Subversion Repositories HelenOS-doc

Rev

Rev 47 | Rev 62 | Go to most recent revision | Only display areas with differences | Regard whitespace | Details | Blame | Last modification | View Log | RSS feed

Rev 47 Rev 54
1
<?xml version="1.0" encoding="UTF-8"?>
1
<?xml version="1.0" encoding="UTF-8"?>
2
<chapter id="mm">
2
<chapter id="mm">
3
  <?dbhtml filename="mm.html"?>
3
  <?dbhtml filename="mm.html"?>
4
 
4
 
5
  <title>Memory management</title>
5
  <title>Memory management</title>
6
 
6
 
7
  <section>
7
  <section>
8
    <title>Virtual memory management</title>
8
    <title>Virtual memory management</title>
9
 
9
 
10
    <section>
10
    <section>
11
      <title>Introduction</title>
11
      <title>Introduction</title>
12
 
12
 
13
      <para>Virtual memory is a special memory management technique, used by
13
      <para>Virtual memory is a special memory management technique, used by
14
      kernel to achieve a bunch of mission critical goals. <itemizedlist>
14
      kernel to achieve a bunch of mission critical goals. <itemizedlist>
15
          <listitem>
15
          <listitem>
16
             Isolate each task from other tasks that are running on the system at the same time.
16
             Isolate each task from other tasks that are running on the system at the same time.
17
          </listitem>
17
          </listitem>
18
 
18
 
19
          <listitem>
19
          <listitem>
20
             Allow to allocate more memory, than is actual physical memory size of the machine.
20
             Allow to allocate more memory, than is actual physical memory size of the machine.
21
          </listitem>
21
          </listitem>
22
 
22
 
23
          <listitem>
23
          <listitem>
24
             Allowing, in general, to load and execute two programs that are linked on the same address without complicated relocations.
24
             Allowing, in general, to load and execute two programs that are linked on the same address without complicated relocations.
25
          </listitem>
25
          </listitem>
26
        </itemizedlist></para>
26
        </itemizedlist></para>
27
 
27
 
28
      <para><!--
28
      <para><!--
29
 
29
 
30
                TLB shootdown ASID/ASID:PAGE/ALL.
30
                TLB shootdown ASID/ASID:PAGE/ALL.
31
                TLB shootdown requests can come in asynchroniously
31
                TLB shootdown requests can come in asynchroniously
32
                so there is a cache of TLB shootdown requests. Upon cache overflow TLB shootdown ALL is executed
32
                so there is a cache of TLB shootdown requests. Upon cache overflow TLB shootdown ALL is executed
33
 
33
 
34
 
34
 
35
                <para>
35
                <para>
36
                        Address spaces. Address space area (B+ tree). Only for uspace. Set of syscalls (shrink/extend etc).
36
                        Address spaces. Address space area (B+ tree). Only for uspace. Set of syscalls (shrink/extend etc).
37
                        Special address space area type - device - prohibits shrink/extend syscalls to call on it.
37
                        Special address space area type - device - prohibits shrink/extend syscalls to call on it.
38
                        Address space has link to mapping tables (hierarchical - per Address space, hash - global tables).
38
                        Address space has link to mapping tables (hierarchical - per Address space, hash - global tables).
39
                </para>
39
                </para>
40
 
40
 
41
--></para>
41
--></para>
42
    </section>
42
    </section>
43
 
43
 
44
    <section>
44
    <section>
45
      <title>Paging</title>
45
      <title>Paging</title>
46
 
46
 
47
      <para>Virtual memory is usually using paged memory model, where virtual
47
      <para>Virtual memory is usually using paged memory model, where virtual
48
      memory address space is divided into the <emphasis>pages</emphasis>
48
      memory address space is divided into the <emphasis>pages</emphasis>
49
      (usually having size 4096 bytes) and physical memory is divided into the
49
      (usually having size 4096 bytes) and physical memory is divided into the
50
      frames (same sized as a page, of course). Each page may be mapped to
50
      frames (same sized as a page, of course). Each page may be mapped to
51
      some frame and then, upon memory access to the virtual address, CPU
51
      some frame and then, upon memory access to the virtual address, CPU
52
      performs <emphasis>address translation</emphasis> during the instruction
52
      performs <emphasis>address translation</emphasis> during the instruction
53
      execution. Non-existing mapping generates page fault exception, calling
53
      execution. Non-existing mapping generates page fault exception, calling
54
      kernel exception handler, thus allowing kernel to manipulate rules of
54
      kernel exception handler, thus allowing kernel to manipulate rules of
55
      memory access. Information for pages mapping is stored by kernel in the
55
      memory access. Information for pages mapping is stored by kernel in the
56
      <link linkend="page_tables">page tables</link></para>
56
      <link linkend="page_tables">page tables</link></para>
57
 
57
 
58
      <para>The majority of the architectures use multi-level page tables,
58
      <para>The majority of the architectures use multi-level page tables,
59
      which means need to access physical memory several times before getting
59
      which means need to access physical memory several times before getting
60
      physical address. This fact would make serios performance overhead in
60
      physical address. This fact would make serios performance overhead in
61
      virtual memory management. To avoid this <link linkend="tlb">Traslation
61
      virtual memory management. To avoid this <link linkend="tlb">Traslation
62
      Lookaside Buffer (TLB)</link> is used.</para>
62
      Lookaside Buffer (TLB)</link> is used.</para>
63
    </section>
63
    </section>
64
 
64
 
65
    <section>
65
    <section>
66
      <title>Address spaces</title>
66
      <title>Address spaces</title>
67
 
67
 
68
      <section>
68
      <section>
69
        <title>Address space areas</title>
69
        <title>Address space areas</title>
70
 
70
 
71
        <para>Each address space consists of mutually disjunctive continuous
71
        <para>Each address space consists of mutually disjunctive continuous
72
        address space areas. Address space area is precisely defined by its
72
        address space areas. Address space area is precisely defined by its
73
        base address and the number of frames/pages is contains.</para>
73
        base address and the number of frames/pages is contains.</para>
74
 
74
 
75
        <para>Address space area , that define behaviour and permissions on
75
        <para>Address space area , that define behaviour and permissions on
76
        the particular area. <itemizedlist>
76
        the particular area. <itemizedlist>
77
            <listitem>
77
            <listitem>
78
               
78
               
79
 
79
 
80
              <emphasis>AS_AREA_READ</emphasis>
80
              <emphasis>AS_AREA_READ</emphasis>
81
 
81
 
82
               flag indicates reading permission.
82
               flag indicates reading permission.
83
            </listitem>
83
            </listitem>
84
 
