Subversion Repositories HelenOS

Compare Revisions

Ignore whitespace Rev 4662 → Rev 4663

/branches/sparc/kernel/kernel.config
141,6 → 141,9
# Use TSB
! [ARCH=sparc64] CONFIG_TSB (y/n)
 
# Simics SMP Hack
! [MACHINE=sun4v] CONFIG_SIMICS_SMP_HACK (y/n)
 
# Support for Z8530 serial port
! [ARCH=sparc64] CONFIG_Z8530 (y/n)
 
/branches/sparc/kernel/Makefile
122,6 → 122,10
DEFS += -DCONFIG_TSB
endif
 
ifeq ($(CONFIG_SIMICS_SMP_HACK),y)
DEFS += -DCONFIG_SIMICS_SMP_HACK
endif
 
ifeq ($(CONFIG_Z8530),y)
DEFS += -DCONFIG_Z8530
endif
/branches/sparc/kernel/arch/sparc64/include/sun4v/cpu.h
35,31 → 35,16
#ifndef KERN_sparc64_sun4v_CPU_H_
#define KERN_sparc64_sun4v_CPU_H_
 
/* Maximum number of virtual processors. */
/** Maximum number of virtual processors. */
#define MAX_NUM_STRANDS 64
 
/*
* Size of pair of pointers (one pointer to kernel stack,
* one to uspace window buffer).
*/
#define KSTACK_WBUF_PTR_SIZE (2 * 8)
/** Maximum number of logical processors in a processor core */
#define MAX_CORE_STRANDS 8
 
#ifndef __ASM__
 
/**
* Pair of two pointers, the first one points to the kernel stack of
* a userspace thread, the second one points to the userspace window
* buffer of the userspace thread. For each CPU there exists exactly
* one isntance of this structure.
*/
typedef struct {
uintptr_t kstack;
uintptr_t wbuf;
} __attribute__ ((packed)) kstack_wbuf_ptr ;
 
typedef struct {
uint64_t id; /**< virtual processor ID */
uint32_t mid; // TODO: left here only to keep the code compilable!!!
uint32_t clock_frequency; /**< Processor frequency in Hz. */
uint64_t next_tick_cmpr; /**< Next clock interrupt should be
generated when the TICK register
66,6 → 51,12
matches this value. */
} cpu_arch_t;
 
typedef struct {
uint64_t exec_unit_id;
uint8_t strand_count;
uint64_t cpuids[MAX_CORE_STRANDS];
} exec_unit_t;
 
#endif
 
#ifdef __ASM__
/branches/sparc/kernel/arch/sparc64/src/smp/sun4v/smp.c
42,6 → 42,7
#include <arch.h>
#include <config.h>
#include <macros.h>
#include <func.h>
#include <arch/types.h>
#include <synch/synch.h>
#include <synch/waitq.h>
51,74 → 52,40
#include <arch/sun4v/ipi.h>
#include <time/delay.h>
 
/** hypervisor code of the "running" state of the CPU */
#define CPU_STATE_RUNNING 2
 
/** maximum possible number of processor cores */
#define MAX_NUM_CORES 8
 
/** needed in the CPU_START hypercall */
extern void kernel_image_start(void);
 
/** needed in the CPU_START hypercall */
extern void *trap_table;
 
/** Determine number of processors. */
void smp_init(void)
{
md_node_t node = md_get_root();
count_t cpu_count = 0;
/** number of execution units detected */
uint8_t exec_unit_count = 0;
 
/* walk through MD, find the current CPU node & its clock-frequency */
while(md_next_node(&node, "cpu")) {
cpu_count++;
}
/** execution units (processor cores) */
exec_unit_t exec_units[MAX_NUM_CORES];
 
config.cpu_count = cpu_count;
}
/** CPU structures */
extern cpu_t *cpus;
 
/** maximum number of strands per a physical core detected */
unsigned int max_core_strands = 0;
 
