Subversion Repositories HelenOS

Compare Revisions

Ignore whitespace Rev 4719 → Rev 4720

/branches/network/uspace/srv/net/tl/icmp/icmp_common.c
38,7 → 38,6
#include <async.h>
#include <ipc/services.h>
 
#include "../../err.h"
#include "../../modules.h"
 
#include "../../include/icmp_common.h"
/branches/network/uspace/srv/net/tl/icmp/icmp_api.c
51,13 → 51,16
 
#include "icmp_messages.h"
 
int icmp_echo_msg( int icmp_phone, size_t size, suseconds_t timeout, ip_ttl_t ttl, ip_tos_t tos, int dont_fragment, const struct sockaddr * addr, socklen_t addrlen ){
int icmp_echo_msg( int icmp_phone, size_t size, mseconds_t timeout, ip_ttl_t ttl, ip_tos_t tos, int dont_fragment, const struct sockaddr * addr, socklen_t addrlen ){
aid_t message_id;
ipcarg_t result;
 
if( addrlen <= 0 ){
return EINVAL;
}
message_id = async_send_5( icmp_phone, NET_ICMP_ECHO, size, timeout, ttl, tos, ( ipcarg_t ) dont_fragment, NULL );
// send the address
ipc_data_write_start( icmp_phone, addr, addrlen );
ipc_data_write_start( icmp_phone, addr, ( size_t ) addrlen );
// timeout version may cause inconsistency - there is also an inner timer
// return async_wait_timeout( message_id, & result, timeout );
async_wait_for( message_id, & result );
/branches/network/uspace/srv/net/tl/icmp/icmp_messages.h
85,17 → 85,17
/** Returns the ICMP code message parameter.
* @param call The message call structure. Input parameter.
*/
#define ICMP_GET_CODE( call ) ( icmp_param_t ) IPC_GET_ARG1( call )
#define ICMP_GET_CODE( call ) ( icmp_code_t ) IPC_GET_ARG1( * call )
 
/** Returns the ICMP link MTU message parameter.
* @param call The message call structure. Input parameter.
*/
#define ICMP_GET_MTU( call ) ( icmp_param_t ) IPC_GET_ARG3( call )
#define ICMP_GET_MTU( call ) ( icmp_param_t ) IPC_GET_ARG3( * call )
 
/** Returns the pointer message parameter.
* @param call The message call structure. Input parameter.
*/
#define ICMP_GET_POINTER( call ) ( icmp_param_t ) IPC_GET_ARG3( call )
#define ICMP_GET_POINTER( call ) ( icmp_param_t ) IPC_GET_ARG3( * call )
 
/** Returns the size message parameter.
* @param call The message call structure. Input parameter.
105,7 → 105,7
/** Returns the timeout message parameter.
* @param call The message call structure. Input parameter.
*/
#define ICMP_GET_TIMEOUT( call ) ((( suseconds_t ) IPC_GET_ARG2( call )) * 1000 )
#define ICMP_GET_TIMEOUT( call ) (( suseconds_t ) IPC_GET_ARG2( call ))
 
/** Returns the time to live message parameter.
* @param call The message call structure. Input parameter.
/branches/network/uspace/srv/net/tl/icmp/icmp.c
63,6 → 63,7
#include "../../include/ip_client.h"
#include "../../include/ip_interface.h"
#include "../../include/ip_protocols.h"
#include "../../include/net_interface.h"
#include "../../include/socket_codes.h"
#include "../../include/socket_errno.h"
 
73,14 → 74,38
#include "icmp_messages.h"
#include "icmp_module.h"
 
/** Original datagram length in bytes transfered to the error notification message.
*/
#define ICMP_KEEP_LENGTH 8
 
/** Computes the ICMP datagram checksum.
* @param header The ICMP datagram header. Input/output parameter.
* @param length The total datagram length. Input parameter.
* @returns The computed checksum.
*/
#define ICMP_CHECKSUM( header, length ) htons( ip_checksum(( uint8_t * ) ( header ), ( length )))
 
/** An echo request datagrams pattern.
*/
#define ICMP_ECHO_TEXT "Hello from HelenOS."
 
#define ICMP_GET_LOCK_KEY( id, sequence ) ((( id ) << 16 ) | ( sequence & 0xFFFF ))
/** Computes an ICMP reply data key.
* @param id The message identifier. Input parameter.
* @param sequence The message sequence number. Input parameter.
* @returns The computed ICMP reply data key.
*/
#define ICMP_GET_REPLY_KEY( id, sequence ) ((( id ) << 16 ) | ( sequence & 0xFFFF ))
 
/** Type definition of the ICMP reply timeout.
* @see icmp_reply_timeout
*/
typedef struct icmp_reply_timeout icmp_reply_timeout_t;
 
/** Type definition of the ICMP reply timeout pointer.
* @see icmp_reply_timeout
*/
typedef icmp_reply_timeout_t * icmp_reply_timeout_ref;
 
/** Processes the received ICMP packet.
* Is used as an entry point from the underlying IP module.
* Releases the packet on error.
109,42 → 134,126
int icmp_process_packet( packet_t packet, services_t error );
 
/** Processes the client messages.
* Remenbers the assigned identifier and sequence numbers.
* Remembers the assigned identifier and sequence numbers.
* Runs until the client module disconnects.
* @param callid The message identifier. Input parameter.
* @param call The message parameters. Input parameter.
* @returns EOK on success.
* @returns EOK.
* @see icmp_interface.h
* @see icmp_api.h
*/
int icmp_process_client_messages( ipc_callid_t callid, ipc_call_t call );
 
/** Processes the generic client messages.
* @param call The message parameters. Input parameter.
* @returns EOK on success.
* @returns ENOTSUP if the message is not known.
* @returns Other error codes as defined for the packet_translate() function.
* @returns Other error codes as defined for the icmp_destination_unreachable_msg() function.
* @returns Other error codes as defined for the icmp_source_quench_msg() function.
* @returns Other error codes as defined for the icmp_time_exceeded_msg() function.
* @returns Other error codes as defined for the icmp_parameter_problem_msg() function.
* @see icmp_interface.h
*/
int icmp_process_message( ipc_call_t * call );
 
