Subversion Repositories HelenOS-doc

Rev

Rev 17 | Rev 26 | Go to most recent revision | Only display areas with differences | Regard whitespace | Details | Blame | Last modification | View Log | RSS feed

Rev 17 Rev 24
1
<?xml version="1.0" encoding="UTF-8"?>
1
<?xml version="1.0" encoding="UTF-8"?>
2
<chapter id="mm">
2
<chapter id="mm">
3
  <?dbhtml filename="mm.html"?>
3
  <?dbhtml filename="mm.html"?>
4
 
4
 
5
  <title>Memory management</title>
5
  <title>Memory management</title>
6
 
6
 
-
 
7
 
-
 
8
 
7
  <section>
9
  <section><!-- VM -->
8
    <title>Virtual memory management</title>
10
    <title>Virtual memory management</title>
9
 
11
 
10
    <section>
12
    <section>
11
      <title>Address spaces</title>
13
      <title>Address spaces</title>
12
 
14
 
13
      <para></para>
15
      <para></para>
14
    </section>
16
    </section>
15
 
17
 
16
    <section>
18
    <section>
17
      <title>Virtual address translation</title>
19
      <title>Virtual address translation</title>
18
 
20
 
19
      <para></para>
21
      <para></para>
20
    </section>
22
    </section>
21
  </section>
23
  </section><!-- End of VM -->
22
 
24
 
-
 
25
 
23
  <section>
26
  <section><!-- Phys mem -->
24
    <title>Physical memory management</title>
27
    <title>Physical memory management</title>
25
 
28
 
-
 
29
 
-
 
30
    <section id="zones_and_frames">
-
 
31
      <title>Zones and frames</title>
-
 
32
    <para>        <graphic fileref="images/mm2.png" /> </para>
-
 
33
 
-
 
34
 
-
 
35
      <para>On some architectures not whole physical memory is available for conventional usage. This limitations
-
 
36
      require from kernel to maintain a table of available and unavailable ranges of physical memory addresses.
-
 
37
      Main idea of zones is in creating memory zone entity, that is a continuous chunk of memory available for allocation.
-
 
38
      If some chunk is not available, we simply do not put it in any zone.
-
 
39
      </para>
-
 
40
     
-
 
41
      <para>
-
 
42
      Zone is also serves for informational purposes, containing information about number of free and busy frames. Physical memory
-
 
43
      allocation is also done inside the certain zone. Allocation of zone frame must be organized by the
-
 
44
      <link linkend="frame_allocator">frame allocator</link> associated with the zone.
-
 
45
      </para>
-
 
46
     
-
 
47
      <para>Some of the architectures (mips32, ppc32) have only one zone, that covers whole
-
 
48
      physical memory, and the others (like ia32) may have multiple zones.  Information about zones on current machine is stored
-
 
49
      in BIOS hardware tables or can be hardcoded into kernel during compile time.</para>
-
 
50
     
-
 
51
    </section>
-
 
52
 
-
 
53
    <section id="frame_allocator">
-
 
54
      <title>Frame allocator</title>
-
 
55
 
-
 
56
    <formalpara>
-
 
57
    <title>Overview</title>
-
 
58
        <para>Frame allocator provides physical memory allocation for the kernel. Because of zonal organization of physical memory,
-
 
59
    frame allocator is always working in context of some zone, thus making impossible to allocate a piece of memory, which lays in different zone, which
-
 
60
    cannot happen, because two adjacent zones can be merged into one. Frame allocator is also being responsible to update information on
-
 
61
    the number of free/busy frames in zone.
-
 
62
    Physical memory allocation inside one <link
-
 
63
        linkend="zones_and_frames">memory zone</link> is being handled by an
-
 
64
        instance of <link linkend="buddy_allocator">buddy allocator</link>
-
 
65
        tailored to allocate blocks of physical memory frames.
-
 
66
    </para>
-
 
67
    </formalpara>
-
 
68
   
-
 
69
   
-
 
70
   
-
 
71
   
-
 
72
    <formalpara>
-
 
73
    <title>Allocation / deallocation</title>
-
 
74
    <para>
-
 
75
    Upon allocation request, frame allocator tries to find first zone, that can satisfy the incoming request (has required amount of free frames to allocate).
-
 
76
    During deallocation, frame allocator needs to find zone, that contain deallocated frame.
-
 
77
   
-
 
78
    This approach could bring up two potential problems:
-
 
79
    <itemizedlist>
-
 
80
        <listitem>
-
 
81
            Linear search of zones does not any good to performance, but number of zones is not expected to be high. And if yes, list of zones can be replaced with more time-efficient B-tree.
-
 
