost
1580
                 * The interval is contained in the rightmost
1566
                 * interval of the left neighbour and can be
1581
                 * interval of the left neighbour and can be
1567
                 * removed by updating the size of the bigger
1582
                 * removed by updating the size of the bigger
1568
                 * interval.
1583
                 * interval.
1569
                 */
1584
                 */
1570
                node->value[node->keys - 1] -= count;
1585
                node->value[node->keys - 1] -= count;
1571
                return 1;
1586
                return 1;
1572
            } else if (page + count * PAGE_SIZE <
1587
            } else if (page + count * PAGE_SIZE <
1573
                left_pg + left_cnt*PAGE_SIZE) {
1588
                left_pg + left_cnt*PAGE_SIZE) {
1574
                count_t new_cnt;
1589
                count_t new_cnt;
1575
               
1590
               
1576
                /*
1591
                /*
1577
                 * The interval is contained in the rightmost
1592
                 * The interval is contained in the rightmost
1578
                 * interval of the left neighbour but its
1593
                 * interval of the left neighbour but its
1579
                 * removal requires both updating the size of
1594
                 * removal requires both updating the size of
1580
                 * the original interval and also inserting a
1595
                 * the original interval and also inserting a
1581
                 * new interval.
1596
                 * new interval.
1582
                 */
1597
                 */
1583
                new_cnt = ((left_pg + left_cnt * PAGE_SIZE) -
1598
                new_cnt = ((left_pg + left_cnt * PAGE_SIZE) -
1584
                    (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1599
                    (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1585
                node->value[node->keys - 1] -= count + new_cnt;
1600
                node->value[node->keys - 1] -= count + new_cnt;
1586
                btree_insert(&a->used_space, page +
1601
                btree_insert(&a->used_space, page +
1587
                    count * PAGE_SIZE, (void *) new_cnt, leaf);
1602
                    count * PAGE_SIZE, (void *) new_cnt, leaf);
1588
                return 1;
1603
                return 1;
1589
            }
1604
            }
1590
        }
1605
        }
1591
        return 0;
1606
        return 0;
1592
    } else if (page < leaf->key[0]) {
1607
    } else if (page < leaf->key[0]) {
1593
        return 0;
1608
        return 0;
1594
    }
1609
    }
1595
   
1610
   
1596
    if (page > leaf->key[leaf->keys - 1]) {
1611
    if (page > leaf->key[leaf->keys - 1]) {
1597
        uintptr_t left_pg = leaf->key[leaf->keys - 1];
1612
        uintptr_t left_pg = leaf->key[leaf->keys - 1];
1598
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1613
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1599
 
1614
 
1600
        if (overlaps(left_pg, left_cnt * PAGE_SIZE, page,
1615
        if (overlaps(left_pg, left_cnt * PAGE_SIZE, page,
1601
            count * PAGE_SIZE)) {
1616
            count * PAGE_SIZE)) {
1602
            if (page + count * PAGE_SIZE ==
1617
            if (page + count * PAGE_SIZE ==
1603
                left_pg + left_cnt * PAGE_SIZE) {
1618
                left_pg + left_cnt * PAGE_SIZE) {
1604
                /*
1619
                /*
1605
                 * The interval is contained in the rightmost
1620
                 * The interval is contained in the rightmost
1606
                 * interval of the leaf and can be removed by
1621
                 * interval of the leaf and can be removed by
1607
                 * updating the size of the bigger interval.
1622
                 * updating the size of the bigger interval.
1608
                 */
1623
                 */
1609
                leaf->value[leaf->keys - 1] -= count;
1624
                leaf->value[leaf->keys - 1] -= count;
1610
                return 1;
1625
                return 1;
1611
            } else if (page + count * PAGE_SIZE < left_pg +
1626
            } else if (page + count * PAGE_SIZE < left_pg +
1612
                left_cnt * PAGE_SIZE) {
1627
                left_cnt * PAGE_SIZE) {
1613
                count_t new_cnt;
1628
                count_t new_cnt;
1614
               
