Subversion Repositories HelenOS

Rev

Rev 3097 | Rev 3193 | Go to most recent revision | Only display areas with differences | Regard whitespace | Details | Blame | Last modification | View Log | RSS feed

Rev 3097 Rev 3175
1
/*
1
/*
2
 * Copyright (c) 2001-2004 Jakub Jermar
2
 * Copyright (c) 2001-2004 Jakub Jermar
3
 * All rights reserved.
3
 * All rights reserved.
4
 *
4
 *
5
 * Redistribution and use in source and binary forms, with or without
5
 * Redistribution and use in source and binary forms, with or without
6
 * modification, are permitted provided that the following conditions
6
 * modification, are permitted provided that the following conditions
7
 * are met:
7
 * are met:
8
 *
8
 *
9
 * - Redistributions of source code must retain the above copyright
9
 * - Redistributions of source code must retain the above copyright
10
 *   notice, this list of conditions and the following disclaimer.
10
 *   notice, this list of conditions and the following disclaimer.
11
 * - Redistributions in binary form must reproduce the above copyright
11
 * - Redistributions in binary form must reproduce the above copyright
12
 *   notice, this list of conditions and the following disclaimer in the
12
 *   notice, this list of conditions and the following disclaimer in the
13
 *   documentation and/or other materials provided with the distribution.
13
 *   documentation and/or other materials provided with the distribution.
14
 * - The name of the author may not be used to endorse or promote products
14
 * - The name of the author may not be used to endorse or promote products
15
 *   derived from this software without specific prior written permission.
15
 *   derived from this software without specific prior written permission.
16
 *
16
 *
17
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
 */
27
 */
28
 
28
 
29
/** @addtogroup main
29
/** @addtogroup main
30
 * @{
30
 * @{
31
 */
31
 */
32
 
32
 
33
/**
33
/**
34
 * @file
34
 * @file
35
 * @brief   Main initialization kernel function for all processors.
35
 * @brief   Main initialization kernel function for all processors.
36
 *
36
 *
37
 * During kernel boot, all processors, after architecture dependent
37
 * During kernel boot, all processors, after architecture dependent
38
 * initialization, start executing code found in this file. After
38
 * initialization, start executing code found in this file. After
39
 * bringing up all subsystems, control is passed to scheduler().
39
 * bringing up all subsystems, control is passed to scheduler().
40
 *
40
 *
41
 * The bootstrap processor starts executing main_bsp() while
41
 * The bootstrap processor starts executing main_bsp() while
42
 * the application processors start executing main_ap().
42
 * the application processors start executing main_ap().
43
 *
43
 *
44
 * @see scheduler()
44
 * @see scheduler()
45
 * @see main_bsp()
45
 * @see main_bsp()
46
 * @see main_ap()
46
 * @see main_ap()
47
 */
47
 */
48
 
48
 
49
#include <arch/asm.h>
49
#include <arch/asm.h>
50
#include <context.h>
50
#include <context.h>
51
#include <print.h>
51
#include <print.h>
52
#include <panic.h>
52
#include <panic.h>
53
#include <debug.h>
53
#include <debug.h>
54
#include <config.h>
54
#include <config.h>
55
#include <time/clock.h>
55
#include <time/clock.h>
56
#include <time/timeout.h>
56
#include <time/timeout.h>
57
#include <proc/scheduler.h>
57
#include <proc/scheduler.h>
58
#include <proc/thread.h>
58
#include <proc/thread.h>
59
#include <proc/task.h>
59
#include <proc/task.h>
60
#include <proc/tasklet.h>
60
#include <proc/tasklet.h>
61
#include <main/kinit.h>
61
#include <main/kinit.h>
62
#include <main/version.h>
62
#include <main/version.h>
63
#include <console/kconsole.h>
63
#include <console/kconsole.h>
64
#include <cpu.h>
64
#include <cpu.h>
65
#include <align.h>
65
#include <align.h>
66
#include <interrupt.h>
66
#include <interrupt.h>
67
#include <mm/frame.h>
67
#include <mm/frame.h>
68
#include <mm/page.h>
68
#include <mm/page.h>
69
#include <genarch/mm/page_pt.h>
69
#include <genarch/mm/page_pt.h>
70
#include <mm/tlb.h>
70
#include <mm/tlb.h>
71
#include <mm/as.h>
71
#include <mm/as.h>
72
#include <mm/slab.h>
72
#include <mm/slab.h>
73
#include <synch/waitq.h>
73
#include <synch/waitq.h>
74
#include <synch/futex.h>
74
#include <synch/futex.h>
75
#include <arch/arch.h>
75
#include <arch/arch.h>
76
#include <arch.h>
76
#include <arch.h>
77
#include <arch/faddr.h>
77
#include <arch/faddr.h>
78
#include <ipc/ipc.h>
78
#include <ipc/ipc.h>
79
#include <macros.h>
79
#include <macros.h>
80
#include <adt/btree.h>
80
#include <adt/btree.h>
81
#include <smp/smp.h>
81
#include <smp/smp.h>
82
#include <ddi/ddi.h>
82
#include <ddi/ddi.h>
83
#include <console/console.h>
83
#include <console/console.h>
84
 