84
 
85
            <listitem>
85
            <listitem>
86
               
86
               
87
 
87
 
88
              <emphasis>AS_AREA_WRITE</emphasis>
88
              <emphasis>AS_AREA_WRITE</emphasis>
89
 
89
 
90
               flag indicates writing permission.
90
               flag indicates writing permission.
91
            </listitem>
91
            </listitem>
92
 
92
 
93
            <listitem>
93
            <listitem>
94
               
94
               
95
 
95
 
96
              <emphasis>AS_AREA_EXEC</emphasis>
96
              <emphasis>AS_AREA_EXEC</emphasis>
97
 
97
 
98
               flag indicates code execution permission. Some architectures do not support execution persmission restriction. In this case this flag has no effect.
98
               flag indicates code execution permission. Some architectures do not support execution persmission restriction. In this case this flag has no effect.
99
            </listitem>
99
            </listitem>
100
 
100
 
101
            <listitem>
101
            <listitem>
102
               
102
               
103
 
103
 
104
              <emphasis>AS_AREA_DEVICE</emphasis>
104
              <emphasis>AS_AREA_DEVICE</emphasis>
105
 
105
 
106
               marks area as mapped to the device memory.
106
               marks area as mapped to the device memory.
107
            </listitem>
107
            </listitem>
108
          </itemizedlist></para>
108
          </itemizedlist></para>
109
 
109
 
110
        <para>Kernel provides possibility tasks create/expand/shrink/share its
110
        <para>Kernel provides possibility tasks create/expand/shrink/share its
111
        address space via the set of syscalls.</para>
111
        address space via the set of syscalls.</para>
112
      </section>
112
      </section>
113
 
113
 
114
      <section>
114
      <section>
115
        <title>Address Space ID (ASID)</title>
115
        <title>Address Space ID (ASID)</title>
116
 
116
 
117
        <para>When switching to the different task, kernel also require to
117
        <para>When switching to the different task, kernel also require to
118
        switch mappings to the different address space. In case TLB cannot
118
        switch mappings to the different address space. In case TLB cannot
119
        distinguish address space mappings, all mapping information in TLB
119
        distinguish address space mappings, all mapping information in TLB
120
        from the old address space must be flushed, which can create certain
120
        from the old address space must be flushed, which can create certain
121
        uncessary overhead during the task switching. To avoid this, some
121
        uncessary overhead during the task switching. To avoid this, some
122
        architectures have capability to segregate different address spaces on
122
        architectures have capability to segregate different address spaces on
123
        hardware level introducing the address space identifier as a part of
123
        hardware level introducing the address space identifier as a part of
124
        TLB record, telling the virtual address space translation unit to
124
        TLB record, telling the virtual address space translation unit to
125
        which address space this record is applicable.</para>
125
        which address space this record is applicable.</para>
126
 
126
 
127
        <para>HelenOS kernel can take advantage of this hardware supported
127
        <para>HelenOS kernel can take advantage of this hardware supported
128
        identifier by having an ASID abstraction which is somehow related to
128
        identifier by having an ASID abstraction which is somehow related to
129
        the corresponding architecture identifier. I.e. on ia64 kernel ASID is
129
        the corresponding architecture identifier. I.e. on ia64 kernel ASID is
130
        derived from RID (region identifier) and on the mips32 kernel ASID is
130
        derived from RID (region identifier) and on the mips32 kernel ASID is
131
        actually the hardware identifier. As expected, this ASID information
131
        actually the hardware identifier. As expected, this ASID information
132
        record is the part of <emphasis>as_t</emphasis> structure.</para>
132
        record is the part of <emphasis>as_t</emphasis> structure.</para>
133
 
133
 
134
        <para>Due to the hardware limitations, hardware ASID has limited
134
        <para>Due to the hardware limitations, hardware ASID has limited
135
        length from 8 bits on ia64 to 24 bits on mips32, which makes it
135
        length from 8 bits on ia64 to 24 bits on mips32, which makes it
136
        impossible to use it as unique address space identifier for all tasks
136
        impossible to use it as unique address space identifier for all tasks
137
        running in the system. In such situations special ASID stealing
137
        running in the system. In such situations special ASID stealing
138
        algoritm is used, which takes ASID from inactive task and assigns it
138
        algoritm is used, which takes ASID from inactive task and assigns it
139
        to the active task.</para>
139
        to the active task.</para>
140
 
140
 
141
        <para><classname>ASID stealing algoritm here.</classname></para>
141
        <para><classname>ASID stealing algoritm here.</classname></para>
142
      </section>
142
      </section>
143
    </section>
143
    </section>
144
 
144
 
145
    <section>
145
    <section>
146
      <title>Virtual address translation</title>
146
      <title>Virtual address translation</title>
147
 
147
 
148
      <section id="page_tables">
148
      <section id="page_tables">
149
        <title>Page tables</title>
149
        <title>Page tables</title>
150
 
150
 
151
        <para>HelenOS kernel has two different approaches to the paging
151
        <para>HelenOS kernel has two different approaches to the paging
152
        implementation: <emphasis>4 level page tables</emphasis> and
152
        implementation: <emphasis>4 level page tables</emphasis> and
153
        <emphasis>global hash tables</emphasis>, which are accessible via
153
        <emphasis>global hash tables</emphasis>, which are accessible via
154
        generic paging abstraction layer. Such different functionality was
154
        generic paging abstraction layer. Such different functionality was
155
        caused by the major architectural differences between supported
155
        caused by the major architectural differences between supported
156
        platforms. This abstraction is implemented with help of the global
156
        platforms. This abstraction is implemented with help of the global
157
        structure of pointers to basic mapping functions
157
        structure of pointers to basic mapping functions
158
        <emphasis>page_mapping_operations</emphasis>. To achieve different
158
        <emphasis>page_mapping_operations</emphasis>. To achieve different
159
        functionality of page tables, corresponding layer must implement
159
        functionality of page tables, corresponding layer must implement
160
        functions, declared in
160
        functions, declared in
161
        <emphasis>page_mapping_operations</emphasis></para>
161
        <emphasis>page_mapping_operations</emphasis></para>
162
 
162
 
163
        <formalpara>
163
        <formalpara>
164
          <title>4-level page tables</title>
164
          <title>4-level page tables</title>
165
 
165
 
166
          <para>4-level page tables are the generalization of the hardware
166
          <para>4-level page tables are the generalization of the hardware
167
          capabilities of several architectures.<itemizedlist>
167
          capabilities of several architectures.<itemizedlist>
168
              <listitem>
168
              <listitem>
169
                 ia32 uses 2-level page tables, with full hardware support.
169
                 ia32 uses 2-level page tables, with full hardware support.
170
              </listitem>
170
              </listitem>
171
 