/** Releases the packet and returns the result.
* @param packet The packet queue to be released. Input parameter.
* @param result The result to be returned. Input parameter.
* @return The result parameter.
* @returns The result parameter.
*/
int icmp_release_and_return( packet_t packet, int result );
 
int icmp_echo( icmp_param_t id, icmp_param_t sequence, size_t size, suseconds_t timeout, ip_ttl_t ttl, ip_tos_t tos, int dont_fragment, const struct sockaddr * addr, socklen_t addrlen );
/** Requests an echo message.
* Sends a packet with specified parameters to the target host and waits for the reply upto the given timeout.
* Blocks the caller until the reply or the timeout occurres.
* @param id The message identifier. Input parameter.
* @param sequence The message sequence parameter. Input parameter.
* @param size The message data length in bytes. Input parameter.
* @param timeout The timeout in miliseconds. Input parameter.
* @param ttl The time to live. Input parameter.
* @param tos The type of service. Input parameter.
* @param dont_fragment The value indicating whether the datagram must not be fragmented. Is used as a MTU discovery. Input parameter.
* @param addr The target host address. Input parameter.
* @param addrlen The torget host address length. Input parameter.
* @returns ICMP_ECHO on success.
* @returns ETIMEOUT if the reply has not arrived before the timeout.
* @returns ICMP type of the received error notification.
* @returns EINVAL if the addrlen parameter is less or equal to zero (<=0).
* @returns ENOMEM if there is not enough memory left.
* @returns EPARTY if there was an internal error.
*/
int icmp_echo( icmp_param_t id, icmp_param_t sequence, size_t size, mseconds_t timeout, ip_ttl_t ttl, ip_tos_t tos, int dont_fragment, const struct sockaddr * addr, socklen_t addrlen );
 
/** Prepares the ICMP error packet.
* Truncates the original packet if longer than ICMP_KEEP_LENGTH bytes.
* Prefixes and returns the ICMP header.
* @param packet The original packet. Input/output parameter.
* @returns The prefixed ICMP header.
* @returns NULL on errors.
*/
icmp_header_ref icmp_prepare_packet( packet_t packet );
 
/** Sends the ICMP message.
* Sets the message type and code and computes the checksum.
* Error messages are sent only if allowed in the configuration.
* Releases the packet on errors.
* @returns EOK on success.
* @returns EPERM if the error message is not allowed.
*/
int icmp_send_packet( icmp_type_t type, icmp_code_t code, packet_t packet, icmp_header_ref header, services_t error );
int process_echo_reply( packet_t packet, icmp_header_ref header, icmp_type_t type, icmp_code_t code );
 
/** Tries to set the pending reply result as the received message type.
* If the reply data are still present, the reply timeouted and the parent fibril is awaken.
* The global lock is not released in this case to be reused by the parent fibril.
* Releases the packet.
* @param packet The received reply message. Input parameter.
* @param header The ICMP message header. Input parameter.
* @param type The received reply message type. Input parameter.
* @param code The received reply message code. Input parameter.
* @returns EOK.
*/
int icmp_process_echo_reply( packet_t packet, icmp_header_ref header, icmp_type_t type, icmp_code_t code );
 
/** Tries to set the pending reply result as timeouted.
* Sleeps the timeout period of time and then tries to obtain and set the pending reply result as timeouted and signals the reply result.
* If the reply data are still present, the reply timeouted and the parent fibril is awaken.
* The global lock is not released in this case to be reused by the parent fibril.
* Should run in a searate fibril.
* @param data The icmp_reply_timeout structure. Input parameter.
* @returns EOK on success.
* @returns EINVAL if the data parameter is NULL.
*/
int icmp_timeout_for_reply( void * data );
 
/** ICMP reply timeout data.
* Used as a timeouting fibril argument.
* @see icmp_timeout_for_reply()
*/
struct icmp_reply_timeout{
/** Reply data key.
*/
int reply_key;
/** Timeout in microseconds.
*/
suseconds_t timeout;
};
 
/** ICMP global data.
*/
icmp_globals_t icmp_globals;
 
INT_MAP_IMPLEMENT( time_locks, atomic_t );
INT_MAP_IMPLEMENT( icmp_replies, icmp_reply_t );
 
GENERIC_FIELD_IMPLEMENT( echo_data, icmp_echo_t );
GENERIC_FIELD_IMPLEMENT( icmp_echo_data, icmp_echo_t );
 
int icmp_echo_msg( int icmp_phone, size_t size, suseconds_t timeout, ip_ttl_t ttl, ip_tos_t tos, int dont_fragment, const struct sockaddr * addr, socklen_t addrlen ){
int icmp_echo_msg( int icmp_phone, size_t size, mseconds_t timeout, ip_ttl_t ttl, ip_tos_t tos, int dont_fragment, const struct sockaddr * addr, socklen_t addrlen ){
icmp_echo_ref echo_data;
int res;
 
fibril_rwlock_write_lock( & icmp_globals.lock );
// use the phone as the echo data index
echo_data = echo_data_get_index( & icmp_globals.echo_data, icmp_phone );
echo_data = icmp_echo_data_get_index( & icmp_globals.echo_data, icmp_phone );
if( ! echo_data ){
res = ENOENT;
}else{
155,96 → 264,124
return res;
}
 
int icmp_echo( icmp_param_t id, icmp_param_t sequence, size_t size, suseconds_t timeout, ip_ttl_t ttl, ip_tos_t tos, int dont_fragment, const struct sockaddr * addr, socklen_t addrlen ){
int icmp_timeout_for_reply( void * data ){
icmp_reply_ref reply;
icmp_reply_timeout_ref timeout = data;
 
if( ! timeout ){
return EINVAL;
}
// sleep the given timeout
async_usleep( timeout->timeout );
// lock the globals
fibril_rwlock_write_lock( & icmp_globals.lock );
// find the pending reply
reply = icmp_replies_find( & icmp_globals.replies, timeout->reply_key );
if( reply ){
// set the timeout result
reply->result = ETIMEOUT;
// notify the main fibril
fibril_condvar_signal( & reply->condvar );
}else{
// unlock only if no reply
fibril_rwlock_write_unlock( & icmp_globals.lock );
}
// release the timeout structure
free( timeout );
return EOK;
}
 
int icmp_echo( icmp_param_t id, icmp_param_t sequence, size_t size, mseconds_t timeout, ip_ttl_t ttl, ip_tos_t tos, int dont_fragment, const struct sockaddr * addr, socklen_t addrlen ){
ERROR_DECLARE;
 
icmp_header_ref header;
packet_t packet;
size_t offset;
size_t length;
uint8_t * data;
atomic_t * lock;
icmp_reply_ref reply;
icmp_reply_timeout_ref reply_timeout;
int result;
int index;
int lock_key;
struct sockaddr_in * address_in;
struct timeval time_before;
struct timeval time_after;
fid_t fibril;
 
if( addrlen <= 0 ){
return EINVAL;
}
length = ( size_t ) addrlen;
// TODO do not ask all the time
ERROR_PROPAGATE( ip_packet_size_req( icmp_globals.ip_phone, -1, & icmp_globals.addr_len, & icmp_globals.prefix, & icmp_globals.content, & icmp_globals.suffix ));
packet = packet_get_4( icmp_globals.net_phone, size, icmp_globals.addr_len, sizeof( icmp_header_t ) + icmp_globals.prefix, icmp_globals.suffix );
if( ! packet ) return ENOMEM;
 
