Subversion Repositories HelenOS

Compare Revisions

Ignore whitespace Rev 2052 → Rev 2053

/trunk/kernel/test/mm/falloc1.c
55,13 → 55,16
 
for (run = 0; run < TEST_RUNS; run++) {
for (order = 0; order <= MAX_ORDER; order++) {
printf("Allocating %d frames blocks ... ", 1 << order);
if (!quiet)
printf("Allocating %d frames blocks ... ", 1 << order);
allocated = 0;
for (i = 0; i < MAX_FRAMES >> order; i++) {
frames[allocated] = (uintptr_t) frame_alloc(order, FRAME_ATOMIC | FRAME_KA);
if (ALIGN_UP(frames[allocated], FRAME_SIZE << order) != frames[allocated]) {
printf("Block at address %p (size %dK) is not aligned\n", frames[allocated], (FRAME_SIZE << order) >> 10);
if (!quiet)
printf("Block at address %p (size %dK) is not aligned\n", frames[allocated], (FRAME_SIZE << order) >> 10);
return "Test failed";
}
68,12 → 71,14
if (frames[allocated])
allocated++;
else {
printf("done. ");
if (!quiet)
printf("done. ");
break;
}
}
printf("%d blocks allocated.\n", allocated);
if (!quiet)
printf("%d blocks allocated.\n", allocated);
if (run) {
if (results[order] != allocated)
81,10 → 86,14
} else
results[order] = allocated;
printf("Deallocating ... ");
if (!quiet)
printf("Deallocating ... ");
for (i = 0; i < allocated; i++)
frame_free(KA2PA(frames[i]));
printf("done.\n");
if (!quiet)
printf("done.\n");
}
}
 
/trunk/kernel/test/mm/falloc2.c
47,6 → 47,7
 
static atomic_t thread_count;
static atomic_t thread_fail;
static bool sh_quiet;
 
static void falloc(void * arg)
{
56,7 → 57,8
uintptr_t * frames = (uintptr_t *) malloc(MAX_FRAMES * sizeof(uintptr_t), FRAME_ATOMIC);
if (frames == NULL) {
printf("Thread #%d (cpu%d): Unable to allocate frames\n", THREAD->tid, CPU->id);
if (!sh_quiet)
printf("Thread #%d (cpu%d): Unable to allocate frames\n", THREAD->tid, CPU->id);
atomic_inc(&thread_fail);
atomic_dec(&thread_count);
return;
66,7 → 68,9
 
for (run = 0; run < THREAD_RUNS; run++) {
for (order = 0; order <= MAX_ORDER; order++) {
printf("Thread #%d (cpu%d): Allocating %d frames blocks ... \n", THREAD->tid, CPU->id, 1 << order);
if (!sh_quiet)
printf("Thread #%d (cpu%d): Allocating %d frames blocks ... \n", THREAD->tid, CPU->id, 1 << order);
allocated = 0;
for (i = 0; i < (MAX_FRAMES >> order); i++) {
frames[allocated] = (uintptr_t)frame_alloc(order, FRAME_ATOMIC | FRAME_KA);
76,13 → 80,18
} else
break;
}
printf("Thread #%d (cpu%d): %d blocks allocated.\n", THREAD->tid, CPU->id, allocated);
 
printf("Thread #%d (cpu%d): Deallocating ... \n", THREAD->tid, CPU->id);
if (!sh_quiet)
printf("Thread #%d (cpu%d): %d blocks allocated.\n", THREAD->tid, CPU->id, allocated);
if (!sh_quiet)
printf("Thread #%d (cpu%d): Deallocating ... \n", THREAD->tid, CPU->id);
for (i = 0; i < allocated; i++) {
for (k = 0; k <= ((FRAME_SIZE << order) - 1); k++) {
if (((uint8_t *) frames[i])[k] != val) {
printf("Thread #%d (cpu%d): Unexpected data (%d) in block %p offset %#zx\n", THREAD->tid, CPU->id, ((char *) frames[i])[k], frames[i], k);
if (!sh_quiet)
printf("Thread #%d (cpu%d): Unexpected data (%d) in block %p offset %#zx\n", THREAD->tid, CPU->id, ((char *) frames[i])[k], frames[i], k);
atomic_inc(&thread_fail);
goto cleanup;
}
89,13 → 98,17
}
frame_free(KA2PA(frames[i]));
}
printf("Thread #%d (cpu%d): Finished run.\n", THREAD->tid, CPU->id);
if (!sh_quiet)
printf("Thread #%d (cpu%d): Finished run.\n", THREAD->tid, CPU->id);
}
}
 
cleanup:
free(frames);
printf("Thread #%d (cpu%d): Exiting\n", THREAD->tid, CPU->id);
if (!sh_quiet)
printf("Thread #%d (cpu%d): Exiting\n", THREAD->tid, CPU->id);
atomic_dec(&thread_count);
}
 
