Subversion Repositories HelenOS

Compare Revisions

No changes between revisions

Ignore whitespace Rev 3384 → Rev 3386

/branches/network/kernel/generic/src/mm/as.c
82,7 → 82,6
#include <arch/mm/cache.h>
#endif /* CONFIG_VIRT_IDX_DCACHE */
 
#ifndef __OBJC__
/**
* Each architecture decides what functions will be used to carry out
* address space operations such as creating or locking page tables.
93,7 → 92,6
* Slab for as_t objects.
*/
static slab_cache_t *as_slab;
#endif
 
/**
* This lock serializes access to the ASID subsystem.
113,13 → 111,11
/** Kernel address space. */
as_t *AS_KERNEL = NULL;
 
static int area_flags_to_page_flags(int aflags);
static as_area_t *find_area_and_lock(as_t *as, uintptr_t va);
static bool check_area_conflicts(as_t *as, uintptr_t va, size_t size,
as_area_t *avoid_area);
static void sh_info_remove_reference(share_info_t *sh_info);
static int area_flags_to_page_flags(int);
static as_area_t *find_area_and_lock(as_t *, uintptr_t);
static bool check_area_conflicts(as_t *, uintptr_t, size_t, as_area_t *);
static void sh_info_remove_reference(share_info_t *);
 
#ifndef __OBJC__
static int as_constructor(void *obj, int flags)
{
as_t *as = (as_t *) obj;
126,7 → 122,7
int rc;
 
link_initialize(&as->inactive_as_with_asid_link);
mutex_initialize(&as->lock);
mutex_initialize(&as->lock, MUTEX_PASSIVE);
rc = as_constructor_arch(as, flags);
139,7 → 135,6
 
return as_destructor_arch(as);
}
#endif
 
/** Initialize address space subsystem. */
void as_init(void)
146,10 → 141,8
{
as_arch_init();
 
#ifndef __OBJC__
as_slab = slab_cache_create("as_slab", sizeof(as_t), 0,
as_constructor, as_destructor, SLAB_CACHE_MAGDEFERRED);
#endif
AS_KERNEL = as_create(FLAG_AS_KERNEL);
if (!AS_KERNEL)
159,20 → 152,14
 
/** Create address space.
*
* @param flags Flags that influence way in wich the address space is created.
* @param flags Flags that influence the way in wich the address space
* is created.
*/
as_t *as_create(int flags)
{
as_t *as;
 
#ifdef __OBJC__
as = [as_t new];
link_initialize(&as->inactive_as_with_asid_link);
mutex_initialize(&as->lock);
(void) as_constructor_arch(as, flags);
#else
as = (as_t *) slab_alloc(as_slab, 0);
#endif
(void) as_create_arch(as, 0);
btree_create(&as->as_area_btree);
199,6 → 186,8
* zero), the address space can be destroyed.
*
* We know that we don't hold any spinlock.
*
* @param as Address space to be destroyed.
*/
void as_destroy(as_t *as)
{
263,11 → 252,7
 
interrupts_restore(ipl);
 
#ifdef __OBJC__
[as free];
#else
slab_free(as_slab, as);
#endif
}
 
/** Create address space area of common attributes.
274,19 → 259,19
*
* The created address space area is added to the target address space.
*
* @param as Target address space.
* @param flags Flags of the area memory.
* @param size Size of area.
* @param base Base address of area.
* @param attrs Attributes of the area.
* @param backend Address space area backend. NULL if no backend is used.
* @param backend_data NULL or a pointer to an array holding two void *.
* @param as Target address space.
* @param flags Flags of the area memory.
* @param size Size of area.
* @param base Base address of area.
* @param attrs Attributes of the area.
* @param backend Address space area backend. NULL if no backend is used.
* @param backend_data NULL or a pointer to an array holding two void *.
*
* @return Address space area on success or NULL on failure.
* @return Address space area on success or NULL on failure.
*/
as_area_t *
as_area_create(as_t *as, int flags, size_t size, uintptr_t base, int attrs,
mem_backend_t *backend, mem_backend_data_t *backend_data)
mem_backend_t *backend, mem_backend_data_t *backend_data)
{
ipl_t ipl;
as_area_t *a;
312,7 → 297,7
a = (as_area_t *) malloc(sizeof(as_area_t), 0);
 
mutex_initialize(&a->lock);
mutex_initialize(&a->lock, MUTEX_PASSIVE);
a->as = as;
a->flags = flags;
324,8 → 309,7
if (backend_data)
a->backend_data = *backend_data;
else
memsetb((uintptr_t) &a->backend_data, sizeof(a->backend_data),
0);
memsetb(&a->backend_data, sizeof(a->backend_data), 0);
 
btree_create(&a->used_space);
339,13 → 323,14
 
/** Find address space area and change it.
*
* @param as Address space.
* @param address Virtual address belonging to the area to be changed. Must be
* page-aligned.
* @param size New size of the virtual memory block starting at address.
* @param flags Flags influencing the remap operation. Currently unused.
* @param as Address space.
* @param address Virtual address belonging to the area to be changed.
* Must be page-aligned.
* @param size New size of the virtual memory block starting at
* address.
* @param flags Flags influencing the remap operation. Currently unused.
*
* @return Zero on success or a value from @ref errno.h otherwise.
* @return Zero on success or a value from @ref errno.h otherwise.
*/
int as_area_resize(as_t *as, uintptr_t address, size_t size, int flags)
{
431,7 → 416,7
uintptr_t b = node->key[node->keys - 1];
count_t c =
(count_t) node->value[node->keys - 1];
int i = 0;
unsigned int i = 0;
if (overlaps(b, c * PAGE_SIZE, area->base,
pages * PAGE_SIZE)) {
526,10 → 511,10
 
/** Destroy address space area.
*
* @param as Address space.
* @param address Address withing the area to be deleted.
* @param as Address space.
* @param address Address within the area to be deleted.
*
* @return Zero on success or a value from @ref errno.h on failure.
* @return Zero on success or a value from @ref errno.h on failure.
*/
int as_area_destroy(as_t *as, uintptr_t address)
{
561,7 → 546,7
for (cur = area->used_space.leaf_head.next;
cur != &area->used_space.leaf_head; cur = cur->next) {
btree_node_t *node;
int i;
unsigned int i;
node = list_get_instance(cur, btree_node_t, leaf_link);
for (i = 0; i < node->keys; i++) {
626,18 → 611,19
* sh_info of the source area. The process of duplicating the
* mapping is done through the backend share function.
*
* @param src_as Pointer to source address space.
* @param src_base Base address of the source address space area.
* @param acc_size Expected size of the source area.
* @param dst_as Pointer to destination address space.
* @param dst_base Target base address.
* @param src_as Pointer to source address space.
* @param src_base Base address of the source address space area.
* @param acc_size Expected size of the source area.
* @param dst_as Pointer to destination address space.
* @param dst_base Target base address.
* @param dst_flags_mask Destination address space area flags mask.
*
* @return Zero on success or ENOENT if there is no such task or if there is no
* such address space area, EPERM if there was a problem in accepting the area
* or ENOMEM if there was a problem in allocating destination address space
* area. ENOTSUP is returned if the address space area backend does not support
* sharing.
* @return Zero on success or ENOENT if there is no such task or if
* there is no such address space area, EPERM if there was
* a problem in accepting the area or ENOMEM if there was a
* problem in allocating destination address space area.
* ENOTSUP is returned if the address space area backend
* does not support sharing.
*/
int as_area_share(as_t *src_as, uintptr_t src_base, size_t acc_size,
as_t *dst_as, uintptr_t dst_base, int dst_flags_mask)
698,7 → 684,7
sh_info = src_area->sh_info;
if (!sh_info) {
sh_info = (share_info_t *) malloc(sizeof(share_info_t), 0);
mutex_initialize(&sh_info->lock);
mutex_initialize(&sh_info->lock, MUTEX_PASSIVE);
sh_info->refcount = 2;
btree_create(&sh_info->pagemap);
src_area->sh_info = sh_info;
756,10 → 742,11
*
* The address space area must be locked prior to this call.
*
* @param area Address space area.
* @param access Access mode.
* @param area Address space area.
* @param access Access mode.
*
* @return False if access violates area's permissions, true otherwise.
* @return False if access violates area's permissions, true
* otherwise.
*/
bool as_area_check_access(as_area_t *area, pf_access_t access)
{
775,21 → 762,181
return true;
}
 
/** Change adress space area flags.
*
* The idea is to have the same data, but with a different access mode.
* This is needed e.g. for writing code into memory and then executing it.
* In order for this to work properly, this may copy the data
* into private anonymous memory (unless it's already there).
*
* @param as Address space.
* @param flags Flags of the area memory.
* @param address Address withing the area to be changed.
*
* @return Zero on success or a value from @ref errno.h on failure.
*/
int as_area_change_flags(as_t *as, int flags, uintptr_t address)
{
as_area_t *area;
uintptr_t base;
link_t *cur;
ipl_t ipl;
int page_flags;
uintptr_t *old_frame;
index_t frame_idx;
count_t used_pages;
 
/* Flags for the new memory mapping */
page_flags = area_flags_to_page_flags(flags);
 
ipl = interrupts_disable();
mutex_lock(&as->lock);
 
area = find_area_and_lock(as, address);
if (!area) {
mutex_unlock(&as->lock);
interrupts_restore(ipl);
return ENOENT;
}
 
if (area->sh_info || area->backend != &anon_backend) {
/* Copying shared areas not supported yet */
/* Copying non-anonymous memory not supported yet */
mutex_unlock(&area->lock);
mutex_unlock(&as->lock);
interrupts_restore(ipl);
return ENOTSUP;
}
 
base = area->base;
 
/*
* Compute total number of used pages in the used_space B+tree
*/
used_pages = 0;
 
for (cur = area->used_space.leaf_head.next;
cur != &area->used_space.leaf_head; cur = cur->next) {
btree_node_t *node;
unsigned int i;
node = list_get_instance(cur, btree_node_t, leaf_link);
for (i = 0; i < node->keys; i++) {
used_pages += (count_t) node->value[i];
}
}
 
/* An array for storing frame numbers */
old_frame = malloc(used_pages * sizeof(uintptr_t), 0);
 
/*
* Start TLB shootdown sequence.
*/
tlb_shootdown_start(TLB_INVL_PAGES, as->asid, area->base, area->pages);
 
/*
* Remove used pages from page tables and remember their frame
* numbers.
*/
frame_idx = 0;
 
for (cur = area->used_space.leaf_head.next;
cur != &area->used_space.leaf_head; cur = cur->next) {
btree_node_t *node;
unsigned int i;
node = list_get_instance(cur, btree_node_t, leaf_link);
for (i = 0; i < node->keys; i++) {
uintptr_t b = node->key[i];
count_t j;
pte_t *pte;
for (j = 0; j < (count_t) node->value[i]; j++) {
page_table_lock(as, false);
pte = page_mapping_find(as, b + j * PAGE_SIZE);
ASSERT(pte && PTE_VALID(pte) &&
PTE_PRESENT(pte));
old_frame[frame_idx++] = PTE_GET_FRAME(pte);
 
/* Remove old mapping */
page_mapping_remove(as, b + j * PAGE_SIZE);
page_table_unlock(as, false);
}
}
}
 
/*
* Finish TLB shootdown sequence.
*/
 
tlb_invalidate_pages(as->asid, area->base, area->pages);
/*
* Invalidate potential software translation caches (e.g. TSB on
* sparc64).
*/
as_invalidate_translation_cache(as, area->base, area->pages);
tlb_shootdown_finalize();
 
/*
* Set the new flags.
*/
area->flags = flags;
 
/*
* Map pages back in with new flags. This step is kept separate
* so that the memory area could not be accesed with both the old and
* the new flags at once.
*/
frame_idx = 0;
 
for (cur = area->used_space.leaf_head.next;
cur != &area->used_space.leaf_head; cur = cur->next) {
btree_node_t *node;
unsigned int i;
node = list_get_instance(cur, btree_node_t, leaf_link);
for (i = 0; i < node->keys; i++) {
uintptr_t b = node->key[i];
count_t j;
for (j = 0; j < (count_t) node->value[i]; j++) {
page_table_lock(as, false);
 
/* Insert the new mapping */
page_mapping_insert(as, b + j * PAGE_SIZE,
old_frame[frame_idx++], page_flags);
 
page_table_unlock(as, false);
}
}
}
 
free(old_frame);
 
mutex_unlock(&area->lock);
mutex_unlock(&as->lock);
interrupts_restore(ipl);
 
return 0;
}
 
 
/** Handle page fault within the current address space.
*
* This is the high-level page fault handler. It decides
* whether the page fault can be resolved by any backend
* and if so, it invokes the backend to resolve the page
* fault.
* This is the high-level page fault handler. It decides whether the page fault
* can be resolved by any backend and if so, it invokes the backend to resolve
* the page fault.
*
* Interrupts are assumed disabled.
*
* @param page Faulting page.
* @param access Access mode that caused the fault (i.e. read/write/exec).
* @param istate Pointer to interrupted state.
* @param page Faulting page.
* @param access Access mode that caused the page fault (i.e.
* read/write/exec).
* @param istate Pointer to the interrupted state.
*
* @return AS_PF_FAULT on page fault, AS_PF_OK on success or AS_PF_DEFER if the
* fault was caused by copy_to_uspace() or copy_from_uspace().
* @return AS_PF_FAULT on page fault, AS_PF_OK on success or
* AS_PF_DEFER if the fault was caused by copy_to_uspace()
* or copy_from_uspace().
*/
int as_page_fault(uintptr_t page, pf_access_t access, istate_t *istate)
{
835,9 → 982,8
page_table_lock(AS, false);
/*
* To avoid race condition between two page faults
* on the same address, we need to make sure
* the mapping has not been already inserted.
* To avoid race condition between two page faults on the same address,
* we need to make sure the mapping has not been already inserted.
*/
if ((pte = page_mapping_find(AS, page))) {
if (PTE_PRESENT(pte)) {
891,8 → 1037,8
*
* When this function is enetered, no spinlocks may be held.
*
* @param old Old address space or NULL.
* @param new New address space.
* @param old Old address space or NULL.
* @param new New address space.
*/
void as_switch(as_t *old_as, as_t *new_as)
{
963,9 → 1109,9
 
/** Convert address space area flags to page flags.
*
* @param aflags Flags of some address space area.
* @param aflags Flags of some address space area.
*
* @return Flags to be passed to page_mapping_insert().
* @return Flags to be passed to page_mapping_insert().
*/
int area_flags_to_page_flags(int aflags)
{
993,9 → 1139,9
* The address space area must be locked.
* Interrupts must be disabled.
*
* @param a Address space area.
* @param a Address space area.
*
* @return Flags to be used in page_mapping_insert().
* @return Flags to be used in page_mapping_insert().
*/
int as_area_get_flags(as_area_t *a)
{
1004,23 → 1150,20
 
/** Create page table.
*
* Depending on architecture, create either address space
* private or global page table.
* Depending on architecture, create either address space private or global page
* table.
*
* @param flags Flags saying whether the page table is for kernel address space.
* @param flags Flags saying whether the page table is for the kernel
* address space.
*
* @return First entry of the page table.
* @return First entry of the page table.
*/
pte_t *page_table_create(int flags)
{
#ifdef __OBJC__
return [as_t page_table_create: flags];
#else
ASSERT(as_operations);
ASSERT(as_operations->page_table_create);
return as_operations->page_table_create(flags);
#endif
}
 
/** Destroy page table.
1027,18 → 1170,14
*
* Destroy page table in architecture specific way.
*
* @param page_table Physical address of PTL0.
* @param page_table Physical address of PTL0.
*/
void page_table_destroy(pte_t *page_table)
{
#ifdef __OBJC__
return [as_t page_table_destroy: page_table];
#else
ASSERT(as_operations);
ASSERT(as_operations->page_table_destroy);
as_operations->page_table_destroy(page_table);
#endif
}
 
/** Lock page table.
1050,36 → 1189,28
* prior to this call. Address space can be locked prior to this
* call in which case the lock argument is false.
*
* @param as Address space.
* @param lock If false, do not attempt to lock as->lock.
* @param as Address space.
* @param lock If false, do not attempt to lock as->lock.
*/
void page_table_lock(as_t *as, bool lock)
{
#ifdef __OBJC__
[as page_table_lock: lock];
#else
ASSERT(as_operations);
ASSERT(as_operations->page_table_lock);
as_operations->page_table_lock(as, lock);
#endif
}
 
/** Unlock page table.
*
* @param as Address space.
* @param unlock If false, do not attempt to unlock as->lock.
* @param as Address space.
* @param unlock If false, do not attempt to unlock as->lock.
*/
void page_table_unlock(as_t *as, bool unlock)
{
#ifdef __OBJC__
[as page_table_unlock: unlock];
#else
ASSERT(as_operations);
ASSERT(as_operations->page_table_unlock);
as_operations->page_table_unlock(as, unlock);
#endif
}
 
 
1087,17 → 1218,17
*
* The address space must be locked and interrupts must be disabled.
*
* @param as Address space.
* @param va Virtual address.
* @param as Address space.
* @param va Virtual address.
*
* @return Locked address space area containing va on success or NULL on
* failure.
* @return Locked address space area containing va on success or
* NULL on failure.
*/
as_area_t *find_area_and_lock(as_t *as, uintptr_t va)
{
as_area_t *a;
btree_node_t *leaf, *lnode;
int i;
unsigned int i;
a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf);
if (a) {
1143,19 → 1274,19
*
* The address space must be locked and interrupts must be disabled.
*
* @param as Address space.
* @param va Starting virtual address of the area being tested.
* @param size Size of the area being tested.
* @param avoid_area Do not touch this area.
* @param as Address space.
* @param va Starting virtual address of the area being tested.
* @param size Size of the area being tested.
* @param avoid_area Do not touch this area.
*
* @return True if there is no conflict, false otherwise.
* @return True if there is no conflict, false otherwise.
*/
bool check_area_conflicts(as_t *as, uintptr_t va, size_t size,
as_area_t *avoid_area)
bool
check_area_conflicts(as_t *as, uintptr_t va, size_t size, as_area_t *avoid_area)
{
as_area_t *a;
btree_node_t *leaf, *node;
int i;
unsigned int i;
/*
* We don't want any area to have conflicts with NULL page.
1240,7 → 1371,7
 
ipl = interrupts_disable();
src_area = find_area_and_lock(AS, base);
if (src_area){
if (src_area) {
size = src_area->pages * PAGE_SIZE;
mutex_unlock(&src_area->lock);
} else {
1254,17 → 1385,17
*
* The address space area must be already locked.
*
* @param a Address space area.
* @param page First page to be marked.
* @param count Number of page to be marked.
* @param a Address space area.
* @param page First page to be marked.
* @param count Number of page to be marked.
*
* @return 0 on failure and 1 on success.
* @return Zero on failure and non-zero on success.
*/
int used_space_insert(as_area_t *a, uintptr_t page, count_t count)
{
btree_node_t *leaf, *node;
count_t pages;
int i;
unsigned int i;
 
ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
ASSERT(count);
1528,8 → 1659,8
}
}
 
panic("Inconsistency detected while adding %d pages of used space at "
"%p.\n", count, page);
panic("Inconsistency detected while adding %" PRIc " pages of used "
"space at %p.\n", count, page);
}
 
/** Mark portion of address space area as unused.
1536,17 → 1667,17
*
* The address space area must be already locked.
*
* @param a Address space area.
* @param page First page to be marked.
* @param count Number of page to be marked.
* @param a Address space area.
* @param page First page to be marked.
* @param count Number of page to be marked.
*
* @return 0 on failure and 1 on success.
* @return Zero on failure and non-zero on success.
*/
int used_space_remove(as_area_t *a, uintptr_t page, count_t count)
{
btree_node_t *leaf, *node;
count_t pages;
int i;
unsigned int i;
 
ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
ASSERT(count);
1707,8 → 1838,8
}
 
error:
panic("Inconsistency detected while removing %d pages of used space "
"from %p.\n", count, page);
panic("Inconsistency detected while removing %" PRIc " pages of used "
"space from %p.\n", count, page);
}
 
/** Remove reference to address space area share info.
1715,7 → 1846,7
*
* If the reference count drops to 0, the sh_info is deallocated.
*
* @param sh_info Pointer to address space area share info.
* @param sh_info Pointer to address space area share info.
*/
void sh_info_remove_reference(share_info_t *sh_info)
{
1734,7 → 1865,7
for (cur = sh_info->pagemap.leaf_head.next;
cur != &sh_info->pagemap.leaf_head; cur = cur->next) {
btree_node_t *node;
int i;
unsigned int i;
node = list_get_instance(cur, btree_node_t, leaf_link);
for (i = 0; i < node->keys; i++)
1770,6 → 1901,12
return (unative_t) as_area_resize(AS, address, size, 0);
}
 
/** Wrapper for as_area_change_flags(). */
unative_t sys_as_area_change_flags(uintptr_t address, int flags)
{
return (unative_t) as_area_change_flags(AS, flags, address);
}
 
/** Wrapper for as_area_destroy(). */
unative_t sys_as_area_destroy(uintptr_t address)
{
1778,7 → 1915,7
 
/** Print out information about address space.
*
* @param as Address space.
* @param as Address space.
*/
void as_print(as_t *as)
{
1795,14 → 1932,14
node = list_get_instance(cur, btree_node_t, leaf_link);
int i;
unsigned int i;
for (i = 0; i < node->keys; i++) {
as_area_t *area = node->value[i];
mutex_lock(&area->lock);
printf("as_area: %p, base=%p, pages=%d (%p - %p)\n",
area, area->base, area->pages, area->base,
area->base + area->pages*PAGE_SIZE);
printf("as_area: %p, base=%p, pages=%" PRIc
" (%p - %p)\n", area, area->base, area->pages,
area->base, area->base + FRAMES2SIZE(area->pages));
mutex_unlock(&area->lock);
}
}
/branches/network/kernel/generic/src/mm/backend_anon.c
78,7 → 78,6
int anon_page_fault(as_area_t *area, uintptr_t addr, pf_access_t access)
{
uintptr_t frame;
bool dirty = false;
 
if (!as_area_check_access(area, access))
return AS_PF_FAULT;
98,7 → 97,7
ALIGN_DOWN(addr, PAGE_SIZE) - area->base, &leaf);
if (!frame) {
bool allocate = true;
int i;
unsigned int i;
/*
* Zero can be returned as a valid frame address.
106,7 → 105,7
*/
for (i = 0; i < leaf->keys; i++) {
if (leaf->key[i] ==
ALIGN_DOWN(addr, PAGE_SIZE)) {
ALIGN_DOWN(addr, PAGE_SIZE) - area->base) {
allocate = false;
break;
}
113,8 → 112,7
}
if (allocate) {
frame = (uintptr_t) frame_alloc(ONE_FRAME, 0);
memsetb(PA2KA(frame), FRAME_SIZE, 0);
dirty = true;
memsetb((void *) PA2KA(frame), FRAME_SIZE, 0);
/*
* Insert the address of the newly allocated
144,8 → 142,7
* the different causes
*/
frame = (uintptr_t) frame_alloc(ONE_FRAME, 0);
memsetb(PA2KA(frame), FRAME_SIZE, 0);
dirty = true;
memsetb((void *) PA2KA(frame), FRAME_SIZE, 0);
}
/*
193,13 → 190,13
for (cur = area->used_space.leaf_head.next;
cur != &area->used_space.leaf_head; cur = cur->next) {
btree_node_t *node;
int i;
unsigned int i;
node = list_get_instance(cur, btree_node_t, leaf_link);
for (i = 0; i < node->keys; i++) {
uintptr_t base = node->key[i];
count_t count = (count_t) node->value[i];
int j;
unsigned int j;
for (j = 0; j < count; j++) {
pte_t *pte;
/branches/network/kernel/generic/src/mm/backend_elf.c
48,6 → 48,7
#include <memstr.h>
#include <macros.h>
#include <arch.h>
#include <arch/barrier.h>
 