84
 
85
/** Global configuration structure. */
85
/** Global configuration structure. */
86
config_t config;
86
config_t config;
87
 
87
 
88
/** Initial user-space tasks */
88
/** Initial user-space tasks */
89
init_t init = {
89
init_t init = {
90
    .cnt = 0
90
    .cnt = 0
91
};
91
};
92
 
92
 
93
/** Boot allocations. */
93
/** Boot allocations. */
94
ballocs_t ballocs = {
94
ballocs_t ballocs = {
95
    .base = NULL,
95
    .base = NULL,
96
    .size = 0
96
    .size = 0
97
};
97
};
98
 
98
 
99
context_t ctx;
99
context_t ctx;
100
 
100
 
101
/*
101
/*
102
 * These 'hardcoded' variables will be intialized by
102
 * These 'hardcoded' variables will be intialized by
103
 * the linker or the low level assembler code with
103
 * the linker or the low level assembler code with
104
 * appropriate sizes and addresses.
104
 * appropriate sizes and addresses.
105
 */
105
 */
106
 
106
 
107
/**< Virtual address of where the kernel is loaded. */
107
/**< Virtual address of where the kernel is loaded. */
108
uintptr_t hardcoded_load_address = 0;
108
uintptr_t hardcoded_load_address = 0;
109
/**< Size of the kernel code in bytes. */
109
/**< Size of the kernel code in bytes. */
110
size_t hardcoded_ktext_size = 0;
110
size_t hardcoded_ktext_size = 0;
111
/**< Size of the kernel data in bytes. */
111
/**< Size of the kernel data in bytes. */
112
size_t hardcoded_kdata_size = 0;
112
size_t hardcoded_kdata_size = 0;
113
/**< Lowest safe stack virtual address. */
113
/**< Lowest safe stack virtual address. */
114
uintptr_t stack_safe = 0;      
114
uintptr_t stack_safe = 0;      
115
 
115
 
116
void main_bsp(void);
116
void main_bsp(void);
117
void main_ap(void);
117
void main_ap(void);
118
 
118
 
119
/*
119
/*
120
 * These two functions prevent stack from underflowing during the
120
 * These two functions prevent stack from underflowing during the
121
 * kernel boot phase when SP is set to the very top of the reserved
121
 * kernel boot phase when SP is set to the very top of the reserved
122
 * space. The stack could get corrupted by a fooled compiler-generated
122
 * space. The stack could get corrupted by a fooled compiler-generated
123
 * pop sequence otherwise.
123
 * pop sequence otherwise.
124
 */
124
 */
125
static void main_bsp_separated_stack(void);
125
static void main_bsp_separated_stack(void);
126
#ifdef CONFIG_SMP
126
#ifdef CONFIG_SMP
127
static void main_ap_separated_stack(void);
127
static void main_ap_separated_stack(void);
128
#endif
128
#endif
129
 