/** Wake application processors up. */
void kmp(void *arg)
{
#if 1
(void) arg;
 
uint64_t myid;
__hypercall_fast_ret1(0, 0, 0, 0, 0, CPU_MYID, &myid);
 
/* stop the CPUs before making them execute our code */
uint64_t i;
for (i = 0; i < config.cpu_count; i++) {
if (i == myid)
continue;
 
if (__hypercall_fast1(CPU_STOP, i) != 0)
continue;
 
uint64_t state;
__hypercall_fast_ret1(i, 0, 0, 0, 0, CPU_STATE, &state);
while (state == CPU_STATE_RUNNING) {
__hypercall_fast_ret1(i, 0, 0, 0, 0, CPU_STATE, &state);
}
}
 
/* wake the processors up, one by one */
uint64_t state;
for (i = 1; i < config.cpu_count; i++) {
__hypercall_fast_ret1(i, 0, 0, 0, 0, CPU_STATE, &state);
printf("Starting CPU %d, error code = %d.\n", i, __hypercall_fast4(
CPU_START,
i,
(uint64_t) KA2PA(kernel_image_start),
KA2PA(trap_table),
bootinfo.physmem_start
));
 
if (waitq_sleep_timeout(&ap_completion_wq, 10000000, SYNCH_FLAGS_NONE) ==
ESYNCH_TIMEOUT)
printf("%s: waiting for processor (cpuid = %" PRIu32
") timed out\n", __func__, i);
}
#else
 
#ifdef CONFIG_SIMICS_SMP_HACK
/**
* Copies a piece of HelenOS code to the place where OBP had its IPI handler.
* By sending an IPI by the BSP to the AP the code will be executed.
* The code will jump to the first instruction of the kernel. This is
* a workaround how to make APs execute HelenOS code on Simics.
*/
static void simics_smp_hack_init(void) {
asm volatile (
"setx temp_cpu_mondo_handler, %g4, %g6 \n"
//"setx 0x80246ad8, %g4, %g7 \n"
"setx 0x80200f80, %g4, %g7 \n"
 
"ldx [%g6], %g4 \n"
168,14 → 135,272
"flush %i7"
 
);
delay(1000);
printf("Result: %d\n", ipi_unicast_to((void (*)(void)) 1234, 1));
if (waitq_sleep_timeout(&ap_completion_wq, 10000000, SYNCH_FLAGS_NONE) ==
ESYNCH_TIMEOUT)
printf("%s: waiting for processor (cpuid = %" PRIu32
") timed out\n", __func__, 1);
}
#endif
 
/**
* Finds out which execution units belong to particular CPUs. By execution unit
* we mean the physical core the logical processor is backed by. Since each
* Niagara physical core has just one integer execution unit and we will
* ignore other execution units than the integer ones, we will use the terms
* "integer execution unit", "execution unit" and "physical core"
* interchangeably.
*
* The physical cores are detected by browsing the children of the CPU node
* in the machine description and looking for a node representing an integer
* execution unit. Once the integer execution unit of a particular CPU is
* known, the ID of the CPU is added to the list of cpuids of the corresponding
* execution unit structure (exec_unit_t). If an execution unit is encountered
* for the first time, a new execution unit structure (exec_unit_t) must be
* created first and added to the execution units array (exec_units).
*
* If the function fails to find an execution unit for a CPU (this may happen
* on machines with older firmware or on Simics), it performs a fallback code
* which pretends there exists just one execution unit and all CPUs belong to
* it.
*
* Finally, the array of all execution units is reordered such that its element
* which represents the physical core of the the bootstrap CPU is at index 0.
* Moreover, the array of CPU IDs within the BSP's physical core structure is
* reordered such that the element which represents the ID of the BSP is at
* index 0. This is done because we would like the CPUs to be woken up
* such that the 0-index CPU of the 0-index execution unit is
* woken up first. And since the BSP is already woken up, we would like it to be
* at 0-th position of the 0-th execution unit structure.
*
* Apart from that, the code also counts the total number of CPUs and stores
* it to the global config.cpu_count variable.
*/
static void detect_execution_units(void)
{
/* ID of the bootstrap processor */
uint64_t myid;
 