171
 
172
              <listitem>
172
              <listitem>
173
                 amd64 uses 4-level page tables, also coming with full hardware support.
173
                 amd64 uses 4-level page tables, also coming with full hardware support.
174
              </listitem>
174
              </listitem>
175
 
175
 
176
              <listitem>
176
              <listitem>
177
                 mips and ppc32 have 2-level tables, software simulated support.
177
                 mips and ppc32 have 2-level tables, software simulated support.
178
              </listitem>
178
              </listitem>
179
            </itemizedlist></para>
179
            </itemizedlist></para>
180
        </formalpara>
180
        </formalpara>
181
 
181
 
182
        <formalpara>
182
        <formalpara>
183
          <title>Global hash tables</title>
183
          <title>Global hash tables</title>
184
 
184
 
185
          <para>- global page hash table: existuje jen jedna v celem systemu
185
          <para>- global page hash table: existuje jen jedna v celem systemu
186
          (vyuziva ji ia64), pozn. ia64 ma zatim vypnuty VHPT. Pouziva se
186
          (vyuziva ji ia64), pozn. ia64 ma zatim vypnuty VHPT. Pouziva se
187
          genericke hash table s oddelenymi collision chains. ASID support is
187
          genericke hash table s oddelenymi collision chains. ASID support is
188
          required to use global hash tables.</para>
188
          required to use global hash tables.</para>
189
        </formalpara>
189
        </formalpara>
190
 
190
 
191
        <para>Thanks to the abstract paging interface, there is possibility
191
        <para>Thanks to the abstract paging interface, there is possibility
192
        left have more paging implementations, for example B-Tree page
192
        left have more paging implementations, for example B-Tree page
193
        tables.</para>
193
        tables.</para>
194
      </section>
194
      </section>
195
 
195
 
196
      <section id="tlb">
196
      <section id="tlb">
197
        <title>Translation Lookaside Buffer</title>
197
        <title>Translation Lookaside buffer</title>
198
 
198
 
199
        <para>- TLB cachuji informace ve strankovacich tabulkach; alternativne
199
        <para>Due to the extensive overhead during the page mapping lookup in
200
        se lze na strankovaci tabulky (ci ruzne hw rozsireni [e.g. VHPT, ppc32
-
 
201
        hw hash table]) divat jako na velke TLB</para>
-
 
202
 
-
 
203
        <para>- pri modifikaci mapovani nebo odstraneni mapovani ze
-
 
204
        strankovacich tabulek je potreba zajistit konsistenci TLB a techto
200
        the page tables, all architectures has fast assotiative cache memory
205
        tabulek; nutne delat na vsech CPU; na to mame zjednodusenou verzi TLB
-
 
206
        shootdown mechanismu; je to variace na algoritmus popsany zde: D.
201
        built-in CPU. This memory called TLB stores recently used page table
207
        Black et al., "Translation Lookaside Buffer Consistency: A Software
-
 
208
        Approach," Proc. Third Int'l Conf. Architectural Support for
-
 
209
        Programming Languages and Operating Systems, 1989, pp. 113-122.</para>
202
        entries.</para>
210
 
203
 
-
 
204
        <section id="tlb_shootdown">
-
 
205
          <title>TLB consistency. TLB shootdown algorithm.</title>
-
 
206
 
-
 
207
          <para>Operating system is responsible for keeping TLB consistent by
-
 
208
          invalidating the contents of TLB, whenever there is some change in
-
 
209
          page tables. Those changes may occur when page or group of pages
-
 
210
          were unmapped, mapping is changed or system switching active address
-
 
211
          space to schedule a new system task (which is a batch unmap of all
-
 
212
          address space mappings). Moreover, this invalidation operation must
-
 
213
          be done an all system CPUs because each CPU has its own independent
-
 
214
          TLB cache. Thus maintaining TLB consistency on SMP configuration as
-
 
215
          not as trivial task as it looks at the first glance. Naive solution
-
 
216
          would assume remote TLB invalidatation, which is not possible on the
-
 
217
          most of the architectures, because of the simple fact - flushing TLB
-
 
218
          is allowed only on the local CPU and there is no possibility to
-
 
219
          access other CPUs' TLB caches.</para>
-
 
220
 
211
        <para>- nutno poznamenat, ze existuji odlehcenejsi verze TLB shootdown
221
          <para>Technique of remote invalidation of TLB entries is called "TLB
-
 
222
          shootdown". HelenOS uses a variation of the algorithm described by
-
 
223
          D. Black et al., "Translation Lookaside Buffer Consistency: A
-
 
224
          Software Approach," Proc. Third Int'l Conf. Architectural Support
-
 
225
          for Programming Languages and Operating Systems, 1989, pp.
212
        algoritm</para>
226
          113-122.</para>
-
 
227
 
-
 
228
          <para>As the situation demands, you will want partitial invalidation
-
 
229
          of TLB caches. In case of simple memory mapping change it is
-
 
230
          necessary to invalidate only one or more adjacent pages. In case if
-
 
231
          the architecture is aware of ASIDs, during the address space
-
 
232
          switching, kernel invalidates only entries from this particular
-
 
233
          address space. Final option of the TLB invalidation is the complete
-
 
234
          TLB cache invalidation, which is the operation that flushes all
-
 
235
          entries in TLB.</para>
-
 
236
 
-
 
237
          <para>TLB shootdown is performed in two phases. First, the initiator
-
 
238
          process sends an IPI message indicating the TLB shootdown request to
-
 
239
          the rest of the CPUs. Then, it waits until all CPUs confirm TLB
-
 
240
          invalidating action execution.</para>
-
 
241
        </section>
213
      </section>
242
      </section>
214
    </section>
243
    </section>
215
 
244
 
216
    <section>
245
    <section>
217
      <title>---</title>
246
      <title>---</title>
218
 
247
 
219
      <para>At the moment HelenOS does not support swapping.</para>
248
      <para>At the moment HelenOS does not support swapping.</para>
220
 
249
 
221
      <para>- pouzivame vypadky stranky k alokaci ramcu on-demand v ramci
250
      <para>- pouzivame vypadky stranky k alokaci ramcu on-demand v ramci
222
      as_area - na architekturach, ktere to podporuji, podporujeme non-exec
251
      as_area - na architekturach, ktere to podporuji, podporujeme non-exec
223
      stranky</para>
252
      stranky</para>
224
    </section>
253
    </section>
225
  </section>
254
  </section>
226
 
255
 
227
  <!-- End of VM -->
256
  <!-- End of VM -->
228
 
257
 
229
  <section>
258
  <section>
230
    <!-- Phys mem -->
259
    <!-- Phys mem -->
231
 