129
 
130
#define CONFIG_STACK_SIZE   ((1 << STACK_FRAMES) * STACK_SIZE)
130
#define CONFIG_STACK_SIZE   ((1 << STACK_FRAMES) * STACK_SIZE)
131
 
131
 
132
/** Main kernel routine for bootstrap CPU.
132
/** Main kernel routine for bootstrap CPU.
133
 *
133
 *
134
 * Initializes the kernel by bootstrap CPU.
134
 * The code here still runs on the boot stack, which knows nothing about
135
 * This function passes control directly to
135
 * preemption counts.  Because of that, this function cannot directly call
-
 
136
 * functions that disable or enable preemption (e.g. spinlock_lock()). The
-
 
137
 * primary task of this function is to calculate address of a new stack and
136
 * main_bsp_separated_stack().
138
 * switch to it.
137
 *
139
 *
138
 * Assuming interrupts_disable().
140
 * Assuming interrupts_disable().
139
 *
141
 *
140
 */
142
 */
141
void main_bsp(void)
143
void main_bsp(void)
142
{
144
{
143
    LOG();
-
 
144
   
-
 
145
    config.cpu_count = 1;
145
    config.cpu_count = 1;
146
    config.cpu_active = 1;
146
    config.cpu_active = 1;
147
   
147
   
148
    config.base = hardcoded_load_address;
148
    config.base = hardcoded_load_address;
149
    config.kernel_size = ALIGN_UP(hardcoded_ktext_size +
149
    config.kernel_size = ALIGN_UP(hardcoded_ktext_size +
150
        hardcoded_kdata_size, PAGE_SIZE);
150
        hardcoded_kdata_size, PAGE_SIZE);
151
    config.stack_size = CONFIG_STACK_SIZE;
151
    config.stack_size = CONFIG_STACK_SIZE;
152
   
152
   
153
    /* Initialy the stack is placed just after the kernel */
153
    /* Initialy the stack is placed just after the kernel */
154
    config.stack_base = config.base + config.kernel_size;
154
    config.stack_base = config.base + config.kernel_size;
155
   
155
   
156
    /* Avoid placing stack on top of init */
156
    /* Avoid placing stack on top of init */
157
    count_t i;
157
    count_t i;
158
    for (i = 0; i < init.cnt; i++) {
158
    for (i = 0; i < init.cnt; i++) {
159
        if (PA_overlaps(config.stack_base, config.stack_size,
159
        if (PA_overlaps(config.stack_base, config.stack_size,
160
            init.tasks[i].addr, init.tasks[i].size))
160
            init.tasks[i].addr, init.tasks[i].size))
161
            config.stack_base = ALIGN_UP(init.tasks[i].addr +
161
            config.stack_base = ALIGN_UP(init.tasks[i].addr +
162
                init.tasks[i].size, config.stack_size);
162
                init.tasks[i].size, config.stack_size);
163
    }
163
    }
164
 
164
 
165
    /* Avoid placing stack on top of boot allocations. */
165
    /* Avoid placing stack on top of boot allocations. */
166
    if (ballocs.size) {
166
    if (ballocs.size) {
167
        if (PA_overlaps(config.stack_base, config.stack_size,
167
        if (PA_overlaps(config.stack_base, config.stack_size,
168
            ballocs.base, ballocs.size))
168
            ballocs.base, ballocs.size))
169
            config.stack_base = ALIGN_UP(ballocs.base +
169
            config.stack_base = ALIGN_UP(ballocs.base +
170
                ballocs.size, PAGE_SIZE);
170
                ballocs.size, PAGE_SIZE);
171
    }
171
    }
172
   
172
   
173
    if (config.stack_base < stack_safe)
173
    if (config.stack_base < stack_safe)
174
        config.stack_base = ALIGN_UP(stack_safe, PAGE_SIZE);
174
        config.stack_base = ALIGN_UP(stack_safe, PAGE_SIZE);
175
   