// prepare the requesting packet
// set the destination address
if( addrlen < sizeof( struct sockaddr )){
return icmp_release_and_return( packet, EINVAL );
if( ERROR_OCCURRED( packet_set_addr( packet, NULL, ( const uint8_t * ) addr, length ))){
return icmp_release_and_return( packet, ERROR_CODE );
}
switch( addr->sa_family ){
case AF_INET:
if( addrlen != sizeof( struct sockaddr_in )){
return icmp_release_and_return( packet, EINVAL );
}
address_in = ( struct sockaddr_in * ) addr;
if( ERROR_OCCURRED( packet_set_addr( packet, NULL, ( uint8_t * ) & address_in->sin_addr.s_addr, sizeof( address_in->sin_addr.s_addr )))){
return icmp_release_and_return( packet, ERROR_CODE );
}
break;
default:
return icmp_release_and_return( packet, EAFNOSUPPORT );
}
// allocate space in the packet
data = ( uint8_t * ) packet_suffix( packet, size );
if( ! data ){
return icmp_release_and_return( packet, ENOMEM );
}
offset = 0;
while( size > offset + sizeof( ICMP_ECHO_TEXT )){
memcpy( data + offset, ICMP_ECHO_TEXT, sizeof( ICMP_ECHO_TEXT ));
offset += sizeof( ICMP_ECHO_TEXT );
// fill the data
length = 0;
while( size > length + sizeof( ICMP_ECHO_TEXT )){
memcpy( data + length, ICMP_ECHO_TEXT, sizeof( ICMP_ECHO_TEXT ));
length += sizeof( ICMP_ECHO_TEXT );
}
memcpy( data + offset, ICMP_ECHO_TEXT, size - offset );
header = icmp_prepare_packet( packet );
memcpy( data + length, ICMP_ECHO_TEXT, size - length );
// prefix the header
header = PACKET_PREFIX( packet, icmp_header_t );
if( ! header ){
return icmp_release_and_return( packet, ENOMEM );
}
bzero( header, sizeof( * header ));
header->un.echo.id = id;
header->un.echo.sequence = sequence;
lock_key = ICMP_GET_LOCK_KEY( header->un.echo.id, header->un.echo.sequence );
// create a locked fuxed
lock = malloc( sizeof( * lock ));
if( ! lock ){
 
// prepare the reply and the reply timeout structures
reply_timeout = malloc( sizeof( * reply_timeout ));
if( ! reply_timeout ){
return icmp_release_and_return( packet, ENOMEM );
}
atomic_set( lock, 0 );
index = time_locks_add( & icmp_globals.time_locks, lock_key, lock );
reply = malloc( sizeof( * reply ));
if( ! reply ){
free( reply_timeout );
return icmp_release_and_return( packet, ENOMEM );
}
reply_timeout->reply_key = ICMP_GET_REPLY_KEY( header->un.echo.id, header->un.echo.sequence );
// timeout in microseconds
reply_timeout->timeout = timeout * 1000;
fibril_mutex_initialize( & reply->mutex );
fibril_mutex_lock( & reply->mutex );
fibril_condvar_initialize( & reply->condvar );
index = icmp_replies_add( & icmp_globals.replies, reply_timeout->reply_key, reply );
if( index < 0 ){
free( lock );
free( reply );
free( reply_timeout );
return icmp_release_and_return( packet, index );
}
if( ERROR_OCCURRED( icmp_send_packet( ICMP_ECHO, 0, packet, header, 0 ))){
free( lock );
return icmp_release_and_return( packet, ERROR_CODE );
// start the timeouting thread
fibril = fibril_create( icmp_timeout_for_reply, reply_timeout );
if( ! fibril ){
return EPARTY;
}
// unlock the global to allow unlocking and other fibrils to work
// try to lock again - may be unlocked by the reply
ERROR_PROPAGATE( gettimeofday( & time_before, NULL ));
do{
result = atomic_get( lock );
if( result ){
break;
}else{
fibril_rwlock_write_unlock( & icmp_globals.lock );
// TODO does not yield?
//printf( "y %d\n", fibril_yield());
fibril_yield();
fibril_rwlock_write_lock( & icmp_globals.lock );
ERROR_PROPAGATE( gettimeofday( & time_after, NULL ));
}
}while( tv_sub( & time_after, & time_before ) <= timeout );
if( ! result ){
result = ELIMIT;
}
// destroy the lock
time_locks_exclude_index( & icmp_globals.time_locks, index );
fibril_add_ready( fibril );
 
// unlock the globals and wait for a reply
fibril_rwlock_write_unlock( & icmp_globals.lock );
 
// send the request
icmp_send_packet( ICMP_ECHO, 0, packet, header, 0 );
 
// wait for a reply
fibril_condvar_wait( & reply->condvar, & reply->mutex );
// read the result
result = reply->result;
 
// destroy the reply structure
fibril_mutex_unlock( & reply->mutex );
icmp_replies_exclude_index( & icmp_globals.replies, index );
return result;
}
 
252,7 → 389,9
icmp_header_ref header;
 
header = icmp_prepare_packet( packet );
if( ! header ) return ENOMEM;
if( ! header ){
return icmp_release_and_return( packet, ENOMEM );
}
if( mtu ){
header->un.frag.mtu = mtu;
}
263,7 → 402,9
icmp_header_ref header;
 
header = icmp_prepare_packet( packet );
if( ! header ) return ENOMEM;
if( ! header ){
return icmp_release_and_return( packet, ENOMEM );
}
return icmp_send_packet( ICMP_SOURCE_QUENCH, 0, packet, header, SERVICE_ICMP );
}
 
271,7 → 412,9
icmp_header_ref header;
 
header = icmp_prepare_packet( packet );
if( ! header ) return ENOMEM;
if( ! header ){
return icmp_release_and_return( packet, ENOMEM );
}
return icmp_send_packet( ICMP_TIME_EXCEEDED, code, packet, header, SERVICE_ICMP );
}
 