260
 
232
    <title>Physical memory management</title>
261
    <title>Physical memory management</title>
233
 
262
 
234
    <section id="zones_and_frames">
263
    <section id="zones_and_frames">
235
      <title>Zones and frames</title>
264
      <title>Zones and frames</title>
236
 
265
 
237
      <para><!--graphic fileref="images/mm2.png" /--><!--graphic fileref="images/buddy_alloc.svg" format="SVG" /--></para>
266
      <para><!--graphic fileref="images/mm2.png" /--><!--graphic fileref="images/buddy_alloc.svg" format="SVG" /--></para>
238
 
267
 
239
      <para>On some architectures not whole physical memory is available for
268
      <para>On some architectures not whole physical memory is available for
240
      conventional usage. This limitations require from kernel to maintain a
269
      conventional usage. This limitations require from kernel to maintain a
241
      table of available and unavailable ranges of physical memory addresses.
270
      table of available and unavailable ranges of physical memory addresses.
242
      Main idea of zones is in creating memory zone entity, that is a
271
      Main idea of zones is in creating memory zone entity, that is a
243
      continuous chunk of memory available for allocation. If some chunk is
272
      continuous chunk of memory available for allocation. If some chunk is
244
      not available, we simply do not put it in any zone.</para>
273
      not available, we simply do not put it in any zone.</para>
245
 
274
 
246
      <para>Zone is also serves for informational purposes, containing
275
      <para>Zone is also serves for informational purposes, containing
247
      information about number of free and busy frames. Physical memory
276
      information about number of free and busy frames. Physical memory
248
      allocation is also done inside the certain zone. Allocation of zone
277
      allocation is also done inside the certain zone. Allocation of zone
249
      frame must be organized by the <link linkend="frame_allocator">frame
278
      frame must be organized by the <link linkend="frame_allocator">frame
250
      allocator</link> associated with the zone.</para>
279
      allocator</link> associated with the zone.</para>
251
 
280
 
252
      <para>Some of the architectures (mips32, ppc32) have only one zone, that
281
      <para>Some of the architectures (mips32, ppc32) have only one zone, that
253
      covers whole physical memory, and the others (like ia32) may have
282
      covers whole physical memory, and the others (like ia32) may have
254
      multiple zones. Information about zones on current machine is stored in
283
      multiple zones. Information about zones on current machine is stored in
255
      BIOS hardware tables or can be hardcoded into kernel during compile
284
      BIOS hardware tables or can be hardcoded into kernel during compile
256
      time.</para>
285
      time.</para>
257
    </section>
286
    </section>
258
 
287
 
259
    <section id="frame_allocator">
288
    <section id="frame_allocator">
260
      <title>Frame allocator</title>
289
      <title>Frame allocator</title>
261
 
290
 
262
      <para><mediaobject id="frame_alloc">
291
      <para><mediaobject id="frame_alloc">
263
          <imageobject role="html">
292
          <imageobject role="html">
264
            <imagedata fileref="images/frame_alloc.png" format="PNG" />
293
            <imagedata fileref="images/frame_alloc.png" format="PNG" />
265
          </imageobject>
294
          </imageobject>
266
 
295
 
267
          <imageobject role="fop">
296
          <imageobject role="fop">
268
            <imagedata fileref="images.vector/frame_alloc.svg" format="SVG" />
297
            <imagedata fileref="images.vector/frame_alloc.svg" format="SVG" />
269
          </imageobject>
298
          </imageobject>
270
        </mediaobject></para>
299
        </mediaobject></para>
271
 
300
 
272
      <formalpara>
301
      <formalpara>
273
        <title>Overview</title>
302
        <title>Overview</title>
274
 
303
 
275
        <para>Frame allocator provides physical memory allocation for the
304
        <para>Frame allocator provides physical memory allocation for the
276
        kernel. Because of zonal organization of physical memory, frame
305
        kernel. Because of zonal organization of physical memory, frame
277
        allocator is always working in context of some zone, thus making
306
        allocator is always working in context of some zone, thus making
278
        impossible to allocate a piece of memory, which lays in different
307
        impossible to allocate a piece of memory, which lays in different
279
        zone, which cannot happen, because two adjacent zones can be merged
308
        zone, which cannot happen, because two adjacent zones can be merged
280
        into one. Frame allocator is also being responsible to update
309
        into one. Frame allocator is also being responsible to update
281
        information on the number of free/busy frames in zone. Physical memory
310
        information on the number of free/busy frames in zone. Physical memory
282
        allocation inside one <link linkend="zones_and_frames">memory
311
        allocation inside one <link linkend="zones_and_frames">memory
283
        zone</link> is being handled by an instance of <link
312
        zone</link> is being handled by an instance of <link
284
        linkend="buddy_allocator">buddy allocator</link> tailored to allocate
313
        linkend="buddy_allocator">buddy allocator</link> tailored to allocate
285
        blocks of physical memory frames.</para>
314
        blocks of physical memory frames.</para>
286
      </formalpara>
315
      </formalpara>
287
 
316
 
288
      <formalpara>
317
      <formalpara>
289
        <title>Allocation / deallocation</title>
318
        <title>Allocation / deallocation</title>
290
 
319
 
291
        <para>Upon allocation request, frame allocator tries to find first
320
        <para>Upon allocation request, frame allocator tries to find first
292
        zone, that can satisfy the incoming request (has required amount of
321
        zone, that can satisfy the incoming request (has required amount of
293
        free frames to allocate). During deallocation, frame allocator needs
322
        free frames to allocate). During deallocation, frame allocator needs
294
        to find zone, that contain deallocated frame. This approach could
323
        to find zone, that contain deallocated frame. This approach could
295
        bring up two potential problems: <itemizedlist>
324
        bring up two potential problems: <itemizedlist>
296
            <listitem>
325
            <listitem>
297
               Linear search of zones does not any good to performance, but number of zones is not expected to be high. And if yes, list of zones can be replaced with more time-efficient B-tree.
326
               Linear search of zones does not any good to performance, but number of zones is not expected to be high. And if yes, list of zones can be replaced with more time-efficient B-tree.
298
            </listitem>
327
            </listitem>
299
 
328
 
300
            <listitem>
329
            <listitem>
301
               Quickly find out if zone contains required number of frames to allocate and if this chunk of memory is properly aligned. This issue is perfectly solved bu the buddy allocator.
330
               Quickly find out if zone contains required number of frames to allocate and if this chunk of memory is properly aligned. This issue is perfectly solved bu the buddy allocator.
302
            </listitem>
331
            </listitem>
303
          </itemizedlist></para>
332
          </itemizedlist></para>
304
      </formalpara>
333
      </formalpara>
305
    </section>
334
    </section>
306
 