175
   
176
    version_print();
-
 
177
   
-
 
178
    LOG("\nconfig.base=%#" PRIp " config.kernel_size=%" PRIs
-
 
179
        "\nconfig.stack_base=%#" PRIp " config.stack_size=%" PRIs,
-
 
180
        config.base, config.kernel_size,
-
 
181
        config.stack_base, config.stack_size);
-
 
182
   
-
 
183
    context_save(&ctx);
176
    context_save(&ctx);
184
    context_set(&ctx, FADDR(main_bsp_separated_stack), config.stack_base,
177
    context_set(&ctx, FADDR(main_bsp_separated_stack), config.stack_base,
185
        THREAD_STACK_SIZE);
178
        THREAD_STACK_SIZE);
186
    context_restore(&ctx);
179
    context_restore(&ctx);
187
    /* not reached */
180
    /* not reached */
188
}
181
}
189
 
182
 
190
 
183
 
191
/** Main kernel routine for bootstrap CPU using new stack.
184
/** Main kernel routine for bootstrap CPU using new stack.
192
 *
185
 *
193
 * Second part of main_bsp().
186
 * Second part of main_bsp().
194
 *
187
 *
195
 */
188
 */
196
void main_bsp_separated_stack(void)
189
void main_bsp_separated_stack(void)
197
{
190
{
-
 
191
    /* Keep this the first thing. */
-
 
192
    the_initialize(THE);
-
 
193
 
198
    LOG();
194
    LOG();
199
   
195
   
200
    the_initialize(THE);
196
    version_print();
-
 
197
   
-
 
198
    LOG("\nconfig.base=%#" PRIp " config.kernel_size=%" PRIs
-
 
199
        "\nconfig.stack_base=%#" PRIp " config.stack_size=%" PRIs,
-
 
200
        config.base, config.kernel_size, config.stack_base,
-
 
201
        config.stack_size);
-
 
202
   
201
 
203
 
202
    /*
204
    /*
203
     * kconsole data structures must be initialized very early
205
     * kconsole data structures must be initialized very early
204
     * because other subsystems will register their respective
206
     * because other subsystems will register their respective
205
     * commands.
207
     * commands.
206
     */
208
     */
207
    LOG_EXEC(kconsole_init());
209
    LOG_EXEC(kconsole_init());
208
   
210
   
209
    /*
211
    /*
210
     * Exception handler initialization, before architecture
212
     * Exception handler initialization, before architecture
211
     * starts adding its own handlers
213
     * starts adding its own handlers
212
     */
214
     */
213
    LOG_EXEC(exc_init());
215
    LOG_EXEC(exc_init());
214
 
216
 
215
    /*
217
    /*
216
     * Memory management subsystems initialization.
218
     * Memory management subsystems initialization.
217
     */
219
     */
218
    LOG_EXEC(arch_pre_mm_init());
220
    LOG_EXEC(arch_pre_mm_init());
219
    LOG_EXEC(frame_init());
221
    LOG_EXEC(frame_init());
220
   
222
   
221
    /* Initialize at least 1 memory segment big enough for slab to work. */
223
    /* Initialize at least 1 memory segment big enough for slab to work. */
222
    LOG_EXEC(slab_cache_init());
224
    LOG_EXEC(slab_cache_init());
223
    LOG_EXEC(btree_init());
225
    LOG_EXEC(btree_init());
224
    LOG_EXEC(as_init());
226
    LOG_EXEC(as_init());
225
    LOG_EXEC(page_init());
227
    LOG_EXEC(page_init());
226
    LOG_EXEC(tlb_init());
228
    LOG_EXEC(tlb_init());
227
    LOG_EXEC(ddi_init());
229
    LOG_EXEC(ddi_init());
228
    LOG_EXEC(tasklet_init());
230
    LOG_EXEC(tasklet_init());
229
    LOG_EXEC(arch_post_mm_init());
231
    LOG_EXEC(arch_post_mm_init());
230
    LOG_EXEC(arch_pre_smp_init());
232
    LOG_EXEC(arch_pre_smp_init());
231
    LOG_EXEC(smp_init());
233
    LOG_EXEC(smp_init());
232
   