279,7 → 422,9
icmp_header_ref header;
 
header = icmp_prepare_packet( packet );
if( ! header ) return ENOMEM;
if( ! header ){
return icmp_release_and_return( packet, ENOMEM );
}
header->un.param.pointer = pointer;
return icmp_send_packet( ICMP_PARAMETERPROB, code, packet, header, SERVICE_ICMP );
}
294,14 → 439,12
header_length = ip_client_header_length( packet );
if( header_length <= 0 ) return NULL;
// truncate if longer than 64 bits (without the IP header)
if( total_length - header_length > ICMP_KEEP_LENGTH ){
if( packet_trim( packet, 0, total_length - header_length - ICMP_KEEP_LENGTH ) != EOK ) return NULL;
if(( total_length - header_length > ICMP_KEEP_LENGTH )
&& ( packet_trim( packet, 0, total_length - header_length - ICMP_KEEP_LENGTH ) != EOK )){
return NULL;
}
header = PACKET_PREFIX( packet, icmp_header_t );
if( ! header ){
pq_release( icmp_globals.net_phone, packet_get_id( packet ));
return NULL;
}
if( ! header ) return NULL;
bzero( header, sizeof( * header ));
return header;
}
309,13 → 452,16
int icmp_send_packet( icmp_type_t type, icmp_code_t code, packet_t packet, icmp_header_ref header, services_t error ){
ERROR_DECLARE;
 
// do not send an error if disabled
if( error && ( ! icmp_globals.error_reporting )){
return icmp_release_and_return( packet, EPERM );
}
header->type = type;
header->code = code;
header->checksum = 0;
header->checksum = ICMP_CHECKSUM( header, packet_get_data_length( packet ));
if( ERROR_OCCURRED( ip_client_prepare_packet( packet, IPPROTO_ICMP, 0, 0, 0, 0 ))){
pq_release( icmp_globals.net_phone, packet_get_id( packet ));
return ERROR_CODE;
return icmp_release_and_return( packet, ERROR_CODE );
}
return ip_send_msg( icmp_globals.ip_phone, -1, packet, SERVICE_ICMP, error );
}
332,7 → 478,7
echo_data->id = icmp_globals.last_used_id;
echo_data->sequence = 0;
// remember the assigned echo data
index = echo_data_add( & icmp_globals.echo_data, echo_data );
index = icmp_echo_data_add( & icmp_globals.echo_data, echo_data );
if( index < 0 ){
free( echo_data );
}
344,10 → 490,15
int icmp_initialize( async_client_conn_t client_connection ){
ERROR_DECLARE;
 
measured_string_t names[] = {{ "ICMP_ERROR_REPORTING", 20 }, { "ICMP_ECHO_REPLYING", 18 }};
measured_string_ref configuration;
size_t count = sizeof( names ) / sizeof( measured_string_t );
char * data;
 
fibril_rwlock_initialize( & icmp_globals.lock );
fibril_rwlock_write_lock( & icmp_globals.lock );
time_locks_initialize( & icmp_globals.time_locks );
echo_data_initialize( & icmp_globals.echo_data );
icmp_replies_initialize( & icmp_globals.replies );
icmp_echo_data_initialize( & icmp_globals.echo_data );
icmp_globals.ip_phone = ip_bind_service( SERVICE_IP, IPPROTO_ICMP, SERVICE_ICMP, client_connection, icmp_received_msg );
if( icmp_globals.ip_phone < 0 ){
return icmp_globals.ip_phone;
355,6 → 506,14
ERROR_PROPAGATE( ip_packet_size_req( icmp_globals.ip_phone, -1, & icmp_globals.addr_len, & icmp_globals.prefix, & icmp_globals.content, & icmp_globals.suffix ));
icmp_globals.prefix += sizeof( icmp_header_t );
icmp_globals.content -= sizeof( icmp_header_t );
configuration = & names[ 0 ];
// get configuration
ERROR_PROPAGATE( net_get_conf_req( icmp_globals.net_phone, & configuration, count, & data ));
if( configuration ){
icmp_globals.error_reporting = configuration[ 0 ].value && ( configuration[ 0 ].value[ 0 ] == 'y' );
icmp_globals.echo_replying = configuration[ 1 ].value && ( configuration[ 1 ].value[ 0 ] == 'y' );
net_free_settings( configuration, data );
}
fibril_rwlock_write_unlock( & icmp_globals.lock );
return EOK;
}
363,8 → 522,7
ERROR_DECLARE;
 
if( ERROR_OCCURRED( icmp_process_packet( packet, error ))){
pq_release( icmp_globals.net_phone, packet_get_id( packet ));
return ERROR_CODE;
return icmp_release_and_return( packet, ERROR_CODE );
}
 
return EOK;
401,7 → 559,7
// get rid of the ip header
result = ip_client_process_packet( packet, NULL, NULL, NULL, NULL, NULL );
if( result < 0 ) return result;
packet_trim( packet, ( size_t ) result, 0 );
ERROR_PROPAGATE( packet_trim( packet, ( size_t ) result, 0 ));
 
length = packet_get_data_length( packet );
if( length <= 0 ) return EINVAL;
411,25 → 569,58
// get icmp header
header = ( icmp_header_ref ) data;
// checksum
if(( header->checksum ) && ( ICMP_CHECKSUM( header, length ))){
return EINVAL;
/* if(( header->checksum ) && ( ICMP_CHECKSUM( header, length ))){
// set the original message type on error notification
// type swap observed in Qemu
if( error ){
switch( header->type ){
case ICMP_ECHOREPLY:
header->type = ICMP_ECHO;
break;
}
}
if( ICMP_CHECKSUM( header, length )){
return EINVAL;
}
}
*/ if( header->checksum ){
while( ICMP_CHECKSUM( header, length )){
// set the original message type on error notification
// type swap observed in Qemu
if( error ){
switch( header->type ){
case ICMP_ECHOREPLY:
header->type = ICMP_ECHO;
continue;
}
}
return EINVAL;
}
}
switch( header->type ){
case ICMP_ECHOREPLY:
return process_echo_reply( packet, header, ICMP_ECHO, 0 );
if( error ){
return icmp_process_echo_reply( packet, header, type, code );
}else{
return icmp_process_echo_reply( packet, header, ICMP_ECHO, 0 );
}
case ICMP_ECHO:
if( error ){
return process_echo_reply( packet, header, type, code );
}else{
return icmp_process_echo_reply( packet, header, type, code );
// do not send a reply if disabled
}else if( icmp_globals.echo_replying ){
addrlen = packet_get_addr( packet, & src, NULL );
if(( addrlen > 0 )
// set both addresses to the source one (avoids the source address deletion before setting the destination one)
&& ( packet_set_addr( packet, src, src, ( size_t ) addrlen ) == EOK )){
// send the reply
return icmp_send_packet( ICMP_ECHOREPLY, 0, packet, header, 0 );
icmp_send_packet( ICMP_ECHOREPLY, 0, packet, header, 0 );
return EOK;
}else{
return icmp_release_and_return( packet, EINVAL );
return EINVAL;
}
}else{
return EPERM;
}
case ICMP_DEST_UNREACH:
case ICMP_SOURCE_QUENCH:
443,28 → 634,33
case ICMP_REDIRECT_MOBILE:
case ICMP_SKIP:
case ICMP_PHOTURIS:
fibril_rwlock_read_lock( & icmp_globals.lock );
ip_received_error_msg( icmp_globals.ip_phone, -1, packet, SERVICE_IP, SERVICE_ICMP );
fibril_rwlock_read_unlock( & icmp_globals.lock );
return EOK;
default:
return icmp_release_and_return( packet, ENOTSUP );
return ENOTSUP;
}
}
 