1629
               
1615
                /*
1630
                /*
1616
                 * The interval is contained in the rightmost
1631
                 * The interval is contained in the rightmost
1617
                 * interval of the leaf but its removal
1632
                 * interval of the leaf but its removal
1618
                 * requires both updating the size of the
1633
                 * requires both updating the size of the
1619
                 * original interval and also inserting a new
1634
                 * original interval and also inserting a new
1620
                 * interval.
1635
                 * interval.
1621
                 */
1636
                 */
1622
                new_cnt = ((left_pg + left_cnt * PAGE_SIZE) -
1637
                new_cnt = ((left_pg + left_cnt * PAGE_SIZE) -
1623
                    (page + count * PAGE_SIZE)) >> PAGE_WIDTH;
1638
                    (page + count * PAGE_SIZE)) >> PAGE_WIDTH;
1624
                leaf->value[leaf->keys - 1] -= count + new_cnt;
1639
                leaf->value[leaf->keys - 1] -= count + new_cnt;
1625
                btree_insert(&a->used_space, page +
1640
                btree_insert(&a->used_space, page +
1626
                    count * PAGE_SIZE, (void *) new_cnt, leaf);
1641
                    count * PAGE_SIZE, (void *) new_cnt, leaf);
1627
                return 1;
1642
                return 1;
1628
            }
1643
            }
1629
        }
1644
        }
1630
        return 0;
1645
        return 0;
1631
    }  
1646
    }  
1632
   
1647
   
1633
    /*
1648
    /*
1634
     * The border cases have been already resolved.
1649
     * The border cases have been already resolved.
1635
     * Now the interval can be only between intervals of the leaf.
1650
     * Now the interval can be only between intervals of the leaf.
1636
     */
1651
     */
1637
    for (i = 1; i < leaf->keys - 1; i++) {
1652
    for (i = 1; i < leaf->keys - 1; i++) {
1638
        if (page < leaf->key[i]) {
1653
        if (page < leaf->key[i]) {
1639
            uintptr_t left_pg = leaf->key[i - 1];
1654
            uintptr_t left_pg = leaf->key[i - 1];
1640
            count_t left_cnt = (count_t) leaf->value[i - 1];
1655
            count_t left_cnt = (count_t) leaf->value[i - 1];
1641
 
1656
 
1642
            /*
1657
            /*
1643
             * Now the interval is between intervals corresponding
1658
             * Now the interval is between intervals corresponding
1644
             * to (i - 1) and i.
1659
             * to (i - 1) and i.
1645
             */
1660
             */
1646
            if (overlaps(left_pg, left_cnt * PAGE_SIZE, page,
1661
            if (overlaps(left_pg, left_cnt * PAGE_SIZE, page,
1647
                count * PAGE_SIZE)) {
1662
                count * PAGE_SIZE)) {
1648
                if (page + count * PAGE_SIZE ==
1663
                if (page + count * PAGE_SIZE ==
1649
                    left_pg + left_cnt*PAGE_SIZE) {
1664
                    left_pg + left_cnt*PAGE_SIZE) {
1650
                    /*
1665
                    /*
1651
                     * The interval is contained in the
1666
                     * The interval is contained in the
1652
                     * interval (i - 1) of the leaf and can
1667
                     * interval (i - 1) of the leaf and can
1653
                     * be removed by updating the size of
1668
                     * be removed by updating the size of
1654
                     * the bigger interval.
1669
                     * the bigger interval.
1655
                     */
1670
                     */
1656
                    leaf->value[i - 1] -= count;
1671
                    leaf->value[i - 1] -= count;
1657
                    return 1;
1672
                    return 1;
1658
                } else if (page + count * PAGE_SIZE <
1673
                } else if (page + count * PAGE_SIZE <
1659
                    left_pg + left_cnt * PAGE_SIZE) {
1674
                    left_pg + left_cnt * PAGE_SIZE) {
1660
                    count_t new_cnt;
1675
                    count_t new_cnt;
1661
               