234
   
233
    /* Slab must be initialized after we know the number of processors. */
235
    /* Slab must be initialized after we know the number of processors. */
234
    LOG_EXEC(slab_enable_cpucache());
236
    LOG_EXEC(slab_enable_cpucache());
235
   
237
   
236
    printf("Detected %" PRIc " CPU(s), %" PRIu64" MB free memory\n",
238
    printf("Detected %" PRIc " CPU(s), %" PRIu64" MB free memory\n",
237
        config.cpu_count, SIZE2MB(zone_total_size()));
239
        config.cpu_count, SIZE2MB(zone_total_size()));
238
   
240
   
239
    LOG_EXEC(cpu_init());
241
    LOG_EXEC(cpu_init());
240
   
242
   
241
    LOG_EXEC(calibrate_delay_loop());
243
    LOG_EXEC(calibrate_delay_loop());
242
    LOG_EXEC(clock_counter_init());
244
    LOG_EXEC(clock_counter_init());
243
    LOG_EXEC(timeout_init());
245
    LOG_EXEC(timeout_init());
244
    LOG_EXEC(scheduler_init());
246
    LOG_EXEC(scheduler_init());
245
    LOG_EXEC(task_init());
247
    LOG_EXEC(task_init());
246
    LOG_EXEC(thread_init());
248
    LOG_EXEC(thread_init());
247
    LOG_EXEC(futex_init());
249
    LOG_EXEC(futex_init());
248
   
250
   
249
    if (init.cnt > 0) {
251
    if (init.cnt > 0) {
250
        count_t i;
252
        count_t i;
251
        for (i = 0; i < init.cnt; i++)
253
        for (i = 0; i < init.cnt; i++)
252
            printf("init[%" PRIc "].addr=%#" PRIp
254
            printf("init[%" PRIc "].addr=%#" PRIp ", init[%" PRIc
253
                ", init[%" PRIc "].size=%#" PRIs "\n",
-
 
254
                i, init.tasks[i].addr,
255
                "].size=%#" PRIs "\n", i, init.tasks[i].addr,
255
                i, init.tasks[i].size);
256
                i, init.tasks[i].size);
256
    } else
257
    } else
257
        printf("No init binaries found\n");
258
        printf("No init binaries found\n");
258
   
259
   
259
    LOG_EXEC(ipc_init());
260
    LOG_EXEC(ipc_init());
260
    LOG_EXEC(klog_init());
261
    LOG_EXEC(klog_init());
261
 
262
 
262
    /*
263
    /*
263
     * Create kernel task.
264
     * Create kernel task.
264
     */
265
     */
265
    task_t *kernel = task_create(AS_KERNEL, "kernel");
266
    task_t *kernel = task_create(AS_KERNEL, "kernel");
266
    if (!kernel)
267
    if (!kernel)
267
        panic("Can't create kernel task\n");
268
        panic("Can't create kernel task\n");
268
   
269
   
269
    /*
270
    /*
270
     * Create the first thread.
271
     * Create the first thread.
271
     */
272
     */
272
    thread_t *kinit_thread = thread_create(kinit, NULL, kernel, 0, "kinit", true);
273
    thread_t *kinit_thread = thread_create(kinit, NULL, kernel, 0, "kinit",
-
 
274
        true);
273
    if (!kinit_thread)
275
    if (!kinit_thread)
274
        panic("Can't create kinit thread\n");
276
        panic("Can't create kinit thread\n");
275
    LOG_EXEC(thread_ready(kinit_thread));
277
    LOG_EXEC(thread_ready(kinit_thread));
276
   
278
   
277
    /*
279
    /*
278
     * This call to scheduler() will return to kinit,
280
     * This call to scheduler() will return to kinit,
279
     * starting the thread of kernel threads.
281
     * starting the thread of kernel threads.
280
     */
282
     */
281
    scheduler();
283
    scheduler();
282
    /* not reached */
284
    /* not reached */
283
}
285
}
284
 