int process_echo_reply( packet_t packet, icmp_header_ref header, icmp_type_t type, icmp_code_t code ){
int lock_key;
atomic_t * lock;
int icmp_process_echo_reply( packet_t packet, icmp_header_ref header, icmp_type_t type, icmp_code_t code ){
int reply_key;
icmp_reply_ref reply;
 
lock_key = ICMP_GET_LOCK_KEY( header->un.echo.id, header->un.echo.sequence );
// compute the reply key
reply_key = ICMP_GET_REPLY_KEY( header->un.echo.id, header->un.echo.sequence );
pq_release( icmp_globals.net_phone, packet_get_id( packet ));
// lock the globals
fibril_rwlock_write_lock( & icmp_globals.lock );
lock = time_locks_find( & icmp_globals.time_locks, lock_key );
if( lock ){
// unlock the lock for the waiting fibril
atomic_set( lock, type );
// find the pending reply
reply = icmp_replies_find( & icmp_globals.replies, reply_key );
if( reply ){
// set the result
reply->result = type;
// notify the main fibril
fibril_condvar_signal( & reply->condvar );
}else{
// unlock only if no reply
fibril_rwlock_write_unlock( & icmp_globals.lock );
}
pq_release( icmp_globals.net_phone, packet_get_id( packet ));
fibril_rwlock_write_unlock( & icmp_globals.lock );
return EOK;
}
 
482,6 → 678,8
return ERROR_CODE;
case NET_ICMP_INIT:
return icmp_process_client_messages( callid, * call );
default:
return icmp_process_message( call );
}
return ENOTSUP;
}
493,8 → 691,7
fibril_rwlock_t lock;
ipc_call_t answer;
int answer_count;
packet_t packet;
size_t addrlen;
size_t length;
struct sockaddr * addr;
icmp_param_t id;
icmp_param_t sequence = 0;
526,16 → 723,16
break;
case NET_ICMP_ECHO:
fibril_rwlock_write_lock( & lock );
if( ! ipc_data_write_receive( & data_callid, & addrlen )){
if( ! ipc_data_write_receive( & data_callid, & length )){
ERROR_CODE = EINVAL;
}else{
addr = malloc( addrlen );
addr = malloc( length );
if( ! addr ){
ERROR_CODE = ENOMEM;
}else{
if( ! ERROR_OCCURRED( ipc_data_write_finalize( data_callid, addr, addrlen ))){
if( ! ERROR_OCCURRED( ipc_data_write_finalize( data_callid, addr, length ))){
fibril_rwlock_write_lock( & icmp_globals.lock );
ERROR_CODE = icmp_echo( id, sequence, ICMP_GET_SIZE( call ), ICMP_GET_TIMEOUT( call ), ICMP_GET_TTL( call ), ICMP_GET_TOS( call ), ICMP_GET_DONT_FRAGMENT( call ), addr, addrlen );
ERROR_CODE = icmp_echo( id, sequence, ICMP_GET_SIZE( call ), ICMP_GET_TIMEOUT( call ), ICMP_GET_TTL( call ), ICMP_GET_TOS( call ), ICMP_GET_DONT_FRAGMENT( call ), addr, ( socklen_t ) length );
fibril_rwlock_write_unlock( & icmp_globals.lock );
free( addr );
++ sequence;
544,26 → 741,8
}
fibril_rwlock_write_unlock( & lock );
break;
case NET_ICMP_DEST_UNREACH:
if( ! ERROR_OCCURRED( packet_translate( icmp_globals.net_phone, & packet, IPC_GET_PACKET( & call )))){
ERROR_CODE = icmp_destination_unreachable_msg( 0, ICMP_GET_CODE( call ), ICMP_GET_MTU( call ), packet );
}
break;
case NET_ICMP_SOURCE_QUENCH:
if( ! ERROR_OCCURRED( packet_translate( icmp_globals.net_phone, & packet, IPC_GET_PACKET( & call )))){
ERROR_CODE = icmp_source_quench_msg( 0, packet );
}
case NET_ICMP_TIME_EXCEEDED:
if( ! ERROR_OCCURRED( packet_translate( icmp_globals.net_phone, & packet, IPC_GET_PACKET( & call )))){
ERROR_CODE = icmp_time_exceeded_msg( 0, ICMP_GET_CODE( call ), packet );
}
break;
case NET_ICMP_PARAMETERPROB:
if( ! ERROR_OCCURRED( packet_translate( icmp_globals.net_phone, & packet, IPC_GET_PACKET( & call )))){
ERROR_CODE = icmp_parameter_problem_msg( 0, ICMP_GET_CODE( call ), ICMP_GET_POINTER( call ), packet );
}
default:
ERROR_CODE = ENOTSUP;
ERROR_CODE = icmp_process_message( & call );
}
 
answer_call( callid, ERROR_CODE, & answer, answer_count );
572,6 → 751,37
return EOK;
}
 
int icmp_process_message( ipc_call_t * call ){
ERROR_DECLARE;
 
packet_t packet;
 