/* total number of CPUs detected */
count_t cpu_count = 0;
 
/* will be set to 1 if detecting the physical cores fails */
bool exec_unit_assign_error = 0;
 
/* index of the bootstrap physical core in the array of cores */
unsigned int bsp_exec_unit_index = 0;
 
/* index of the BSP ID inside the array of bootstrap core's cpuids */
unsigned int bsp_core_strand_index = 0;
 
__hypercall_fast_ret1(0, 0, 0, 0, 0, CPU_MYID, &myid);
md_node_t node = md_get_root();
 
/* walk through all the CPU nodes in the MD*/
while (md_next_node(&node, "cpu")) {
 
uint64_t cpuid;
md_get_integer_property(node, "id", &cpuid);
cpu_count++;
 
/*
* if failed in previous CPUs, don't try
* to detect physical cores any more
*/
if (exec_unit_assign_error)
continue;
 
/* detect exec. unit for the CPU represented by current node */
uint64_t exec_unit_id = 0;
md_child_iter_t it = md_get_child_iterator(node);
 
while (md_next_child(&it)) {
md_node_t child = md_get_child_node(it);
const char *exec_unit_type;
md_get_string_property(child, "type", &exec_unit_type);
 
/* each physical core has just 1 integer exec. unit */
if (strcmp(exec_unit_type, "integer") == 0) {
exec_unit_id = child;
break;
}
}
 
/* execution unit detected successfully */
if (exec_unit_id != 0) {
 
/* find the exec. unit in array of existing units */
unsigned int i = 0;
for (i = 0; i < exec_unit_count; i++) {
if (exec_units[i].exec_unit_id == exec_unit_id)
break;
}
 
/*
* execution unit just met has not been met before, so
* create a new entry in array of all execution units
*/
if (i == exec_unit_count) {
exec_units[i].exec_unit_id = exec_unit_id;
exec_units[i].strand_count = 0;
exec_unit_count++;
}
 
/*
* remember the exec. unit and strand of the BSP
*/
if (cpuid == myid) {
bsp_exec_unit_index = i;
bsp_core_strand_index = exec_units[i].strand_count;
}
 
/* add the CPU just met to the exec. unit's list */
exec_units[i].cpuids[exec_units[i].strand_count] = cpuid;
exec_units[i].strand_count++;
max_core_strands =
exec_units[i].strand_count > max_core_strands ?
exec_units[i].strand_count : max_core_strands;
 
/* detecting execution unit failed */
} else {
exec_unit_assign_error = 1;
}
}
 
/* save the number of CPUs to a globally accessible variable */
config.cpu_count = cpu_count;
 
/*
* A fallback code which will be executed if finding out which
* execution units belong to particular CPUs fails. Pretend there
* exists just one execution unit and all CPUs belong to it.
*/
if (exec_unit_assign_error) {
bsp_exec_unit_index = 0;
exec_unit_count = 1;
exec_units[0].strand_count = cpu_count;
exec_units[0].exec_unit_id = 1;
max_core_strands = cpu_count;
 
/* browse CPUs again, assign them the fictional exec. unit */
node = md_get_root();
unsigned int i = 0;
 
while (md_next_node(&node, "cpu")) {
uint64_t cpuid;
md_get_integer_property(node, "id", &cpuid);
if (cpuid == myid) {
bsp_core_strand_index = i;
}
exec_units[0].cpuids[i++] = cpuid;
}
}
 