#ifdef CONFIG_VIRT_IDX_DCACHE
#include <arch/mm/cache.h>
67,12 → 68,13
*
* The address space area and page tables must be already locked.
*
* @param area Pointer to the address space area.
* @param addr Faulting virtual address.
* @param access Access mode that caused the fault (i.e. read/write/exec).
* @param area Pointer to the address space area.
* @param addr Faulting virtual address.
* @param access Access mode that caused the fault (i.e.
* read/write/exec).
*
* @return AS_PF_FAULT on failure (i.e. page fault) or AS_PF_OK on success (i.e.
* serviced).
* @return AS_PF_FAULT on failure (i.e. page fault) or AS_PF_OK
* on success (i.e. serviced).
*/
int elf_page_fault(as_area_t *area, uintptr_t addr, pf_access_t access)
{
79,7 → 81,7
elf_header_t *elf = area->backend_data.elf;
elf_segment_header_t *entry = area->backend_data.segment;
btree_node_t *leaf;
uintptr_t base, frame;
uintptr_t base, frame, page, start_anon;
index_t i;
bool dirty = false;
 
86,12 → 88,18
if (!as_area_check_access(area, access))
return AS_PF_FAULT;
 
ASSERT((addr >= entry->p_vaddr) &&
ASSERT((addr >= ALIGN_DOWN(entry->p_vaddr, PAGE_SIZE)) &&
(addr < entry->p_vaddr + entry->p_memsz));
i = (addr - entry->p_vaddr) >> PAGE_WIDTH;
base = (uintptr_t) (((void *) elf) + entry->p_offset);
ASSERT(ALIGN_UP(base, FRAME_SIZE) == base);
i = (addr - ALIGN_DOWN(entry->p_vaddr, PAGE_SIZE)) >> PAGE_WIDTH;
base = (uintptr_t)
(((void *) elf) + ALIGN_DOWN(entry->p_offset, PAGE_SIZE));
 
/* Virtual address of faulting page*/
page = ALIGN_DOWN(addr, PAGE_SIZE);
 
/* Virtual address of the end of initialized part of segment */
start_anon = entry->p_vaddr + entry->p_filesz;
 
if (area->sh_info) {
bool found = false;
 
98,12 → 106,12
/*
* The address space area is shared.
*/
mutex_lock(&area->sh_info->lock);
frame = (uintptr_t) btree_search(&area->sh_info->pagemap,
ALIGN_DOWN(addr, PAGE_SIZE) - area->base, &leaf);
page - area->base, &leaf);
if (!frame) {
int i;
unsigned int i;
 
/*
* Workaround for valid NULL address.
110,8 → 118,7
*/
 
for (i = 0; i < leaf->keys; i++) {
if (leaf->key[i] ==
ALIGN_DOWN(addr, PAGE_SIZE)) {
if (leaf->key[i] == page - area->base) {
found = true;
break;
}
121,21 → 128,18
frame_reference_add(ADDR2PFN(frame));
page_mapping_insert(AS, addr, frame,
as_area_get_flags(area));
if (!used_space_insert(area,
ALIGN_DOWN(addr, PAGE_SIZE), 1))
if (!used_space_insert(area, page, 1))
panic("Could not insert used space.\n");
mutex_unlock(&area->sh_info->lock);
return AS_PF_OK;
}
}
 
/*
* The area is either not shared or the pagemap does not contain the
* mapping.
*/
if (ALIGN_DOWN(addr, PAGE_SIZE) + PAGE_SIZE <
entry->p_vaddr + entry->p_filesz) {
if (page >= entry->p_vaddr && page + PAGE_SIZE <= start_anon) {
/*
* Initialized portion of the segment. The memory is backed
* directly by the content of the ELF image. Pages are
148,20 → 152,15
frame = (uintptr_t)frame_alloc(ONE_FRAME, 0);
memcpy((void *) PA2KA(frame),
(void *) (base + i * FRAME_SIZE), FRAME_SIZE);
if (entry->p_flags & PF_X) {
smc_coherence_block((void *) PA2KA(frame),
FRAME_SIZE);
}
dirty = true;
 
if (area->sh_info) {
frame_reference_add(ADDR2PFN(frame));
btree_insert(&area->sh_info->pagemap,
ALIGN_DOWN(addr, PAGE_SIZE) - area->base,
(void *) frame, leaf);
}
 
} else {
frame = KA2PA(base + i*FRAME_SIZE);
frame = KA2PA(base + i * FRAME_SIZE);
}
} else if (ALIGN_DOWN(addr, PAGE_SIZE) >=
ALIGN_UP(entry->p_vaddr + entry->p_filesz, PAGE_SIZE)) {
} else if (page >= start_anon) {
/*
* This is the uninitialized portion of the segment.
* It is not physically present in the ELF image.
169,44 → 168,52
* and cleared.
*/
frame = (uintptr_t)frame_alloc(ONE_FRAME, 0);
memsetb(PA2KA(frame), FRAME_SIZE, 0);
memsetb((void *) PA2KA(frame), FRAME_SIZE, 0);
dirty = true;
 
if (area->sh_info) {
frame_reference_add(ADDR2PFN(frame));
btree_insert(&area->sh_info->pagemap,
ALIGN_DOWN(addr, PAGE_SIZE) - area->base,
(void *) frame, leaf);
}
 
} else {
size_t size;
size_t pad_lo, pad_hi;
/*
* The mixed case.
* The lower part is backed by the ELF image and
* the upper part is anonymous memory.
*
* The middle part is backed by the ELF image and
* the lower and upper parts are anonymous memory.
* (The segment can be and often is shorter than 1 page).
*/
size = entry->p_filesz - (i<<PAGE_WIDTH);
if (page < entry->p_vaddr)
pad_lo = entry->p_vaddr - page;
else
pad_lo = 0;
 
if (start_anon < page + PAGE_SIZE)
pad_hi = page + PAGE_SIZE - start_anon;
else
pad_hi = 0;
 
frame = (uintptr_t)frame_alloc(ONE_FRAME, 0);
memsetb(PA2KA(frame) + size, FRAME_SIZE - size, 0);
memcpy((void *) PA2KA(frame), (void *) (base + i * FRAME_SIZE),
size);
memcpy((void *) (PA2KA(frame) + pad_lo),
(void *) (base + i * FRAME_SIZE + pad_lo),
FRAME_SIZE - pad_lo - pad_hi);
if (entry->p_flags & PF_X) {
smc_coherence_block((void *) (PA2KA(frame) + pad_lo),
FRAME_SIZE - pad_lo - pad_hi);
}
memsetb((void *) PA2KA(frame), pad_lo, 0);
memsetb((void *) (PA2KA(frame) + FRAME_SIZE - pad_hi), pad_hi,
0);
dirty = true;
}
 
if (area->sh_info) {
frame_reference_add(ADDR2PFN(frame));
btree_insert(&area->sh_info->pagemap,
ALIGN_DOWN(addr, PAGE_SIZE) - area->base,
(void *) frame, leaf);
}
if (dirty && area->sh_info) {
frame_reference_add(ADDR2PFN(frame));
btree_insert(&area->sh_info->pagemap, page - area->base,
(void *) frame, leaf);
}
 
}
if (area->sh_info)
mutex_unlock(&area->sh_info->lock);
 
page_mapping_insert(AS, addr, frame, as_area_get_flags(area));
if (!used_space_insert(area, ALIGN_DOWN(addr, PAGE_SIZE), 1))
if (!used_space_insert(area, page, 1))
panic("Could not insert used space.\n");
 
return AS_PF_OK;
216,9 → 223,10
*
* The address space area and page tables must be already locked.
*
* @param area Pointer to the address space area.
* @param page Page that is mapped to frame. Must be aligned to PAGE_SIZE.
* @param frame Frame to be released.
* @param area Pointer to the address space area.
* @param page Page that is mapped to frame. Must be aligned to
* PAGE_SIZE.
* @param frame Frame to be released.
*
*/
void elf_frame_free(as_area_t *area, uintptr_t page, uintptr_t frame)
225,17 → 233,17
{
elf_header_t *elf = area->backend_data.elf;
elf_segment_header_t *entry = area->backend_data.segment;
uintptr_t base;
uintptr_t base, start_anon;
index_t i;
ASSERT((page >= entry->p_vaddr) &&
 
ASSERT((page >= ALIGN_DOWN(entry->p_vaddr, PAGE_SIZE)) &&
(page < entry->p_vaddr + entry->p_memsz));
i = (page - entry->p_vaddr) >> PAGE_WIDTH;
base = (uintptr_t) (((void *) elf) + entry->p_offset);
ASSERT(ALIGN_UP(base, FRAME_SIZE) == base);
if (page + PAGE_SIZE <
ALIGN_UP(entry->p_vaddr + entry->p_filesz, PAGE_SIZE)) {
i = (page - ALIGN_DOWN(entry->p_vaddr, PAGE_SIZE)) >> PAGE_WIDTH;
base = (uintptr_t) (((void *) elf) +
ALIGN_DOWN(entry->p_offset, FRAME_SIZE));
start_anon = entry->p_vaddr + entry->p_filesz;
 
if (page >= entry->p_vaddr && page + PAGE_SIZE <= start_anon) {
if (entry->p_flags & PF_W) {
/*
* Free the frame with the copy of writable segment
261,7 → 269,7
*
* The address space and address space area must be locked prior to the call.
*
* @param area Address space area.
* @param area Address space area.
*/
void elf_share(as_area_t *area)
{
290,7 → 298,7
mutex_lock(&area->sh_info->lock);
for (cur = &node->leaf_link; cur != &area->used_space.leaf_head;
cur = cur->next) {
int i;
unsigned int i;
node = list_get_instance(cur, btree_node_t, leaf_link);
297,7 → 305,7
for (i = 0; i < node->keys; i++) {
uintptr_t base = node->key[i];
count_t count = (count_t) node->value[i];
int j;
unsigned int j;
/*
* Skip read-only areas of used space that are backed
304,7 → 312,8
* by the ELF image.
*/
if (!(area->flags & AS_AREA_WRITE))
if (base + count * PAGE_SIZE <= start_anon)
if (base >= entry->p_vaddr &&
base + count * PAGE_SIZE <= start_anon)
continue;
for (j = 0; j < count; j++) {
315,7 → 324,8
* ELF image.
*/
if (!(area->flags & AS_AREA_WRITE))
if (base + (j + 1) * PAGE_SIZE <=
if (base >= entry->p_vaddr &&
base + (j + 1) * PAGE_SIZE <=
start_anon)
continue;
/branches/network/kernel/generic/src/mm/frame.c
58,6 → 58,8
#include <debug.h>
#include <adt/list.h>
#include <synch/spinlock.h>
#include <synch/mutex.h>
#include <synch/condvar.h>
#include <arch/asm.h>
#include <arch.h>
#include <print.h>
103,6 → 105,14
 
static zones_t zones;
 
/*
* Synchronization primitives used to sleep when there is no memory
* available.
*/
mutex_t mem_avail_mtx;
condvar_t mem_avail_cv;
unsigned long mem_avail_frames = 0; /**< Number of available frames. */
unsigned long mem_avail_gen = 0; /**< Generation counter. */
 
/********************/
/* Helper functions */
120,7 → 130,7
 
static inline int frame_index_valid(zone_t *zone, index_t index)
{
return (index >= 0) && (index < zone->count);
return (index < zone->count);
}
 
/** Compute pfn_t from frame_t pointer & zone pointer */
129,11 → 139,9
return (frame - zone->frames);
}
 
/** Initialize frame structure
/** Initialize frame structure.
*
* Initialize frame structure.
*
* @param frame Frame structure to be initialized.
* @param frame Frame structure to be initialized.
*/
static void frame_initialize(frame_t *frame)
{
145,11 → 153,10
/* Zoneinfo functions */
/**********************/
 
/**
* Insert-sort zone into zones list
/** Insert-sort zone into zones list.
*
* @param newzone New zone to be inserted into zone list
* @return zone number on success, -1 on error
* @param newzone New zone to be inserted into zone list.
* @return Zone number on success, -1 on error.
*/
static int zones_add_zone(zone_t *newzone)
{
171,7 → 178,8
for (i = 0; i < zones.count; i++) {
/* Check for overflow */
z = zones.info[i];
if (overlaps(newzone->base, newzone->count, z->base, z->count)) {
if (overlaps(newzone->base, newzone->count, z->base,
z->count)) {
printf("Zones overlap!\n");
return -1;
}
192,17 → 200,16
return i;
}
 
/**
* Try to find a zone where can we find the frame
/** Try to find a zone where can we find the frame.
*
* Assume interrupts are disabled.
*
* @param frame Frame number contained in zone
* @param pzone If not null, it is used as zone hint. Zone index
* is filled into the variable on success.
* @return Pointer to locked zone containing frame
* @param frame Frame number contained in zone.
* @param pzone If not null, it is used as zone hint. Zone index is
* filled into the variable on success.
* @return Pointer to locked zone containing frame.
*/
static zone_t * find_zone_and_lock(pfn_t frame, unsigned int *pzone)
static zone_t *find_zone_and_lock(pfn_t frame, unsigned int *pzone)
{
unsigned int i;
unsigned int hint = pzone ? *pzone : 0;
210,7 → 217,7
spinlock_lock(&zones.lock);
 
if (hint >= zones.count || hint < 0)
if (hint >= zones.count)
hint = 0;
i = hint;
229,7 → 236,7
i++;
if (i >= zones.count)
i = 0;
} while(i != hint);
} while (i != hint);
 
spinlock_unlock(&zones.lock);
return NULL;
245,16 → 252,21
*
* Assume interrupts are disabled.
*
* @param order Size (2^order) of free space we are trying to find
* @param pzone Pointer to preferred zone or NULL, on return contains zone
* number
* @param order Size (2^order) of free space we are trying to find.
* @param flags Required flags of the target zone.
* @param pzone Pointer to preferred zone or NULL, on return contains
* zone number.
*/
static zone_t * find_free_zone_and_lock(uint8_t order, unsigned int *pzone)
static zone_t *
find_free_zone_and_lock(uint8_t order, int flags, unsigned int *pzone)
{
unsigned int i;
zone_t *z;
unsigned int hint = pzone ? *pzone : 0;
/* Mask off flags that are not applicable. */
flags &= FRAME_LOW_4_GiB;
 
spinlock_lock(&zones.lock);
if (hint >= zones.count)
hint = 0;
264,17 → 276,24
spinlock_lock(&z->lock);
 
/* Check if the zone has 2^order frames area available */
if (zone_can_alloc(z, order)) {
spinlock_unlock(&zones.lock);
if (pzone)
*pzone = i;
return z;
/*
* Check whether the zone meets the search criteria.
*/
if ((z->flags & flags) == flags) {
/*
* Check if the zone has 2^order frames area available.
*/
if (zone_can_alloc(z, order)) {
spinlock_unlock(&zones.lock);
if (pzone)
*pzone = i;
return z;
}
}
spinlock_unlock(&z->lock);
if (++i >= zones.count)
i = 0;
} while(i != hint);
} while (i != hint);
spinlock_unlock(&zones.lock);
return NULL;
}
283,12 → 302,13
/* Buddy system functions */
/**************************/
 
/** Buddy system find_block implementation
/** Buddy system find_block implementation.
*
* Find block that is parent of current list.
* That means go to lower addresses, until such block is found
*
* @param order - Order of parent must be different then this parameter!!
* @param order Order of parent must be different then this
* parameter!!
*/
static link_t *zone_buddy_find_block(buddy_system_t *b, link_t *child,
uint8_t order)
309,24 → 329,12
return NULL;
}
 
static void zone_buddy_print_id(buddy_system_t *b, link_t *block)
{
frame_t *frame;
zone_t *zone;
index_t index;
 
frame = list_get_instance(block, frame_t, buddy_link);
zone = (zone_t *) b->data;
index = frame_index(zone, frame);
printf("%zd", index);
}
 
/** Buddy system find_buddy implementation
/** Buddy system find_buddy implementation.
*
* @param b Buddy system.
* @param block Block for which buddy should be found
* @param b Buddy system.
* @param block Block for which buddy should be found.
*
* @return Buddy for given block if found
* @return Buddy for given block if found.
*/
static link_t *zone_buddy_find_buddy(buddy_system_t *b, link_t *block)
{
345,9 → 353,11
 
ASSERT(is_left ^ is_right);
if (is_left) {
index = (frame_index(zone, frame)) + (1 << frame->buddy_order);
index = (frame_index(zone, frame)) +
(1 << frame->buddy_order);
} else { /* if (is_right) */
index = (frame_index(zone, frame)) - (1 << frame->buddy_order);
index = (frame_index(zone, frame)) -
(1 << frame->buddy_order);
}
if (frame_index_valid(zone, index)) {
360,14 → 370,15
return NULL;
}
 
/** Buddy system bisect implementation
/** Buddy system bisect implementation.
*
* @param b Buddy system.
* @param block Block to bisect
* @param b Buddy system.
* @param block Block to bisect.
*
* @return right block
* @return Right block.
*/
static link_t * zone_buddy_bisect(buddy_system_t *b, link_t *block) {
static link_t *zone_buddy_bisect(buddy_system_t *b, link_t *block)
{
frame_t *frame_l, *frame_r;
 
frame_l = list_get_instance(block, frame_t, buddy_link);
376,13 → 387,14
return &frame_r->buddy_link;
}
 
/** Buddy system coalesce implementation
/** Buddy system coalesce implementation.
*
* @param b Buddy system.
* @param block_1 First block
* @param block_2 First block's buddy
* @param b Buddy system.
* @param block_1 First block.
* @param block_2 First block's buddy.
*
* @return Coalesced block (actually block that represents lower address)
* @return Coalesced block (actually block that represents lower
* address).
*/
static link_t *zone_buddy_coalesce(buddy_system_t *b, link_t *block_1,
link_t *block_2)
395,39 → 407,41
return frame1 < frame2 ? block_1 : block_2;
}
 
/** Buddy system set_order implementation
/** Buddy system set_order implementation.
*
* @param b Buddy system.
* @param block Buddy system block
* @param order Order to set
* @param b Buddy system.
* @param block Buddy system block.
* @param order Order to set.
*/
static void zone_buddy_set_order(buddy_system_t *b, link_t *block,
uint8_t order) {
uint8_t order)
{
frame_t *frame;
frame = list_get_instance(block, frame_t, buddy_link);
frame->buddy_order = order;
}
 
/** Buddy system get_order implementation
/** Buddy system get_order implementation.
*
* @param b Buddy system.
* @param block Buddy system block
* @param b Buddy system.
* @param block Buddy system block.
*
* @return Order of block
* @return Order of block.
*/
static uint8_t zone_buddy_get_order(buddy_system_t *b, link_t *block) {
static uint8_t zone_buddy_get_order(buddy_system_t *b, link_t *block)
{
frame_t *frame;
frame = list_get_instance(block, frame_t, buddy_link);
return frame->buddy_order;
}
 
/** Buddy system mark_busy implementation
/** Buddy system mark_busy implementation.
*
* @param b Buddy system
* @param block Buddy system block
*
* @param b Buddy system.
* @param block Buddy system block.
*/
static void zone_buddy_mark_busy(buddy_system_t *b, link_t * block) {
static void zone_buddy_mark_busy(buddy_system_t *b, link_t * block)
{
frame_t * frame;
 
frame = list_get_instance(block, frame_t, buddy_link);
434,13 → 448,13
frame->refcount = 1;
}
 
/** Buddy system mark_available implementation
/** Buddy system mark_available implementation.
*
* @param b Buddy system
* @param block Buddy system block
*
* @param b Buddy system.
* @param block Buddy system block.
*/
static void zone_buddy_mark_available(buddy_system_t *b, link_t *block) {
static void zone_buddy_mark_available(buddy_system_t *b, link_t *block)
{
frame_t *frame;
frame = list_get_instance(block, frame_t, buddy_link);
frame->refcount = 0;
454,8 → 468,7
.get_order = zone_buddy_get_order,
.mark_busy = zone_buddy_mark_busy,
.mark_available = zone_buddy_mark_available,
.find_block = zone_buddy_find_block,
.print_id = zone_buddy_print_id
.find_block = zone_buddy_find_block
};
 
/******************/
462,15 → 475,15
/* Zone functions */
/******************/
 
/** Allocate frame in particular zone
/** Allocate frame in particular zone.
*
* Assume zone is locked
* Assume zone is locked.
* Panics if allocation is impossible.
*
* @param zone Zone to allocate from.
* @param order Allocate exactly 2^order frames.
* @param zone Zone to allocate from.
* @param order Allocate exactly 2^order frames.
*
* @return Frame index in zone
* @return Frame index in zone.
*
*/
static pfn_t zone_frame_alloc(zone_t *zone, uint8_t order)
496,12 → 509,12
return v;
}
 
/** Free frame from zone
/** Free frame from zone.
*
* Assume zone is locked
* Assume zone is locked.
*
* @param zone Pointer to zone from which the frame is to be freed
* @param frame_idx Frame index relative to zone
* @param zone Pointer to zone from which the frame is to be freed.
* @param frame_idx Frame index relative to zone.
*/
static void zone_frame_free(zone_t *zone, index_t frame_idx)
{
524,14 → 537,14
}
}
 
