Subversion Repositories HelenOS

Compare Revisions

Ignore whitespace Rev 1786 → Rev 1787

/trunk/uspace/softfloat/generic/conversion.c
0,0 → 1,593
/*
* Copyright (C) 2005 Josef Cejka
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* - The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
 
/** @addtogroup softfloat
* @{
*/
/** @file
*/
 
#include "sftypes.h"
#include "conversion.h"
#include "comparison.h"
#include "common.h"
 
float64 convertFloat32ToFloat64(float32 a)
{
float64 result;
uint64_t frac;
result.parts.sign = a.parts.sign;
result.parts.fraction = a.parts.fraction;
result.parts.fraction <<= (FLOAT64_FRACTION_SIZE - FLOAT32_FRACTION_SIZE );
if ((isFloat32Infinity(a))||(isFloat32NaN(a))) {
result.parts.exp = 0x7FF;
/* TODO; check if its correct for SigNaNs*/
return result;
};
result.parts.exp = a.parts.exp + ( (int)FLOAT64_BIAS - FLOAT32_BIAS );
if (a.parts.exp == 0) {
/* normalize denormalized numbers */
 
if (result.parts.fraction == 0ll) { /* fix zero */
result.parts.exp = 0ll;
return result;
}
frac = result.parts.fraction;
while (!(frac & (0x10000000000000ll))) {
frac <<= 1;
--result.parts.exp;
};
++result.parts.exp;
result.parts.fraction = frac;
};
return result;
}
 
float32 convertFloat64ToFloat32(float64 a)
{
float32 result;
int32_t exp;
uint64_t frac;
result.parts.sign = a.parts.sign;
if (isFloat64NaN(a)) {
result.parts.exp = 0xFF;
if (isFloat64SigNaN(a)) {
result.parts.fraction = 0x400000; /* set first bit of fraction nonzero */
return result;
}
result.parts.fraction = 0x1; /* fraction nonzero but its first bit is zero */
return result;
};
 
if (isFloat64Infinity(a)) {
result.parts.fraction = 0;
result.parts.exp = 0xFF;
return result;
};
 
exp = (int)a.parts.exp - FLOAT64_BIAS + FLOAT32_BIAS;
if (exp >= 0xFF) {
/*FIXME: overflow*/
result.parts.fraction = 0;
result.parts.exp = 0xFF;
return result;
} else if (exp <= 0 ) {
/* underflow or denormalized */
result.parts.exp = 0;
exp *= -1;
if (exp > FLOAT32_FRACTION_SIZE ) {
/* FIXME: underflow */
result.parts.fraction = 0;
return result;
};
/* denormalized */
frac = a.parts.fraction;
frac |= 0x10000000000000ll; /* denormalize and set hidden bit */
frac >>= (FLOAT64_FRACTION_SIZE - FLOAT32_FRACTION_SIZE + 1);
while (exp > 0) {
--exp;
frac >>= 1;
};
result.parts.fraction = frac;
return result;
};
 
result.parts.exp = exp;
result.parts.fraction = a.parts.fraction >> (FLOAT64_FRACTION_SIZE - FLOAT32_FRACTION_SIZE);
return result;
}
 
 
/** Helping procedure for converting float32 to uint32
* @param a floating point number in normalized form (no NaNs or Inf are checked )
* @return unsigned integer
*/
static uint32_t _float32_to_uint32_helper(float32 a)
{
uint32_t frac;
if (a.parts.exp < FLOAT32_BIAS) {
/*TODO: rounding*/
return 0;
}
frac = a.parts.fraction;
frac |= FLOAT32_HIDDEN_BIT_MASK;
/* shift fraction to left so hidden bit will be the most significant bit */
frac <<= 32 - FLOAT32_FRACTION_SIZE - 1;
 
frac >>= 32 - (a.parts.exp - FLOAT32_BIAS) - 1;
if ((a.parts.sign == 1) && (frac != 0)) {
frac = ~frac;
++frac;
}
return frac;
}
 
/* Convert float to unsigned int32
* FIXME: Im not sure what to return if overflow/underflow happens
* - now its the biggest or the smallest int
*/
uint32_t float32_to_uint32(float32 a)
{
if (isFloat32NaN(a)) {
return MAX_UINT32;
}
if (isFloat32Infinity(a) || (a.parts.exp >= (32 + FLOAT32_BIAS))) {
if (a.parts.sign) {
return MIN_UINT32;
}
return MAX_UINT32;
}
return _float32_to_uint32_helper(a);
}
 
