Subversion Repositories HelenOS

Compare Revisions

Ignore whitespace Rev 1786 → Rev 1787

/trunk/uspace/softfloat/generic/mul.c
0,0 → 1,294
/*
* Copyright (C) 2005 Josef Cejka
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* - The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
 
/** @addtogroup softfloat
* @{
*/
/** @file
*/
 
#include<sftypes.h>
#include<mul.h>
#include<comparison.h>
#include<common.h>
 
/** Multiply two 32 bit float numbers
*
*/
float32 mulFloat32(float32 a, float32 b)
{
float32 result;
uint64_t frac1, frac2;
int32_t exp;
 
result.parts.sign = a.parts.sign ^ b.parts.sign;
if (isFloat32NaN(a) || isFloat32NaN(b) ) {
/* TODO: fix SigNaNs */
if (isFloat32SigNaN(a)) {
result.parts.fraction = a.parts.fraction;
result.parts.exp = a.parts.exp;
return result;
};
if (isFloat32SigNaN(b)) { /* TODO: fix SigNaN */
result.parts.fraction = b.parts.fraction;
result.parts.exp = b.parts.exp;
return result;
};
/* set NaN as result */
result.binary = FLOAT32_NAN;
return result;
};
if (isFloat32Infinity(a)) {
if (isFloat32Zero(b)) {
/* FIXME: zero * infinity */
result.binary = FLOAT32_NAN;
return result;
}
result.parts.fraction = a.parts.fraction;
result.parts.exp = a.parts.exp;
return result;
}
 
if (isFloat32Infinity(b)) {
if (isFloat32Zero(a)) {
/* FIXME: zero * infinity */
result.binary = FLOAT32_NAN;
return result;
}
result.parts.fraction = b.parts.fraction;
result.parts.exp = b.parts.exp;
return result;
}
 
/* exp is signed so we can easy detect underflow */
exp = a.parts.exp + b.parts.exp;
exp -= FLOAT32_BIAS;
if (exp >= FLOAT32_MAX_EXPONENT) {
/* FIXME: overflow */
/* set infinity as result */
result.binary = FLOAT32_INF;
result.parts.sign = a.parts.sign ^ b.parts.sign;
return result;
};
if (exp < 0) {
/* FIXME: underflow */
/* return signed zero */
result.parts.fraction = 0x0;
result.parts.exp = 0x0;
return result;
};
frac1 = a.parts.fraction;
if (a.parts.exp > 0) {
frac1 |= FLOAT32_HIDDEN_BIT_MASK;
} else {
++exp;
};
frac2 = b.parts.fraction;
 
if (b.parts.exp > 0) {
frac2 |= FLOAT32_HIDDEN_BIT_MASK;
} else {
++exp;
};
 
frac1 <<= 1; /* one bit space for rounding */
 
frac1 = frac1 * frac2;
/* round and return */
while ((exp < FLOAT32_MAX_EXPONENT) && (frac1 >= ( 1 << (FLOAT32_FRACTION_SIZE + 2)))) {
/* 23 bits of fraction + one more for hidden bit (all shifted 1 bit left)*/
++exp;
frac1 >>= 1;
};
 
/* rounding */
/* ++frac1; FIXME: not works - without it is ok */
frac1 >>= 1; /* shift off rounding space */
if ((exp < FLOAT32_MAX_EXPONENT) && (frac1 >= (1 << (FLOAT32_FRACTION_SIZE + 1)))) {
++exp;
frac1 >>= 1;
};
 
if (exp >= FLOAT32_MAX_EXPONENT ) {
/* TODO: fix overflow */
/* return infinity*/
result.parts.exp = FLOAT32_MAX_EXPONENT;
result.parts.fraction = 0x0;
return result;
}
exp -= FLOAT32_FRACTION_SIZE;
 
if (exp <= FLOAT32_FRACTION_SIZE) {
/* denormalized number */
frac1 >>= 1; /* denormalize */
while ((frac1 > 0) && (exp < 0)) {
frac1 >>= 1;
++exp;
};
if (frac1 == 0) {
/* FIXME : underflow */
result.parts.exp = 0;
result.parts.fraction = 0;
return result;
};
};
result.parts.exp = exp;
result.parts.fraction = frac1 & ( (1 << FLOAT32_FRACTION_SIZE) - 1);
return result;
}
 
/** Multiply two 64 bit float numbers
*
*/
float64 mulFloat64(float64 a, float64 b)
{
float64 result;
uint64_t frac1, frac2;
int32_t exp;
 
result.parts.sign = a.parts.sign ^ b.parts.sign;
if (isFloat64NaN(a) || isFloat64NaN(b) ) {
/* TODO: fix SigNaNs */
if (isFloat64SigNaN(a)) {
result.parts.fraction = a.parts.fraction;
result.parts.exp = a.parts.exp;
return result;
};
if (isFloat64SigNaN(b)) { /* TODO: fix SigNaN */
result.parts.fraction = b.parts.fraction;
result.parts.exp = b.parts.exp;
return result;
};
/* set NaN as result */
result.binary = FLOAT64_NAN;
return result;
};
if (isFloat64Infinity(a)) {
if (isFloat64Zero(b)) {
/* FIXME: zero * infinity */
result.binary = FLOAT64_NAN;
return result;
}
result.parts.fraction = a.parts.fraction;
result.parts.exp = a.parts.exp;
return result;
}
 
if (isFloat64Infinity(b)) {
if (isFloat64Zero(a)) {
/* FIXME: zero * infinity */
result.binary = FLOAT64_NAN;
return result;
}
result.parts.fraction = b.parts.fraction;
result.parts.exp = b.parts.exp;
return result;
}
 
/* exp is signed so we can easy detect underflow */
exp = a.parts.exp + b.parts.exp - FLOAT64_BIAS;
frac1 = a.parts.fraction;
 
if (a.parts.exp > 0) {
frac1 |= FLOAT64_HIDDEN_BIT_MASK;
} else {
++exp;
};
frac2 = b.parts.fraction;
 
if (b.parts.exp > 0) {
frac2 |= FLOAT64_HIDDEN_BIT_MASK;
} else {
++exp;
};
 
frac1 <<= (64 - FLOAT64_FRACTION_SIZE - 1);
frac2 <<= (64 - FLOAT64_FRACTION_SIZE - 2);
 
mul64integers(frac1, frac2, &frac1, &frac2);
 
frac2 |= (frac1 != 0);
if (frac2 & (0x1ll << 62)) {
frac2 <<= 1;
exp--;
}
 
result = finishFloat64(exp, frac2, result.parts.sign);
return result;
}
 
/** Multiply two 64 bit numbers and return result in two parts
* @param a first operand
* @param b second operand
* @param lo lower part from result
* @param hi higher part of result
*/
void mul64integers(uint64_t a,uint64_t b, uint64_t *lo, uint64_t *hi)
{
uint64_t low, high, middle1, middle2;
uint32_t alow, blow;
 
alow = a & 0xFFFFFFFF;
blow = b & 0xFFFFFFFF;
a >>= 32;
b >>= 32;
low = ((uint64_t)alow) * blow;
middle1 = a * blow;
middle2 = alow * b;
high = a * b;
 
middle1 += middle2;
high += (((uint64_t)(middle1 < middle2)) << 32) + (middle1 >> 32);
middle1 <<= 32;
low += middle1;
high += (low < middle1);
*lo = low;
*hi = high;
return;
}
 
/** @}
*/