/** Return frame from zone */
static frame_t * zone_get_frame(zone_t *zone, index_t frame_idx)
/** Return frame from zone. */
static frame_t *zone_get_frame(zone_t *zone, index_t frame_idx)
{
ASSERT(frame_idx < zone->count);
return &zone->frames[frame_idx];
}
 
/** Mark frame in zone unavailable to allocation */
/** Mark frame in zone unavailable to allocation. */
static void zone_mark_unavailable(zone_t *zone, index_t frame_idx)
{
frame_t *frame;
544,18 → 557,21
&frame->buddy_link);
ASSERT(link);
zone->free_count--;
 
mutex_lock(&mem_avail_mtx);
mem_avail_frames--;
mutex_unlock(&mem_avail_mtx);
}
 
/**
* Join 2 zones
/** Join two zones.
*
* Expect zone_t *z to point to space at least zone_conf_size large
* Expect zone_t *z to point to space at least zone_conf_size large.
*
* Assume z1 & z2 are locked
* Assume z1 & z2 are locked.
*
* @param z Target zone structure pointer
* @param z1 Zone to merge
* @param z2 Zone to merge
* @param z Target zone structure pointer.
* @param z1 Zone to merge.
* @param z2 Zone to merge.
*/
static void _zone_merge(zone_t *z, zone_t *z1, zone_t *z2)
{
629,7 → 645,7
}
}
 
/** Return old configuration frames into the zone
/** Return old configuration frames into the zone.
*
* We have several cases
* - the conf. data is outside of zone -> exit, shall we call frame_free??
636,9 → 652,9
* - the conf. data was created by zone_create or
* updated with reduce_region -> free every frame
*
* @param newzone The actual zone where freeing should occur
* @param oldzone Pointer to old zone configuration data that should
* be freed from new zone
* @param newzone The actual zone where freeing should occur.
* @param oldzone Pointer to old zone configuration data that should
* be freed from new zone.
*/
static void return_config_frames(zone_t *newzone, zone_t *oldzone)
{
662,7 → 678,7
}
}
 
/** Reduce allocated block to count of order 0 frames
/** Reduce allocated block to count of order 0 frames.
*
* The allocated block need 2^order frames of space. Reduce all frames
* in block to order 0 and free the unneeded frames. This means, that
670,8 → 686,8
* you have to free every frame.
*
* @param zone
* @param frame_idx Index to block
* @param count Allocated space in block
* @param frame_idx Index to block.
* @param count Allocated space in block.
*/
static void zone_reduce_region(zone_t *zone, pfn_t frame_idx, count_t count)
{
698,7 → 714,7
}
}
 
/** Merge zones z1 and z2
/** Merge zones z1 and z2.
*
* - the zones must be 2 zones with no zone existing in between,
* which means that z2 = z1+1
719,10 → 735,10
ipl = interrupts_disable();
spinlock_lock(&zones.lock);
 
if (z1 < 0 || z1 >= zones.count || z2 < 0 || z2 >= zones.count)
if ((z1 >= zones.count) || (z2 >= zones.count))
goto errout;
/* We can join only 2 zones with none existing inbetween */
if (z2-z1 != 1)
if (z2 - z1 != 1)
goto errout;
 
zone1 = zones.info[z1];
773,8 → 789,7
interrupts_restore(ipl);
}
 
/**
* Merge all zones into one big zone
/** Merge all zones into one big zone.
*
* It is reasonable to do this on systems whose bios reports parts in chunks,
* so that we could have 1 zone (it's faster).
784,21 → 799,19
int count = zones.count;
 
while (zones.count > 1 && --count) {
zone_merge(0,1);
zone_merge(0, 1);
break;
}
}
 
/** Create frame zone
/** Create new frame zone.
*
* Create new frame zone.
* @param start Physical address of the first frame within the zone.
* @param count Count of frames in zone.
* @param z Address of configuration information of zone.
* @param flags Zone flags.
*
* @param start Physical address of the first frame within the zone.
* @param count Count of frames in zone
* @param z Address of configuration information of zone
* @param flags Zone flags.
*
* @return Initialized zone.
* @return Initialized zone.
*/
static void zone_construct(pfn_t start, count_t count, zone_t *z, int flags)
{
808,7 → 821,15
spinlock_initialize(&z->lock, "zone_lock");
z->base = start;
z->count = count;
 
/* Mask off flags that are calculated automatically. */
flags &= ~FRAME_LOW_4_GiB;
/* Determine calculated flags. */
if (z->base + count < (1ULL << (32 - FRAME_WIDTH))) /* 4 GiB */
flags |= FRAME_LOW_4_GiB;
 
z->flags = flags;
 
z->free_count = count;
z->busy_count = 0;
 
819,8 → 840,7
z->buddy_system = (buddy_system_t *)&z[1];
buddy_system_create(z->buddy_system, max_order,
&zone_buddy_system_operations,
(void *) z);
&zone_buddy_system_operations, (void *) z);
/* Allocate frames _after_ the conframe */
/* Check sizes */
837,14 → 857,14
}
}
 
/** Compute configuration data size for zone
/** Compute configuration data size for zone.
*
* @param count Size of zone in frames
* @return Size of zone configuration info (in bytes)
* @param count Size of zone in frames.
* @return Size of zone configuration info (in bytes).
*/
uintptr_t zone_conf_size(count_t count)
{
int size = sizeof(zone_t) + count*sizeof(frame_t);
int size = sizeof(zone_t) + count * sizeof(frame_t);
int max_order;
 
max_order = fnzb(count);
852,20 → 872,20
return size;
}
 
/** Create and add zone to system
/** Create and add zone to system.
*
* @param start First frame number (absolute)
* @param count Size of zone in frames
* @param confframe Where configuration frames are supposed to be.
* Automatically checks, that we will not disturb the
* kernel and possibly init.
* If confframe is given _outside_ this zone, it is expected,
* that the area is already marked BUSY and big enough
* to contain zone_conf_size() amount of data.
* If the confframe is inside the area, the zone free frame
* information is modified not to include it.
* @param start First frame number (absolute).
* @param count Size of zone in frames.
* @param confframe Where configuration frames are supposed to be.
* Automatically checks, that we will not disturb the
* kernel and possibly init. If confframe is given
* _outside_ this zone, it is expected, that the area is
* already marked BUSY and big enough to contain
* zone_conf_size() amount of data. If the confframe is
* inside the area, the zone free frame information is
* modified not to include it.
*
* @return Zone number or -1 on error
* @return Zone number or -1 on error.
*/
int zone_create(pfn_t start, count_t count, pfn_t confframe, int flags)
{
884,8 → 904,8
* it does not span kernel & init
*/
confcount = SIZE2FRAMES(zone_conf_size(count));
if (confframe >= start && confframe < start+count) {
for (;confframe < start + count; confframe++) {
if (confframe >= start && confframe < start + count) {
for (; confframe < start + count; confframe++) {
addr = PFN2ADDR(confframe);
if (overlaps(addr, PFN2ADDR(confcount),
KA2PA(config.base), config.kernel_size))
919,11 → 939,16
if (znum == -1)
return -1;
 
mutex_lock(&mem_avail_mtx);
mem_avail_frames += count;
mutex_unlock(&mem_avail_mtx);
 
/* If confdata in zone, mark as unavailable */
if (confframe >= start && confframe < start + count)
for (i = confframe; i < confframe + confcount; i++) {
zone_mark_unavailable(z, i - z->base);
}
return znum;
}
 
930,7 → 955,7
/***************************************/
/* Frame functions */
 
/** Set parent of frame */
/** Set parent of frame. */
void frame_set_parent(pfn_t pfn, void *data, unsigned int hint)
{
zone_t *zone = find_zone_and_lock(pfn, &hint);
937,7 → 962,7
 
ASSERT(zone);
 
zone_get_frame(zone, pfn-zone->base)->parent = data;
zone_get_frame(zone, pfn - zone->base)->parent = data;
spinlock_unlock(&zone->lock);
}
 
955,19 → 980,20
 
/** Allocate power-of-two frames of physical memory.
*
* @param order Allocate exactly 2^order frames.
* @param flags Flags for host zone selection and address processing.
* @param pzone Preferred zone
* @param order Allocate exactly 2^order frames.
* @param flags Flags for host zone selection and address processing.
* @param pzone Preferred zone.
*
* @return Physical address of the allocated frame.
* @return Physical address of the allocated frame.
*
*/
void * frame_alloc_generic(uint8_t order, int flags, unsigned int *pzone)
void *frame_alloc_generic(uint8_t order, int flags, unsigned int *pzone)
{
ipl_t ipl;
int freed;
pfn_t v;
zone_t *zone;
unsigned long gen = 0;
loop:
ipl = interrupts_disable();
975,7 → 1001,7
/*
* First, find suitable frame zone.
*/
zone = find_free_zone_and_lock(order, pzone);
zone = find_free_zone_and_lock(order, flags, pzone);
/* If no memory, reclaim some slab memory,
if it does not help, reclaim all */
982,23 → 1008,51
if (!zone && !(flags & FRAME_NO_RECLAIM)) {
freed = slab_reclaim(0);
if (freed)
zone = find_free_zone_and_lock(order, pzone);
zone = find_free_zone_and_lock(order, flags, pzone);
if (!zone) {
freed = slab_reclaim(SLAB_RECLAIM_ALL);
if (freed)
zone = find_free_zone_and_lock(order, pzone);
zone = find_free_zone_and_lock(order, flags,
pzone);
}
}
if (!zone) {
/*
* TODO: Sleep until frames are available again.
* Sleep until some frames are available again.
*/
interrupts_restore(ipl);
 
if (flags & FRAME_ATOMIC)
if (flags & FRAME_ATOMIC) {
interrupts_restore(ipl);
return 0;
}
panic("Sleep not implemented.\n");
#ifdef CONFIG_DEBUG
unsigned long avail;
 
mutex_lock(&mem_avail_mtx);
avail = mem_avail_frames;
mutex_unlock(&mem_avail_mtx);
 
printf("Thread %" PRIu64 " waiting for %u frames, "
"%u available.\n", THREAD->tid, 1ULL << order, avail);
#endif
 
mutex_lock(&mem_avail_mtx);
while ((mem_avail_frames < (1ULL << order)) ||
gen == mem_avail_gen)
condvar_wait(&mem_avail_cv, &mem_avail_mtx);
gen = mem_avail_gen;
mutex_unlock(&mem_avail_mtx);
 
#ifdef CONFIG_DEBUG
mutex_lock(&mem_avail_mtx);
avail = mem_avail_frames;
mutex_unlock(&mem_avail_mtx);
 
printf("Thread %" PRIu64 " woken up, %u frames available.\n",
THREAD->tid, avail);
#endif
 
interrupts_restore(ipl);
goto loop;
}
1006,6 → 1060,11
v += zone->base;
 
spinlock_unlock(&zone->lock);
mutex_lock(&mem_avail_mtx);
mem_avail_frames -= (1ULL << order);
mutex_unlock(&mem_avail_mtx);
 
interrupts_restore(ipl);
 
if (flags & FRAME_KA)
1019,7 → 1078,7
* Decrement frame reference count.
* If it drops to zero, move the frame structure to free list.
*
* @param Frame Physical Address of of the frame to be freed.
* @param frame Physical Address of of the frame to be freed.
*/
void frame_free(uintptr_t frame)
{
1028,16 → 1087,26
pfn_t pfn = ADDR2PFN(frame);
 
ipl = interrupts_disable();
 
/*
* First, find host frame zone for addr.
*/
zone = find_zone_and_lock(pfn,NULL);
zone = find_zone_and_lock(pfn, NULL);
ASSERT(zone);
zone_frame_free(zone, pfn-zone->base);
zone_frame_free(zone, pfn - zone->base);
spinlock_unlock(&zone->lock);
/*
* Signal that some memory has been freed.
*/
mutex_lock(&mem_avail_mtx);
mem_avail_frames++;
mem_avail_gen++;
condvar_broadcast(&mem_avail_cv);
mutex_unlock(&mem_avail_mtx);
 
interrupts_restore(ipl);
}
 
1046,7 → 1115,7
* Find respective frame structure for supplied PFN and
* increment frame reference count.
*
* @param pfn Frame number of the frame to be freed.
* @param pfn Frame number of the frame to be freed.
*/
void frame_reference_add(pfn_t pfn)
{
1059,10 → 1128,10
/*
* First, find host frame zone for addr.
*/
zone = find_zone_and_lock(pfn,NULL);
zone = find_zone_and_lock(pfn, NULL);
ASSERT(zone);
frame = &zone->frames[pfn-zone->base];
frame = &zone->frames[pfn - zone->base];
frame->refcount++;
spinlock_unlock(&zone->lock);
1069,7 → 1138,7
interrupts_restore(ipl);
}
 
/** Mark given range unavailable in frame zones */
/** Mark given range unavailable in frame zones. */
void frame_mark_unavailable(pfn_t start, count_t count)
{
unsigned int i;
1086,15 → 1155,14
}
}
 
/** Initialize physical memory management
*
* Initialize physical memory managemnt.
*/
/** Initialize physical memory management. */
void frame_init(void)
{
if (config.cpu_active == 1) {
zones.count = 0;
spinlock_initialize(&zones.lock, "zones.lock");
mutex_initialize(&mem_avail_mtx, MUTEX_ACTIVE);
condvar_initialize(&mem_avail_cv);
}
/* Tell the architecture to create some memory */
frame_arch_init();
1122,10 → 1190,9
}
 
 
/** Return total size of all zones
*
*/
uint64_t zone_total_size(void) {
/** Return total size of all zones. */
uint64_t zone_total_size(void)
{
zone_t *zone = NULL;
unsigned int i;
ipl_t ipl;
1147,53 → 1214,86
return total;
}
 
 
 
/** Prints list of zones
*
*/
void zone_print_list(void) {
/** Prints list of zones. */
void zone_print_list(void)
{
zone_t *zone = NULL;
unsigned int i;
ipl_t ipl;
 
ipl = interrupts_disable();
spinlock_lock(&zones.lock);
#ifdef __32_BITS__
printf("# base address free frames busy frames\n");
printf("-- ------------ ------------ ------------\n");
#endif
 
#ifdef __64_BITS__
printf("# base address free frames busy frames\n");
printf("-- -------------------- ------------ ------------\n");
#endif
if (sizeof(void *) == 4) {
printf("# base address free frames busy frames\n");
printf("-- ------------ ------------ ------------\n");
} else {
printf("# base address free frames busy frames\n");
printf("-- -------------------- ------------ ------------\n");
}
for (i = 0; i < zones.count; i++) {
/*
* Because printing may require allocation of memory, we may not hold
* the frame allocator locks when printing zone statistics. Therefore,
* we simply gather the statistics under the protection of the locks and
* print the statistics when the locks have been released.
*
* When someone adds/removes zones while we are printing the statistics,
* we may end up with inaccurate output (e.g. a zone being skipped from
* the listing).
*/
 
for (i = 0; ; i++) {
uintptr_t base;
count_t free_count;
count_t busy_count;
 
ipl = interrupts_disable();
spinlock_lock(&zones.lock);
if (i >= zones.count) {
spinlock_unlock(&zones.lock);
interrupts_restore(ipl);
break;
}
 
zone = zones.info[i];
spinlock_lock(&zone->lock);
 
base = PFN2ADDR(zone->base);
free_count = zone->free_count;
busy_count = zone->busy_count;
 
spinlock_unlock(&zone->lock);
if (sizeof(void *) == 4)
printf("%-2d %#10zx %12zd %12zd\n", i, PFN2ADDR(zone->base),
zone->free_count, zone->busy_count);
else
printf("%-2d %#18zx %12zd %12zd\n", i, PFN2ADDR(zone->base),
zone->free_count, zone->busy_count);
spinlock_unlock(&zones.lock);
interrupts_restore(ipl);
 
#ifdef __32_BITS__
printf("%-2u %10p %12" PRIc " %12" PRIc "\n", i, base,
free_count, busy_count);
#endif
 
#ifdef __64_BITS__
printf("%-2u %18p %12" PRIc " %12" PRIc "\n", i, base,
free_count, busy_count);
#endif
spinlock_unlock(&zone->lock);
}
spinlock_unlock(&zones.lock);
interrupts_restore(ipl);
}
 
/** Prints zone details.
*
* @param num Zone base address or zone number.
* @param num Zone base address or zone number.
*/
void zone_print_one(unsigned int num) {
void zone_print_one(unsigned int num)
{
zone_t *zone = NULL;
ipl_t ipl;
unsigned int i;
uintptr_t base;
count_t count;
count_t busy_count;
count_t free_count;
 
ipl = interrupts_disable();
spinlock_lock(&zones.lock);
1205,26 → 1305,28
}
}
if (!zone) {
spinlock_unlock(&zones.lock);
interrupts_restore(ipl);
printf("Zone not found.\n");
goto out;
return;
}
spinlock_lock(&zone->lock);
printf("Memory zone information\n");
printf("Zone base address: %#.*p\n", sizeof(uintptr_t) * 2,
PFN2ADDR(zone->base));
printf("Zone size: %zd frames (%zd KB)\n", zone->count,
SIZE2KB(FRAMES2SIZE(zone->count)));
printf("Allocated space: %zd frames (%zd KB)\n", zone->busy_count,
SIZE2KB(FRAMES2SIZE(zone->busy_count)));
printf("Available space: %zd frames (%zd KB)\n", zone->free_count,
SIZE2KB(FRAMES2SIZE(zone->free_count)));
buddy_system_structure_print(zone->buddy_system, FRAME_SIZE);
base = PFN2ADDR(zone->base);
count = zone->count;
busy_count = zone->busy_count;
free_count = zone->free_count;
spinlock_unlock(&zone->lock);
out:
spinlock_unlock(&zones.lock);
interrupts_restore(ipl);
 
printf("Zone base address: %p\n", base);
printf("Zone size: %" PRIc " frames (%" PRIs " KiB)\n", count,
SIZE2KB(FRAMES2SIZE(count)));
printf("Allocated space: %" PRIc " frames (%" PRIs " KiB)\n",
busy_count, SIZE2KB(FRAMES2SIZE(busy_count)));
printf("Available space: %" PRIc " frames (%" PRIs " KiB)\n",
free_count, SIZE2KB(FRAMES2SIZE(free_count)));
}
 
/** @}
/branches/network/kernel/generic/src/mm/buddy.c
35,8 → 35,7
* @brief Buddy allocator framework.
*
* This file contains buddy system allocator framework.
* Specialized functions are needed for this abstract framework
* to be useful.
* Specialized functions are needed for this abstract framework to be useful.
*/
 
#include <mm/buddy.h>
44,8 → 43,9
#include <arch/types.h>
#include <debug.h>
#include <print.h>
#include <macros.h>
 
/** Return size needed for the buddy configuration data */
/** Return size needed for the buddy configuration data. */
size_t buddy_conf_size(int max_order)
{
return sizeof(buddy_system_t) + (max_order + 1) * sizeof(link_t);
52,21 → 52,20
}
 
 
/** Create buddy system
/** Create buddy system.
*
* Allocate memory for and initialize new buddy system.
*
* @param b Preallocated buddy system control data.
* @param max_order The biggest allocable size will be 2^max_order.
* @param op Operations for new buddy system.
* @param data Pointer to be used by implementation.
* @param b Preallocated buddy system control data.
* @param max_order The biggest allocable size will be 2^max_order.
* @param op Operations for new buddy system.
* @param data Pointer to be used by implementation.
*
* @return New buddy system.
* @return New buddy system.
*/
void buddy_system_create(buddy_system_t *b,
uint8_t max_order,
buddy_system_operations_t *op,
void *data)
void
buddy_system_create(buddy_system_t *b, uint8_t max_order,
buddy_system_operations_t *op, void *data)
{
int i;
 
80,7 → 79,7
ASSERT(op->mark_busy);
 
/*
* Use memory after our own structure
* Use memory after our own structure.
*/
b->order = (link_t *) (&b[1]);
92,14 → 91,15
b->data = data;
}
 
/** Check if buddy system can allocate block
/** Check if buddy system can allocate block.
*
* @param b Buddy system pointer
* @param i Size of the block (2^i)
* @param b Buddy system pointer.
* @param i Size of the block (2^i).
*
* @return True if block can be allocated
* @return True if block can be allocated.
*/
bool buddy_system_can_alloc(buddy_system_t *b, uint8_t i) {
bool buddy_system_can_alloc(buddy_system_t *b, uint8_t i)
{
uint8_t k;
/*
106,12 → 106,13
* If requested block is greater then maximal block
* we know immediatly that we cannot satisfy the request.
*/
if (i > b->max_order) return false;
if (i > b->max_order)
return false;
 
/*
* Check if any bigger or equal order has free elements
*/
for (k=i; k <= b->max_order; k++) {
for (k = i; k <= b->max_order; k++) {
if (!list_empty(&b->order[k])) {
return true;
}
118,12 → 119,11
}
return false;
}
 
/** Allocate PARTICULAR block from buddy system
/** Allocate PARTICULAR block from buddy system.
*
* @ return Block of data or NULL if no such block was found
* @return Block of data or NULL if no such block was found.
*/
link_t *buddy_system_alloc_block(buddy_system_t *b, link_t *block)
{
134,7 → 134,7
ASSERT(left);
list_remove(left);
while (1) {
if (! b->op->get_order(b,left)) {
if (!b->op->get_order(b, left)) {
b->op->mark_busy(b, left);
return left;
}
142,8 → 142,8
order = b->op->get_order(b, left);
 
right = b->op->bisect(b, left);
b->op->set_order(b, left, order-1);
b->op->set_order(b, right, order-1);
b->op->set_order(b, left, order - 1);
b->op->set_order(b, right, order - 1);
 
tmp = b->op->find_block(b, block, BUDDY_SYSTEM_INNER_BLOCK);
 
160,10 → 160,10
 
/** Allocate block from buddy system.
*
* @param b Buddy system pointer.
* @param i Returned block will be 2^i big.
* @param b Buddy system pointer.
* @param i Returned block will be 2^i big.
*
* @return Block of data represented by link_t.
* @return Block of data represented by link_t.
*/
link_t *buddy_system_alloc(buddy_system_t *b, uint8_t i)
{
217,13 → 217,12
buddy_system_free(b, hlp);
return res;
}
 
/** Return block to buddy system.
*
* @param b Buddy system pointer.
* @param block Block to return.
* @param b Buddy system pointer.
* @param block Block to return.
*/
void buddy_system_free(buddy_system_t *b, link_t *block)
{
267,7 → 266,8
b->op->set_order(b, hlp, i + 1);
 