/*
* Reorder the execution units array elements and the cpuid array
* elements so that the BSP will always be the very first CPU of
* the very first execution unit.
*/
exec_unit_t temp_exec_unit = exec_units[0];
exec_units[0] = exec_units[bsp_exec_unit_index];
exec_units[bsp_exec_unit_index] = temp_exec_unit;
 
uint64_t temp_cpuid = exec_units[0].cpuids[0];
exec_units[0].cpuids[0] = exec_units[0].cpuids[bsp_exec_unit_index];
exec_units[0].cpuids[bsp_core_strand_index] = temp_cpuid;
 
}
 
/**
* Determine number of processors and detect physical cores. On Simics
* copy the code which will be executed by the AP when the BSP sends an
* IPI to it in order to make it execute HelenOS code.
*/
void smp_init(void)
{
detect_execution_units();
#ifdef CONFIG_SIMICS_SMP_HACK
simics_smp_hack_init();
#endif
}
 
/**
* For each CPU sets the value of cpus[i].arch.id, where i is the
* index of the CPU in the cpus variable, to the cpuid of the i-th processor
* to be run. The CPUs are run such that the CPU represented by cpus[0]
* is run first, cpus[1] is run after it, and cpus[cpu_count - 1] is run as the
* last one.
*
* The CPU IDs are set such that during waking the CPUs up the
* processor cores will be alternated, i.e. first one CPU from the first core
* will be run, after that one CPU from the second CPU core will be run,...
* then one CPU from the last core will be run, after that another CPU
* from the first core will be run, then another CPU from the second core
* will be run,... then another CPU from the last core will be run, and so on.
*/
static void init_cpuids(void)
{
unsigned int cur_core_strand;
unsigned int cur_core;
unsigned int cur_cpu = 0;
 
for (cur_core_strand = 0; cur_core_strand < max_core_strands; cur_core_strand++) {
for (cur_core = 0; cur_core < exec_unit_count; cur_core++) {
if (cur_core_strand > exec_units[cur_core].strand_count)
continue;
 
cpus[cur_cpu++].arch.id = exec_units[cur_core].cpuids[cur_core_strand];
}
}
}
 
/**
* Wakes up a single CPU.
*
* @param cpuid ID of the CPU to be woken up
*/
static bool wake_cpu(uint64_t cpuid)
{
 
#ifdef CONFIG_SIMICS_SMP_HACK
ipi_unicast_to((void (*)(void)) 1234, cpuid);
#else
/* stop the CPU before making it execute our code */
if (__hypercall_fast1(CPU_STOP, cpuid) != EOK)
return false;
 
/* wait for the CPU to stop */
uint64_t state;
__hypercall_fast_ret1(cpuid, 0, 0, 0, 0,
CPU_STATE, &state);
while (state == CPU_STATE_RUNNING) {
__hypercall_fast_ret1(cpuid, 0, 0, 0, 0,
CPU_STATE, &state);
}
 
/* make the CPU run again and execute HelenOS code */
if (__hypercall_fast4(
CPU_START, cpuid,
(uint64_t) KA2PA(kernel_image_start),
KA2PA(trap_table), bootinfo.physmem_start
) != EOK)
return false;
#endif
 
if (waitq_sleep_timeout(&ap_completion_wq, 10000000, SYNCH_FLAGS_NONE) ==
ESYNCH_TIMEOUT)
printf("%s: waiting for processor (cpuid = %" PRIu32
") timed out\n", __func__, cpuid);
 
return true;
}
 
/** Wake application processors up. */
void kmp(void *arg)
{
init_cpuids();
 
unsigned int i;
 
for (i = 1; i < config.cpu_count; i++) {
wake_cpu(cpus[i].arch.id);
}
}
 
/** @}
*/
/branches/sparc/kernel/arch/sparc64/src/proc/sun4v/scheduler.c
41,8 → 41,6
#include <arch/sun4v/cpu.h>
#include <arch/sun4v/hypercall.h>
 
extern kstack_wbuf_ptr kstack_wbuf_ptrs[MAX_NUM_STRANDS];
 
/** Perform sparc64 specific tasks needed before the new task is run. */
void before_task_runs_arch(void)
{