102,6 → 115,7
char * test_falloc2(bool quiet)
{
unsigned int i;
sh_quiet = quiet;
 
atomic_set(&thread_count, THREADS);
atomic_set(&thread_fail, 0);
109,7 → 123,8
for (i = 0; i < THREADS; i++) {
thread_t * thrd = thread_create(falloc, NULL, TASK, 0, "falloc", false);
if (!thrd) {
printf("Could not create thread %d\n", i);
if (!quiet)
printf("Could not create thread %d\n", i);
break;
}
thread_ready(thrd);
116,7 → 131,8
}
while (atomic_get(&thread_count) > 0) {
printf("Threads left: %d\n", atomic_get(&thread_count));
if (!quiet)
printf("Threads left: %d\n", atomic_get(&thread_count));
thread_sleep(1);
}
/trunk/kernel/test/mm/slab1.c
37,65 → 37,87
 
static void * data[VAL_COUNT];
 
static void testit(int size, int count)
static void testit(int size, int count, bool quiet)
{
slab_cache_t *cache;
int i;
printf("Creating cache, object size: %d.\n", size);
cache = slab_cache_create("test_cache", size, 0, NULL, NULL,
SLAB_CACHE_NOMAGAZINE);
printf("Allocating %d items...", count);
if (!quiet)
printf("Creating cache, object size: %d.\n", size);
cache = slab_cache_create("test_cache", size, 0, NULL, NULL,
SLAB_CACHE_NOMAGAZINE);
if (!quiet)
printf("Allocating %d items...", count);
for (i = 0; i < count; i++) {
data[i] = slab_alloc(cache, 0);
memsetb((uintptr_t) data[i], size, 0);
}
printf("done.\n");
printf("Freeing %d items...", count);
for (i = 0; i < count; i++) {
if (!quiet) {
printf("done.\n");
printf("Freeing %d items...", count);
}
for (i = 0; i < count; i++)
slab_free(cache, data[i]);
if (!quiet) {
printf("done.\n");
printf("Allocating %d items...", count);
}
printf("done.\n");
 
printf("Allocating %d items...", count);
for (i = 0; i < count; i++) {
data[i] = slab_alloc(cache, 0);
memsetb((uintptr_t) data[i], size, 0);
}
printf("done.\n");
 
printf("Freeing %d items...", count / 2);
for (i = count - 1; i >= count / 2; i--) {
if (!quiet) {
printf("done.\n");
printf("Freeing %d items...", count / 2);
}
for (i = count - 1; i >= count / 2; i--)
slab_free(cache, data[i]);
if (!quiet) {
printf("done.\n");
printf("Allocating %d items...", count / 2);
}
printf("done.\n");
 
printf("Allocating %d items...", count / 2);
for (i = count / 2; i < count; i++) {
data[i] = slab_alloc(cache, 0);
memsetb((uintptr_t) data[i], size, 0);
}
printf("done.\n");
printf("Freeing %d items...", count);
for (i = 0; i < count; i++) {
if (!quiet) {
printf("done.\n");
printf("Freeing %d items...", count);
}
for (i = 0; i < count; i++)
slab_free(cache, data[i]);
}
printf("done.\n");
if (!quiet)
printf("done.\n");
slab_cache_destroy(cache);
 
printf("Test complete.\n");
if (!quiet)
printf("Test complete.\n");
}
 
static void testsimple(void)
static void testsimple(bool quiet)
{
testit(100, VAL_COUNT);
testit(200, VAL_COUNT);
testit(1024, VAL_COUNT);
testit(2048, 512);
testit(4000, 128);
testit(8192, 128);
testit(16384, 128);
testit(16385, 128);
testit(100, VAL_COUNT, quiet);
testit(200, VAL_COUNT, quiet);
testit(1024, VAL_COUNT, quiet);
testit(2048, 512, quiet);
testit(4000, 128, quiet);
testit(8192, 128, quiet);
testit(16384, 128, quiet);
testit(16385, 128, quiet);
}
 