/*
* Recursively add the coalesced block to the list of order i + 1.
* Recursively add the coalesced block to the list of
* order i + 1.
*/
buddy_system_free(b, hlp);
return;
278,46 → 278,7
* Insert block into the list of order i.
*/
list_append(block, &b->order[i]);
 
}
 
/** Prints out structure of buddy system
*
* @param b Pointer to buddy system
* @param elem_size Element size
*/
void buddy_system_structure_print(buddy_system_t *b, size_t elem_size) {
index_t i;
count_t cnt, elem_count = 0, block_count = 0;
link_t * cur;
 
printf("Order\tBlocks\tSize \tBlock size\tElems per block\n");
printf("-----\t------\t--------\t----------\t---------------\n");
for (i=0;i <= b->max_order; i++) {
cnt = 0;
if (!list_empty(&b->order[i])) {
for (cur = b->order[i].next; cur != &b->order[i]; cur = cur->next)
cnt++;
}
printf("#%zd\t%5zd\t%7zdK\t%8zdK\t%6zd\t", i, cnt, (cnt * (1 << i) * elem_size) >> 10, ((1 << i) * elem_size) >> 10, 1 << i);
if (!list_empty(&b->order[i])) {
for (cur = b->order[i].next; cur != &b->order[i]; cur = cur->next) {
b->op->print_id(b, cur);
printf(" ");
}
}
printf("\n");
block_count += cnt;
elem_count += (1 << i) * cnt;
}
printf("-----\t------\t--------\t----------\t---------------\n");
printf("Buddy system contains %zd free elements (%zd blocks)\n" , elem_count, block_count);
 
}
 
/** @}
*/
/branches/network/kernel/generic/src/mm/slab.c
167,12 → 167,12
* Allocate frames for slab space and initialize
*
*/
static slab_t * slab_space_alloc(slab_cache_t *cache, int flags)
static slab_t *slab_space_alloc(slab_cache_t *cache, int flags)
{
void *data;
slab_t *slab;
size_t fsize;
int i;
unsigned int i;
unsigned int zone = 0;
data = frame_alloc_generic(cache->order, FRAME_KA | flags, &zone);
179,7 → 179,7
if (!data) {
return NULL;
}
if (! (cache->flags & SLAB_CACHE_SLINSIDE)) {
if (!(cache->flags & SLAB_CACHE_SLINSIDE)) {
slab = slab_alloc(slab_extern_cache, flags);
if (!slab) {
frame_free(KA2PA(data));
191,8 → 191,8
}
/* Fill in slab structures */
for (i=0; i < (1 << cache->order); i++)
frame_set_parent(ADDR2PFN(KA2PA(data))+i, slab, zone);
for (i = 0; i < ((unsigned int) 1 << cache->order); i++)
frame_set_parent(ADDR2PFN(KA2PA(data)) + i, slab, zone);
 
slab->start = data;
slab->available = cache->objects;
199,8 → 199,8
slab->nextavail = 0;
slab->cache = cache;
 
for (i=0; i<cache->objects;i++)
*((int *) (slab->start + i*cache->size)) = i+1;
for (i = 0; i < cache->objects; i++)
*((int *) (slab->start + i*cache->size)) = i + 1;
 
atomic_inc(&cache->allocated_slabs);
return slab;
239,8 → 239,7
*
* @return Number of freed pages
*/
static count_t slab_obj_destroy(slab_cache_t *cache, void *obj,
slab_t *slab)
static count_t slab_obj_destroy(slab_cache_t *cache, void *obj, slab_t *slab)
{
int freed = 0;
 
256,7 → 255,7
ASSERT(slab->available < cache->objects);
 
*((int *)obj) = slab->nextavail;
slab->nextavail = (obj - slab->start)/cache->size;
slab->nextavail = (obj - slab->start) / cache->size;
slab->available++;
 
/* Move it to correct list */
281,7 → 280,7
*
* @return Object address or null
*/
static void * slab_obj_create(slab_cache_t *cache, int flags)
static void *slab_obj_create(slab_cache_t *cache, int flags)
{
slab_t *slab;
void *obj;
301,7 → 300,8
return NULL;
spinlock_lock(&cache->slablock);
} else {
slab = list_get_instance(cache->partial_slabs.next, slab_t, link);
slab = list_get_instance(cache->partial_slabs.next, slab_t,
link);
list_remove(&slab->link);
}
obj = slab->start + slab->nextavail * cache->size;
332,8 → 332,7
*
* @param first If true, return first, else last mag
*/
static slab_magazine_t * get_mag_from_cache(slab_cache_t *cache,
int first)
static slab_magazine_t *get_mag_from_cache(slab_cache_t *cache, int first)
{
slab_magazine_t *mag = NULL;
link_t *cur;
368,13 → 367,12
*
* @return Number of freed pages
*/
static count_t magazine_destroy(slab_cache_t *cache,
slab_magazine_t *mag)
static count_t magazine_destroy(slab_cache_t *cache, slab_magazine_t *mag)
{
int i;
unsigned int i;
count_t frames = 0;
 
for (i=0;i < mag->busy; i++) {
for (i = 0; i < mag->busy; i++) {
frames += slab_obj_destroy(cache, mag->objs[i], NULL);
atomic_dec(&cache->cached_objs);
}
389,7 → 387,7
*
* Assume cpu_magazine lock is held
*/
static slab_magazine_t * get_full_current_mag(slab_cache_t *cache)
static slab_magazine_t *get_full_current_mag(slab_cache_t *cache)
{
slab_magazine_t *cmag, *lastmag, *newmag;
 
423,7 → 421,7
*
* @return Pointer to object or NULL if not available
*/
static void * magazine_obj_get(slab_cache_t *cache)
static void *magazine_obj_get(slab_cache_t *cache)
{
slab_magazine_t *mag;
void *obj;
458,7 → 456,7
* allocate new, exchange last & current
*
*/
static slab_magazine_t * make_empty_current_mag(slab_cache_t *cache)
static slab_magazine_t *make_empty_current_mag(slab_cache_t *cache)
{
slab_magazine_t *cmag,*lastmag,*newmag;
 
527,25 → 525,26
/* Slab cache functions */
 
/** Return number of objects that fit in certain cache size */
static int comp_objects(slab_cache_t *cache)
static unsigned int comp_objects(slab_cache_t *cache)
{
if (cache->flags & SLAB_CACHE_SLINSIDE)
return ((PAGE_SIZE << cache->order) - sizeof(slab_t)) / cache->size;
return ((PAGE_SIZE << cache->order) - sizeof(slab_t)) /
cache->size;
else
return (PAGE_SIZE << cache->order) / cache->size;
}
 
/** Return wasted space in slab */
static int badness(slab_cache_t *cache)
static unsigned int badness(slab_cache_t *cache)
{
int objects;
int ssize;
unsigned int objects;
unsigned int ssize;
 
objects = comp_objects(cache);
ssize = PAGE_SIZE << cache->order;
if (cache->flags & SLAB_CACHE_SLINSIDE)
ssize -= sizeof(slab_t);
return ssize - objects*cache->size;
return ssize - objects * cache->size;
}
 
/**
553,33 → 552,29
*/
static void make_magcache(slab_cache_t *cache)
{
int i;
unsigned int i;
ASSERT(_slab_initialized >= 2);
 
cache->mag_cache = malloc(sizeof(slab_mag_cache_t)*config.cpu_count,0);
for (i=0; i < config.cpu_count; i++) {
memsetb((uintptr_t)&cache->mag_cache[i],
sizeof(cache->mag_cache[i]), 0);
spinlock_initialize(&cache->mag_cache[i].lock,
"slab_maglock_cpu");
cache->mag_cache = malloc(sizeof(slab_mag_cache_t) * config.cpu_count,
0);
for (i = 0; i < config.cpu_count; i++) {
memsetb(&cache->mag_cache[i], sizeof(cache->mag_cache[i]), 0);
spinlock_initialize(&cache->mag_cache[i].lock,
"slab_maglock_cpu");
}
}
 
/** Initialize allocated memory as a slab cache */
static void
_slab_cache_create(slab_cache_t *cache,
char *name,
size_t size,
size_t align,
int (*constructor)(void *obj, int kmflag),
int (*destructor)(void *obj),
int flags)
_slab_cache_create(slab_cache_t *cache, char *name, size_t size, size_t align,
int (*constructor)(void *obj, int kmflag), int (*destructor)(void *obj),
int flags)
{
int pages;
ipl_t ipl;
 
memsetb((uintptr_t)cache, sizeof(*cache), 0);
memsetb(cache, sizeof(*cache), 0);
cache->name = name;
 
if (align < sizeof(unative_t))
597,7 → 592,7
list_initialize(&cache->magazines);
spinlock_initialize(&cache->slablock, "slab_lock");
spinlock_initialize(&cache->maglock, "slab_maglock");
if (! (cache->flags & SLAB_CACHE_NOMAGAZINE))
if (!(cache->flags & SLAB_CACHE_NOMAGAZINE))
make_magcache(cache);
 
/* Compute slab sizes, object counts in slabs etc. */
610,7 → 605,7
if (pages == 1)
cache->order = 0;
else
cache->order = fnzb(pages-1)+1;
cache->order = fnzb(pages - 1) + 1;
 
while (badness(cache) > SLAB_MAX_BADNESS(cache)) {
cache->order += 1;
631,18 → 626,16
}
 
/** Create slab cache */
slab_cache_t * slab_cache_create(char *name,
size_t size,
size_t align,
int (*constructor)(void *obj, int kmflag),
int (*destructor)(void *obj),
int flags)
slab_cache_t *
slab_cache_create(char *name, size_t size, size_t align,
int (*constructor)(void *obj, int kmflag), int (*destructor)(void *obj),
int flags)
{
slab_cache_t *cache;
 
cache = slab_alloc(&slab_cache_cache, 0);
_slab_cache_create(cache, name, size, align, constructor, destructor,
flags);
flags);
return cache;
}
 
654,7 → 647,7
*/
static count_t _slab_reclaim(slab_cache_t *cache, int flags)
{
int i;
unsigned int i;
slab_magazine_t *mag;
count_t frames = 0;
int magcount;
666,7 → 659,7
* endless loop
*/
magcount = atomic_get(&cache->magazine_counter);
while (magcount-- && (mag=get_mag_from_cache(cache,0))) {
while (magcount-- && (mag=get_mag_from_cache(cache, 0))) {
frames += magazine_destroy(cache,mag);
if (!(flags & SLAB_RECLAIM_ALL) && frames)
break;
675,7 → 668,7
if (flags & SLAB_RECLAIM_ALL) {
/* Free cpu-bound magazines */
/* Destroy CPU magazines */
for (i=0; i<config.cpu_count; i++) {
for (i = 0; i < config.cpu_count; i++) {
spinlock_lock(&cache->mag_cache[i].lock);
 
mag = cache->mag_cache[i].current;
719,8 → 712,8
_slab_reclaim(cache, SLAB_RECLAIM_ALL);
 
/* All slabs must be empty */
if (!list_empty(&cache->full_slabs) \
|| !list_empty(&cache->partial_slabs))
if (!list_empty(&cache->full_slabs) ||
!list_empty(&cache->partial_slabs))
panic("Destroying cache that is not empty.");
 
if (!(cache->flags & SLAB_CACHE_NOMAGAZINE))
728,9 → 721,8
slab_free(&slab_cache_cache, cache);
}
 
/** Allocate new object from cache - if no flags given, always returns
memory */
void * slab_alloc(slab_cache_t *cache, int flags)
/** Allocate new object from cache - if no flags given, always returns memory */
void *slab_alloc(slab_cache_t *cache, int flags)
{
ipl_t ipl;
void *result = NULL;
759,9 → 751,8
 
ipl = interrupts_disable();
 
if ((cache->flags & SLAB_CACHE_NOMAGAZINE) \
|| magazine_obj_put(cache, obj)) {
 
if ((cache->flags & SLAB_CACHE_NOMAGAZINE) ||
magazine_obj_put(cache, obj)) {
slab_obj_destroy(cache, obj, slab);
 
}
788,7 → 779,8
* memory allocation from interrupts can deadlock.
*/
 
for (cur = slab_cache_list.next;cur!=&slab_cache_list; cur=cur->next) {
for (cur = slab_cache_list.next; cur != &slab_cache_list;
cur = cur->next) {
cache = list_get_instance(cur, slab_cache_t, link);
frames += _slab_reclaim(cache, flags);
}
802,22 → 794,77
/* Print list of slabs */
void slab_print_list(void)
{
slab_cache_t *cache;
link_t *cur;
ipl_t ipl;
ipl = interrupts_disable();
spinlock_lock(&slab_cache_lock);
printf("slab name size pages obj/pg slabs cached allocated ctl\n");
printf("---------------- -------- ------ ------ ------ ------ --------- ---\n");
for (cur = slab_cache_list.next; cur != &slab_cache_list; cur = cur->next) {
int skip = 0;
 
printf("slab name size pages obj/pg slabs cached allocated"
" ctl\n");
printf("---------------- -------- ------ ------ ------ ------ ---------"
" ---\n");
 
while (true) {
slab_cache_t *cache;
link_t *cur;
ipl_t ipl;
int i;
 
/*
* We must not hold the slab_cache_lock spinlock when printing
* the statistics. Otherwise we can easily deadlock if the print
* needs to allocate memory.
*
* Therefore, we walk through the slab cache list, skipping some
* amount of already processed caches during each iteration and
* gathering statistics about the first unprocessed cache. For
* the sake of printing the statistics, we realese the
* slab_cache_lock and reacquire it afterwards. Then the walk
* starts again.
*
* This limits both the efficiency and also accuracy of the
* obtained statistics. The efficiency is decreased because the
* time complexity of the algorithm is quadratic instead of
* linear. The accuracy is impacted because we drop the lock
* after processing one cache. If there is someone else
* manipulating the cache list, we might omit an arbitrary
* number of caches or process one cache multiple times.
* However, we don't bleed for this algorithm for it is only
* statistics.
*/
 
ipl = interrupts_disable();
spinlock_lock(&slab_cache_lock);
 
for (i = 0, cur = slab_cache_list.next;
i < skip && cur != &slab_cache_list;
i++, cur = cur->next)
;
 
if (cur == &slab_cache_list) {
spinlock_unlock(&slab_cache_lock);
interrupts_restore(ipl);
break;
}
 
skip++;
 
cache = list_get_instance(cur, slab_cache_t, link);
 
char *name = cache->name;
uint8_t order = cache->order;
size_t size = cache->size;
unsigned int objects = cache->objects;
long allocated_slabs = atomic_get(&cache->allocated_slabs);
long cached_objs = atomic_get(&cache->cached_objs);
long allocated_objs = atomic_get(&cache->allocated_objs);
int flags = cache->flags;
printf("%-16s %8zd %6zd %6zd %6zd %6zd %9zd %-3s\n", cache->name, cache->size, (1 << cache->order), cache->objects, atomic_get(&cache->allocated_slabs), atomic_get(&cache->cached_objs), atomic_get(&cache->allocated_objs), cache->flags & SLAB_CACHE_SLINSIDE ? "in" : "out");
spinlock_unlock(&slab_cache_lock);
interrupts_restore(ipl);
printf("%-16s %8" PRIs " %6d %6u %6ld %6ld %9ld %-3s\n",
name, size, (1 << order), objects, allocated_slabs,
cached_objs, allocated_objs,
flags & SLAB_CACHE_SLINSIDE ? "in" : "out");
}
spinlock_unlock(&slab_cache_lock);
interrupts_restore(ipl);
}
 
void slab_cache_init(void)
825,32 → 872,24
int i, size;
 
/* Initialize magazine cache */
_slab_cache_create(&mag_cache,
"slab_magazine",
sizeof(slab_magazine_t)+SLAB_MAG_SIZE*sizeof(void*),
sizeof(uintptr_t),
NULL, NULL,
SLAB_CACHE_NOMAGAZINE | SLAB_CACHE_SLINSIDE);
_slab_cache_create(&mag_cache, "slab_magazine",
sizeof(slab_magazine_t) + SLAB_MAG_SIZE * sizeof(void*),
sizeof(uintptr_t), NULL, NULL, SLAB_CACHE_NOMAGAZINE |
SLAB_CACHE_SLINSIDE);
/* Initialize slab_cache cache */
_slab_cache_create(&slab_cache_cache,
"slab_cache",
sizeof(slab_cache_cache),
sizeof(uintptr_t),
NULL, NULL,
SLAB_CACHE_NOMAGAZINE | SLAB_CACHE_SLINSIDE);
_slab_cache_create(&slab_cache_cache, "slab_cache",
sizeof(slab_cache_cache), sizeof(uintptr_t), NULL, NULL,
SLAB_CACHE_NOMAGAZINE | SLAB_CACHE_SLINSIDE);
/* Initialize external slab cache */
slab_extern_cache = slab_cache_create("slab_extern",
sizeof(slab_t),
0, NULL, NULL,
SLAB_CACHE_SLINSIDE | SLAB_CACHE_MAGDEFERRED);
slab_extern_cache = slab_cache_create("slab_extern", sizeof(slab_t), 0,
NULL, NULL, SLAB_CACHE_SLINSIDE | SLAB_CACHE_MAGDEFERRED);
 
/* Initialize structures for malloc */
for (i=0, size=(1<<SLAB_MIN_MALLOC_W);
i < (SLAB_MAX_MALLOC_W-SLAB_MIN_MALLOC_W+1);
i++, size <<= 1) {
malloc_caches[i] = slab_cache_create(malloc_names[i],
size, 0,
NULL,NULL, SLAB_CACHE_MAGDEFERRED);
for (i = 0, size = (1 << SLAB_MIN_MALLOC_W);
i < (SLAB_MAX_MALLOC_W - SLAB_MIN_MALLOC_W + 1);
i++, size <<= 1) {
malloc_caches[i] = slab_cache_create(malloc_names[i], size, 0,
NULL, NULL, SLAB_CACHE_MAGDEFERRED);
}
#ifdef CONFIG_DEBUG
_slab_initialized = 1;
875,9 → 914,11
 
spinlock_lock(&slab_cache_lock);
for (cur=slab_cache_list.next; cur != &slab_cache_list;cur=cur->next){
for (cur = slab_cache_list.next; cur != &slab_cache_list;
cur = cur->next){
s = list_get_instance(cur, slab_cache_t, link);
if ((s->flags & SLAB_CACHE_MAGDEFERRED) != SLAB_CACHE_MAGDEFERRED)
if ((s->flags & SLAB_CACHE_MAGDEFERRED) !=
SLAB_CACHE_MAGDEFERRED)
continue;
make_magcache(s);
s->flags &= ~SLAB_CACHE_MAGDEFERRED;
888,7 → 929,7
 
/**************************************/
/* kalloc/kfree functions */
void * malloc(unsigned int size, int flags)
void *malloc(unsigned int size, int flags)
{
ASSERT(_slab_initialized);
ASSERT(size && size <= (1 << SLAB_MAX_MALLOC_W));
901,7 → 942,7
return slab_alloc(malloc_caches[idx], flags);
}
 
void * realloc(void *ptr, unsigned int size, int flags)
void *realloc(void *ptr, unsigned int size, int flags)
{
ASSERT(_slab_initialized);
ASSERT(size <= (1 << SLAB_MAX_MALLOC_W));
/branches/network/kernel/generic/src/mm/page.c
40,11 → 40,28
* They however, define the single interface.
*/
 
/*
* Note on memory prefetching and updating memory mappings, also described in:
* AMD x86-64 Architecture Programmer's Manual, Volume 2, System Programming,
* 7.2.1 Special Coherency Considerations.
*
* The processor which modifies a page table mapping can access prefetched data
* from the old mapping. In order to prevent this, we place a memory barrier
* after a mapping is updated.
*
* We assume that the other processors are either not using the mapping yet
* (i.e. during the bootstrap) or are executing the TLB shootdown code. While
* we don't care much about the former case, the processors in the latter case
* will do an implicit serialization by virtue of running the TLB shootdown
* interrupt handler.
*/
 
#include <mm/page.h>
#include <arch/mm/page.h>
#include <arch/mm/asid.h>
#include <mm/as.h>
#include <mm/frame.h>
#include <arch/barrier.h>
#include <arch/types.h>
#include <arch/asm.h>
#include <memstr.h>
65,8 → 82,8
* considering possible crossings
* of page boundaries.
*
* @param s Address of the structure.
* @param size Size of the structure.
* @param s Address of the structure.
* @param size Size of the structure.
*/
void map_structure(uintptr_t s, size_t size)
{
76,8 → 93,11
cnt = length / PAGE_SIZE + (length % PAGE_SIZE > 0);
 
for (i = 0; i < cnt; i++)
page_mapping_insert(AS_KERNEL, s + i * PAGE_SIZE, s + i * PAGE_SIZE, PAGE_NOT_CACHEABLE | PAGE_WRITE);
page_mapping_insert(AS_KERNEL, s + i * PAGE_SIZE,
s + i * PAGE_SIZE, PAGE_NOT_CACHEABLE | PAGE_WRITE);
 
/* Repel prefetched accesses to the old mapping. */
memory_barrier();
}
 
/** Insert mapping of page to frame.
87,10 → 107,11
*
* The page table must be locked and interrupts must be disabled.
*
* @param as Address space to wich page belongs.
* @param page Virtual address of the page to be mapped.
* @param frame Physical address of memory frame to which the mapping is done.
* @param flags Flags to be used for mapping.
* @param as Address space to wich page belongs.
* @param page Virtual address of the page to be mapped.
* @param frame Physical address of memory frame to which the mapping is
* done.
* @param flags Flags to be used for mapping.
*/
void page_mapping_insert(as_t *as, uintptr_t page, uintptr_t frame, int flags)
{
98,6 → 119,9
ASSERT(page_mapping_operations->mapping_insert);
page_mapping_operations->mapping_insert(as, page, frame, flags);
/* Repel prefetched accesses to the old mapping. */
memory_barrier();
}
 
/** Remove mapping of page.
108,8 → 132,8
*
* The page table must be locked and interrupts must be disabled.
*
* @param as Address space to wich page belongs.
* @param page Virtual address of the page to be demapped.
* @param as Address space to wich page belongs.
* @param page Virtual address of the page to be demapped.
*/
void page_mapping_remove(as_t *as, uintptr_t page)
{
117,6 → 141,9
ASSERT(page_mapping_operations->mapping_remove);
page_mapping_operations->mapping_remove(as, page);
 