82
        </listitem>
-
 
83
        <listitem>
-
 
84
            Quickly find out if zone contains required number of frames to allocate and if this chunk of memory is properly aligned. This issue is perfectly solved bu the buddy allocator.
-
 
85
        </listitem>
-
 
86
    </itemizedlist>
-
 
87
   
-
 
88
   
-
 
89
    </para>
-
 
90
    </formalpara>
-
 
91
   
-
 
92
      </section>
-
 
93
 
-
 
94
    </section>
-
 
95
 
-
 
96
 
-
 
97
 
26
    <section id="buddy_allocator">
98
    <section id="buddy_allocator">
27
      <title>Buddy allocator</title>
99
      <title>Buddy allocator</title>
28
 
100
 
29
      <section>
101
      <section>
30
        <title>Overview</title>
102
        <title>Overview</title>
31
 
103
 
32
        <para>In buddy allocator, memory is broken down into power-of-two
104
        <para>In buddy allocator, memory is broken down into power-of-two
33
        sized naturally aligned blocks. These blocks are organized in an array
105
        sized naturally aligned blocks. These blocks are organized in an array
34
        of lists in which list with index i contains all unallocated blocks of
106
        of lists in which list with index i contains all unallocated blocks of
35
        the size <mathphrase>2<superscript>i</superscript></mathphrase>. The
107
        the size <mathphrase>2<superscript>i</superscript></mathphrase>. The
36
        index i is called the order of block. Should there be two adjacent
108
        index i is called the order of block. Should there be two adjacent
37
        equally sized blocks in list <mathphrase>i</mathphrase> (i.e.
109
        equally sized blocks in list <mathphrase>i</mathphrase> (i.e.
38
        buddies), the buddy allocator would coalesce them and put the
110
        buddies), the buddy allocator would coalesce them and put the
39
        resulting block in list <mathphrase>i + 1</mathphrase>, provided that
111
        resulting block in list <mathphrase>i + 1</mathphrase>, provided that
40
        the resulting block would be naturally aligned. Similarily, when the
112
        the resulting block would be naturally aligned. Similarily, when the
41
        allocator is asked to allocate a block of size
113
        allocator is asked to allocate a block of size
42
        <mathphrase>2<superscript>i</superscript></mathphrase>, it first tries
114
        <mathphrase>2<superscript>i</superscript></mathphrase>, it first tries
43
        to satisfy the request from list with index i. If the request cannot
115
        to satisfy the request from list with index i. If the request cannot
44
        be satisfied (i.e. the list i is empty), the buddy allocator will try
116
        be satisfied (i.e. the list i is empty), the buddy allocator will try
45
        to allocate and split larger block from list with index i + 1. Both of
117
        to allocate and split larger block from list with index i + 1. Both of
46
        these algorithms are recursive. The recursion ends either when there
118
        these algorithms are recursive. The recursion ends either when there
47
        are no blocks to coalesce in the former case or when there are no
119
        are no blocks to coalesce in the former case or when there are no
48
        blocks that can be split in the latter case.</para>
120
        blocks that can be split in the latter case.</para>
49
 
121
 
50
        <graphic fileref="images/buddy_alloc.eps" format="EPS" />
122
        <graphic fileref="images/mm1.png" format="EPS" />
51
 
123
 
52
        <para>This approach greatly reduces external fragmentation of memory
124
        <para>This approach greatly reduces external fragmentation of memory
53
        and helps in allocating bigger continuous blocks of memory aligned to
125
        and helps in allocating bigger continuous blocks of memory aligned to
54
        their size. On the other hand, the buddy allocator suffers increased
126
        their size. On the other hand, the buddy allocator suffers increased
55
        internal fragmentation of memory and is not suitable for general
127
        internal fragmentation of memory and is not suitable for general
56
        kernel allocations. This purpose is better addressed by the <link
128
        kernel allocations. This purpose is better addressed by the <link
57
        linkend="slab">slab allocator</link>.</para>
129
        linkend="slab">slab allocator</link>.</para>
58
      </section>
130
      </section>
59
 
131
 
60
      <section>
132
      <section>
61
        <title>Implementation</title>
133
        <title>Implementation</title>
62
 