1676
               
1662
                    /*
1677
                    /*
1663
                     * The interval is contained in the
1678
                     * The interval is contained in the
1664
                     * interval (i - 1) of the leaf but its
1679
                     * interval (i - 1) of the leaf but its
1665
                     * removal requires both updating the
1680
                     * removal requires both updating the
1666
                     * size of the original interval and
1681
                     * size of the original interval and
1667
                     * also inserting a new interval.
1682
                     * also inserting a new interval.
1668
                     */
1683
                     */
1669
                    new_cnt = ((left_pg +
1684
                    new_cnt = ((left_pg +
1670
                        left_cnt * PAGE_SIZE) -
1685
                        left_cnt * PAGE_SIZE) -
1671
                        (page + count * PAGE_SIZE)) >>
1686
                        (page + count * PAGE_SIZE)) >>
1672
                        PAGE_WIDTH;
1687
                        PAGE_WIDTH;
1673
                    leaf->value[i - 1] -= count + new_cnt;
1688
                    leaf->value[i - 1] -= count + new_cnt;
1674
                    btree_insert(&a->used_space, page +
1689
                    btree_insert(&a->used_space, page +
1675
                        count * PAGE_SIZE, (void *) new_cnt,
1690
                        count * PAGE_SIZE, (void *) new_cnt,
1676
                        leaf);
1691
                        leaf);
1677
                    return 1;
1692
                    return 1;
1678
                }
1693
                }
1679
            }
1694
            }
1680
            return 0;
1695
            return 0;
1681
        }
1696
        }
1682
    }
1697
    }
1683
 
1698
 
1684
error:
1699
error:
1685
    panic("Inconsistency detected while removing %d pages of used space "
1700
    panic("Inconsistency detected while removing %d pages of used space "
1686
        "from %p.\n", count, page);
1701
        "from %p.\n", count, page);
1687
}
1702
}
1688
 
1703
 
1689
/** Remove reference to address space area share info.
1704
/** Remove reference to address space area share info.
1690
 *
1705
 *
1691
 * If the reference count drops to 0, the sh_info is deallocated.
1706
 * If the reference count drops to 0, the sh_info is deallocated.
1692
 *
1707
 *
1693
 * @param sh_info Pointer to address space area share info.
1708
 * @param sh_info Pointer to address space area share info.
1694
 */
1709
 */
1695
void sh_info_remove_reference(share_info_t *sh_info)
1710
void sh_info_remove_reference(share_info_t *sh_info)
1696
{
1711
{
1697
    bool dealloc = false;
1712
    bool dealloc = false;
1698
 
1713
 
1699
    mutex_lock(&sh_info->lock);
1714
    mutex_lock(&sh_info->lock);
1700
    ASSERT(sh_info->refcount);
1715
    ASSERT(sh_info->refcount);
1701
    if (--sh_info->refcount == 0) {
1716
    if (--sh_info->refcount == 0) {
1702
        dealloc = true;
1717
        dealloc = true;
1703
        link_t *cur;
1718
        link_t *cur;
1704
       
1719
       
1705
        /*
1720
        /*
1706
         * Now walk carefully the pagemap B+tree and free/remove
1721
         * Now walk carefully the pagemap B+tree and free/remove
1707
         * reference from all frames found there.
1722
         * reference from all frames found there.
1708
         */
1723
         */
1709
        for (cur = sh_info->pagemap.leaf_head.next;
1724
        for (cur = sh_info->pagemap.leaf_head.next;
1710
            cur != &sh_info->pagemap.leaf_head; cur = cur->next) {
1725
            cur != &sh_info->pagemap.leaf_head; cur = cur->next) {
1711
            btree_node_t *node;
1726
            btree_node_t *node;
1712
            int i;
1727
            int i;
1713
           
1728
           
1714
            node = list_get_instance(cur, btree_node_t, leaf_link);
1729
            node = list_get_instance(cur, btree_node_t, leaf_link);
1715
            for (i = 0; i < node->keys; i++)
1730
            for (i = 0; i < node->keys; i++)
1716
                frame_free((uintptr_t) node->value[i]);
1731
                frame_free((uintptr_t) node->value[i]);
1717
        }
1732
        }
1718
       
1733
       
1719
    }
1734
    }
1720
    mutex_unlock(&sh_info->lock);
1735
    mutex_unlock(&sh_info->lock);
1721
   
1736
   
1722
    if (dealloc) {
1737
    if (dealloc) {
1723
        btree_destroy(&sh_info->pagemap);
1738
        btree_destroy(&sh_info->pagemap);
1724
        free(sh_info);
1739
        free(sh_info);
1725
    }
1740
    }
1726
}
1741
}
1727
 
1742
 
1728
/*
1743
/*
1729
 * Address space related syscalls.
1744
 * Address space related syscalls.
1730
 */
1745
 */
1731
 