#define THREADS 6
105,6 → 127,7
static void * thr_data[THREADS][THR_MEM_COUNT];
static slab_cache_t *thr_cache;
static semaphore_t thr_sem;
static bool sh_quiet;
 
static void slabtest(void *data)
{
113,7 → 136,9
thread_detach(THREAD);
printf("Starting thread #%d...\n",THREAD->tid);
if (!sh_quiet)
printf("Starting thread #%d...\n", THREAD->tid);
for (j = 0; j < 10; j++) {
for (i = 0; i < THR_MEM_COUNT; i++)
thr_data[offs][i] = slab_alloc(thr_cache,0);
124,23 → 149,26
for (i = 0; i < THR_MEM_COUNT; i++)
slab_free(thr_cache, thr_data[offs][i]);
}
printf("Thread #%d finished\n", THREAD->tid);
if (!sh_quiet)
printf("Thread #%d finished\n", THREAD->tid);
semaphore_up(&thr_sem);
}
 
static void testthreads(void)
static void testthreads(bool quiet)
{
thread_t *t;
int i;
 
thr_cache = slab_cache_create("thread_cache", THR_MEM_SIZE, 0,
NULL, NULL,
SLAB_CACHE_NOMAGAZINE);
thr_cache = slab_cache_create("thread_cache", THR_MEM_SIZE, 0, NULL, NULL,
SLAB_CACHE_NOMAGAZINE);
semaphore_initialize(&thr_sem, 0);
for (i = 0; i < THREADS; i++) {
if (!(t = thread_create(slabtest, (void *) (unative_t) i, TASK, 0, "slabtest", false)))
printf("Could not create thread %d\n", i);
else
if (!(t = thread_create(slabtest, (void *) (unative_t) i, TASK, 0, "slabtest", false))) {
if (!quiet)
printf("Could not create thread %d\n", i);
} else
thread_ready(t);
}
 
148,14 → 176,17
semaphore_down(&thr_sem);
slab_cache_destroy(thr_cache);
printf("Test complete.\n");
if (!quiet)
printf("Test complete.\n");
}
 
char * test_slab1(bool quiet)
{
testsimple();
testthreads();
sh_quiet = quiet;
testsimple(quiet);
testthreads(quiet);
return NULL;
}
/trunk/kernel/test/mm/slab2.c
42,7 → 42,7
* free one of the caches. We should have everything in magazines,
* now allocation should clean magazines and allow for full allocation.
*/
static void totalmemtest(void)
static void totalmemtest(bool quiet)
{
slab_cache_t *cache1;
slab_cache_t *cache2;
49,68 → 49,84
int i;
 
void *data1, *data2;
void *olddata1=NULL, *olddata2=NULL;
void *olddata1 = NULL, *olddata2 = NULL;
cache1 = slab_cache_create("cache1_tst", ITEM_SIZE, 0, NULL, NULL, 0);
cache2 = slab_cache_create("cache2_tst", ITEM_SIZE, 0, NULL, NULL, 0);
 
printf("Allocating...");
if (!quiet)
printf("Allocating...");
/* Use atomic alloc, so that we find end of memory */
do {
data1 = slab_alloc(cache1, FRAME_ATOMIC);
data2 = slab_alloc(cache2, FRAME_ATOMIC);
if (!data1 || !data2) {
if ((!data1) || (!data2)) {
if (data1)
slab_free(cache1,data1);
slab_free(cache1, data1);
if (data2)
slab_free(cache2,data2);
slab_free(cache2, data2);
break;
}
memsetb((uintptr_t)data1, ITEM_SIZE, 0);
memsetb((uintptr_t)data2, ITEM_SIZE, 0);
*((void **)data1) = olddata1;
*((void **)data2) = olddata2;
memsetb((uintptr_t) data1, ITEM_SIZE, 0);
memsetb((uintptr_t) data2, ITEM_SIZE, 0);
*((void **) data1) = olddata1;
*((void **) data2) = olddata2;
olddata1 = data1;
olddata2 = data2;
} while(1);
printf("done.\n");
} while (1);
if (!quiet) {
printf("done.\n");
printf("Deallocating cache2...");
}
/* We do not have memory - now deallocate cache2 */
printf("Deallocating cache2...");
while (olddata2) {
data2 = *((void **)olddata2);
data2 = *((void **) olddata2);
slab_free(cache2, olddata2);
olddata2 = data2;
}
printf("done.\n");
 