/* Repel prefetched accesses to the old mapping. */
memory_barrier();
}
 
/** Find mapping for virtual page
125,10 → 152,11
*
* The page table must be locked and interrupts must be disabled.
*
* @param as Address space to wich page belongs.
* @param page Virtual page.
* @param as Address space to wich page belongs.
* @param page Virtual page.
*
* @return NULL if there is no such mapping; requested mapping otherwise.
* @return NULL if there is no such mapping; requested mapping
* otherwise.
*/
pte_t *page_mapping_find(as_t *as, uintptr_t page)
{
/branches/network/kernel/generic/src/mm/tlb.c
81,7 → 81,7
void tlb_shootdown_start(tlb_invalidate_type_t type, asid_t asid,
uintptr_t page, count_t count)
{
int i;
unsigned int i;
 
CPU->tlb_active = 0;
spinlock_lock(&tlblock);
144,7 → 144,7
asid_t asid;
uintptr_t page;
count_t count;
int i;
unsigned int i;
ASSERT(CPU);
/branches/network/kernel/generic/src/ipc/sysipc.c
164,11 → 164,11
{
int phoneid;
 
if (IPC_GET_RETVAL(answer->data) == EHANGUP) {
if ((native_t) IPC_GET_RETVAL(answer->data) == EHANGUP) {
/* In case of forward, hangup the forwared phone,
* not the originator
*/
spinlock_lock(&answer->data.phone->lock);
mutex_lock(&answer->data.phone->lock);
spinlock_lock(&TASK->answerbox.lock);
if (answer->data.phone->state == IPC_PHONE_CONNECTED) {
list_remove(&answer->data.phone->link);
175,7 → 175,7
answer->data.phone->state = IPC_PHONE_SLAMMED;
}
spinlock_unlock(&TASK->answerbox.lock);
spinlock_unlock(&answer->data.phone->lock);
mutex_unlock(&answer->data.phone->lock);
}
 
if (!olddata)
243,7 → 243,7
uintptr_t dst = IPC_GET_ARG1(*olddata);
size_t max_size = IPC_GET_ARG2(*olddata);
size_t size = IPC_GET_ARG2(answer->data);
if (size <= max_size) {
if (size && size <= max_size) {
/*
* Copy the destination VA so that this piece of
* information is not lost.
258,6 → 258,8
free(answer->buffer);
answer->buffer = NULL;
}
} else if (!size) {
IPC_SET_RETVAL(answer->data, EOK);
} else {
IPC_SET_RETVAL(answer->data, ELIMIT);
}
268,12 → 270,12
/* The recipient agreed to receive data. */
int rc;
uintptr_t dst;
uintptr_t size;
uintptr_t max_size;
size_t size;
size_t max_size;
 
dst = IPC_GET_ARG1(answer->data);
size = IPC_GET_ARG2(answer->data);
max_size = IPC_GET_ARG2(*olddata);
dst = (uintptr_t)IPC_GET_ARG1(answer->data);
size = (size_t)IPC_GET_ARG2(answer->data);
max_size = (size_t)IPC_GET_ARG2(*olddata);
 
if (size <= max_size) {
rc = copy_to_uspace((void *) dst,
354,7 → 356,7
*/
static void process_answer(call_t *call)
{
if (IPC_GET_RETVAL(call->data) == EHANGUP &&
if (((native_t) IPC_GET_RETVAL(call->data) == EHANGUP) &&
(call->flags & IPC_CALL_FORWARDED))
IPC_SET_RETVAL(call->data, EFORWARD);
 
424,7 → 426,7
phone_t *phone;
int res;
int rc;
 
GET_CHECK_PHONE(phone, phoneid, return ENOENT);
 
ipc_call_static_init(&call);
440,7 → 442,9
IPC_SET_ARG5(call.data, 0);
 
if (!(res = request_preprocess(&call))) {
ipc_call_sync(phone, &call);
rc = ipc_call_sync(phone, &call);
if (rc != EOK)
return rc;
process_answer(&call);
} else {
IPC_SET_RETVAL(call.data, res);
478,7 → 482,9
GET_CHECK_PHONE(phone, phoneid, return ENOENT);
 
if (!(res = request_preprocess(&call))) {
ipc_call_sync(phone, &call);
rc = ipc_call_sync(phone, &call);
if (rc != EOK)
return rc;
process_answer(&call);
} else
IPC_SET_RETVAL(call.data, res);
624,7 → 630,7
IPC_SET_RETVAL(call->data, EFORWARD);
ipc_answer(&TASK->answerbox, call);
return ENOENT;
});
});
 
if (!method_is_forwardable(IPC_GET_METHOD(call->data))) {
IPC_SET_RETVAL(call->data, EFORWARD);
/branches/network/kernel/generic/src/ipc/ipc.c
37,7 → 37,9
* First the answerbox, then the phone.
*/
 
#include <synch/synch.h>
#include <synch/spinlock.h>
#include <synch/mutex.h>
#include <synch/waitq.h>
#include <synch/synch.h>
#include <ipc/ipc.h>
64,7 → 66,7
*/
static void _ipc_call_init(call_t *call)
{
memsetb((uintptr_t) call, sizeof(*call), 0);
memsetb(call, sizeof(*call), 0);
call->callerbox = &TASK->answerbox;
call->sender = TASK;
call->buffer = NULL;
85,7 → 87,8
call_t *call;
 
call = slab_alloc(ipc_call_slab, flags);
_ipc_call_init(call);
if (call)
_ipc_call_init(call);
 
return call;
}
117,8 → 120,9
/** Initialize an answerbox structure.
*
* @param box Answerbox structure to be initialized.
* @param task Task to which the answerbox belongs.
*/
void ipc_answerbox_init(answerbox_t *box)
void ipc_answerbox_init(answerbox_t *box, task_t *task)
{
spinlock_initialize(&box->lock, "ipc_box_lock");
spinlock_initialize(&box->irq_lock, "ipc_box_irqlock");
129,7 → 133,7
list_initialize(&box->answers);
list_initialize(&box->irq_notifs);
list_initialize(&box->irq_head);
box->task = TASK;
box->task = task;
}
 
/** Connect a phone to an answerbox.
139,7 → 143,7
*/
void ipc_phone_connect(phone_t *phone, answerbox_t *box)
{
spinlock_lock(&phone->lock);
mutex_lock(&phone->lock);
 
phone->state = IPC_PHONE_CONNECTED;
phone->callee = box;
148,7 → 152,7
list_append(&phone->link, &box->connected_phones);
spinlock_unlock(&box->lock);
 
spinlock_unlock(&phone->lock);
mutex_unlock(&phone->lock);
}
 
/** Initialize a phone structure.
157,7 → 161,7
*/
void ipc_phone_init(phone_t *phone)
{
spinlock_initialize(&phone->lock, "phone_lock");
mutex_initialize(&phone->lock, MUTEX_PASSIVE);
phone->callee = NULL;
phone->state = IPC_PHONE_FREE;
atomic_set(&phone->active_calls, 0);
167,18 → 171,23
*
* @param phone Destination kernel phone structure.
* @param request Call structure with request.
*
* @return EOK on success or EINTR if the sleep was interrupted.
*/
void ipc_call_sync(phone_t *phone, call_t *request)
int ipc_call_sync(phone_t *phone, call_t *request)
{
answerbox_t sync_box;
 
ipc_answerbox_init(&sync_box);
ipc_answerbox_init(&sync_box, TASK);
 
/* We will receive data in a special box. */
request->callerbox = &sync_box;
 
ipc_call(phone, request);
ipc_wait_for_call(&sync_box, SYNCH_NO_TIMEOUT, SYNCH_FLAGS_NONE);
if (!ipc_wait_for_call(&sync_box, SYNCH_NO_TIMEOUT,
SYNCH_FLAGS_INTERRUPTIBLE))
return EINTR;
return EOK;
}
 
/** Answer a message which was not dispatched and is not listed in any queue.
191,6 → 200,13
 
call->flags |= IPC_CALL_ANSWERED;
 
if (call->flags & IPC_CALL_FORWARDED) {
if (call->data.caller_phone) {
/* Demasquerade the caller phone. */
call->data.phone = call->data.caller_phone;
}
}
 
spinlock_lock(&callerbox->lock);
list_append(&call->link, &callerbox->answers);
spinlock_unlock(&callerbox->lock);
260,9 → 276,9
{
answerbox_t *box;
 
spinlock_lock(&phone->lock);
mutex_lock(&phone->lock);
if (phone->state != IPC_PHONE_CONNECTED) {
spinlock_unlock(&phone->lock);
mutex_unlock(&phone->lock);
if (call->flags & IPC_CALL_FORWARDED) {
IPC_SET_RETVAL(call->data, EFORWARD);
_ipc_answer_free_call(call);
277,7 → 293,7
box = phone->callee;
_ipc_call(phone, box, call);
spinlock_unlock(&phone->lock);
mutex_unlock(&phone->lock);
return 0;
}
 
296,11 → 312,11
answerbox_t *box;
call_t *call;
spinlock_lock(&phone->lock);
mutex_lock(&phone->lock);
if (phone->state == IPC_PHONE_FREE ||
phone->state == IPC_PHONE_HUNGUP ||
phone->state == IPC_PHONE_CONNECTING) {
spinlock_unlock(&phone->lock);
mutex_unlock(&phone->lock);
return -1;
}
box = phone->callee;
319,7 → 335,7
}
 
phone->state = IPC_PHONE_HUNGUP;
spinlock_unlock(&phone->lock);
mutex_unlock(&phone->lock);
 
return 0;
}
343,8 → 359,11
list_remove(&call->link);
spinlock_unlock(&oldbox->lock);
 
if (mode & IPC_FF_ROUTE_FROM_ME)
if (mode & IPC_FF_ROUTE_FROM_ME) {
if (!call->data.caller_phone)
call->data.caller_phone = call->data.phone;
call->data.phone = newphone;
}
 
return ipc_call(newphone, call);
}
448,7 → 467,7
while (!list_empty(&TASK->answerbox.connected_phones)) {
phone = list_get_instance(TASK->answerbox.connected_phones.next,
phone_t, link);
if (!spinlock_trylock(&phone->lock)) {
if (SYNCH_FAILED(mutex_trylock(&phone->lock))) {
spinlock_unlock(&TASK->answerbox.lock);
DEADLOCK_PROBE(p_phonelck, DEADLOCK_THRESHOLD);
goto restart_phones;
459,7 → 478,7
phone->state = IPC_PHONE_SLAMMED;
list_remove(&phone->link);
 
spinlock_unlock(&phone->lock);
mutex_unlock(&phone->lock);
}
 
/* Answer all messages in 'calls' and 'dispatched_calls' queues */
534,7 → 553,10
/* Print opened phones & details */
printf("PHONE:\n");
for (i = 0; i < IPC_MAX_PHONES; i++) {
spinlock_lock(&task->phones[i].lock);
if (SYNCH_FAILED(mutex_trylock(&task->phones[i].lock))) {
printf("%d: mutex busy\n", i);
continue;
}
if (task->phones[i].state != IPC_PHONE_FREE) {
printf("%d: ", i);
switch (task->phones[i].state) {
556,10 → 578,10
default:
break;
}
printf("active: %d\n",
printf("active: %ld\n",
atomic_get(&task->phones[i].active_calls));
}
spinlock_unlock(&task->phones[i].lock);
mutex_unlock(&task->phones[i].lock);
}
 
 
569,8 → 591,9
for (tmp = task->answerbox.calls.next; tmp != &task->answerbox.calls;
tmp = tmp->next) {
call = list_get_instance(tmp, call_t, link);
printf("Callid: %p Srctask:%llu M:%d A1:%d A2:%d A3:%d "
"A4:%d A5:%d Flags:%x\n", call, call->sender->taskid,
printf("Callid: %p Srctask:%" PRIu64 " M:%" PRIun
" A1:%" PRIun " A2:%" PRIun " A3:%" PRIun
" A4:%" PRIun " A5:%" PRIun " Flags:%x\n", call, call->sender->taskid,
IPC_GET_METHOD(call->data), IPC_GET_ARG1(call->data),
IPC_GET_ARG2(call->data), IPC_GET_ARG3(call->data),
IPC_GET_ARG4(call->data), IPC_GET_ARG5(call->data),
578,12 → 601,13
}
/* Print answerbox - calls */
printf("ABOX - DISPATCHED CALLS:\n");
for (tmp=task->answerbox.dispatched_calls.next;
tmp != &task->answerbox.dispatched_calls;
tmp = tmp->next) {
for (tmp = task->answerbox.dispatched_calls.next;
tmp != &task->answerbox.dispatched_calls;
tmp = tmp->next) {
call = list_get_instance(tmp, call_t, link);
printf("Callid: %p Srctask:%llu M:%d A1:%d A2:%d A3:%d "
"A4:%d A5:%d Flags:%x\n", call, call->sender->taskid,
printf("Callid: %p Srctask:%" PRIu64 " M:%" PRIun
" A1:%" PRIun " A2:%" PRIun " A3:%" PRIun
" A4:%" PRIun " A5:%" PRIun " Flags:%x\n", call, call->sender->taskid,
IPC_GET_METHOD(call->data), IPC_GET_ARG1(call->data),
IPC_GET_ARG2(call->data), IPC_GET_ARG3(call->data),
IPC_GET_ARG4(call->data), IPC_GET_ARG5(call->data),
594,7 → 618,8
for (tmp = task->answerbox.answers.next; tmp != &task->answerbox.answers;
tmp = tmp->next) {
call = list_get_instance(tmp, call_t, link);
printf("Callid:%p M:%d A1:%d A2:%d A3:%d A4:%d A5:%d Flags:%x\n",
printf("Callid:%p M:%" PRIun " A1:%" PRIun " A2:%" PRIun
" A3:%" PRIun " A4:%" PRIun " A5:%" PRIun " Flags:%x\n",
call, IPC_GET_METHOD(call->data), IPC_GET_ARG1(call->data),
IPC_GET_ARG2(call->data), IPC_GET_ARG3(call->data),
IPC_GET_ARG4(call->data), IPC_GET_ARG5(call->data),
/branches/network/kernel/generic/src/ipc/ipcrsc.c
170,7 → 170,6
int i;
 
spinlock_lock(&TASK->lock);
for (i = 0; i < IPC_MAX_PHONES; i++) {
if (TASK->phones[i].state == IPC_PHONE_HUNGUP &&
atomic_get(&TASK->phones[i].active_calls) == 0)
183,8 → 182,9
}
spinlock_unlock(&TASK->lock);
 
if (i >= IPC_MAX_PHONES)
if (i == IPC_MAX_PHONES)
return -1;
 
return i;
}
 
/branches/network/kernel/generic/src/ipc/irq.c
65,7 → 65,7
*/
static void code_execute(call_t *call, irq_code_t *code)
{
int i;
unsigned int i;
unative_t dstval = 0;
if (!code)
/branches/network/kernel/generic/src/main/kinit.c
47,6 → 47,7
#include <proc/scheduler.h>
#include <proc/task.h>
#include <proc/thread.h>
#include <proc/program.h>
#include <panic.h>
#include <func.h>
#include <cpu.h>
146,7 → 147,8
/*
* Create kernel console.
*/
t = thread_create(kconsole, (void *) "kconsole", TASK, 0, "kconsole", false);
t = thread_create(kconsole, (void *) "kconsole", TASK, 0, "kconsole",
false);
if (t)
thread_ready(t);
else
153,40 → 155,54
panic("thread_create/kconsole\n");
 
interrupts_enable();
 
/*
* Create user tasks, load RAM disk images.
*/
count_t i;
program_t programs[CONFIG_INIT_TASKS];
for (i = 0; i < init.cnt; i++) {
/*
* Run user tasks, load RAM disk images.
*/
if (init.tasks[i].addr % FRAME_SIZE) {
printf("init[%d].addr is not frame aligned", i);
printf("init[%" PRIc "].addr is not frame aligned", i);
continue;
}
 
task_t *utask = task_run_program((void *) init.tasks[i].addr,
"uspace");
if (utask) {
int rc = program_create_from_image((void *) init.tasks[i].addr,
&programs[i]);
 
if (rc == 0 && programs[i].task != NULL) {
/*
* Set capabilities to init userspace tasks.
*/
cap_set(utask, CAP_CAP | CAP_MEM_MANAGER |
cap_set(programs[i].task, CAP_CAP | CAP_MEM_MANAGER |
CAP_IO_MANAGER | CAP_PREEMPT_CONTROL | CAP_IRQ_REG);
if (!ipc_phone_0)
ipc_phone_0 = &utask->answerbox;
if (!ipc_phone_0)
ipc_phone_0 = &programs[i].task->answerbox;
} else if (rc == 0) {
/* It was the program loader and was registered */
} else {
int rd = init_rd((rd_header *) init.tasks[i].addr,
/* RAM disk image */
int rd = init_rd((rd_header_t *) init.tasks[i].addr,
init.tasks[i].size);
if (rd != RE_OK)
printf("Init binary %zd not used, error code %d.\n", i, rd);
printf("Init binary %" PRIc " not used, error "
"code %d.\n", i, rd);
}
}
/*
* Run user tasks with reasonable delays
*/
for (i = 0; i < init.cnt; i++) {
if (programs[i].task != NULL) {
thread_usleep(50000);
program_ready(&programs[i]);
}
}
 
 
if (!stdin) {
while (1) {
thread_sleep(1);
/branches/network/kernel/generic/src/main/main.c
57,9 → 57,11
#include <proc/scheduler.h>
#include <proc/thread.h>
#include <proc/task.h>
#include <proc/tasklet.h>
#include <main/kinit.h>
#include <main/version.h>
#include <console/kconsole.h>
#include <console/console.h>
#include <cpu.h>
#include <align.h>
#include <interrupt.h>
77,16 → 79,16
#include <ipc/ipc.h>
#include <macros.h>
#include <adt/btree.h>
#include <console/klog.h>
#include <smp/smp.h>
#include <ddi/ddi.h>
 
 
/** Global configuration structure. */
config_t config;
 
/** Initial user-space tasks */
init_t init = {
0
.cnt = 0
};
 
/** Boot allocations. */
102,15 → 104,16
* the linker or the low level assembler code with
* appropriate sizes and addresses.
*/
uintptr_t hardcoded_load_address = 0; /**< Virtual address of where the kernel
* is loaded. */
size_t hardcoded_ktext_size = 0; /**< Size of the kernel code in bytes.
*/
size_t hardcoded_kdata_size = 0; /**< Size of the kernel data in bytes.
*/
uintptr_t stack_safe = 0; /**< Lowest safe stack virtual address.
*/
 
/**< Virtual address of where the kernel is loaded. */
uintptr_t hardcoded_load_address = 0;
/**< Size of the kernel code in bytes. */
size_t hardcoded_ktext_size = 0;
/**< Size of the kernel data in bytes. */
size_t hardcoded_kdata_size = 0;
/**< Lowest safe stack virtual address. */
uintptr_t stack_safe = 0;
 
void main_bsp(void);
void main_ap(void);
 
129,9 → 132,11
 
/** Main kernel routine for bootstrap CPU.
*
* Initializes the kernel by bootstrap CPU.
* This function passes control directly to
* main_bsp_separated_stack().
* The code here still runs on the boot stack, which knows nothing about
* preemption counts. Because of that, this function cannot directly call
* functions that disable or enable preemption (e.g. spinlock_lock()). The
* primary task of this function is to calculate address of a new stack and
* switch to it.
*
* Assuming interrupts_disable().
*
184,89 → 189,93
*/
void main_bsp_separated_stack(void)
{
task_t *k;
thread_t *t;
count_t i;
/* Keep this the first thing. */
the_initialize(THE);
 
LOG();
version_print();
LOG("\nconfig.base=%#" PRIp " config.kernel_size=%" PRIs
"\nconfig.stack_base=%#" PRIp " config.stack_size=%" PRIs,
config.base, config.kernel_size, config.stack_base,
config.stack_size);
 
/*
* kconsole data structures must be initialized very early
* because other subsystems will register their respective
* commands.
*/
kconsole_init();
LOG_EXEC(kconsole_init());
/*
* Exception handler initialization, before architecture
* starts adding its own handlers
*/
exc_init();
LOG_EXEC(exc_init());
 
/*
* Memory management subsystems initialization.
*/
arch_pre_mm_init();
frame_init();
*/
LOG_EXEC(arch_pre_mm_init());
LOG_EXEC(frame_init());
/* Initialize at least 1 memory segment big enough for slab to work. */
slab_cache_init();
btree_init();
as_init();
page_init();
tlb_init();
ddi_init();
arch_post_mm_init();
LOG_EXEC(slab_cache_init());
LOG_EXEC(btree_init());
LOG_EXEC(as_init());
LOG_EXEC(page_init());
LOG_EXEC(tlb_init());
LOG_EXEC(ddi_init());
LOG_EXEC(tasklet_init());
LOG_EXEC(arch_post_mm_init());
LOG_EXEC(arch_pre_smp_init());
LOG_EXEC(smp_init());
version_print();
printf("kernel: %.*p hardcoded_ktext_size=%zd KB, "
"hardcoded_kdata_size=%zd KB\n", sizeof(uintptr_t) * 2,
config.base, SIZE2KB(hardcoded_ktext_size),
SIZE2KB(hardcoded_kdata_size));
printf("stack: %.*p size=%zd KB\n", sizeof(uintptr_t) * 2,
config.stack_base, SIZE2KB(config.stack_size));
arch_pre_smp_init();
smp_init();
/* Slab must be initialized after we know the number of processors. */
slab_enable_cpucache();
LOG_EXEC(slab_enable_cpucache());
printf("Detected %zu CPU(s), %llu MB free memory\n",
config.cpu_count, SIZE2MB(zone_total_size()));
cpu_init();
printf("Detected %" PRIc " CPU(s), %" PRIu64" MiB free memory\n",
config.cpu_count, SIZE2MB(zone_total_size()));
calibrate_delay_loop();
clock_counter_init();
timeout_init();
scheduler_init();
task_init();
thread_init();
futex_init();
klog_init();
LOG_EXEC(cpu_init());
LOG_EXEC(calibrate_delay_loop());
LOG_EXEC(clock_counter_init());
LOG_EXEC(timeout_init());
LOG_EXEC(scheduler_init());
LOG_EXEC(task_init());
LOG_EXEC(thread_init());
LOG_EXEC(futex_init());
if (init.cnt > 0) {
count_t i;
for (i = 0; i < init.cnt; i++)
printf("init[%zd].addr=%.*p, init[%zd].size=%zd\n", i,
sizeof(uintptr_t) * 2, init.tasks[i].addr, i,
printf("init[%" PRIc "].addr=%#" PRIp ", init[%" PRIc
"].size=%#" PRIs "\n", i, init.tasks[i].addr, i,
init.tasks[i].size);
} else
printf("No init binaries found\n");
ipc_init();
LOG_EXEC(ipc_init());
LOG_EXEC(klog_init());
 