1746
 
1732
/** Wrapper for as_area_create(). */
1747
/** Wrapper for as_area_create(). */
1733
unative_t sys_as_area_create(uintptr_t address, size_t size, int flags)
1748
unative_t sys_as_area_create(uintptr_t address, size_t size, int flags)
1734
{
1749
{
1735
    if (as_area_create(AS, flags | AS_AREA_CACHEABLE, size, address,
1750
    if (as_area_create(AS, flags | AS_AREA_CACHEABLE, size, address,
1736
        AS_AREA_ATTR_NONE, &anon_backend, NULL))
1751
        AS_AREA_ATTR_NONE, &anon_backend, NULL))
1737
        return (unative_t) address;
1752
        return (unative_t) address;
1738
    else
1753
    else
1739
        return (unative_t) -1;
1754
        return (unative_t) -1;
1740
}
1755
}
1741
 
1756
 
1742
/** Wrapper for as_area_resize(). */
1757
/** Wrapper for as_area_resize(). */
1743
unative_t sys_as_area_resize(uintptr_t address, size_t size, int flags)
1758
unative_t sys_as_area_resize(uintptr_t address, size_t size, int flags)
1744
{
1759
{
1745
    return (unative_t) as_area_resize(AS, address, size, 0);
1760
    return (unative_t) as_area_resize(AS, address, size, 0);
1746
}
1761
}
1747
 
1762
 
1748
/** Wrapper for as_area_destroy(). */
1763
/** Wrapper for as_area_destroy(). */
1749
unative_t sys_as_area_destroy(uintptr_t address)
1764
unative_t sys_as_area_destroy(uintptr_t address)
1750
{
1765
{
1751
    return (unative_t) as_area_destroy(AS, address);
1766
    return (unative_t) as_area_destroy(AS, address);
1752
}
1767
}
1753
 
1768
 
1754
/** Print out information about address space.
1769
/** Print out information about address space.
1755
 *
1770
 *
1756
 * @param as Address space.
1771
 * @param as Address space.
1757
 */
1772
 */
1758
void as_print(as_t *as)
1773
void as_print(as_t *as)
1759
{
1774
{
1760
    ipl_t ipl;
1775
    ipl_t ipl;
1761
   
1776
   
1762
    ipl = interrupts_disable();
1777
    ipl = interrupts_disable();
1763
    mutex_lock(&as->lock);
1778
    mutex_lock(&as->lock);
1764
   
1779
   
1765
    /* print out info about address space areas */
1780
    /* print out info about address space areas */
1766
    link_t *cur;
1781
    link_t *cur;
1767
    for (cur = as->as_area_btree.leaf_head.next;
1782
    for (cur = as->as_area_btree.leaf_head.next;
1768
        cur != &as->as_area_btree.leaf_head; cur = cur->next) {
1783
        cur != &as->as_area_btree.leaf_head; cur = cur->next) {
1769
        btree_node_t *node;
1784
        btree_node_t *node;
1770
       
1785
       
1771
        node = list_get_instance(cur, btree_node_t, leaf_link);
1786
        node = list_get_instance(cur, btree_node_t, leaf_link);
1772
       
1787
       
1773
        int i;
1788
        int i;
1774
        for (i = 0; i < node->keys; i++) {
1789
        for (i = 0; i < node->keys; i++) {
1775
            as_area_t *area = node->value[i];
1790
            as_area_t *area = node->value[i];
1776
       
1791
       
1777
            mutex_lock(&area->lock);
1792
            mutex_lock(&area->lock);
1778
            printf("as_area: %p, base=%p, pages=%d (%p - %p)\n",
1793
            printf("as_area: %p, base=%p, pages=%d (%p - %p)\n",
1779
                area, area->base, area->pages, area->base,
1794
                area, area->base, area->pages, area->base,
1780
                area->base + area->pages*PAGE_SIZE);
1795
                area->base + area->pages*PAGE_SIZE);
1781
            mutex_unlock(&area->lock);
1796
            mutex_unlock(&area->lock);
1782
        }
1797
        }
1783
    }
1798
    }
1784
   
1799
   
1785
    mutex_unlock(&as->lock);
1800
    mutex_unlock(&as->lock);
1786
    interrupts_restore(ipl);
1801
    interrupts_restore(ipl);
1787
}
1802
}
1788
 
1803
 
1789
/** @}
1804
/** @}
1790
 */
1805
 */
1791
 
1806