335
 
307
    <section id="buddy_allocator">
336
    <section id="buddy_allocator">
308
      <title>Buddy allocator</title>
337
      <title>Buddy allocator</title>
309
 
338
 
310
      <section>
339
      <section>
311
        <title>Overview</title>
340
        <title>Overview</title>
312
 
341
 
313
        <para><mediaobject id="buddy_alloc">
342
        <para><mediaobject id="buddy_alloc">
314
            <imageobject role="html">
343
            <imageobject role="html">
315
              <imagedata fileref="images/buddy_alloc.png" format="PNG" />
344
              <imagedata fileref="images/buddy_alloc.png" format="PNG" />
316
            </imageobject>
345
            </imageobject>
317
 
346
 
318
            <imageobject role="fop">
347
            <imageobject role="fop">
319
              <imagedata fileref="images.vector/buddy_alloc.svg" format="SVG" />
348
              <imagedata fileref="images.vector/buddy_alloc.svg" format="SVG" />
320
            </imageobject>
349
            </imageobject>
321
          </mediaobject></para>
350
          </mediaobject></para>
322
 
351
 
323
        <para>In the buddy allocator, the memory is broken down into
352
        <para>In the buddy allocator, the memory is broken down into
324
        power-of-two sized naturally aligned blocks. These blocks are
353
        power-of-two sized naturally aligned blocks. These blocks are
325
        organized in an array of lists, in which the list with index i
354
        organized in an array of lists, in which the list with index i
326
        contains all unallocated blocks of size
355
        contains all unallocated blocks of size
327
        <mathphrase>2<superscript>i</superscript></mathphrase>. The index i is
356
        <mathphrase>2<superscript>i</superscript></mathphrase>. The index i is
328
        called the order of block. Should there be two adjacent equally sized
357
        called the order of block. Should there be two adjacent equally sized
329
        blocks in the list i<mathphrase />(i.e. buddies), the buddy allocator
358
        blocks in the list i<mathphrase />(i.e. buddies), the buddy allocator
330
        would coalesce them and put the resulting block in list <mathphrase>i
359
        would coalesce them and put the resulting block in list <mathphrase>i
331
        + 1</mathphrase>, provided that the resulting block would be naturally
360
        + 1</mathphrase>, provided that the resulting block would be naturally
332
        aligned. Similarily, when the allocator is asked to allocate a block
361
        aligned. Similarily, when the allocator is asked to allocate a block
333
        of size <mathphrase>2<superscript>i</superscript></mathphrase>, it
362
        of size <mathphrase>2<superscript>i</superscript></mathphrase>, it
334
        first tries to satisfy the request from the list with index i. If the
363
        first tries to satisfy the request from the list with index i. If the
335
        request cannot be satisfied (i.e. the list i is empty), the buddy
364
        request cannot be satisfied (i.e. the list i is empty), the buddy
336
        allocator will try to allocate and split a larger block from the list
365
        allocator will try to allocate and split a larger block from the list
337
        with index i + 1. Both of these algorithms are recursive. The
366
        with index i + 1. Both of these algorithms are recursive. The
338
        recursion ends either when there are no blocks to coalesce in the
367
        recursion ends either when there are no blocks to coalesce in the
339
        former case or when there are no blocks that can be split in the
368
        former case or when there are no blocks that can be split in the
340
        latter case.</para>
369
        latter case.</para>
341
 
370
 
342
        <!--graphic fileref="images/mm1.png" format="EPS" /-->
371
        <!--graphic fileref="images/mm1.png" format="EPS" /-->
343
 
372
 
344
        <para>This approach greatly reduces external fragmentation of memory
373
        <para>This approach greatly reduces external fragmentation of memory
345
        and helps in allocating bigger continuous blocks of memory aligned to
374
        and helps in allocating bigger continuous blocks of memory aligned to
346
        their size. On the other hand, the buddy allocator suffers increased
375
        their size. On the other hand, the buddy allocator suffers increased
347
        internal fragmentation of memory and is not suitable for general
376
        internal fragmentation of memory and is not suitable for general
348
        kernel allocations. This purpose is better addressed by the <link
377
        kernel allocations. This purpose is better addressed by the <link
349
        linkend="slab">slab allocator</link>.</para>
378
        linkend="slab">slab allocator</link>.</para>
350
      </section>
379
      </section>
351
 
380
 
352
      <section>
381
      <section>
353
        <title>Implementation</title>
382
        <title>Implementation</title>
354
 
383
 
355
        <para>The buddy allocator is, in fact, an abstract framework wich can
384
        <para>The buddy allocator is, in fact, an abstract framework wich can
356
        be easily specialized to serve one particular task. It knows nothing
385
        be easily specialized to serve one particular task. It knows nothing
357
        about the nature of memory it helps to allocate. In order to beat the
386
        about the nature of memory it helps to allocate. In order to beat the
358
        lack of this knowledge, the buddy allocator exports an interface that
387
        lack of this knowledge, the buddy allocator exports an interface that
359
        each of its clients is required to implement. When supplied with an
388
        each of its clients is required to implement. When supplied with an
360
        implementation of this interface, the buddy allocator can use
389
        implementation of this interface, the buddy allocator can use
361
        specialized external functions to find a buddy for a block, split and
390
        specialized external functions to find a buddy for a block, split and
362
        coalesce blocks, manipulate block order and mark blocks busy or
391
        coalesce blocks, manipulate block order and mark blocks busy or
363
        available. For precise documentation of this interface, refer to
392
        available. For precise documentation of this interface, refer to
364
        <emphasis>"HelenOS Generic Kernel Reference Manual"</emphasis>.</para>
393
        <emphasis>"HelenOS Generic Kernel Reference Manual"</emphasis>.</para>
365
 
394
 
366
        <formalpara>
395
        <formalpara>
367
          <title>Data organization</title>
396
          <title>Data organization</title>
368
 
397
 
369
          <para>Each entity allocable by the buddy allocator is required to
398
          <para>Each entity allocable by the buddy allocator is required to
370
          contain space for storing block order number and a link variable
399
          contain space for storing block order number and a link variable
371
          used to interconnect blocks within the same order.</para>
400
          used to interconnect blocks within the same order.</para>
372
 