switch( IPC_GET_METHOD( * call )){
case NET_ICMP_DEST_UNREACH:
if( ! ERROR_OCCURRED( packet_translate( icmp_globals.net_phone, & packet, IPC_GET_PACKET( call )))){
ERROR_CODE = icmp_destination_unreachable_msg( 0, ICMP_GET_CODE( call ), ICMP_GET_MTU( call ), packet );
}
return ERROR_CODE;
case NET_ICMP_SOURCE_QUENCH:
if( ! ERROR_OCCURRED( packet_translate( icmp_globals.net_phone, & packet, IPC_GET_PACKET( call )))){
ERROR_CODE = icmp_source_quench_msg( 0, packet );
}
return ERROR_CODE;
case NET_ICMP_TIME_EXCEEDED:
if( ! ERROR_OCCURRED( packet_translate( icmp_globals.net_phone, & packet, IPC_GET_PACKET( call )))){
ERROR_CODE = icmp_time_exceeded_msg( 0, ICMP_GET_CODE( call ), packet );
}
return ERROR_CODE;
case NET_ICMP_PARAMETERPROB:
if( ! ERROR_OCCURRED( packet_translate( icmp_globals.net_phone, & packet, IPC_GET_PACKET( call )))){
ERROR_CODE = icmp_parameter_problem_msg( 0, ICMP_GET_CODE( call ), ICMP_GET_POINTER( call ), packet );
}
return ERROR_CODE;
default:
return ENOTSUP;
}
}
 
int icmp_release_and_return( packet_t packet, int result ){
pq_release( icmp_globals.net_phone, packet_get_id( packet ));
return result;
/branches/network/uspace/srv/net/tl/icmp/Makefile
45,9 → 45,9
$(NET_BASE)il/ip/ip_client.c \
$(NET_BASE)il/ip/ip_remote.c \
$(NET_BASE)net/net_remote.c \
$(STRUCTURES)measured_strings.c \
$(STRUCTURES)packet/packet.c \
$(STRUCTURES)packet/packet_client.c \
$(STRUCTURES)packet/packet_remote.c \
$(STRUCTURES)measured_strings.c
$(STRUCTURES)packet/packet_remote.c
 
include $(NET_BASE)Makefile.module
/branches/network/uspace/srv/net/tl/icmp/icmp.h
37,7 → 37,6
#ifndef __NET_ICMP_H__
#define __NET_ICMP_H__
 
#include <atomic.h>
#include <fibril_sync.h>
 
#include "../../include/icmp_codes.h"
47,17 → 46,27
 
#include "icmp_header.h"
 
/** Type definition of the ICMP reply data.
* @see icmp_reply
*/
typedef struct icmp_reply icmp_reply_t;
 
/** Type definition of the ICMP reply data pointer.
* @see icmp_reply
*/
typedef icmp_reply_t * icmp_reply_ref;
 
/** Type definition of the ICMP global data.
* @see icmp_globals
*/
typedef struct icmp_globals icmp_globals_t;
 
/** Timeout locks map.
* Maps message identifiers to timeout implementing atomic variables.
* Sending fibril waits for its associated atomic variable to be set nonzero.
* Receiving fibril sets the associated atomic variable with the return value.
/** Pending replies map.
* Maps message identifiers to the pending replies.
* Sending fibril waits for its associated reply event.
* Receiving fibril sets the associated reply with the return value and signals the event.
*/
INT_MAP_DECLARE( time_locks, atomic_t );
INT_MAP_DECLARE( icmp_replies, icmp_reply_t );
 
/** Echo specific data field.
* Used for bundle modules.
64,8 → 73,22
* The bundle module gets an index to the assigned echo specific data while connecting.
* The index is used in the future semi-remote calls instead of the ICMP phone.
*/
GENERIC_FIELD_DECLARE( echo_data, icmp_echo_t );
GENERIC_FIELD_DECLARE( icmp_echo_data, icmp_echo_t );
 
/** ICMP reply data.
*/
struct icmp_reply{
/** Reply result.
*/
int result;
/** Safety lock.
*/
fibril_mutex_t mutex;
/** Received or timeouted reply signaling.
*/
fibril_condvar_t condvar;
};
 
/** ICMP global data.
*/
struct icmp_globals{
87,15 → 110,21
/** Networking module phone.
*/
int net_phone;
/** Indicates whether ICMP error reporting is enabled.
*/
int error_reporting;
/** Indicates whether ICMP echo replying (ping) is enabled.
*/
int echo_replying;
/** The last used identifier number.
*/
icmp_param_t last_used_id;
/** The budled modules assigned echo specific data.
*/
echo_data_t echo_data;
icmp_echo_data_t echo_data;
/** Echo timeout locks.
*/
time_locks_t time_locks;
icmp_replies_t replies;
/** Safety lock.
*/
fibril_rwlock_t lock;
/branches/network/uspace/srv/net/tl/udp/udp.c
50,6 → 50,7
#include "../../structures/packet/packet_client.h"
 
#include "../../include/in.h"
#include "../../include/in6.h"
#include "../../include/inet.h"
#include "../../include/ip_client.h"
#include "../../include/ip_interface.h"
130,6 → 131,7
/** Sends data from the socket to the remote address.
* Binds the socket to a free port if not already connected/bound.
* Handles the NET_SOCKET_SENDTO message.
* Supports AF_INET and AF_INET6 address families.
* @param local_sockets The application local sockets. Input/output parameter.
* @param socket_id Socket identifier. Input parameter.
* @param addr The destination address. Input parameter.
146,13 → 148,15
* @returns Other error codes as defined for the ip_client_prepare_packet() function.
* @returns Other error codes as defined for the ip_send_msg() function.
*/
int udp_sendto_message( socket_cores_ref local_sockets, int socket_id, void * addr, size_t addrlen, int fragments, int flags );
int udp_sendto_message( socket_cores_ref local_sockets, int socket_id, const struct sockaddr * addr, socklen_t addrlen, int fragments, int flags );
 
/** Receives data to the socket.
* Handles the NET_SOCKET_RECVFROM message.
* Replies the source address as well.
* @param local_sockets The application local sockets. Input parameter.
* @param socket_id Socket identifier. Input parameter.
* @param flags Various receive flags. Input parameter.
* @param addrlen The source address length. Output parameter.
* @returns The number of bytes received.
* @returns ENOTSOCK if the socket is not found.
* @returns NO_DATA if there are no received packets or data.
161,7 → 165,7
* @returns Other error codes as defined for the packet_translate() function.
* @returns Other error codes as defined for the socket_write_data() function.
*/
int udp_recvfrom_message( socket_cores_ref local_sockets, int socket_id, int flags );
int udp_recvfrom_message( socket_cores_ref local_sockets, int socket_id, int flags, size_t * addrlen );
 
/*@}*/
 
180,13 → 184,14
/** Receives data from the socket into a packet.
* @param packet The new created packet. Output parameter.
* @param prefix Reserved packet data prefix length. Input parameter.
* @param address_in The destination address to be set. Input parameter.
* @param addr The destination address. Input parameter.
* @param addrlen The address length. Input parameter.
* @returns Number of bytes received.
* @returns EINVAL if the client does not send data.
* @returns ENOMEM if there is not enough memory left.
* @returns Other error codes as defined for the ipc_data_read_finalize() function.
*/
int socket_read_packet_data( packet_ref packet, size_t prefix, struct sockaddr_in * address_in );
int socket_read_packet_data( packet_ref packet, size_t prefix, const struct sockaddr * addr, socklen_t addrlen );
 