/*
* Create kernel task.
*/
k = task_create(AS_KERNEL, "kernel");
if (!k)
panic("can't create kernel task\n");
task_t *kernel = task_create(AS_KERNEL, "kernel");
if (!kernel)
panic("Can't create kernel task\n");
/*
* Create the first thread.
*/
t = thread_create(kinit, NULL, k, 0, "kinit", true);
if (!t)
panic("can't create kinit thread\n");
thread_ready(t);
thread_t *kinit_thread = thread_create(kinit, NULL, kernel, 0, "kinit",
true);
if (!kinit_thread)
panic("Can't create kinit thread\n");
LOG_EXEC(thread_ready(kinit_thread));
/*
* This call to scheduler() will return to kinit,
/branches/network/kernel/generic/src/proc/task.c
35,10 → 35,8
* @brief Task management.
*/
 
#include <main/uinit.h>
#include <proc/thread.h>
#include <proc/task.h>
#include <proc/uarg.h>
#include <mm/as.h>
#include <mm/slab.h>
#include <atomic.h>
45,23 → 43,17
#include <synch/spinlock.h>
#include <synch/waitq.h>
#include <arch.h>
#include <panic.h>
#include <arch/barrier.h>
#include <adt/avl.h>
#include <adt/btree.h>
#include <adt/list.h>
#include <ipc/ipc.h>
#include <security/cap.h>
#include <memstr.h>
#include <ipc/ipcrsc.h>
#include <print.h>
#include <lib/elf.h>
#include <errno.h>
#include <func.h>
#include <syscall/copy.h>
 
#ifndef LOADED_PROG_STACK_PAGES_NO
#define LOADED_PROG_STACK_PAGES_NO 1
#endif
 
/** Spinlock protecting the tasks_tree AVL tree. */
SPINLOCK_INITIALIZE(tasks_lock);
 
79,11 → 71,7
 
static task_id_t task_counter = 0;
 
/** Initialize tasks
*
* Initialize kernel tasks support.
*
*/
/** Initialize kernel tasks support. */
void task_init(void)
{
TASK = NULL;
91,7 → 79,8
}
 
/*
* The idea behind this walker is to remember a single task different from TASK.
* The idea behind this walker is to remember a single task different from
* TASK.
*/
static bool task_done_walker(avltree_node_t *node, void *arg)
{
106,9 → 95,7
return true; /* continue the walk */
}
 
/** Kill all tasks except the current task.
*
*/
/** Kill all tasks except the current task. */
void task_done(void)
{
task_t *t;
128,7 → 115,7
interrupts_restore(ipl);
#ifdef CONFIG_DEBUG
printf("Killing task %llu\n", id);
printf("Killing task %" PRIu64 "\n", id);
#endif
task_kill(id);
thread_usleep(10000);
140,15 → 127,13
} while (t != NULL);
}
 
/** Create new task
/** Create new task with no threads.
*
* Create new task with no threads.
* @param as Task's address space.
* @param name Symbolic name.
*
* @param as Task's address space.
* @param name Symbolic name.
* @return New task's structure.
*
* @return New task's structure
*
*/
task_t *task_create(as_t *as, char *name)
{
171,7 → 156,7
ta->capabilities = 0;
ta->cycles = 0;
ipc_answerbox_init(&ta->answerbox);
ipc_answerbox_init(&ta->answerbox, ta);
for (i = 0; i < IPC_MAX_PHONES; i++)
ipc_phone_init(&ta->phones[i]);
if ((ipc_phone_0) && (context_check(ipc_phone_0->task->context,
179,7 → 164,7
ipc_phone_connect(&ta->phones[0], ipc_phone_0);
atomic_set(&ta->active_calls, 0);
 
mutex_initialize(&ta->futexes_lock);
mutex_initialize(&ta->futexes_lock, MUTEX_PASSIVE);
btree_create(&ta->futexes);
ipl = interrupts_disable();
202,7 → 187,7
 
/** Destroy task.
*
* @param t Task to be destroyed.
* @param t Task to be destroyed.
*/
void task_destroy(task_t *t)
{
233,73 → 218,18
TASK = NULL;
}
 
/** Create new task with 1 thread and run it
*
* @param program_addr Address of program executable image.
* @param name Program name.
*
* @return Task of the running program or NULL on error.
*/
task_t *task_run_program(void *program_addr, char *name)
{
as_t *as;
as_area_t *a;
int rc;
thread_t *t;
task_t *task;
uspace_arg_t *kernel_uarg;
 
as = as_create(0);
ASSERT(as);
 
rc = elf_load((elf_header_t *) program_addr, as);
if (rc != EE_OK) {
as_destroy(as);
return NULL;
}
kernel_uarg = (uspace_arg_t *) malloc(sizeof(uspace_arg_t), 0);
kernel_uarg->uspace_entry =
(void *) ((elf_header_t *) program_addr)->e_entry;
kernel_uarg->uspace_stack = (void *) USTACK_ADDRESS;
kernel_uarg->uspace_thread_function = NULL;
kernel_uarg->uspace_thread_arg = NULL;
kernel_uarg->uspace_uarg = NULL;
task = task_create(as, name);
ASSERT(task);
 
/*
* Create the data as_area.
*/
a = as_area_create(as, AS_AREA_READ | AS_AREA_WRITE | AS_AREA_CACHEABLE,
LOADED_PROG_STACK_PAGES_NO * PAGE_SIZE, USTACK_ADDRESS,
AS_AREA_ATTR_NONE, &anon_backend, NULL);
 
/*
* Create the main thread.
*/
t = thread_create(uinit, kernel_uarg, task, THREAD_FLAG_USPACE,
"uinit", false);
ASSERT(t);
thread_ready(t);
 
return task;
}
 
/** Syscall for reading task ID from userspace.
*
* @param uspace_task_id Userspace address of 8-byte buffer where to store
* current task ID.
* @param uspace_task_id userspace address of 8-byte buffer
* where to store current task ID.
*
* @return 0 on success or an error code from @ref errno.h.
* @return Zero on success or an error code from @ref errno.h.
*/
unative_t sys_task_get_id(task_id_t *uspace_task_id)
{
/*
* No need to acquire lock on TASK because taskid
* remains constant for the lifespan of the task.
* No need to acquire lock on TASK because taskid remains constant for
* the lifespan of the task.
*/
return (unative_t) copy_to_uspace(uspace_task_id, &TASK->taskid,
sizeof(TASK->taskid));
307,16 → 237,15
 
/** Find task structure corresponding to task ID.
*
* The tasks_lock must be already held by the caller of this function
* and interrupts must be disabled.
* The tasks_lock must be already held by the caller of this function and
* interrupts must be disabled.
*
* @param id Task ID.
* @param id Task ID.
*
* @return Task structure address or NULL if there is no such task ID.
* @return Task structure address or NULL if there is no such task
* ID.
*/
task_t *task_find_by_id(task_id_t id)
{
avltree_node_t *node;
task_t *task_find_by_id(task_id_t id) { avltree_node_t *node;
node = avltree_search(&tasks_tree, (avltree_key_t) id);
 
327,11 → 256,13
 
/** Get accounting data of given task.
*
* Note that task lock of 't' must be already held and
* interrupts must be already disabled.
* Note that task lock of 't' must be already held and interrupts must be
* already disabled.
*
* @param t Pointer to thread.
* @param t Pointer to thread.
*
* @return Number of cycles used by the task and all its threads
* so far.
*/
uint64_t task_get_accounting(task_t *t)
{
363,9 → 294,9
* This function is idempotent.
* It signals all the task's threads to bail it out.
*
* @param id ID of the task to be killed.
* @param id ID of the task to be killed.
*
* @return 0 on success or an error code from errno.h
* @return Zero on success or an error code from errno.h.
*/
int task_kill(task_id_t id)
{
386,7 → 317,7
spinlock_unlock(&tasks_lock);
/*
* Interrupt all threads except ktaskclnp.
* Interrupt all threads.
*/
spinlock_lock(&ta->lock);
for (cur = ta->th_head.next; cur != &ta->th_head; cur = cur->next) {
420,18 → 351,22
uint64_t cycles;
char suffix;
order(task_get_accounting(t), &cycles, &suffix);
if (sizeof(void *) == 4)
printf("%-6llu %-10s %-3ld %#10zx %#10zx %9llu%c %7zd %6zd",
t->taskid, t->name, t->context, t, t->as, cycles, suffix,
t->refcount, atomic_get(&t->active_calls));
else
printf("%-6llu %-10s %-3ld %#18zx %#18zx %9llu%c %7zd %6zd",
t->taskid, t->name, t->context, t, t->as, cycles, suffix,
t->refcount, atomic_get(&t->active_calls));
 
#ifdef __32_BITS__
printf("%-6" PRIu64 " %-10s %-3" PRIu32 " %10p %10p %9" PRIu64
"%c %7ld %6ld", t->taskid, t->name, t->context, t, t->as, cycles,
suffix, atomic_get(&t->refcount), atomic_get(&t->active_calls));
#endif
 
#ifdef __64_BITS__
printf("%-6" PRIu64 " %-10s %-3" PRIu32 " %18p %18p %9" PRIu64
"%c %7ld %6ld", t->taskid, t->name, t->context, t, t->as, cycles,
suffix, atomic_get(&t->refcount), atomic_get(&t->active_calls));
#endif
 
for (j = 0; j < IPC_MAX_PHONES; j++) {
if (t->phones[j].callee)
printf(" %zd:%#zx", j, t->phones[j].callee);
printf(" %d:%p", j, t->phones[j].callee);
}
printf("\n");
447,19 → 382,21
/* Messing with task structures, avoid deadlock */
ipl = interrupts_disable();
spinlock_lock(&tasks_lock);
if (sizeof(void *) == 4) {
printf("taskid name ctx address as "
"cycles threads calls callee\n");
printf("------ ---------- --- ---------- ---------- "
"---------- ------- ------ ------>\n");
} else {
printf("taskid name ctx address as "
"cycles threads calls callee\n");
printf("------ ---------- --- ------------------ ------------------ "
"---------- ------- ------ ------>\n");
}
 
#ifdef __32_BITS__
printf("taskid name ctx address as "
"cycles threads calls callee\n");
printf("------ ---------- --- ---------- ---------- "
"---------- ------- ------ ------>\n");
#endif
 
#ifdef __64_BITS__
printf("taskid name ctx address as "
"cycles threads calls callee\n");
printf("------ ---------- --- ------------------ ------------------ "
"---------- ------- ------ ------>\n");
#endif
 
avltree_walk(&tasks_tree, task_print_walker, NULL);
 
spinlock_unlock(&tasks_lock);
/branches/network/kernel/generic/src/proc/thread.c
67,9 → 67,13
#include <main/uinit.h>
#include <syscall/copy.h>
#include <errno.h>
#include <console/klog.h>
 
 
#ifndef LOADED_PROG_STACK_PAGES_NO
#define LOADED_PROG_STACK_PAGES_NO 1
#endif
 
 
/** Thread states */
char *thread_states[] = {
"Invalid",
87,7 → 91,7
*/
SPINLOCK_INITIALIZE(threads_lock);
 
/** ALV tree of all threads.
/** AVL tree of all threads.
*
* When a thread is found in the threads_tree AVL tree, it is guaranteed to
* exist as long as the threads_lock is held.
265,15 → 269,17
*
* Create a new thread.
*
* @param func Thread's implementing function.
* @param arg Thread's implementing function argument.
* @param task Task to which the thread belongs.
* @param flags Thread flags.
* @param name Symbolic name.
* @param uncounted Thread's accounting doesn't affect accumulated task
* accounting.
* @param func Thread's implementing function.
* @param arg Thread's implementing function argument.
* @param task Task to which the thread belongs. The caller must
* guarantee that the task won't cease to exist during the
* call. The task's lock may not be held.
* @param flags Thread flags.
* @param name Symbolic name.
* @param uncounted Thread's accounting doesn't affect accumulated task
* accounting.
*
* @return New thread's structure on success, NULL on failure.
* @return New thread's structure on success, NULL on failure.
*
*/
thread_t *thread_create(void (* func)(void *), void *arg, task_t *task,
287,8 → 293,7
return NULL;
/* Not needed, but good for debugging */
memsetb((uintptr_t) t->kstack, THREAD_STACK_SIZE * 1 << STACK_FRAMES,
0);
memsetb(t->kstack, THREAD_STACK_SIZE * 1 << STACK_FRAMES, 0);
ipl = interrupts_disable();
spinlock_lock(&tidlock);
441,9 → 446,8
*/
if (THREAD->flags & THREAD_FLAG_USPACE) {
ipc_cleanup();
futex_cleanup();
klog_printf("Cleanup of task %llu completed.",
TASK->taskid);
futex_cleanup();
LOG("Cleanup of task %" PRIu64" completed.", TASK->taskid);
}
}
 
579,33 → 583,37
 
static bool thread_walker(avltree_node_t *node, void *arg)
{
thread_t *t;
t = avltree_get_instance(node, thread_t, threads_tree_node);
 
thread_t *t = avltree_get_instance(node, thread_t, threads_tree_node);
uint64_t cycles;
char suffix;
order(t->cycles, &cycles, &suffix);
if (sizeof(void *) == 4)
printf("%-6llu %-10s %#10zx %-8s %#10zx %-3ld %#10zx %#10zx %9llu%c ",
t->tid, t->name, t, thread_states[t->state], t->task,
t->task->context, t->thread_code, t->kstack, cycles, suffix);
else
printf("%-6llu %-10s %#18zx %-8s %#18zx %-3ld %#18zx %#18zx %9llu%c ",
t->tid, t->name, t, thread_states[t->state], t->task,
t->task->context, t->thread_code, t->kstack, cycles, suffix);
 
#ifdef __32_BITS__
printf("%-6" PRIu64" %-10s %10p %-8s %10p %-3" PRIu32 " %10p %10p %9" PRIu64 "%c ",
t->tid, t->name, t, thread_states[t->state], t->task,
t->task->context, t->thread_code, t->kstack, cycles, suffix);
#endif
 
#ifdef __64_BITS__
printf("%-6" PRIu64" %-10s %18p %-8s %18p %-3" PRIu32 " %18p %18p %9" PRIu64 "%c ",
t->tid, t->name, t, thread_states[t->state], t->task,
t->task->context, t->thread_code, t->kstack, cycles, suffix);
#endif
if (t->cpu)
printf("%-4zd", t->cpu->id);
printf("%-4u", t->cpu->id);
else
printf("none");
if (t->state == Sleeping) {
if (sizeof(uintptr_t) == 4)
printf(" %#10zx", t->sleep_queue);
else
printf(" %#18zx", t->sleep_queue);
#ifdef __32_BITS__
printf(" %10p", t->sleep_queue);
#endif
 
#ifdef __64_BITS__
printf(" %18p", t->sleep_queue);
#endif
}
printf("\n");
621,23 → 629,25
/* Messing with thread structures, avoid deadlock */
ipl = interrupts_disable();
spinlock_lock(&threads_lock);
if (sizeof(uintptr_t) == 4) {
printf("tid name address state task "
"ctx code stack cycles cpu "
"waitqueue\n");
printf("------ ---------- ---------- -------- ---------- "
"--- ---------- ---------- ---------- ---- "
"----------\n");
} else {
printf("tid name address state task "
"ctx code stack cycles cpu "
"waitqueue\n");
printf("------ ---------- ------------------ -------- ------------------ "
"--- ------------------ ------------------ ---------- ---- "
"------------------\n");
}
 
#ifdef __32_BITS__
printf("tid name address state task "
"ctx code stack cycles cpu "
"waitqueue\n");
printf("------ ---------- ---------- -------- ---------- "
"--- ---------- ---------- ---------- ---- "
"----------\n");
#endif
 
#ifdef __64_BITS__
printf("tid name address state task "
"ctx code stack cycles cpu "
"waitqueue\n");
printf("------ ---------- ------------------ -------- ------------------ "
"--- ------------------ ------------------ ---------- ---- "
"------------------\n");
#endif
 
avltree_walk(&threads_tree, thread_walker, NULL);
 
spinlock_unlock(&threads_lock);
662,7 → 672,6
return node != NULL;
}
 
 
/** Update accounting of current thread.
*
* Note that thread_lock on THREAD must be already held and
/branches/network/kernel/generic/src/proc/program.c
0,0 → 1,239
/*
* Copyright (c) 2001-2004 Jakub Jermar
* Copyright (c) 2008 Jiri Svoboda
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* - The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
 
/** @addtogroup genericproc
* @{
*/
 
/**
* @file
* @brief Running userspace programs.
*/
 
#include <main/uinit.h>
#include <proc/thread.h>
#include <proc/task.h>
#include <proc/uarg.h>
#include <mm/as.h>
#include <mm/slab.h>
#include <arch.h>
#include <adt/list.h>
#include <ipc/ipc.h>
#include <ipc/ipcrsc.h>
#include <security/cap.h>
#include <lib/elf.h>
#include <errno.h>
#include <print.h>
#include <syscall/copy.h>
#include <proc/program.h>
 
#ifndef LOADED_PROG_STACK_PAGES_NO
#define LOADED_PROG_STACK_PAGES_NO 1
#endif
 
/**
* Points to the binary image used as the program loader. All non-initial
* tasks are created from this executable image.
*/
void *program_loader = NULL;
 
/** Create a program using an existing address space.
*
* @param as Address space containing a binary program image.
* @param entry_addr Program entry-point address in program address space.
* @param p Buffer for storing program information.
*/
void program_create(as_t *as, uintptr_t entry_addr, program_t *p)
{
as_area_t *a;
uspace_arg_t *kernel_uarg;
 
kernel_uarg = (uspace_arg_t *) malloc(sizeof(uspace_arg_t), 0);
kernel_uarg->uspace_entry = (void *) entry_addr;
kernel_uarg->uspace_stack = (void *) USTACK_ADDRESS;
kernel_uarg->uspace_thread_function = NULL;
kernel_uarg->uspace_thread_arg = NULL;
kernel_uarg->uspace_uarg = NULL;
p->task = task_create(as, "app");
ASSERT(p->task);
 
/*
* Create the data as_area.
*/
a = as_area_create(as, AS_AREA_READ | AS_AREA_WRITE | AS_AREA_CACHEABLE,
LOADED_PROG_STACK_PAGES_NO * PAGE_SIZE, USTACK_ADDRESS,
AS_AREA_ATTR_NONE, &anon_backend, NULL);
 
/*
* Create the main thread.
*/
p->main_thread = thread_create(uinit, kernel_uarg, p->task,
THREAD_FLAG_USPACE, "uinit", false);
ASSERT(p->main_thread);
}
 
/** Parse an executable image in the kernel memory.
*
* If the image belongs to a program loader, it is registered as such,
* (and *task is set to NULL). Otherwise a task is created from the
* executable image. The task is returned in *task.
*
* @param image_addr Address of an executable program image.
* @param p Buffer for storing program info. If image_addr
* points to a loader image, p->task will be set to
* NULL and EOK will be returned.
*
* @return EOK on success or negative error code.
*/
int program_create_from_image(void *image_addr, program_t *p)
{
as_t *as;
unsigned int rc;
 
as = as_create(0);
ASSERT(as);
 
rc = elf_load((elf_header_t *) image_addr, as, 0);
if (rc != EE_OK) {
as_destroy(as);
p->task = NULL;
p->main_thread = NULL;
if (rc != EE_LOADER)
return ENOTSUP;
/* Register image as the program loader */
ASSERT(program_loader == NULL);
program_loader = image_addr;
printf("Registered program loader at 0x%" PRIp "\n",
image_addr);
return EOK;
}
 
program_create(as, ((elf_header_t *) image_addr)->e_entry, p);
 
return EOK;
}
 
/** Create a task from the program loader image.
*
* @param p Buffer for storing program info.
* @return EOK on success or negative error code.
*/
int program_create_loader(program_t *p)
{
as_t *as;
unsigned int rc;
void *loader;
 
as = as_create(0);
ASSERT(as);
 
loader = program_loader;
if (!loader) {
printf("Cannot spawn loader as none was registered\n");
return ENOENT;
}
 
rc = elf_load((elf_header_t *) program_loader, as, ELD_F_LOADER);
if (rc != EE_OK) {
as_destroy(as);
return ENOENT;
}
 
program_create(as, ((elf_header_t *) program_loader)->e_entry, p);
 
return EOK;
}
 
/** Make program ready.
*
* Switch program's main thread to the ready state.
*
* @param p Program to make ready.
*/
void program_ready(program_t *p)
{
thread_ready(p->main_thread);
}
 
/** Syscall for creating a new loader instance from userspace.
*
* Creates a new task from the program loader image, connects a phone
* to it and stores the phone id into the provided buffer.
*
* @param uspace_phone_id Userspace address where to store the phone id.
*
* @return 0 on success or an error code from @ref errno.h.
*/
unative_t sys_program_spawn_loader(int *uspace_phone_id)
{
program_t p;
int fake_id;
int rc;
int phone_id;
 
fake_id = 0;
 
/* Before we even try creating the task, see if we can write the id */
rc = (unative_t) copy_to_uspace(uspace_phone_id, &fake_id,
sizeof(fake_id));
if (rc != 0)
return rc;
 
phone_id = phone_alloc();
if (phone_id < 0)
return ELIMIT;
 
rc = program_create_loader(&p);
if (rc != 0)
return rc;
 
phone_connect(phone_id, &p.task->answerbox);
 
/* No need to aquire lock before task_ready() */
rc = (unative_t) copy_to_uspace(uspace_phone_id, &phone_id,
sizeof(phone_id));
if (rc != 0) {
/* Ooops */
ipc_phone_hangup(&TASK->phones[phone_id]);
task_kill(p.task->taskid);
return rc;
}
 
// FIXME: control the capabilities
cap_set(p.task, cap_get(TASK));
 
program_ready(&p);
 
return EOK;
}
 
/** @}
*/
/branches/network/kernel/generic/src/proc/scheduler.c
451,8 → 451,8
/*
* Entering state is unexpected.
*/
panic("tid%llu: unexpected state %s\n", THREAD->tid,
thread_states[THREAD->state]);
panic("tid%" PRIu64 ": unexpected state %s\n",
THREAD->tid, thread_states[THREAD->state]);
break;
}
 
504,9 → 504,9
THREAD->state = Running;
 
#ifdef SCHEDULER_VERBOSE
printf("cpu%d: tid %llu (priority=%d, ticks=%llu, nrdy=%ld)\n",
CPU->id, THREAD->tid, THREAD->priority, THREAD->ticks,
atomic_get(&CPU->nrdy));
printf("cpu%u: tid %" PRIu64 " (priority=%d, ticks=%" PRIu64
", nrdy=%ld)\n", CPU->id, THREAD->tid, THREAD->priority,
THREAD->ticks, atomic_get(&CPU->nrdy));
#endif
 