/* Convert float to signed int32
* FIXME: Im not sure what to return if overflow/underflow happens
* - now its the biggest or the smallest int
*/
int32_t float32_to_int32(float32 a)
{
if (isFloat32NaN(a)) {
return MAX_INT32;
}
if (isFloat32Infinity(a) || (a.parts.exp >= (32 + FLOAT32_BIAS))) {
if (a.parts.sign) {
return MIN_INT32;
}
return MAX_INT32;
}
return _float32_to_uint32_helper(a);
}
 
 
/** Helping procedure for converting float64 to uint64
* @param a floating point number in normalized form (no NaNs or Inf are checked )
* @return unsigned integer
*/
static uint64_t _float64_to_uint64_helper(float64 a)
{
uint64_t frac;
if (a.parts.exp < FLOAT64_BIAS) {
/*TODO: rounding*/
return 0;
}
frac = a.parts.fraction;
frac |= FLOAT64_HIDDEN_BIT_MASK;
/* shift fraction to left so hidden bit will be the most significant bit */
frac <<= 64 - FLOAT64_FRACTION_SIZE - 1;
 
frac >>= 64 - (a.parts.exp - FLOAT64_BIAS) - 1;
if ((a.parts.sign == 1) && (frac != 0)) {
frac = ~frac;
++frac;
}
return frac;
}
 
/* Convert float to unsigned int64
* FIXME: Im not sure what to return if overflow/underflow happens
* - now its the biggest or the smallest int
*/
uint64_t float64_to_uint64(float64 a)
{
if (isFloat64NaN(a)) {
return MAX_UINT64;
}
if (isFloat64Infinity(a) || (a.parts.exp >= (64 + FLOAT64_BIAS))) {
if (a.parts.sign) {
return MIN_UINT64;
}
return MAX_UINT64;
}
return _float64_to_uint64_helper(a);
}
 
/* Convert float to signed int64
* FIXME: Im not sure what to return if overflow/underflow happens
* - now its the biggest or the smallest int
*/
int64_t float64_to_int64(float64 a)
{
if (isFloat64NaN(a)) {
return MAX_INT64;
}
if (isFloat64Infinity(a) || (a.parts.exp >= (64 + FLOAT64_BIAS))) {
if (a.parts.sign) {
return MIN_INT64;
}
return MAX_INT64;
}
return _float64_to_uint64_helper(a);
}
 
 
 
 
 
/** Helping procedure for converting float32 to uint64
* @param a floating point number in normalized form (no NaNs or Inf are checked )
* @return unsigned integer
*/
static uint64_t _float32_to_uint64_helper(float32 a)
{
uint64_t frac;
if (a.parts.exp < FLOAT32_BIAS) {
/*TODO: rounding*/
return 0;
}
frac = a.parts.fraction;
frac |= FLOAT32_HIDDEN_BIT_MASK;
/* shift fraction to left so hidden bit will be the most significant bit */
frac <<= 64 - FLOAT32_FRACTION_SIZE - 1;
 
frac >>= 64 - (a.parts.exp - FLOAT32_BIAS) - 1;
if ((a.parts.sign == 1) && (frac != 0)) {
frac = ~frac;
++frac;
}
return frac;
}
 
/* Convert float to unsigned int64
* FIXME: Im not sure what to return if overflow/underflow happens
* - now its the biggest or the smallest int
*/
uint64_t float32_to_uint64(float32 a)
{
if (isFloat32NaN(a)) {
return MAX_UINT64;
}
if (isFloat32Infinity(a) || (a.parts.exp >= (64 + FLOAT32_BIAS))) {
if (a.parts.sign) {
return MIN_UINT64;
}
return MAX_UINT64;
}
return _float32_to_uint64_helper(a);
}
 
/* Convert float to signed int64
* FIXME: Im not sure what to return if overflow/underflow happens
* - now its the biggest or the smallest int
*/
int64_t float32_to_int64(float32 a)
{
if (isFloat32NaN(a)) {
return MAX_INT64;
}
if (isFloat32Infinity(a) || (a.parts.exp >= (64 + FLOAT32_BIAS))) {
if (a.parts.sign) {
return (MIN_INT64);
}
return MAX_INT64;
}
return _float32_to_uint64_helper(a);
}
 