401
 
373
          <para>Whatever entities are allocated by the buddy allocator, the
402
          <para>Whatever entities are allocated by the buddy allocator, the
374
          first entity within a block is used to represent the entire block.
403
          first entity within a block is used to represent the entire block.
375
          The first entity keeps the order of the whole block. Other entities
404
          The first entity keeps the order of the whole block. Other entities
376
          within the block are assigned the magic value
405
          within the block are assigned the magic value
377
          <constant>BUDDY_INNER_BLOCK</constant>. This is especially important
406
          <constant>BUDDY_INNER_BLOCK</constant>. This is especially important
378
          for effective identification of buddies in a one-dimensional array
407
          for effective identification of buddies in a one-dimensional array
379
          because the entity that represents a potential buddy cannot be
408
          because the entity that represents a potential buddy cannot be
380
          associated with <constant>BUDDY_INNER_BLOCK</constant> (i.e. if it
409
          associated with <constant>BUDDY_INNER_BLOCK</constant> (i.e. if it
381
          is associated with <constant>BUDDY_INNER_BLOCK</constant> then it is
410
          is associated with <constant>BUDDY_INNER_BLOCK</constant> then it is
382
          not a buddy).</para>
411
          not a buddy).</para>
383
 
412
 
384
          <para>The buddy allocator always uses the first frame to represent
413
          <para>The buddy allocator always uses the first frame to represent
385
          the frame block. This frame contains <varname>buddy_order</varname>
414
          the frame block. This frame contains <varname>buddy_order</varname>
386
          variable to provide information about the block size it actually
415
          variable to provide information about the block size it actually
387
          represents (
416
          represents (
388
          <mathphrase>2<superscript>buddy_order</superscript></mathphrase>
417
          <mathphrase>2<superscript>buddy_order</superscript></mathphrase>
389
          frames block). Other frames in block have this value set to magic
418
          frames block). Other frames in block have this value set to magic
390
          <constant>BUDDY_INNER_BLOCK</constant> that is much greater than
419
          <constant>BUDDY_INNER_BLOCK</constant> that is much greater than
391
          buddy <varname>max_order</varname> value.</para>
420
          buddy <varname>max_order</varname> value.</para>
392
 
421
 
393
          <para>Each <varname>frame_t</varname> also contains pointer member
422
          <para>Each <varname>frame_t</varname> also contains pointer member
394
          to hold frame structure in the linked list inside one order.</para>
423
          to hold frame structure in the linked list inside one order.</para>
395
        </formalpara>
424
        </formalpara>
396
 
425
 
397
        <formalpara>
426
        <formalpara>
398
          <title>Allocation algorithm</title>
427
          <title>Allocation algorithm</title>
399
 
428
 
400
          <para>Upon <mathphrase>2<superscript>i</superscript></mathphrase>
429
          <para>Upon <mathphrase>2<superscript>i</superscript></mathphrase>
401
          frames block allocation request, allocator checks if there are any
430
          frames block allocation request, allocator checks if there are any
402
          blocks available at the order list <varname>i</varname>. If yes,
431
          blocks available at the order list <varname>i</varname>. If yes,
403
          removes block from order list and returns its address. If no,
432
          removes block from order list and returns its address. If no,
404
          recursively allocates
433
          recursively allocates
405
          <mathphrase>2<superscript>i+1</superscript></mathphrase> frame
434
          <mathphrase>2<superscript>i+1</superscript></mathphrase> frame
406
          block, splits it into two
435
          block, splits it into two
407
          <mathphrase>2<superscript>i</superscript></mathphrase> frame blocks.
436
          <mathphrase>2<superscript>i</superscript></mathphrase> frame blocks.
408
          Then adds one of the blocks to the <varname>i</varname> order list
437
          Then adds one of the blocks to the <varname>i</varname> order list
409
          and returns address of another.</para>
438
          and returns address of another.</para>
410
        </formalpara>
439
        </formalpara>
411
 
440
 
412
        <formalpara>
441
        <formalpara>
413
          <title>Deallocation algorithm</title>
442
          <title>Deallocation algorithm</title>
414
 
443
 
415
          <para>Check if block has so called buddy (another free
444
          <para>Check if block has so called buddy (another free
416
          <mathphrase>2<superscript>i</superscript></mathphrase> frame block
445
          <mathphrase>2<superscript>i</superscript></mathphrase> frame block
417
          that can be linked with freed block into the
446
          that can be linked with freed block into the
418
          <mathphrase>2<superscript>i+1</superscript></mathphrase> block).
447
          <mathphrase>2<superscript>i+1</superscript></mathphrase> block).
419
          Technically, buddy is a odd/even block for even/odd block
448
          Technically, buddy is a odd/even block for even/odd block
420
          respectively. Plus we can put an extra requirement, that resulting
449
          respectively. Plus we can put an extra requirement, that resulting
421
          block must be aligned to its size. This requirement guarantees
450
          block must be aligned to its size. This requirement guarantees
422
          natural block alignment for the blocks coming out the allocation
451
          natural block alignment for the blocks coming out the allocation
423
          system.</para>
452
          system.</para>
424
 
453
 
425
          <para>Using direct pointer arithmetics,
454
          <para>Using direct pointer arithmetics,
426
          <varname>frame_t::ref_count</varname> and
455
          <varname>frame_t::ref_count</varname> and
427
          <varname>frame_t::buddy_order</varname> variables, finding buddy is
456
          <varname>frame_t::buddy_order</varname> variables, finding buddy is
428
          done at constant time.</para>
457
          done at constant time.</para>
429
        </formalpara>
458
        </formalpara>
430
      </section>
459
      </section>
431
    </section>
460
    </section>
432
 
461
 
433
    <section id="slab">
462
    <section id="slab">
434
      <title>Slab allocator</title>
463
      <title>Slab allocator</title>
435
 
464
 
436
      <section>
465
      <section>
437
        <title>Overview</title>
466
        <title>Overview</title>
438
 
467
 
439
        <para><termdef><glossterm>Slab</glossterm> represents a contiguous
468
        <para><termdef><glossterm>Slab</glossterm> represents a contiguous
440
        piece of memory, usually made of several physically contiguous
469
        piece of memory, usually made of several physically contiguous
441
        pages.</termdef> <termdef><glossterm>Slab cache</glossterm> consists
470
        pages.</termdef> <termdef><glossterm>Slab cache</glossterm> consists
442
        of one or more slabs.</termdef></para>
471
        of one or more slabs.</termdef></para>
443
 