/** Replies the data to the socket.
* @param data The data buffer to be sent. Input parameter.
197,6 → 202,17
*/
int socket_write_data( void * data, size_t data_length );
 
/** Sets the address port.
* Supports AF_INET and AF_INET6 address families.
* @param addr The address to be updated. Input/output parameter.
* @param addrlen The address length. Input parameter.
* @param port The port to be set. Input parameter.
* @returns EOK on success.
* @returns EINVAL if the address length does not match the address family.
* @returns EAFNOSUPPORT if the address family is not supported.
*/
int udp_set_address_port( struct sockaddr * addr, int addrlen, uint16_t port );
 
/** UDP global data.
*/
udp_globals_t udp_globals;
352,7 → 368,7
bool keep_on_going = true;
socket_cores_t local_sockets;
int app_phone = IPC_GET_PHONE( & call );
void * addr;
struct sockaddr * addr;
size_t addrlen;
fibril_rwlock_t lock;
ipc_call_t answer;
388,7 → 404,7
answer_count = 3;
break;
case NET_SOCKET_BIND:
res = socket_read_data( & addr, & addrlen );
res = socket_read_data(( void ** ) & addr, & addrlen );
if( res == EOK ){
fibril_rwlock_write_lock( & lock );
fibril_rwlock_write_lock( & udp_globals.lock );
399,7 → 415,7
}
break;
case NET_SOCKET_SENDTO:
res = socket_read_data( & addr, & addrlen );
res = socket_read_data(( void ** ) & addr, & addrlen );
if( res == EOK ){
fibril_rwlock_read_lock( & lock );
fibril_rwlock_read_lock( & udp_globals.lock );
412,12 → 428,12
case NET_SOCKET_RECVFROM:
fibril_rwlock_read_lock( & lock );
fibril_rwlock_read_lock( & udp_globals.lock );
res = udp_recvfrom_message( & local_sockets, SOCKET_GET_SOCKET_ID( call ), SOCKET_GET_FLAGS( call ));
res = udp_recvfrom_message( & local_sockets, SOCKET_GET_SOCKET_ID( call ), SOCKET_GET_FLAGS( call ), & addrlen );
fibril_rwlock_read_unlock( & udp_globals.lock );
fibril_rwlock_read_unlock( & lock );
if( res > 0 ){
* SOCKET_SET_READ_DATA_LENGTH( answer ) = res;
* SOCKET_SET_ADDRESS_LENGTH( answer ) = sizeof( struct sockaddr_in );
* SOCKET_SET_ADDRESS_LENGTH( answer ) = addrlen;
answer_count = 2;
res = EOK;
}
446,12 → 462,12
return EOK;
}
 
int udp_sendto_message( socket_cores_ref local_sockets, int socket_id, void * addr, size_t addrlen, int fragments, int flags ){
int udp_sendto_message( socket_cores_ref local_sockets, int socket_id, const struct sockaddr * addr, socklen_t addrlen, int fragments, int flags ){
ERROR_DECLARE;
 
socket_core_ref socket;
struct sockaddr * address;
struct sockaddr_in * address_in;
struct sockaddr_in6 * address_in6;
packet_t packet;
packet_t next_packet;
udp_header_ref header;
458,70 → 474,79
int index;
size_t total_length;
int result;
uint16_t dest_port;
 
if( addrlen < sizeof( struct sockaddr )) return EINVAL;
address = ( struct sockaddr * ) addr;
switch( address->sa_family ){
switch( addr->sa_family ){
case AF_INET:
if( addrlen != sizeof( struct sockaddr_in )) return EINVAL;
address_in = ( struct sockaddr_in * ) addr;
socket = socket_cores_find( local_sockets, socket_id );
if( ! socket ) return ENOTSOCK;
dest_port = address_in->sin_port;
break;
case AF_INET6:
if( addrlen != sizeof( struct sockaddr_in6 )) return EINVAL;
address_in6 = ( struct sockaddr_in6 * ) addr;
dest_port = address_in6->sin6_port;
break;
default:
return EAFNOSUPPORT;
}
 
// bind the socket to a random free port if not bound
while( socket->port <= 0 ){
// try to find a free port
fibril_rwlock_read_unlock( & udp_globals.lock );
fibril_rwlock_write_lock( & udp_globals.lock );
if( socket->port <= 0 ){
ERROR_PROPAGATE( socket_bind_free_port( & udp_globals.sockets, socket, UDP_FREE_PORTS_START, UDP_FREE_PORTS_END, udp_globals.last_used_port ));
// set the next port as the search starting port number
udp_globals.last_used_port = socket->port;
}
fibril_rwlock_write_unlock( & udp_globals.lock );
fibril_rwlock_read_lock( & udp_globals.lock );
}
// TODO do not ask all the time
ERROR_PROPAGATE( ip_packet_size_req( udp_globals.ip_phone, -1, & udp_globals.addr_len, & udp_globals.prefix, & udp_globals.content, & udp_globals.suffix ));
socket = socket_cores_find( local_sockets, socket_id );
if( ! socket ) return ENOTSOCK;
 
// read the first packet fragment
result = socket_read_packet_data( & packet, sizeof( udp_header_t ), address_in );
if( result < 0 ) return result;
total_length = ( size_t ) result;
// prefix the udp header
header = PACKET_PREFIX( packet, udp_header_t );
if( ! header ){
pq_release( udp_globals.net_phone, packet_get_id( packet ));
return ENOMEM;
}
// read the rest of the packet fragments
for( index = 1; index < fragments; ++ index ){
result = socket_read_packet_data( & next_packet, 0, address_in );
if( result < 0 ){
return udp_release_and_return( packet, result );
}
packet = pq_add( packet, next_packet, index, 0 );
total_length += ( size_t ) result;
}
// set the udp header
header->source = htons( socket->port );
header->dest = htons( address_in->sin_port );
header->len = htons( total_length + sizeof( udp_header_t ));
// TODO my ip address for the pseudo header checksum
header->check = 0;
// prepare the first packet fragment
if( ERROR_OCCURRED( ip_client_prepare_packet( packet, IPPROTO_UDP, 0, 0, 0, 0 ))){
pq_release( udp_globals.net_phone, packet_get_id( packet ));
return ERROR_CODE;
}
// send the packet
return ip_send_msg( udp_globals.ip_phone, socket->device_id, packet, SERVICE_UDP, 0 );
// TODO IPv6
// bind the socket to a random free port if not bound
while( socket->port <= 0 ){
// try to find a free port
fibril_rwlock_read_unlock( & udp_globals.lock );
fibril_rwlock_write_lock( & udp_globals.lock );
if( socket->port <= 0 ){
ERROR_PROPAGATE( socket_bind_free_port( & udp_globals.sockets, socket, UDP_FREE_PORTS_START, UDP_FREE_PORTS_END, udp_globals.last_used_port ));
// set the next port as the search starting port number
udp_globals.last_used_port = socket->port;
}
fibril_rwlock_write_unlock( & udp_globals.lock );
fibril_rwlock_read_lock( & udp_globals.lock );
}
return EAFNOSUPPORT;
 