134
 
63
        <para>The buddy allocator is, in fact, an abstract framework wich can
135
        <para>The buddy allocator is, in fact, an abstract framework wich can
64
        be easily specialized to serve one particular task. It knows nothing
136
        be easily specialized to serve one particular task. It knows nothing
65
        about the nature of memory it helps to allocate. In order to beat the
137
        about the nature of memory it helps to allocate. In order to beat the
66
        lack of this knowledge, the buddy allocator exports an interface that
138
        lack of this knowledge, the buddy allocator exports an interface that
67
        each of its clients is required to implement. When supplied an
139
        each of its clients is required to implement. When supplied an
68
        implementation of this interface, the buddy allocator can use
140
        implementation of this interface, the buddy allocator can use
69
        specialized external functions to find buddy for a block, split and
141
        specialized external functions to find buddy for a block, split and
70
        coalesce blocks, manipulate block order and mark blocks busy or
142
        coalesce blocks, manipulate block order and mark blocks busy or
71
        available. For precize documentation of this interface, refer to <link
143
        available. For precize documentation of this interface, refer to <link
72
        linkend="???">HelenOS Generic Kernel Reference Manual</link>.</para>
144
        linkend="???">HelenOS Generic Kernel Reference Manual</link>.</para>
73
 
145
 
74
        <formalpara>
146
        <formalpara>
75
          <title>Data organization</title>
147
          <title>Data organization</title>
76
 
148
 
77
          <para>Each entity allocable by the buddy allocator is required to
149
          <para>Each entity allocable by the buddy allocator is required to
78
          contain space for storing block order number and a link variable
150
          contain space for storing block order number and a link variable
79
          used to interconnect blocks within the same order.</para>
151
          used to interconnect blocks within the same order.</para>
80
 
152
 
81
          <para>Whatever entities are allocated by the buddy allocator, the
153
          <para>Whatever entities are allocated by the buddy allocator, the
82
          first entity within a block is used to represent the entire block.
154
          first entity within a block is used to represent the entire block.
83
          The first entity keeps the order of the whole block. Other entities
155
          The first entity keeps the order of the whole block. Other entities
84
          within the block are assigned the magic value
156
          within the block are assigned the magic value
85
          <constant>BUDDY_INNER_BLOCK</constant>. This is especially important
157
          <constant>BUDDY_INNER_BLOCK</constant>. This is especially important
86
          for effective identification of buddies in one-dimensional array
158
          for effective identification of buddies in one-dimensional array
87
      because the entity that represents a potential buddy cannot be associated
159
          because the entity that represents a potential buddy cannot be
88
      with <constant>BUDDY_INNER_BLOCK</constant> (i.e. if it is associated
160
          associated with <constant>BUDDY_INNER_BLOCK</constant> (i.e. if it
89
          with <constant>BUDDY_INNER_BLOCK</constant> then it is not a
161
          is associated with <constant>BUDDY_INNER_BLOCK</constant> then it is
90
          buddy).</para>
162
          not a buddy).</para>
91
        </formalpara>
163
        </formalpara>
92
      </section>
-
 
93
    </section>
-
 
94
 
-
 
95
    <section id="zones_and_frames">
-
 
96
      <title>Zones and frames</title>
-
 
97
 
-
 
98
      <para>Physical memory is divided into zones. Each zone represents
-
 
99
      continuous area of physical memory frames. Allocation of frames is
-
 
100
      handled by the <link linkend="frame_allocator">frame allocator</link>
-
 
101
      associated with the zone. Zone also contains information about free and
-
 
102
      occupied frames and its base addresss in the memory. Some of the
-
 
103
      architectures (mips32, ppc32) have only one zone, that covers whole
-
 
104
      physical memory. Other architectures (ia32) have multiple zones.</para>
-
 
105
    </section>
-
 
106
 
-
 
107
    <section id="frame_allocator">
-
 
108
      <title>Frame allocator</title>
-
 
109
 
-
 
110
      <section>
-
 
111
        <title>Overview</title>
-
 
112
 
-
 
113
        <para>Physical memory allocation inside one <link
-
 
114
        linkend="zones_and_frames">memory zone</link> is being handled by an
-
 
115
        instance of <link linkend="buddy_allocator">buddy allocator</link>
-
 
116
        tailored to allocate blocks of physical memory frames.</para>
-
 
117
 
-
 
118
        <graphic fileref="images/mm1.png" />
-
 
119
      </section>
-
 
120
 
-
 
121
      <section>
-
 
122
        <title>Implementation</title>
-
 
123
 
164
   
124
        <formalpara>
165
        <formalpara>
125
          <title>Data organization</title>
166
          <title>Data organization</title>
126
 
167
 
127
          <para>Buddy allocator always uses first frame to represent frame
168
          <para>Buddy allocator always uses first frame to represent frame
128
          block. This frame contains <varname>buddy_order</varname> variable
169
          block. This frame contains <varname>buddy_order</varname> variable
129
          to provide information about the block size it actually represents (
170
          to provide information about the block size it actually represents (
130
          <mathphrase>2<superscript>buddy_order</superscript></mathphrase>
171
          <mathphrase>2<superscript>buddy_order</superscript></mathphrase>
131
          frames block). Other frames in block have this value set to magic
172
          frames block). Other frames in block have this value set to magic
132
          <constant>BUDDY_INNER_BLOCK</constant> that is much greater than
173
          <constant>BUDDY_INNER_BLOCK</constant> that is much greater than
133
          buddy <varname>max_order</varname> value.</para>
174
          buddy <varname>max_order</varname> value.</para>
134
 