printf("Allocating to cache1...\n");
for (i=0; i<30; i++) {
if (!quiet) {
printf("done.\n");
printf("Allocating to cache1...\n");
}
for (i = 0; i < 30; i++) {
data1 = slab_alloc(cache1, FRAME_ATOMIC);
if (!data1) {
printf("Incorrect memory size - use another test.");
if (!quiet)
printf("Incorrect memory size - use another test.");
return;
}
memsetb((uintptr_t)data1, ITEM_SIZE, 0);
*((void **)data1) = olddata1;
memsetb((uintptr_t) data1, ITEM_SIZE, 0);
*((void **) data1) = olddata1;
olddata1 = data1;
}
while (1) {
data1 = slab_alloc(cache1, FRAME_ATOMIC);
if (!data1) {
if (!data1)
break;
}
memsetb((uintptr_t)data1, ITEM_SIZE, 0);
*((void **)data1) = olddata1;
memsetb((uintptr_t) data1, ITEM_SIZE, 0);
*((void **) data1) = olddata1;
olddata1 = data1;
}
printf("Deallocating cache1...");
if (!quiet)
printf("Deallocating cache1...");
while (olddata1) {
data1 = *((void **)olddata1);
data1 = *((void **) olddata1);
slab_free(cache1, olddata1);
olddata1 = data1;
}
printf("done.\n");
slab_print_list();
if (!quiet) {
printf("done.\n");
slab_print_list();
}
slab_cache_destroy(cache1);
slab_cache_destroy(cache2);
}
119,6 → 135,7
static semaphore_t thr_sem;
static condvar_t thread_starter;
static mutex_t starter_mutex;
static bool sh_quiet;
 
#define THREADS 8
 
125,55 → 142,69
static void slabtest(void *priv)
{
void *data = NULL, *new;
 
thread_detach(THREAD);
 
mutex_lock(&starter_mutex);
condvar_wait(&thread_starter,&starter_mutex);
mutex_unlock(&starter_mutex);
printf("Starting thread #%d...\n",THREAD->tid);
if (!sh_quiet)
printf("Starting thread #%d...\n",THREAD->tid);
 
/* Alloc all */
printf("Thread #%d allocating...\n", THREAD->tid);
if (!sh_quiet)
printf("Thread #%d allocating...\n", THREAD->tid);
while (1) {
/* Call with atomic to detect end of memory */
new = slab_alloc(thr_cache, FRAME_ATOMIC);
if (!new)
break;
*((void **)new) = data;
*((void **) new) = data;
data = new;
}
printf("Thread #%d releasing...\n", THREAD->tid);
if (!sh_quiet)
printf("Thread #%d releasing...\n", THREAD->tid);
while (data) {
new = *((void **)data);
*((void **)data) = NULL;
*((void **) data) = NULL;
slab_free(thr_cache, data);
data = new;
}
printf("Thread #%d allocating...\n", THREAD->tid);
if (!sh_quiet)
printf("Thread #%d allocating...\n", THREAD->tid);
while (1) {
/* Call with atomic to detect end of memory */
new = slab_alloc(thr_cache, FRAME_ATOMIC);
if (!new)
break;
*((void **)new) = data;
*((void **) new) = data;
data = new;
}
printf("Thread #%d releasing...\n", THREAD->tid);
if (!sh_quiet)
printf("Thread #%d releasing...\n", THREAD->tid);
while (data) {
new = *((void **)data);
*((void **)data) = NULL;
*((void **) data) = NULL;
slab_free(thr_cache, data);
data = new;
}
 
printf("Thread #%d finished\n", THREAD->tid);
if (!sh_quiet)
printf("Thread #%d finished\n", THREAD->tid);
slab_print_list();
semaphore_up(&thr_sem);
}
 
static void multitest(int size)
static void multitest(int size, bool quiet)
{
/* Start 8 threads that just allocate as much as possible,
* then release everything, then again allocate, then release
180,19 → 211,20
*/
thread_t *t;
int i;
 
printf("Running stress test with size %d\n", size);
if (!quiet)
printf("Running stress test with size %d\n", size);
condvar_initialize(&thread_starter);
mutex_initialize(&starter_mutex);
 