// TODO do not ask all the time
ERROR_PROPAGATE( ip_packet_size_req( udp_globals.ip_phone, -1, & udp_globals.addr_len, & udp_globals.prefix, & udp_globals.content, & udp_globals.suffix ));
 
// read the first packet fragment
result = socket_read_packet_data( & packet, sizeof( udp_header_t ), addr, addrlen );
if( result < 0 ) return result;
total_length = ( size_t ) result;
// prefix the udp header
header = PACKET_PREFIX( packet, udp_header_t );
if( ! header ){
pq_release( udp_globals.net_phone, packet_get_id( packet ));
return ENOMEM;
}
// read the rest of the packet fragments
for( index = 1; index < fragments; ++ index ){
result = socket_read_packet_data( & next_packet, 0, addr, addrlen );
if( result < 0 ){
return udp_release_and_return( packet, result );
}
packet = pq_add( packet, next_packet, index, 0 );
total_length += ( size_t ) result;
}
// set the udp header
header->source = htons( socket->port );
header->dest = htons( dest_port );
header->len = htons( total_length + sizeof( udp_header_t ));
// TODO my ip address for the pseudo header checksum
header->check = 0;
// prepare the first packet fragment
if( ERROR_OCCURRED( ip_client_prepare_packet( packet, IPPROTO_UDP, 0, 0, 0, 0 ))){
pq_release( udp_globals.net_phone, packet_get_id( packet ));
return ERROR_CODE;
}
// send the packet
return ip_send_msg( udp_globals.ip_phone, socket->device_id, packet, SERVICE_UDP, 0 );
}
 
int udp_recvfrom_message( socket_cores_ref local_sockets, int socket_id, int flags ){
int udp_recvfrom_message( socket_cores_ref local_sockets, int socket_id, int flags, size_t * addrlen ){
ERROR_DECLARE;
 
socket_core_ref socket;
528,15 → 553,14
int packet_id;
packet_t packet;
udp_header_ref header;
struct sockaddr_in address;
struct sockaddr * addr;
size_t length;
packet_t next_packet;
uint8_t * data;
size_t fragments;
size_t * lengths;
size_t index;
int result;
size_t index;
uint8_t * addr;
 
// find the socket
socket = socket_cores_find( local_sockets, socket_id );
552,18 → 576,17
return NO_DATA;
}
header = ( udp_header_ref ) data;
// set the source address
address.sin_family = PF_INET;
address.sin_port = ntohs( header->source );
result = packet_get_addr( packet, & addr, NULL );
if( result != sizeof( address.sin_addr.s_addr )){
 
// set the source address port
result = packet_get_addr( packet, ( uint8_t ** ) & addr, NULL );
if( ERROR_OCCURRED( udp_set_address_port( addr, result, ntohs( header->source )))){
pq_release( udp_globals.net_phone, packet_id );
return EINVAL;
return ERROR_CODE;
}
address.sin_addr.s_addr = *(( uint32_t * ) addr );
bzero( & address.sin_zero, sizeof( address.sin_zero ));
* addrlen = ( size_t ) result;
// send the source address
ERROR_PROPAGATE( socket_write_data( & address, sizeof( address )));
ERROR_PROPAGATE( socket_write_data( addr, * addrlen ));
 
next_packet = pq_next( packet );
if( ! next_packet ){
// write all if only one fragment
636,7 → 659,7
return EOK;
}
 
int socket_read_packet_data( packet_ref packet, size_t prefix, struct sockaddr_in * address_in ){
int socket_read_packet_data( packet_ref packet, size_t prefix, const struct sockaddr * addr, socklen_t addrlen ){
ERROR_DECLARE;
 
ipc_callid_t callid;
657,7 → 680,7
// read the data into the packet
if( ERROR_OCCURRED( ipc_data_write_finalize( callid, data, length ))
// set the packet destination address
|| ERROR_OCCURRED( packet_set_addr( * packet, NULL, ( uint8_t * ) & address_in->sin_addr.s_addr, sizeof( address_in->sin_addr.s_addr )))){
|| ERROR_OCCURRED( packet_set_addr( * packet, NULL, ( uint8_t * ) addr, addrlen ))){
pq_release( udp_globals.net_phone, packet_get_id( * packet ));
return ERROR_CODE;
}
691,5 → 714,29
}
}
 
int udp_set_address_port( struct sockaddr * addr, int addrlen, uint16_t port ){
struct sockaddr_in * address_in;
struct sockaddr_in6 * address_in6;
size_t length;
 
if( addrlen < 0 ) return EINVAL;
length = ( size_t ) addrlen;
if( length < sizeof( struct sockaddr )) return EINVAL;
switch( addr->sa_family ){
case AF_INET:
if( length != sizeof( struct sockaddr_in )) return EINVAL;
address_in = ( struct sockaddr_in * ) addr;
address_in->sin_port = port;
return EOK;
case AF_INET6:
if( length != sizeof( struct sockaddr_in6 )) return EINVAL;
address_in6 = ( struct sockaddr_in6 * ) addr;
address_in6->sin6_port = port;
return EOK;
default:
return EAFNOSUPPORT;
}
}
 
/** @}
*/
/branches/network/uspace/srv/net/tl/udp/Makefile
47,10 → 47,10
$(NET_BASE)tl/icmp/icmp_client.c \
$(NET_BASE)tl/icmp/icmp_common.c \
$(NET_BASE)tl/icmp/icmp_remote.c \
$(STRUCTURES)dynamic_fifo.c \
$(STRUCTURES)measured_strings.c \
$(STRUCTURES)packet/packet.c \
$(STRUCTURES)packet/packet_client.c \
$(STRUCTURES)packet/packet_remote.c \
$(STRUCTURES)dynamic_fifo.c \
$(STRUCTURES)measured_strings.c
$(STRUCTURES)packet/packet_remote.c
 
include $(NET_BASE)Makefile.module