175
 
135
          <para>Each <varname>frame_t</varname> also contains pointer member
176
          <para>Each <varname>frame_t</varname> also contains pointer member
136
          to hold frame structure in the linked list inside one order.</para>
177
          to hold frame structure in the linked list inside one order.</para>
137
        </formalpara>
178
        </formalpara>
138
 
179
 
139
        <formalpara>
180
        <formalpara>
140
          <title>Allocation algorithm</title>
181
          <title>Allocation algorithm</title>
141
 
182
 
142
          <para>Upon <mathphrase>2<superscript>i</superscript></mathphrase>
183
          <para>Upon <mathphrase>2<superscript>i</superscript></mathphrase>
143
          frames block allocation request, allocator checks if there are any
184
          frames block allocation request, allocator checks if there are any
144
          blocks available at the order list <varname>i</varname>. If yes,
185
          blocks available at the order list <varname>i</varname>. If yes,
145
          removes block from order list and returns its address. If no,
186
          removes block from order list and returns its address. If no,
146
          recursively allocates
187
          recursively allocates
147
          <mathphrase>2<superscript>i+1</superscript></mathphrase> frame
188
          <mathphrase>2<superscript>i+1</superscript></mathphrase> frame
148
          block, splits it into two
189
          block, splits it into two
149
          <mathphrase>2<superscript>i</superscript></mathphrase> frame blocks.
190
          <mathphrase>2<superscript>i</superscript></mathphrase> frame blocks.
150
          Then adds one of the blocks to the <varname>i</varname> order list
191
          Then adds one of the blocks to the <varname>i</varname> order list
151
          and returns address of another.</para>
192
          and returns address of another.</para>
152
        </formalpara>
193
        </formalpara>
153
 
194
 
154
        <formalpara>
195
        <formalpara>
155
          <title>Deallocation algorithm</title>
196
          <title>Deallocation algorithm</title>
156
 
197
 
157
          <para>Check if block has so called buddy (another free
198
          <para>Check if block has so called buddy (another free
158
          <mathphrase>2<superscript>i</superscript></mathphrase> frame block
199
          <mathphrase>2<superscript>i</superscript></mathphrase> frame block
159
          that can be linked with freed block into the
200
          that can be linked with freed block into the
160
          <mathphrase>2<superscript>i+1</superscript></mathphrase> block).
201
          <mathphrase>2<superscript>i+1</superscript></mathphrase> block).
161
          Technically, buddy is a odd/even block for even/odd block
202
          Technically, buddy is a odd/even block for even/odd block
162
          respectively. Plus we can put an extra requirement, that resulting
203
          respectively. Plus we can put an extra requirement, that resulting
163
          block must be aligned to its size. This requirement guarantees
204
          block must be aligned to its size. This requirement guarantees
164
          natural block alignment for the blocks coming out the allocation
205
          natural block alignment for the blocks coming out the allocation
165
          system.</para>
206
          system.</para>
166
 
207
 
167
          <para>Using direct pointer arithmetics,
208
          <para>Using direct pointer arithmetics,
168
          <varname>frame_t::ref_count</varname> and
209
          <varname>frame_t::ref_count</varname> and
169
          <varname>frame_t::buddy_order</varname> variables, finding buddy is
210
          <varname>frame_t::buddy_order</varname> variables, finding buddy is
170
          done at constant time.</para>
211
          done at constant time.</para>
171
        </formalpara>
212
        </formalpara>
172
      </section>
213
   
173
    </section>
214
      </section>
174
 
215
 
-
 
216
 
175
    <section id="slab">
217
    <section id="slab">
176
      <title>Slab allocator</title>
218
      <title>Slab allocator</title>
177
 
219
 
178
      <para>Kernel memory allocation is handled by slab.</para>
220
      <para>Kernel memory allocation is handled by slab.</para>
-
 
221
    </section><!-- End of Physmem -->
-
 
222
 
179
    </section>
223
  </section>
180
 
224
 
-
 
225
 
181
    <section>
226
    <section>
182
      <title>Memory sharing</title>
227
      <title>Memory sharing</title>
183
 
228
 
184
      <para>Not implemented yet(?)</para>
229
      <para>Not implemented yet(?)</para>
185
    </section>
230
    </section>
186
  </section>
-
 
187
</chapter>
231
</chapter>
188
232