Subversion Repositories HelenOS-doc

Compare Revisions

Ignore whitespace Rev 58 → Rev 59

/design/trunk/src/ch_scheduling.xml
143,7 → 143,93
goes to sleep.</para>
</listitem>
</itemizedlist>
</section>
 
<para></para>
<section>
<title>Scheduler</title>
 
<section>
<title>Run queues</title>
 
<para>There is an array of several run queues on each processor. The
current version of HelenOS uses 16 run queues implemented by 16 doubly
linked lists. Each of the run queues is associated with thread priority.
The lower the run queue index in the array is, the higher is the
priority of threads linked in that run queue and the shorter is the time
in which those threads will execute. When kernel code wants to access
the run queue, it must first acquire its lock.</para>
</section>
 
<section>
<title>Scheduler operation</title>
 
<para>The scheduler is invoked either explicitly when a thread calls the
<code>scheduler</code> function (e.g. goes to sleep or merely wants to
relinquish the processor for a while) or implicitly on a periodic basis
when the generic clock interrupt preempts the current thread. After its
invocation, the scheduler saves the synchronous register context of the
current thread and switches to its private stack. Afterwards, a new
thread is selected according to the scheduling policy. If there is no
suitable thread, the processor is idle and no thread executes on it.
Note that the act of switching to the private scheduler stack is
essential. If the processor kept running using the stack of the
preempted thread it could damage it because the old thread can be
migrated to another processor and scheduled there. In the worst case
scenario, two execution flows would be using the same stack. </para>
 
<para>The scheduling policy is implemented in function
<code>find_best_thread</code>. This function walks the processor run
queues from lower towards higher indices and looks for a thread. If the
visited run queue is empty, it simply searches the next run queue. If it
is known in advance that there are no ready threads waiting for
execution, <code>find_best_thread</code> interruptibly halts the
processor or busy waits until some threads arrive. This process repeats
until <code>find_best_thread</code> succeeds.</para>
 
<para>After the best thread is chosen, the scheduler switches to the
thread's task and memory management context. Finally, the saved
synchronous register context is restored and the thread runs. Each
scheduled thread is given a time slice depending on its priority (i.e.
run queue). The higher priority, the shorter timeslice. To summarize,
this policy schedules threads with high priorities more frequently but
gives them smaller time slices. On the other hand, lower priority
threads are scheduled less frequently, but run for longer periods of
time.</para>
 
<para>When a thread uses its entire time slice, it is preempted and put
back into the run queue that immediately follows the previous run queue
from which the thread ran. Threads that are woken up from a sleep are
put into the biggest priority run queue. Low priority threads are
therefore those that don't go to sleep so often and just occupy the
processor.</para>
 
<para>In order to avoid complete starvation of the low priority threads,
from time to time, the scheduler will provide them with a bonus of one
point priority increase. In other words, the scheduler will now and then
move the entire run queues one level up.</para>
</section>
 
<section>
<title>Processor load balancing</title>
 
<para>Normally, for the sake of cache locality, threads are scheduled on
one of the processors and don't leave it. Nevertheless, a situation in
which one processor is heavily overloaded while others sit idle can
occur. HelenOS deploys special kernel threads to help to mitigate this
problem. Each processor is associated with one load balancing thread
called <code>kcpulb</code> that wakes up regularily to see whether its
processor is underbalanced or not. If yes, the thread attempts to
migrate threads from other overloaded processors to its own processor's
run queues. When the job is done or there is no need for load balancing,
the thread goes to sleep.</para>
 
<para>The balancing threads operate very gently and try to migrate low
priority threads first; one <code>kcpulb</code> never takes from one
processor twice in a row. The load balancing threads as well as threads
that were just stolen cannot be migrated. The <code>kcpulb</code>
threads are wired to their processors and cannot be migrated whatsoever.
The ordinary threads are protected only until they are
rescheduled.</para>
</section>
</section>
</chapter>