/*
640,9 → 640,9
*/
spinlock_lock(&t->lock);
#ifdef KCPULB_VERBOSE
printf("kcpulb%d: TID %llu -> cpu%d, nrdy=%ld, "
"avg=%nd\n", CPU->id, t->tid, CPU->id,
atomic_get(&CPU->nrdy),
printf("kcpulb%u: TID %" PRIu64 " -> cpu%u, "
"nrdy=%ld, avg=%ld\n", CPU->id, t->tid,
CPU->id, atomic_get(&CPU->nrdy),
atomic_get(&nrdy) / config.cpu_active);
#endif
t->flags |= THREAD_FLAG_STOLEN;
708,7 → 708,7
continue;
 
spinlock_lock(&cpus[cpu].lock);
printf("cpu%d: address=%p, nrdy=%ld, needs_relink=%ld\n",
printf("cpu%u: address=%p, nrdy=%ld, needs_relink=%" PRIc "\n",
cpus[cpu].id, &cpus[cpu], atomic_get(&cpus[cpu].nrdy),
cpus[cpu].needs_relink);
719,11 → 719,11
spinlock_unlock(&r->lock);
continue;
}
printf("\trq[%d]: ", i);
printf("\trq[%u]: ", i);
for (cur = r->rq_head.next; cur != &r->rq_head;
cur = cur->next) {
t = list_get_instance(cur, thread_t, rq_link);
printf("%llu(%s) ", t->tid,
printf("%" PRIu64 "(%s) ", t->tid,
thread_states[t->state]);
}
printf("\n");
/branches/network/kernel/generic/src/proc/tasklet.c
0,0 → 1,64
/*
* Copyright (c) 2007 Jan Hudecek
* Copyright (c) 2008 Martin Decky
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* - The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
 
/** @addtogroup genericproc
* @{
*/
/** @file tasklet.c
* @brief Tasklet implementation
*/
 
#include <proc/tasklet.h>
#include <synch/spinlock.h>
#include <mm/slab.h>
#include <config.h>
 
/** Spinlock protecting list of tasklets */
SPINLOCK_INITIALIZE(tasklet_lock);
 
/** Array of tasklet lists for every CPU */
tasklet_descriptor_t **tasklet_list;
 
void tasklet_init(void)
{
unsigned int i;
tasklet_list = malloc(sizeof(tasklet_descriptor_t *) * config.cpu_count, 0);
if (!tasklet_list)
panic("Error initializing tasklets");
for (i = 0; i < config.cpu_count; i++)
tasklet_list[i] = NULL;
spinlock_initialize(&tasklet_lock, "tasklet_lock");
}
 
 
/** @}
*/
/branches/network/kernel/generic/src/lib/objc_ext.c
File deleted
/branches/network/kernel/generic/src/lib/objc.c
File deleted
/branches/network/kernel/generic/src/lib/memstr.c
59,7 → 59,7
*/
void *_memcpy(void * dst, const void *src, size_t cnt)
{
int i, j;
unsigned int i, j;
if (ALIGN_UP((uintptr_t) src, sizeof(unative_t)) != (uintptr_t) src ||
ALIGN_UP((uintptr_t) dst, sizeof(unative_t)) != (uintptr_t) dst) {
67,14 → 67,14
((uint8_t *) dst)[i] = ((uint8_t *) src)[i];
} else {
for (i = 0; i < cnt/sizeof(unative_t); i++)
for (i = 0; i < cnt / sizeof(unative_t); i++)
((unative_t *) dst)[i] = ((unative_t *) src)[i];
for (j = 0; j < cnt%sizeof(unative_t); j++)
for (j = 0; j < cnt % sizeof(unative_t); j++)
((uint8_t *)(((unative_t *) dst) + i))[j] = ((uint8_t *)(((unative_t *) src) + i))[j];
}
return (char *) src;
return (char *) dst;
}
 
/** Fill block of memory
87,9 → 87,9
* @param x Value to fill.
*
*/
void _memsetb(uintptr_t dst, size_t cnt, uint8_t x)
void _memsetb(void *dst, size_t cnt, uint8_t x)
{
int i;
unsigned int i;
uint8_t *p = (uint8_t *) dst;
for (i = 0; i < cnt; i++)
106,9 → 106,9
* @param x Value to fill.
*
*/
void _memsetw(uintptr_t dst, size_t cnt, uint16_t x)
void _memsetw(void *dst, size_t cnt, uint16_t x)
{
int i;
unsigned int i;
uint16_t *p = (uint16_t *) dst;
for (i = 0; i < cnt; i++)
/branches/network/kernel/generic/src/lib/rd.c
38,11 → 38,10
*/
 
#include <lib/rd.h>
#include <arch/byteorder.h>
#include <byteorder.h>
#include <mm/frame.h>
#include <sysinfo/sysinfo.h>
#include <ddi/ddi.h>
#include <print.h>
#include <align.h>
 
static parea_t rd_parea; /**< Physical memory area for rd. */
49,14 → 48,14
 
/**
* RAM disk initialization routine. At this point, the RAM disk memory is shared
* and information about the share is provided as sysinfo values to the userspace
* tasks.
* and information about the share is provided as sysinfo values to the
* userspace tasks.
*/
int init_rd(rd_header * header, size_t size)
int init_rd(rd_header_t *header, size_t size)
{
/* Identify RAM disk */
if ((header->magic[0] != RD_MAG0) || (header->magic[1] != RD_MAG1) ||
(header->magic[2] != RD_MAG2) || (header->magic[3] != RD_MAG3))
(header->magic[2] != RD_MAG2) || (header->magic[3] != RD_MAG3))
return RE_INVALID;
/* Identify version */
80,10 → 79,7
if ((hsize % FRAME_SIZE) || (dsize % FRAME_SIZE))
return RE_UNSUPPORTED;
if (dsize % FRAME_SIZE)
return RE_UNSUPPORTED;
 
if (hsize > size)
return RE_INVALID;
90,7 → 86,8
if ((uint64_t) hsize + dsize > size)
dsize = size - hsize;
rd_parea.pbase = ALIGN_DOWN((uintptr_t) KA2PA((void *) header + hsize), FRAME_SIZE);
rd_parea.pbase = ALIGN_DOWN((uintptr_t) KA2PA((void *) header + hsize),
FRAME_SIZE);
rd_parea.vbase = (uintptr_t) ((void *) header + hsize);
rd_parea.frames = SIZE2FRAMES(dsize);
rd_parea.cacheable = true;
99,8 → 96,8
sysinfo_set_item_val("rd", NULL, true);
sysinfo_set_item_val("rd.header_size", NULL, hsize);
sysinfo_set_item_val("rd.size", NULL, dsize);
sysinfo_set_item_val("rd.address.physical", NULL, (unative_t)
KA2PA((void *) header + hsize));
sysinfo_set_item_val("rd.address.physical", NULL,
(unative_t) KA2PA((void *) header + hsize));
 
return RE_OK;
}
/branches/network/kernel/generic/src/lib/elf.c
57,7 → 57,7
};
 
static int segment_header(elf_segment_header_t *entry, elf_header_t *elf,
as_t *as);
as_t *as, int flags);
static int section_header(elf_section_header_t *entry, elf_header_t *elf,
as_t *as);
static int load_segment(elf_segment_header_t *entry, elf_header_t *elf,
67,9 → 67,10
*
* @param header Pointer to ELF header in memory
* @param as Created and properly mapped address space
* @param flags A combination of ELD_F_*
* @return EE_OK on success
*/
int elf_load(elf_header_t *header, as_t * as)
unsigned int elf_load(elf_header_t *header, as_t * as, int flags)
{
int i, rc;
 
100,6 → 101,10
if (header->e_type != ET_EXEC)
return EE_UNSUPPORTED;
 
/* Check if the ELF image starts on a page boundary */
if (ALIGN_UP((uintptr_t)header, PAGE_SIZE) != (uintptr_t)header)
return EE_UNSUPPORTED;
 
/* Walk through all segment headers and process them. */
for (i = 0; i < header->e_phnum; i++) {
elf_segment_header_t *seghdr;
106,7 → 111,7
 
seghdr = &((elf_segment_header_t *)(((uint8_t *) header) +
header->e_phoff))[i];
rc = segment_header(seghdr, header, as);
rc = segment_header(seghdr, header, as, flags);
if (rc != EE_OK)
return rc;
}
131,7 → 136,7
*
* @return NULL terminated description of error.
*/
char *elf_error(int rc)
char *elf_error(unsigned int rc)
{
ASSERT(rc < sizeof(error_codes) / sizeof(char *));
 
147,8 → 152,10
* @return EE_OK on success, error code otherwise.
*/
static int segment_header(elf_segment_header_t *entry, elf_header_t *elf,
as_t *as)
as_t *as, int flags)
{
char *interp;
 
switch (entry->p_type) {
case PT_NULL:
case PT_PHDR:
158,6 → 165,16
break;
case PT_DYNAMIC:
case PT_INTERP:
interp = (char *)elf + entry->p_offset;
/* FIXME */
/*if (memcmp((uintptr_t)interp, (uintptr_t)ELF_INTERP_ZSTR,
ELF_INTERP_ZLEN) != 0) {
return EE_UNSUPPORTED;
}*/
if ((flags & ELD_F_LOADER) == 0) {
return EE_LOADER;
}
break;
case PT_SHLIB:
case PT_NOTE:
case PT_LOPROC:
182,6 → 199,8
as_area_t *a;
int flags = 0;
mem_backend_data_t backend_data;
uintptr_t base;
size_t mem_sz;
backend_data.elf = elf;
backend_data.segment = entry;
201,13 → 220,14
flags |= AS_AREA_READ;
flags |= AS_AREA_CACHEABLE;
 
/*
* Check if the virtual address starts on page boundary.
/*
* Align vaddr down, inserting a little "gap" at the beginning.
* Adjust area size, so that its end remains in place.
*/
if (ALIGN_UP(entry->p_vaddr, PAGE_SIZE) != entry->p_vaddr)
return EE_UNSUPPORTED;
base = ALIGN_DOWN(entry->p_vaddr, PAGE_SIZE);
mem_sz = entry->p_memsz + (entry->p_vaddr - base);
 
a = as_area_create(as, flags, entry->p_memsz, entry->p_vaddr,
a = as_area_create(as, flags, mem_sz, base,
AS_AREA_ATTR_NONE, &elf_backend, &backend_data);
if (!a)
return EE_MEMORY;
/branches/network/kernel/generic/src/lib/func.c
73,7 → 73,7
}
#endif
if (CPU)
printf("cpu%d: halted\n", CPU->id);
printf("cpu%u: halted\n", CPU->id);
else
printf("cpu: halted\n");
cpu_halt();
139,9 → 139,9
*/
int strncmp(const char *src, const char *dst, size_t len)
{
int i;
unsigned int i;
for (i = 0; *src && *dst && i < len; src++, dst++, i++) {
for (i = 0; (*src) && (*dst) && (i < len); src++, dst++, i++) {
if (*src < *dst)
return -1;
if (*src > *dst)
168,7 → 168,7
*/
void strncpy(char *dest, const char *src, size_t len)
{
int i;
unsigned int i;
for (i = 0; i < len; i++) {
if (!(dest[i] = src[i]))
return;
/branches/network/kernel/generic/src/lib/sort.c
96,14 → 96,17
void _qsort(void * data, count_t n, size_t e_size, int (* cmp) (void * a, void * b), void *tmp, void *pivot)
{
if (n > 4) {
int i = 0, j = n - 1;
unsigned int i = 0, j = n - 1;
 
memcpy(pivot, data, e_size);
 
while (1) {
while ((cmp(data + i * e_size, pivot) < 0) && i < n) i++;
while ((cmp(data + j * e_size, pivot) >=0) && j > 0) j--;
if (i<j) {
while ((cmp(data + i * e_size, pivot) < 0) && (i < n))
i++;
while ((cmp(data + j * e_size, pivot) >= 0) && (j > 0))
j--;
if (i < j) {
memcpy(tmp, data + i * e_size, e_size);
memcpy(data + i * e_size, data + j * e_size, e_size);
memcpy(data + j * e_size, tmp, e_size);
/branches/network/kernel/generic/src/sysinfo/sysinfo.c
177,7 → 177,7
sysinfo_item_t *item = sysinfo_create_path(name, root);
if (item != NULL) { /* If in subsystem, unable to create or return so unable to set */
item->val.val=val;
item->val.val = val;
item->val_type = SYSINFO_VAL_VAL;
}
}
192,7 → 192,7
sysinfo_item_t *item = sysinfo_create_path(name, root);
if (item != NULL) { /* If in subsystem, unable to create or return so unable to set */
item->val.fn=fn;
item->val.fn = fn;
item->val_type = SYSINFO_VAL_FUNCTION;
}
}
244,7 → 244,7
break;
}
printf("%s %s val:%d(%x) sub:%s\n", root->name, vtype, val,
printf("%s %s val:%" PRIun "(%" PRIxn ") sub:%s\n", root->name, vtype, val,
val, (root->subinfo_type == SYSINFO_SUBINFO_NONE) ?
"NON" : ((root->subinfo_type == SYSINFO_SUBINFO_TABLE) ?
"TAB" : "FUN"));
281,10 → 281,15
return ret;
}
 
#define SYSINFO_MAX_LEN 1024
 
unative_t sys_sysinfo_valid(unative_t ptr, unative_t len)
{
char *str;
sysinfo_rettype_t ret = {0, 0};
 
if (len > SYSINFO_MAX_LEN)
return ret.valid;
str = malloc(len + 1, 0);
ASSERT(str);
299,6 → 304,9
{
char *str;
sysinfo_rettype_t ret = {0, 0};
if (len > SYSINFO_MAX_LEN)
return ret.val;
str = malloc(len + 1, 0);
ASSERT(str);
/branches/network/kernel/generic/src/synch/smc.c
0,0 → 1,60
/*
* Copyright (c) 2008 Jiri Svoboda
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* - The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
 
/** @addtogroup sync
* @{
*/
 
/**
* @file
* @brief Self-modifying code barriers.
*/
 
#include <arch.h>
#include <macros.h>
#include <errno.h>
#include <arch/barrier.h>
#include <synch/smc.h>
 
unative_t sys_smc_coherence(uintptr_t va, size_t size)
{
if (overlaps(va, size, NULL, PAGE_SIZE))
return EINVAL;
 
if (!KERNEL_ADDRESS_SPACE_SHADOWED) {
if (overlaps(va, size, KERNEL_ADDRESS_SPACE_START,
KERNEL_ADDRESS_SPACE_END - KERNEL_ADDRESS_SPACE_START))
return EINVAL;
}
 
smc_coherence_block((void *) va, size);
return 0;
}
 
/** @}
*/
/branches/network/kernel/generic/src/synch/rwlock.c
82,7 → 82,7
*/
void rwlock_initialize(rwlock_t *rwl) {
spinlock_initialize(&rwl->lock, "rwlock_t");
mutex_initialize(&rwl->exclusive);
mutex_initialize(&rwl->exclusive, MUTEX_PASSIVE);
rwl->readers_in = 0;
}
 
231,7 → 231,7
interrupts_restore(ipl);
break;
case ESYNCH_OK_ATOMIC:
panic("_mutex_lock_timeout()==ESYNCH_OK_ATOMIC\n");
panic("_mutex_lock_timeout() == ESYNCH_OK_ATOMIC\n");
break;
default:
panic("invalid ESYNCH\n");
/branches/network/kernel/generic/src/synch/mutex.c
38,42 → 38,54
#include <synch/mutex.h>
#include <synch/semaphore.h>
#include <synch/synch.h>
#include <debug.h>
 
/** Initialize mutex
/** Initialize mutex.
*
* Initialize mutex.
*
* @param mtx Mutex.
* @param mtx Mutex.
* @param type Type of the mutex.
*/
void mutex_initialize(mutex_t *mtx)
void mutex_initialize(mutex_t *mtx, mutex_type_t type)
{
mtx->type = type;
semaphore_initialize(&mtx->sem, 1);
}
 
/** Acquire mutex
/** Acquire mutex.
*
* Acquire mutex.
* Timeout mode and non-blocking mode can be requested.
*
* @param mtx Mutex.
* @param usec Timeout in microseconds.
* @param flags Specify mode of operation.
* @param mtx Mutex.
* @param usec Timeout in microseconds.
* @param flags Specify mode of operation.
*
* For exact description of possible combinations of
* usec and flags, see comment for waitq_sleep_timeout().
*
* @return See comment for waitq_sleep_timeout().
* @return See comment for waitq_sleep_timeout().
*/
int _mutex_lock_timeout(mutex_t *mtx, uint32_t usec, int flags)
{
return _semaphore_down_timeout(&mtx->sem, usec, flags);
int rc;
 
if (mtx->type == MUTEX_PASSIVE) {
rc = _semaphore_down_timeout(&mtx->sem, usec, flags);
} else {
ASSERT(mtx->type == MUTEX_ACTIVE);
ASSERT(usec == SYNCH_NO_TIMEOUT);
ASSERT(!(flags & SYNCH_FLAGS_INTERRUPTIBLE));
do {
rc = semaphore_trydown(&mtx->sem);
} while (SYNCH_FAILED(rc) &&
!(flags & SYNCH_FLAGS_NON_BLOCKING));
}
 
return rc;
}
 
/** Release mutex
/** Release mutex.
*
* Release mutex.
*
* @param mtx Mutex.
* @param mtx Mutex.
*/
void mutex_unlock(mutex_t *mtx)
{
/branches/network/kernel/generic/src/synch/condvar.c
43,7 → 43,7
 
/** Initialize condition variable.
*
* @param cv Condition variable.
* @param cv Condition variable.
*/
void condvar_initialize(condvar_t *cv)
{
50,11 → 50,10
waitq_initialize(&cv->wq);
}
 
/**
* Signal the condition has become true
* to the first waiting thread by waking it up.
/** Signal the condition has become true to the first waiting thread by waking
* it up.
*
* @param cv Condition variable.
* @param cv Condition variable.
*/
void condvar_signal(condvar_t *cv)
{
61,11 → 60,10
waitq_wakeup(&cv->wq, WAKEUP_FIRST);
}
 
/**
* Signal the condition has become true
* to all waiting threads by waking them up.
/** Signal the condition has become true to all waiting threads by waking
* them up.
*
* @param cv Condition variable.
* @param cv Condition variable.
*/
void condvar_broadcast(condvar_t *cv)
{
74,17 → 72,17
 
/** Wait for the condition becoming true.
*
* @param cv Condition variable.
* @param mtx Mutex.
* @param usec Timeout value in microseconds.
* @param flags Select mode of operation.
* @param cv Condition variable.
* @param mtx Mutex.
* @param usec Timeout value in microseconds.
* @param flags Select mode of operation.
*
* For exact description of meaning of possible combinations
* of usec and flags, see comment for waitq_sleep_timeout().
* Note that when SYNCH_FLAGS_NON_BLOCKING is specified here,
* ESYNCH_WOULD_BLOCK is always returned.
* For exact description of meaning of possible combinations of usec and flags,
* see comment for waitq_sleep_timeout(). Note that when
* SYNCH_FLAGS_NON_BLOCKING is specified here, ESYNCH_WOULD_BLOCK is always
* returned.
*
* @return See comment for waitq_sleep_timeout().
* @return See comment for waitq_sleep_timeout().
*/
int _condvar_wait_timeout(condvar_t *cv, mutex_t *mtx, uint32_t usec, int flags)
{
/branches/network/kernel/generic/src/synch/spinlock.c
106,9 → 106,8
continue;
#endif
if (i++ > DEADLOCK_THRESHOLD) {
printf("cpu%d: looping on spinlock %.*p:%s, "
"caller=%.*p", CPU->id, sizeof(uintptr_t) * 2, sl,
sl->name, sizeof(uintptr_t) * 2, CALLER);
printf("cpu%u: looping on spinlock %" PRIp ":%s, caller=%" PRIp,
CPU->id, sl, sl->name, CALLER);
symbol = get_symtab_entry(CALLER);
if (symbol)
printf("(%s)", symbol);
119,7 → 118,7
}
 
if (deadlock_reported)
printf("cpu%d: not deadlocked\n", CPU->id);
printf("cpu%u: not deadlocked\n", CPU->id);
 
/*
* Prevent critical section code from bleeding out this way up.
/branches/network/kernel/generic/src/synch/waitq.c
54,13 → 54,13
#include <context.h>
#include <adt/list.h>
 
static void waitq_timeouted_sleep(void *data);
static void waitq_sleep_timed_out(void *data);
 
/** Initialize wait queue
*
* Initialize wait queue.
*
* @param wq Pointer to wait queue to be initialized.
* @param wq Pointer to wait queue to be initialized.
*/
void waitq_initialize(waitq_t *wq)
{
71,7 → 71,7
 