472
 
444
        <para>The majority of memory allocation requests in the kernel are for
473
        <para>The majority of memory allocation requests in the kernel are for
445
        small, frequently used data structures. For this purpose the slab
474
        small, frequently used data structures. For this purpose the slab
446
        allocator is a perfect solution. The basic idea behind the slab
475
        allocator is a perfect solution. The basic idea behind the slab
447
        allocator is to have lists of commonly used objects available packed
476
        allocator is to have lists of commonly used objects available packed
448
        into pages. This avoids the overhead of allocating and destroying
477
        into pages. This avoids the overhead of allocating and destroying
449
        commonly used types of objects such threads, virtual memory structures
478
        commonly used types of objects such threads, virtual memory structures
450
        etc. Also due to the exact allocated size matching, slab allocation
479
        etc. Also due to the exact allocated size matching, slab allocation
451
        completely eliminates internal fragmentation issue.</para>
480
        completely eliminates internal fragmentation issue.</para>
452
      </section>
481
      </section>
453
 
482
 
454
      <section>
483
      <section>
455
        <title>Implementation</title>
484
        <title>Implementation</title>
456
 
485
 
457
        <para><mediaobject id="slab_alloc">
486
        <para><mediaobject id="slab_alloc">
458
            <imageobject role="html">
487
            <imageobject role="html">
459
              <imagedata fileref="images/slab_alloc.png" format="PNG" />
488
              <imagedata fileref="images/slab_alloc.png" format="PNG" />
460
            </imageobject>
489
            </imageobject>
461
 
490
 
462
            <imageobject role="fop">
491
            <imageobject role="fop">
463
              <imagedata fileref="images.vector/slab_alloc.svg" format="SVG" />
492
              <imagedata fileref="images.vector/slab_alloc.svg" format="SVG" />
464
            </imageobject>
493
            </imageobject>
465
          </mediaobject></para>
494
          </mediaobject></para>
466
 
495
 
467
        <para>The SLAB allocator is closely modelled after <ulink
496
        <para>The SLAB allocator is closely modelled after <ulink
468
        url="http://www.usenix.org/events/usenix01/full_papers/bonwick/bonwick_html/">
497
        url="http://www.usenix.org/events/usenix01/full_papers/bonwick/bonwick_html/">
469
        OpenSolaris SLAB allocator by Jeff Bonwick and Jonathan Adams </ulink>
498
        OpenSolaris SLAB allocator by Jeff Bonwick and Jonathan Adams </ulink>
470
        with the following exceptions: <itemizedlist>
499
        with the following exceptions: <itemizedlist>
471
            <listitem>
500
            <listitem>
472
               empty SLABS are deallocated immediately (in Linux they are kept in linked list, in Solaris ???)
501
               empty SLABS are deallocated immediately (in Linux they are kept in linked list, in Solaris ???)
473
            </listitem>
502
            </listitem>
474
 
503
 
475
            <listitem>
504
            <listitem>
476
               empty magazines are deallocated when not needed (in Solaris they are held in linked list in slab cache)
505
               empty magazines are deallocated when not needed (in Solaris they are held in linked list in slab cache)
477
            </listitem>
506
            </listitem>
478
          </itemizedlist> Following features are not currently supported but
507
          </itemizedlist> Following features are not currently supported but
479
        would be easy to do: <itemizedlist>
508
        would be easy to do: <itemizedlist>
480
            <listitem>
509
            <listitem>
481
               - cache coloring
510
               - cache coloring
482
            </listitem>
511
            </listitem>
483
 
512
 
484
            <listitem>
513
            <listitem>
485
               - dynamic magazine grow (different magazine sizes are already supported, but we would need to adjust allocation strategy)
514
               - dynamic magazine grow (different magazine sizes are already supported, but we would need to adjust allocation strategy)
486
            </listitem>
515
            </listitem>
487
          </itemizedlist></para>
516
          </itemizedlist></para>
488
 
517
 
489
        <section>
518
        <section>
490
          <title>Magazine layer</title>
519
          <title>Magazine layer</title>
491
 
520
 
492
          <para>Due to the extensive bottleneck on SMP architures, caused by
521
          <para>Due to the extensive bottleneck on SMP architures, caused by
493
          global SLAB locking mechanism, making processing of all slab
522
          global SLAB locking mechanism, making processing of all slab
494
          allocation requests serialized, a new layer was introduced to the
523
          allocation requests serialized, a new layer was introduced to the
495
          classic slab allocator design. Slab allocator was extended to
524
          classic slab allocator design. Slab allocator was extended to
496
          support per-CPU caches 'magazines' to achieve good SMP scaling.
525
          support per-CPU caches 'magazines' to achieve good SMP scaling.
497
          <termdef>Slab SMP perfromance bottleneck was resolved by introducing
526
          <termdef>Slab SMP perfromance bottleneck was resolved by introducing
498
          a per-CPU caching scheme called as <glossterm>magazine
527
          a per-CPU caching scheme called as <glossterm>magazine
499
          layer</glossterm></termdef>.</para>
528
          layer</glossterm></termdef>.</para>
500
 
529
 
501
          <para>Magazine is a N-element cache of objects, so each magazine can
530
          <para>Magazine is a N-element cache of objects, so each magazine can
502
          satisfy N allocations. Magazine behaves like a automatic weapon
531
          satisfy N allocations. Magazine behaves like a automatic weapon
503
          magazine (LIFO, stack), so the allocation/deallocation become simple
532
          magazine (LIFO, stack), so the allocation/deallocation become simple
504
          push/pop pointer operation. Trick is that CPU does not access global
533
          push/pop pointer operation. Trick is that CPU does not access global
505
          slab allocator data during the allocation from its magazine, thus
534
          slab allocator data during the allocation from its magazine, thus
506
          making possible parallel allocations between CPUs.</para>
535
          making possible parallel allocations between CPUs.</para>
507
 
536
 
508
          <para>Implementation also requires adding another feature as the
537
          <para>Implementation also requires adding another feature as the
509
          CPU-bound magazine is actually a pair of magazines to avoid
538
          CPU-bound magazine is actually a pair of magazines to avoid
510
          thrashing when during allocation/deallocatiion of 1 item at the
539
          thrashing when during allocation/deallocatiion of 1 item at the
511
          magazine size boundary. LIFO order is enforced, which should avoid
540
          magazine size boundary. LIFO order is enforced, which should avoid
512
          fragmentation as much as possible.</para>
541
          fragmentation as much as possible.</para>
513
 
542
 
514
          <para>Another important entity of magazine layer is the common full
543
          <para>Another important entity of magazine layer is the common full
515
          magazine list (also called a depot), that stores full magazines that
544
          magazine list (also called a depot), that stores full magazines that
516
          may be used by any of the CPU magazine caches to reload active CPU
545
          may be used by any of the CPU magazine caches to reload active CPU
517
          magazine. This list of magazines can be pre-filled with full
546
          magazine. This list of magazines can be pre-filled with full
518
          magazines during initialization, but in current implementation it is
547
          magazines during initialization, but in current implementation it is
519
          filled during object deallocation, when CPU magazine becomes
548
          filled during object deallocation, when CPU magazine becomes
520
          full.</para>
549
          full.</para>
521
 