 
/* Convert float64 to unsigned int32
* FIXME: Im not sure what to return if overflow/underflow happens
* - now its the biggest or the smallest int
*/
uint32_t float64_to_uint32(float64 a)
{
if (isFloat64NaN(a)) {
return MAX_UINT32;
}
if (isFloat64Infinity(a) || (a.parts.exp >= (32 + FLOAT64_BIAS))) {
if (a.parts.sign) {
return MIN_UINT32;
}
return MAX_UINT32;
}
return (uint32_t)_float64_to_uint64_helper(a);
}
 
/* Convert float64 to signed int32
* FIXME: Im not sure what to return if overflow/underflow happens
* - now its the biggest or the smallest int
*/
int32_t float64_to_int32(float64 a)
{
if (isFloat64NaN(a)) {
return MAX_INT32;
}
if (isFloat64Infinity(a) || (a.parts.exp >= (32 + FLOAT64_BIAS))) {
if (a.parts.sign) {
return MIN_INT32;
}
return MAX_INT32;
}
return (int32_t)_float64_to_uint64_helper(a);
}
 
/** Convert unsigned integer to float32
*
*
*/
float32 uint32_to_float32(uint32_t i)
{
int counter;
int32_t exp;
float32 result;
result.parts.sign = 0;
result.parts.fraction = 0;
 
counter = countZeroes32(i);
 
exp = FLOAT32_BIAS + 32 - counter - 1;
if (counter == 32) {
result.binary = 0;
return result;
}
if (counter > 0) {
i <<= counter - 1;
} else {
i >>= 1;
}
 
roundFloat32(&exp, &i);
 
result.parts.fraction = i >> 7;
result.parts.exp = exp;
 
return result;
}
 
float32 int32_to_float32(int32_t i)
{
float32 result;
 
if (i < 0) {
result = uint32_to_float32((uint32_t)(-i));
} else {
result = uint32_to_float32((uint32_t)i);
}
result.parts.sign = i < 0;
 
return result;
}
 
 
float32 uint64_to_float32(uint64_t i)
{
int counter;
int32_t exp;
uint32_t j;
float32 result;
result.parts.sign = 0;
result.parts.fraction = 0;
 
counter = countZeroes64(i);
 
exp = FLOAT32_BIAS + 64 - counter - 1;
if (counter == 64) {
result.binary = 0;
return result;
}
/* Shift all to the first 31 bits (31. will be hidden 1)*/
if (counter > 33) {
i <<= counter - 1 - 32;
} else {
i >>= 1 + 32 - counter;
}
j = (uint32_t)i;
roundFloat32(&exp, &j);
 
result.parts.fraction = j >> 7;
result.parts.exp = exp;
return result;
}
 
float32 int64_to_float32(int64_t i)
{
float32 result;
 
if (i < 0) {
result = uint64_to_float32((uint64_t)(-i));
} else {
result = uint64_to_float32((uint64_t)i);
}
result.parts.sign = i < 0;
 
return result;
}
 
/** Convert unsigned integer to float64
*
*
*/
float64 uint32_to_float64(uint32_t i)
{
int counter;
int32_t exp;
float64 result;
uint64_t frac;
result.parts.sign = 0;
result.parts.fraction = 0;
 
counter = countZeroes32(i);
 
exp = FLOAT64_BIAS + 32 - counter - 1;
if (counter == 32) {
result.binary = 0;
return result;
}
frac = i;
frac <<= counter + 32 - 1;
 
roundFloat64(&exp, &frac);
 
result.parts.fraction = frac >> 10;
result.parts.exp = exp;
 
return result;
}
 
float64 int32_to_float64(int32_t i)
{
float64 result;
 
if (i < 0) {
result = uint32_to_float64((uint32_t)(-i));
} else {
result = uint32_to_float64((uint32_t)i);
}
result.parts.sign = i < 0;
 
return result;
}
 
 
float64 uint64_to_float64(uint64_t i)
{
int counter;
int32_t exp;
float64 result;
result.parts.sign = 0;
result.parts.fraction = 0;
 
counter = countZeroes64(i);
 
exp = FLOAT64_BIAS + 64 - counter - 1;
if (counter == 64) {
result.binary = 0;
return result;
}
if (counter > 0) {
i <<= counter - 1;
} else {
i >>= 1;
}
 
roundFloat64(&exp, &i);
 
result.parts.fraction = i >> 10;
result.parts.exp = exp;
return result;
}
 
float64 int64_to_float64(int64_t i)
{
float64 result;
 
if (i < 0) {
result = uint64_to_float64((uint64_t)(-i));
} else {
result = uint64_to_float64((uint64_t)i);
}
result.parts.sign = i < 0;
 
return result;
}
 
/** @}
*/