286
 
285
 
287
 
286
#ifdef CONFIG_SMP
288
#ifdef CONFIG_SMP
287
/** Main kernel routine for application CPUs.
289
/** Main kernel routine for application CPUs.
288
 *
290
 *
289
 * Executed by application processors, temporary stack
291
 * Executed by application processors, temporary stack
290
 * is at ctx.sp which was set during BSP boot.
292
 * is at ctx.sp which was set during BSP boot.
291
 * This function passes control directly to
293
 * This function passes control directly to
292
 * main_ap_separated_stack().
294
 * main_ap_separated_stack().
293
 *
295
 *
294
 * Assuming interrupts_disable()'d.
296
 * Assuming interrupts_disable()'d.
295
 *
297
 *
296
 */
298
 */
297
void main_ap(void)
299
void main_ap(void)
298
{
300
{
299
    /*
301
    /*
300
     * Incrementing the active CPU counter will guarantee that the
302
     * Incrementing the active CPU counter will guarantee that the
301
     * *_init() functions can find out that they need to
303
     * *_init() functions can find out that they need to
302
     * do initialization for AP only.
304
     * do initialization for AP only.
303
     */
305
     */
304
    config.cpu_active++;
306
    config.cpu_active++;
305
 
307
 
306
    /*
308
    /*
307
     * The THE structure is well defined because ctx.sp is used as stack.
309
     * The THE structure is well defined because ctx.sp is used as stack.
308
     */
310
     */
309
    the_initialize(THE);
311
    the_initialize(THE);
310
   
312
   
311
    arch_pre_mm_init();
313
    arch_pre_mm_init();
312
    frame_init();
314
    frame_init();
313
    page_init();
315
    page_init();
314
    tlb_init();
316
    tlb_init();
315
    arch_post_mm_init();
317
    arch_post_mm_init();
316
   
318
   
317
    cpu_init();
319
    cpu_init();
318
    calibrate_delay_loop();
320
    calibrate_delay_loop();
319
    arch_post_cpu_init();
321
    arch_post_cpu_init();
320
 
322
 
321
    the_copy(THE, (the_t *) CPU->stack);
323
    the_copy(THE, (the_t *) CPU->stack);
322
 
324
 
323
    /*
325
    /*
324
     * If we woke kmp up before we left the kernel stack, we could
326
     * If we woke kmp up before we left the kernel stack, we could
325
     * collide with another CPU coming up. To prevent this, we
327
     * collide with another CPU coming up. To prevent this, we
326
     * switch to this cpu's private stack prior to waking kmp up.
328
     * switch to this cpu's private stack prior to waking kmp up.
327
     */
329
     */
328
    context_set(&CPU->saved_context, FADDR(main_ap_separated_stack),
330
    context_set(&CPU->saved_context, FADDR(main_ap_separated_stack),
329
        (uintptr_t) CPU->stack, CPU_STACK_SIZE);
331
        (uintptr_t) CPU->stack, CPU_STACK_SIZE);
330
    context_restore(&CPU->saved_context);
332
    context_restore(&CPU->saved_context);
331
    /* not reached */
333
    /* not reached */
332
}
334
}
333
 
335
 
334
 
336
 
335
/** Main kernel routine for application CPUs using new stack.
337
/** Main kernel routine for application CPUs using new stack.
336
 *
338
 *
337
 * Second part of main_ap().
339
 * Second part of main_ap().
338
 *
340
 *
339
 */
341
 */
340
void main_ap_separated_stack(void)
342
void main_ap_separated_stack(void)
341
{
343
{
342
    /*
344
    /*
343
     * Configure timeouts for this cpu.
345
     * Configure timeouts for this cpu.
344
     */
346
     */
345
    timeout_init();
347
    timeout_init();
346
 
348
 
347
    waitq_wakeup(&ap_completion_wq, WAKEUP_FIRST);
349
    waitq_wakeup(&ap_completion_wq, WAKEUP_FIRST);
348
    scheduler();
350
    scheduler();
349
    /* not reached */
351
    /* not reached */
350
}
352
}
351
#endif /* CONFIG_SMP */
353
#endif /* CONFIG_SMP */
352
 
354
 
353
/** @}
355
/** @}
354
 */
356
 */
355
 
357