550
 
522
          <para>Slab allocator control structures are allocated from special
551
          <para>Slab allocator control structures are allocated from special
523
          slabs, that are marked by special flag, indicating that it should
552
          slabs, that are marked by special flag, indicating that it should
524
          not be used for slab magazine layer. This is done to avoid possible
553
          not be used for slab magazine layer. This is done to avoid possible
525
          infinite recursions and deadlock during conventional slab allocaiton
554
          infinite recursions and deadlock during conventional slab allocaiton
526
          requests.</para>
555
          requests.</para>
527
        </section>
556
        </section>
528
 
557
 
529
        <section>
558
        <section>
530
          <title>Allocation/deallocation</title>
559
          <title>Allocation/deallocation</title>
531
 
560
 
532
          <para>Every cache contains list of full slabs and list of partialy
561
          <para>Every cache contains list of full slabs and list of partialy
533
          full slabs. Empty slabs are immediately freed (thrashing will be
562
          full slabs. Empty slabs are immediately freed (thrashing will be
534
          avoided because of magazines).</para>
563
          avoided because of magazines).</para>
535
 
564
 
536
          <para>The SLAB allocator allocates lots of space and does not free
565
          <para>The SLAB allocator allocates lots of space and does not free
537
          it. When frame allocator fails to allocate the frame, it calls
566
          it. When frame allocator fails to allocate the frame, it calls
538
          slab_reclaim(). It tries 'light reclaim' first, then brutal reclaim.
567
          slab_reclaim(). It tries 'light reclaim' first, then brutal reclaim.
539
          The light reclaim releases slabs from cpu-shared magazine-list,
568
          The light reclaim releases slabs from cpu-shared magazine-list,
540
          until at least 1 slab is deallocated in each cache (this algorithm
569
          until at least 1 slab is deallocated in each cache (this algorithm
541
          should probably change). The brutal reclaim removes all cached
570
          should probably change). The brutal reclaim removes all cached
542
          objects, even from CPU-bound magazines.</para>
571
          objects, even from CPU-bound magazines.</para>
543
 
572
 
544
          <formalpara>
573
          <formalpara>
545
            <title>Allocation</title>
574
            <title>Allocation</title>
546
 
575
 
547
            <para><emphasis>Step 1.</emphasis> When it comes to the allocation
576
            <para><emphasis>Step 1.</emphasis> When it comes to the allocation
548
            request, slab allocator first of all checks availability of memory
577
            request, slab allocator first of all checks availability of memory
549
            in local CPU-bound magazine. If it is there, we would just "pop"
578
            in local CPU-bound magazine. If it is there, we would just "pop"
550
            the CPU magazine and return the pointer to object.</para>
579
            the CPU magazine and return the pointer to object.</para>
551
 
580
 
552
            <para><emphasis>Step 2.</emphasis> If the CPU-bound magazine is
581
            <para><emphasis>Step 2.</emphasis> If the CPU-bound magazine is
553
            empty, allocator will attempt to reload magazin, swapping it with
582
            empty, allocator will attempt to reload magazin, swapping it with
554
            second CPU magazine and returns to the first step.</para>
583
            second CPU magazine and returns to the first step.</para>
555
 
584
 
556
            <para><emphasis>Step 3.</emphasis> Now we are in the situation
585
            <para><emphasis>Step 3.</emphasis> Now we are in the situation
557
            when both CPU-bound magazines are empty, which makes allocator to
586
            when both CPU-bound magazines are empty, which makes allocator to
558
            access shared full-magazines depot to reload CPU-bound magazines.
587
            access shared full-magazines depot to reload CPU-bound magazines.
559
            If reload is succesful (meaning there are full magazines in depot)
588
            If reload is succesful (meaning there are full magazines in depot)
560
            algoritm continues at Step 1.</para>
589
            algoritm continues at Step 1.</para>
561
 
590
 
562
            <para><emphasis>Step 4.</emphasis> Final step of the allocation.
591
            <para><emphasis>Step 4.</emphasis> Final step of the allocation.
563
            In this step object is allocated from the conventional slab layer
592
            In this step object is allocated from the conventional slab layer
564
            and pointer is returned.</para>
593
            and pointer is returned.</para>
565
          </formalpara>
594
          </formalpara>
566
 
595
 
567
          <formalpara>
596
          <formalpara>
568
            <title>Deallocation</title>
597
            <title>Deallocation</title>
569
 
598
 
570
            <para><emphasis>Step 1.</emphasis> During deallocation request,
599
            <para><emphasis>Step 1.</emphasis> During deallocation request,
571
            slab allocator will check if the local CPU-bound magazine is not
600
            slab allocator will check if the local CPU-bound magazine is not
572
            full. In this case we will just push the pointer to this
601
            full. In this case we will just push the pointer to this
573
            magazine.</para>
602
            magazine.</para>
574
 
603
 
575
            <para><emphasis>Step 2.</emphasis> If the CPU-bound magazine is
604
            <para><emphasis>Step 2.</emphasis> If the CPU-bound magazine is
576
            full, allocator will attempt to reload magazin, swapping it with
605
            full, allocator will attempt to reload magazin, swapping it with
577
            second CPU magazine and returns to the first step.</para>
606
            second CPU magazine and returns to the first step.</para>
578
 
607
 
579
            <para><emphasis>Step 3.</emphasis> Now we are in the situation
608
            <para><emphasis>Step 3.</emphasis> Now we are in the situation
580
            when both CPU-bound magazines are full, which makes allocator to
609
            when both CPU-bound magazines are full, which makes allocator to
581
            access shared full-magazines depot to put one of the magazines to
610
            access shared full-magazines depot to put one of the magazines to
582
            the depot and creating new empty magazine. Algoritm continues at
611
            the depot and creating new empty magazine. Algoritm continues at
583
            Step 1.</para>
612
            Step 1.</para>
584
          </formalpara>
613
          </formalpara>
585
        </section>
614
        </section>
586
      </section>
615
      </section>
587
    </section>
616
    </section>
588
 
617
 
589
    <!-- End of Physmem -->
618
    <!-- End of Physmem -->
590
  </section>
619
  </section>
591
 
620
 
592
  <section>
621
  <section>
593
    <title>Memory sharing</title>
622
    <title>Memory sharing</title>
594
 
623
 
595
    <para>Not implemented yet(?)</para>
624
    <para>Not implemented yet(?)</para>
596
  </section>
625
  </section>
597
</chapter>
626
</chapter>