thr_cache = slab_cache_create("thread_cache", size, 0,
NULL, NULL,
0);
thr_cache = slab_cache_create("thread_cache", size, 0, NULL, NULL, 0);
semaphore_initialize(&thr_sem,0);
for (i = 0; i < THREADS; i++) {
if (!(t = thread_create(slabtest, NULL, TASK, 0, "slabtest", false)))
printf("Could not create thread %d\n", i);
else
if (!(t = thread_create(slabtest, NULL, TASK, 0, "slabtest", false))) {
if (!quiet)
printf("Could not create thread %d\n", i);
} else
thread_ready(t);
}
thread_sleep(1);
202,21 → 234,26
semaphore_down(&thr_sem);
slab_cache_destroy(thr_cache);
printf("Stress test complete.\n");
if (!quiet)
printf("Stress test complete.\n");
}
 
char * test_slab2(bool quiet)
{
printf("Running reclaim single-thread test .. pass 1\n");
totalmemtest();
printf("Running reclaim single-thread test .. pass 2\n");
totalmemtest();
printf("Reclaim test OK.\n");
 
multitest(128);
multitest(2048);
multitest(8192);
printf("All done.\n");
sh_quiet = quiet;
if (!quiet)
printf("Running reclaim single-thread test .. pass 1\n");
totalmemtest(quiet);
if (!quiet)
printf("Running reclaim single-thread test .. pass 2\n");
totalmemtest(quiet);
if (!quiet)
printf("Reclaim test OK.\n");
multitest(128, quiet);
multitest(2048, quiet);
multitest(8192, quiet);
return NULL;
}
/trunk/kernel/test/mm/mapping1.c
48,35 → 48,47
 
frame0 = (uintptr_t) frame_alloc(ONE_FRAME, FRAME_KA);
frame1 = (uintptr_t) frame_alloc(ONE_FRAME, FRAME_KA);
 
printf("Writing %#x to physical address %p.\n", VALUE0, KA2PA(frame0));
if (!quiet)
printf("Writing %#x to physical address %p.\n", VALUE0, KA2PA(frame0));
*((uint32_t *) frame0) = VALUE0;
printf("Writing %#x to physical address %p.\n", VALUE1, KA2PA(frame1));
if (!quiet)
printf("Writing %#x to physical address %p.\n", VALUE1, KA2PA(frame1));
*((uint32_t *) frame1) = VALUE1;
printf("Mapping virtual address %p to physical address %p.\n", PAGE0, KA2PA(frame0));
if (!quiet)
printf("Mapping virtual address %p to physical address %p.\n", PAGE0, KA2PA(frame0));
page_mapping_insert(AS_KERNEL, PAGE0, KA2PA(frame0), PAGE_PRESENT | PAGE_WRITE);
printf("Mapping virtual address %p to physical address %p.\n", PAGE1, KA2PA(frame1));
if (!quiet)
printf("Mapping virtual address %p to physical address %p.\n", PAGE1, KA2PA(frame1));
page_mapping_insert(AS_KERNEL, PAGE1, KA2PA(frame1), PAGE_PRESENT | PAGE_WRITE);
printf("Value at virtual address %p is %#x.\n", PAGE0, v0 = *((uint32_t *) PAGE0));
printf("Value at virtual address %p is %#x.\n", PAGE1, v1 = *((uint32_t *) PAGE1));
v0 = *((uint32_t *) PAGE0);
v1 = *((uint32_t *) PAGE1);
if (!quiet) {
printf("Value at virtual address %p is %#x.\n", PAGE0, v0);
printf("Value at virtual address %p is %#x.\n", PAGE1, v1);
}
if (v0 != VALUE0)
return "Value at v0 not equal to VALUE0";
if (v1 != VALUE1)
return "Value at v1 not equal to VALUE1";
 
printf("Writing %#x to virtual address %p.\n", 0, PAGE0);
if (!quiet)
printf("Writing %#x to virtual address %p.\n", 0, PAGE0);
*((uint32_t *) PAGE0) = 0;
printf("Writing %#x to virtual address %p.\n", 0, PAGE1);
if (!quiet)
printf("Writing %#x to virtual address %p.\n", 0, PAGE1);
*((uint32_t *) PAGE1) = 0;
 
v0 = *((uint32_t *) PAGE0);
v1 = *((uint32_t *) PAGE1);
printf("Value at virtual address %p is %#x.\n", PAGE0, *((uint32_t *) PAGE0));
printf("Value at virtual address %p is %#x.\n", PAGE1, *((uint32_t *) PAGE1));
if (!quiet) {
printf("Value at virtual address %p is %#x.\n", PAGE0, *((uint32_t *) PAGE0));
printf("Value at virtual address %p is %#x.\n", PAGE1, *((uint32_t *) PAGE1));
}
 
if (v0 != 0)
return "Value at v0 not equal to 0";