/** Handle timeout during waitq_sleep_timeout() call
*
* This routine is called when waitq_sleep_timeout() timeouts.
* This routine is called when waitq_sleep_timeout() times out.
* Interrupts are disabled.
*
* It is supposed to try to remove 'its' thread from the wait queue;
79,9 → 79,9
* overlap. In that case it behaves just as though there was no
* timeout at all.
*
* @param data Pointer to the thread that called waitq_sleep_timeout().
* @param data Pointer to the thread that called waitq_sleep_timeout().
*/
void waitq_timeouted_sleep(void *data)
void waitq_sleep_timed_out(void *data)
{
thread_t *t = (thread_t *) data;
waitq_t *wq;
123,7 → 123,7
* This routine attempts to interrupt a thread from its sleep in a waitqueue.
* If the thread is not found sleeping, no action is taken.
*
* @param t Thread to be interrupted.
* @param t Thread to be interrupted.
*/
void waitq_interrupt_sleep(thread_t *t)
{
183,9 → 183,9
* This function is really basic in that other functions as waitq_sleep()
* and all the *_timeout() functions use it.
*
* @param wq Pointer to wait queue.
* @param usec Timeout in microseconds.
* @param flags Specify mode of the sleep.
* @param wq Pointer to wait queue.
* @param usec Timeout in microseconds.
* @param flags Specify mode of the sleep.
*
* The sleep can be interrupted only if the
* SYNCH_FLAGS_INTERRUPTIBLE bit is specified in flags.
200,22 → 200,23
* If usec is zero and the SYNCH_FLAGS_NON_BLOCKING bit is set in flags, the
* call will immediately return, reporting either success or failure.
*
* @return One of: ESYNCH_WOULD_BLOCK, ESYNCH_TIMEOUT, ESYNCH_INTERRUPTED,
* ESYNCH_OK_ATOMIC, ESYNCH_OK_BLOCKED.
* @return Returns one of ESYNCH_WOULD_BLOCK, ESYNCH_TIMEOUT,
* ESYNCH_INTERRUPTED, ESYNCH_OK_ATOMIC and
* ESYNCH_OK_BLOCKED.
*
* @li ESYNCH_WOULD_BLOCK means that the sleep failed because at the time of the
* call there was no pending wakeup.
* @li ESYNCH_WOULD_BLOCK means that the sleep failed because at the time of
* the call there was no pending wakeup.
*
* @li ESYNCH_TIMEOUT means that the sleep timed out.
* @li ESYNCH_TIMEOUT means that the sleep timed out.
*
* @li ESYNCH_INTERRUPTED means that somebody interrupted the sleeping thread.
* @li ESYNCH_INTERRUPTED means that somebody interrupted the sleeping thread.
*
* @li ESYNCH_OK_ATOMIC means that the sleep succeeded and that there was
* a pending wakeup at the time of the call. The caller was not put
* asleep at all.
* @li ESYNCH_OK_ATOMIC means that the sleep succeeded and that there was
* a pending wakeup at the time of the call. The caller was not put
* asleep at all.
*
* @li ESYNCH_OK_BLOCKED means that the sleep succeeded; the full sleep was
* attempted.
* @li ESYNCH_OK_BLOCKED means that the sleep succeeded; the full sleep was
* attempted.
*/
int waitq_sleep_timeout(waitq_t *wq, uint32_t usec, int flags)
{
233,9 → 234,9
* This function will return holding the lock of the wait queue
* and interrupts disabled.
*
* @param wq Wait queue.
* @param wq Wait queue.
*
* @return Interrupt level as it existed on entry to this function.
* @return Interrupt level as it existed on entry to this function.
*/
ipl_t waitq_sleep_prepare(waitq_t *wq)
{
271,9 → 272,9
* to the call to waitq_sleep_prepare(). If necessary, the wait queue
* lock is released.
*
* @param wq Wait queue.
* @param rc Return code of waitq_sleep_timeout_unsafe().
* @param ipl Interrupt level returned by waitq_sleep_prepare().
* @param wq Wait queue.
* @param rc Return code of waitq_sleep_timeout_unsafe().
* @param ipl Interrupt level returned by waitq_sleep_prepare().
*/
void waitq_sleep_finish(waitq_t *wq, int rc, ipl_t ipl)
{
291,14 → 292,14
/** Internal implementation of waitq_sleep_timeout().
*
* This function implements logic of sleeping in a wait queue.
* This call must be preceeded by a call to waitq_sleep_prepare()
* and followed by a call to waitq_slee_finish().
* This call must be preceded by a call to waitq_sleep_prepare()
* and followed by a call to waitq_sleep_finish().
*
* @param wq See waitq_sleep_timeout().
* @param usec See waitq_sleep_timeout().
* @param flags See waitq_sleep_timeout().
* @param wq See waitq_sleep_timeout().
* @param usec See waitq_sleep_timeout().
* @param flags See waitq_sleep_timeout().
*
* @return See waitq_sleep_timeout().
* @return See waitq_sleep_timeout().
*/
int waitq_sleep_timeout_unsafe(waitq_t *wq, uint32_t usec, int flags)
{
355,7 → 356,7
}
THREAD->timeout_pending = true;
timeout_register(&THREAD->sleep_timeout, (uint64_t) usec,
waitq_timeouted_sleep, THREAD);
waitq_sleep_timed_out, THREAD);
}
 
list_append(&THREAD->wq_link, &wq->head);
383,8 → 384,8
* Besides its 'normal' wakeup operation, it attempts to unregister possible
* timeout.
*
* @param wq Pointer to wait queue.
* @param mode Wakeup mode.
* @param wq Pointer to wait queue.
* @param mode Wakeup mode.
*/
void waitq_wakeup(waitq_t *wq, wakeup_mode_t mode)
{
404,12 → 405,12
* This is the internal SMP- and IRQ-unsafe version of waitq_wakeup(). It
* assumes wq->lock is already locked and interrupts are already disabled.
*
* @param wq Pointer to wait queue.
* @param mode If mode is WAKEUP_FIRST, then the longest waiting thread,
* if any, is woken up. If mode is WAKEUP_ALL, then all
* waiting threads, if any, are woken up. If there are no
* waiting threads to be woken up, the missed wakeup is
* recorded in the wait queue.
* @param wq Pointer to wait queue.
* @param mode If mode is WAKEUP_FIRST, then the longest waiting
* thread, if any, is woken up. If mode is WAKEUP_ALL, then
* all waiting threads, if any, are woken up. If there are
* no waiting threads to be woken up, the missed wakeup is
* recorded in the wait queue.
*/
void _waitq_wakeup_unsafe(waitq_t *wq, wakeup_mode_t mode)
{
431,7 → 432,7
* Lock the thread prior to removing it from the wq.
* This is not necessary because of mutual exclusion
* (the link belongs to the wait queue), but because
* of synchronization with waitq_timeouted_sleep()
* of synchronization with waitq_sleep_timed_out()
* and thread_interrupt_sleep().
*
* In order for these two functions to work, the following
/branches/network/kernel/generic/src/synch/futex.c
324,7 → 324,7
for (cur = TASK->futexes.leaf_head.next;
cur != &TASK->futexes.leaf_head; cur = cur->next) {
btree_node_t *node;
int i;
unsigned int i;
node = list_get_instance(cur, btree_node_t, leaf_link);
for (i = 0; i < node->keys; i++) {
/branches/network/kernel/generic/src/syscall/syscall.c
38,6 → 38,7
#include <syscall/syscall.h>
#include <proc/thread.h>
#include <proc/task.h>
#include <proc/program.h>
#include <mm/as.h>
#include <print.h>
#include <putchar.h>
46,19 → 47,19
#include <debug.h>
#include <ipc/sysipc.h>
#include <synch/futex.h>
#include <synch/smc.h>
#include <ddi/ddi.h>
#include <security/cap.h>
#include <syscall/copy.h>
#include <sysinfo/sysinfo.h>
#include <console/console.h>
#include <console/klog.h>
 
/** Print using kernel facility
*
* Some simulators can print only through kernel. Userspace can use
* this syscall to facilitate it.
* Print to kernel log.
*
*/
static unative_t sys_io(int fd, const void * buf, size_t count)
static unative_t sys_klog(int fd, const void * buf, size_t count)
{
size_t i;
char *data;
66,20 → 67,23
 
if (count > PAGE_SIZE)
return ELIMIT;
 
data = (char *) malloc(count, 0);
if (!data)
return ENOMEM;
rc = copy_from_uspace(data, buf, count);
if (rc) {
if (count > 0) {
data = (char *) malloc(count, 0);
if (!data)
return ENOMEM;
rc = copy_from_uspace(data, buf, count);
if (rc) {
free(data);
return rc;
}
for (i = 0; i < count; i++)
putchar(data[i]);
free(data);
return rc;
}
 
for (i = 0; i < count; i++)
putchar(data[i]);
free(data);
} else
klog_update();
return count;
}
100,8 → 104,7
if (id < SYSCALL_END)
rc = syscall_table[id](a1, a2, a3, a4, a5, a6);
else {
klog_printf("TASK %llu: Unknown syscall id %llx", TASK->taskid,
id);
printf("Task %" PRIu64": Unknown syscall %#" PRIxn, TASK->taskid, id);
task_kill(TASK->taskid);
thread_exit();
}
113,7 → 116,7
}
 
syshandler_t syscall_table[SYSCALL_END] = {
(syshandler_t) sys_io,
(syshandler_t) sys_klog,
(syshandler_t) sys_tls_set,
/* Thread and task related syscalls. */
120,15 → 123,19
(syshandler_t) sys_thread_create,
(syshandler_t) sys_thread_exit,
(syshandler_t) sys_thread_get_id,
(syshandler_t) sys_task_get_id,
(syshandler_t) sys_program_spawn_loader,
/* Synchronization related syscalls. */
(syshandler_t) sys_futex_sleep_timeout,
(syshandler_t) sys_futex_wakeup,
(syshandler_t) sys_smc_coherence,
/* Address space related syscalls. */
(syshandler_t) sys_as_area_create,
(syshandler_t) sys_as_area_resize,
(syshandler_t) sys_as_area_change_flags,
(syshandler_t) sys_as_area_destroy,
/* IPC related syscalls. */
/branches/network/kernel/generic/src/console/klog.c
File deleted
/branches/network/kernel/generic/src/console/kconsole.c
169,7 → 169,7
}
 
/** Try to find a command beginning with prefix */
static const char * cmdtab_search_one(const char *name,link_t **startpos)
static const char *cmdtab_search_one(const char *name,link_t **startpos)
{
size_t namelen = strlen(name);
const char *curname;
203,7 → 203,7
*/
static int cmdtab_compl(char *name)
{
static char output[MAX_SYMBOL_NAME+1];
static char output[MAX_SYMBOL_NAME + 1];
link_t *startpos = NULL;
const char *foundtxt;
int found = 0;
213,7 → 213,7
while ((foundtxt = cmdtab_search_one(name, &startpos))) {
startpos = startpos->next;
if (!found)
strncpy(output, foundtxt, strlen(foundtxt)+1);
strncpy(output, foundtxt, strlen(foundtxt) + 1);
else {
for (i = 0; output[i] && foundtxt[i] &&
output[i] == foundtxt[i]; i++)
240,11 → 240,11
}
 
static char * clever_readline(const char *prompt, chardev_t *input)
static char *clever_readline(const char *prompt, chardev_t *input)
{
static int histposition = 0;
 
static char tmp[MAX_CMDLINE+1];
static char tmp[MAX_CMDLINE + 1];
int curlen = 0, position = 0;
char *current = history[histposition];
int i;
257,7 → 257,8
if (c == '\n') {
putchar(c);
break;
} if (c == '\b') { /* Backspace */
}
if (c == '\b') { /* Backspace */
if (position == 0)
continue;
for (i = position; i < curlen; i++)
543,7 → 544,8
buf = (char *) cmd->argv[i].buffer;
strncpy(buf, (const char *) &cmdline[start],
min((end - start) + 2, cmd->argv[i].len));
buf[min((end - start) + 1, cmd->argv[i].len - 1)] = '\0';
buf[min((end - start) + 1, cmd->argv[i].len - 1)] =
'\0';
break;
case ARG_TYPE_INT:
if (parse_int_arg(cmdline + start, end - start + 1,
560,8 → 562,8
'\0';
cmd->argv[i].intval = (unative_t) buf;
cmd->argv[i].vartype = ARG_TYPE_STRING;
} else if (!parse_int_arg(cmdline + start, end - start + 1,
&cmd->argv[i].intval)) {
} else if (!parse_int_arg(cmdline + start,
end - start + 1, &cmd->argv[i].intval)) {
cmd->argv[i].vartype = ARG_TYPE_INT;
} else {
printf("Unrecognized variable argument.\n");
/branches/network/kernel/generic/src/console/console.c
35,30 → 35,56
 
#include <console/console.h>
#include <console/chardev.h>
#include <sysinfo/sysinfo.h>
#include <synch/waitq.h>
#include <synch/spinlock.h>
#include <arch/types.h>
#include <ddi/device.h>
#include <ddi/irq.h>
#include <ddi/ddi.h>
#include <ipc/irq.h>
#include <arch.h>
#include <func.h>
#include <print.h>
#include <atomic.h>
 
#define BUFLEN 2048
static char debug_buffer[BUFLEN];
static size_t offset = 0;
/** Initialize stdout to something that does not print, but does not fail
*
* Save data in some buffer so that it could be retrieved in the debugger
#define KLOG_SIZE PAGE_SIZE
#define KLOG_LATENCY 8
 
/**< Kernel log cyclic buffer */
static char klog[KLOG_SIZE] __attribute__ ((aligned (PAGE_SIZE)));
 
/**< Kernel log initialized */
static bool klog_inited = false;
/**< First kernel log characters */
static index_t klog_start = 0;
/**< Number of valid kernel log characters */
static size_t klog_len = 0;
/**< Number of stored (not printed) kernel log characters */
static size_t klog_stored = 0;
/**< Number of stored kernel log characters for uspace */
static size_t klog_uspace = 0;
 
/**< Kernel log spinlock */
SPINLOCK_INITIALIZE(klog_lock);
 
/** Physical memory area used for klog buffer */
static parea_t klog_parea;
/*
* For now, we use 0 as INR.
* However, it is therefore desirable to have architecture specific
* definition of KLOG_VIRT_INR in the future.
*/
static void null_putchar(chardev_t *d, const char ch)
{
if (offset >= BUFLEN)
offset = 0;
debug_buffer[offset++] = ch;
}
#define KLOG_VIRT_INR 0
 
static irq_t klog_irq;
 
static chardev_operations_t null_stdout_ops = {
.write = null_putchar
.suspend = NULL,
.resume = NULL,
.write = NULL,
.read = NULL
};
 
chardev_t null_stdout = {
66,10 → 92,58
.op = &null_stdout_ops
};
 
/** Standard input character device. */
/** Allways refuse IRQ ownership.
*
* This is not a real IRQ, so we always decline.
*
* @return Always returns IRQ_DECLINE.
*/
static irq_ownership_t klog_claim(void)
{
return IRQ_DECLINE;
}
 
/** Standard input character device */
chardev_t *stdin = NULL;
chardev_t *stdout = &null_stdout;
 
/** Initialize kernel logging facility
*
* The shared area contains kernel cyclic buffer. Userspace application may
* be notified on new data with indication of position and size
* of the data within the circular buffer.
*/
void klog_init(void)
{
void *faddr = (void *) KA2PA(klog);
ASSERT((uintptr_t) faddr % FRAME_SIZE == 0);
ASSERT(KLOG_SIZE % FRAME_SIZE == 0);
 
devno_t devno = device_assign_devno();
klog_parea.pbase = (uintptr_t) faddr;
klog_parea.vbase = (uintptr_t) klog;
klog_parea.frames = SIZE2FRAMES(KLOG_SIZE);
klog_parea.cacheable = true;
ddi_parea_register(&klog_parea);
 
sysinfo_set_item_val("klog.faddr", NULL, (unative_t) faddr);
sysinfo_set_item_val("klog.pages", NULL, SIZE2FRAMES(KLOG_SIZE));
sysinfo_set_item_val("klog.devno", NULL, devno);
sysinfo_set_item_val("klog.inr", NULL, KLOG_VIRT_INR);
 
irq_initialize(&klog_irq);
klog_irq.devno = devno;
klog_irq.inr = KLOG_VIRT_INR;
klog_irq.claim = klog_claim;
irq_register(&klog_irq);
spinlock_lock(&klog_lock);
klog_inited = true;
spinlock_unlock(&klog_lock);
}
 
/** Get character from character device. Do not echo character.
*
* @param chardev Character device.
90,7 → 164,7
return chardev->op->read(chardev);
/* no other way of interacting with user, halt */
if (CPU)
printf("cpu%d: ", CPU->id);
printf("cpu%u: ", CPU->id);
else
printf("cpu: ");
printf("halted - no kconsole\n");
159,10 → 233,60
return ch;
}
 
void klog_update(void)
{
spinlock_lock(&klog_lock);
if ((klog_inited) && (klog_irq.notif_cfg.notify) && (klog_uspace > 0)) {
ipc_irq_send_msg_3(&klog_irq, klog_start, klog_len, klog_uspace);
klog_uspace = 0;
}
spinlock_unlock(&klog_lock);
}
 
void putchar(char c)
{
spinlock_lock(&klog_lock);
if ((klog_stored > 0) && (stdout->op->write)) {
/* Print charaters stored in kernel log */
index_t i;
for (i = klog_len - klog_stored; i < klog_len; i++)
stdout->op->write(stdout, klog[(klog_start + i) % KLOG_SIZE]);
klog_stored = 0;
}
/* Store character in the cyclic kernel log */
klog[(klog_start + klog_len) % KLOG_SIZE] = c;
if (klog_len < KLOG_SIZE)
klog_len++;
else
klog_start = (klog_start + 1) % KLOG_SIZE;
if (stdout->op->write)
stdout->op->write(stdout, c);
else {
/* The character is just in the kernel log */
if (klog_stored < klog_len)
klog_stored++;
}
/* The character is stored for uspace */
if (klog_uspace < klog_len)
klog_uspace++;
/* Check notify uspace to update */
bool update;
if ((klog_uspace > KLOG_LATENCY) || (c == '\n'))
update = true;
else
update = false;
spinlock_unlock(&klog_lock);
if (update)
klog_update();
}
 
/** @}
/branches/network/kernel/generic/src/console/cmd.c
563,7 → 563,7
/* This doesn't have to be very accurate */
unative_t sec = uptime->seconds1;
printf("Up %u days, %u hours, %u minutes, %u seconds\n",
printf("Up %" PRIun " days, %" PRIun " hours, %" PRIun " minutes, %" PRIun " seconds\n",
sec / 86400, (sec % 86400) / 3600, (sec % 3600) / 60, sec % 60);
return 1;
632,7 → 632,7
printf("Duplicate symbol, be more specific.\n");
} else {
symbol = get_symtab_entry(symaddr);
printf("Calling %s() (%.*p)\n", symbol, sizeof(uintptr_t) * 2, symaddr);
printf("Calling %s() (%p)\n", symbol, symaddr);
#ifdef ia64
fptr.f = symaddr;
fptr.gp = ((unative_t *)cmd_call2)[1];
640,7 → 640,7
#else
f = (unative_t (*)(void)) symaddr;
#endif
printf("Result: %#zx\n", f());
printf("Result: %#" PRIxn "\n", f());
}
return 1;
686,7 → 686,7
struct {
unative_t f;
unative_t gp;
}fptr;
} fptr;
#endif
 
symaddr = get_symbol_addr((char *) argv->buffer);
698,7 → 698,7
} else {
symbol = get_symtab_entry(symaddr);
 
printf("Calling f(%#zx): %.*p: %s\n", arg1, sizeof(uintptr_t) * 2, symaddr, symbol);
printf("Calling f(%#" PRIxn "): %p: %s\n", arg1, symaddr, symbol);
#ifdef ia64
fptr.f = symaddr;
fptr.gp = ((unative_t *)cmd_call2)[1];
706,7 → 706,7
#else
f = (unative_t (*)(unative_t,...)) symaddr;
#endif
printf("Result: %#zx\n", f(arg1));
printf("Result: %#" PRIxn "\n", f(arg1));
}
return 1;
735,8 → 735,8
printf("Duplicate symbol, be more specific.\n");
} else {
symbol = get_symtab_entry(symaddr);
printf("Calling f(0x%zx,0x%zx): %.*p: %s\n",
arg1, arg2, sizeof(uintptr_t) * 2, symaddr, symbol);
printf("Calling f(%#" PRIxn ", %#" PRIxn "): %p: %s\n",
arg1, arg2, symaddr, symbol);
#ifdef ia64
fptr.f = symaddr;
fptr.gp = ((unative_t *)cmd_call2)[1];
744,7 → 744,7
#else
f = (unative_t (*)(unative_t,unative_t,...)) symaddr;
#endif
printf("Result: %#zx\n", f(arg1, arg2));
printf("Result: %#" PRIxn "\n", f(arg1, arg2));
}
return 1;
774,8 → 774,8
printf("Duplicate symbol, be more specific.\n");
} else {
symbol = get_symtab_entry(symaddr);
printf("Calling f(0x%zx,0x%zx, 0x%zx): %.*p: %s\n",
arg1, arg2, arg3, sizeof(uintptr_t) * 2, symaddr, symbol);
printf("Calling f(%#" PRIxn ",%#" PRIxn ", %#" PRIxn "): %p: %s\n",
arg1, arg2, arg3, symaddr, symbol);
#ifdef ia64
fptr.f = symaddr;
fptr.gp = ((unative_t *)cmd_call2)[1];
783,7 → 783,7
#else
f = (unative_t (*)(unative_t,unative_t,unative_t,...)) symaddr;
#endif
printf("Result: %#zx\n", f(arg1, arg2, arg3));
printf("Result: %#" PRIxn "\n", f(arg1, arg2, arg3));
}
return 1;
856,7 → 856,7
} else {
if (pointer)
addr = (uint32_t *)(*(unative_t *)addr);
printf("Writing 0x%x -> %.*p\n", arg1, sizeof(uintptr_t) * 2, addr);
printf("Writing %#" PRIx64 " -> %p\n", arg1, addr);
*addr = arg1;
}
1025,7 → 1025,7
char suffix;
order(dt, &cycles, &suffix);
printf("Time: %llu%c cycles\n", cycles, suffix);
printf("Time: %" PRIu64 "%c cycles\n", cycles, suffix);
if (ret == NULL) {
printf("Test passed\n");
1053,7 → 1053,7
}
for (i = 0; i < cnt; i++) {
printf("%s (%d/%d) ... ", test->name, i + 1, cnt);
printf("%s (%u/%u) ... ", test->name, i + 1, cnt);
/* Update and read thread accounting
for benchmarking */
1081,7 → 1081,7
data[i] = dt;
order(dt, &cycles, &suffix);
printf("OK (%llu%c cycles)\n", cycles, suffix);
printf("OK (%" PRIu64 "%c cycles)\n", cycles, suffix);
}
if (ret) {
1094,7 → 1094,7
}
order(sum / (uint64_t) cnt, &cycles, &suffix);
printf("Average\t\t%llu%c\n", cycles, suffix);
printf("Average\t\t%" PRIu64 "%c\n", cycles, suffix);
}
free(data);
/branches/network/kernel/generic/src/console/chardev.c
42,7 → 42,7
* @param chardev Character device.
* @param op Implementation of character device operations.
*/
void chardev_initialize(char *name,chardev_t *chardev,
void chardev_initialize(char *name, chardev_t *chardev,
chardev_operations_t *op)
{
chardev->name = name;
/branches/network/kernel/generic/src/cpu/cpu.c
67,7 → 67,7
panic("malloc/cpus");
 
/* initialize everything */
memsetb((uintptr_t) cpus, sizeof(cpu_t) * config.cpu_count, 0);
memsetb(cpus, sizeof(cpu_t) * config.cpu_count, 0);
 
for (i = 0; i < config.cpu_count; i++) {
cpus[i].stack = (uint8_t *) frame_alloc(STACK_FRAMES, FRAME_KA | FRAME_ATOMIC);
104,7 → 104,7
if (cpus[i].active)
cpu_print_report(&cpus[i]);
else
printf("cpu%d: not active\n", i);
printf("cpu%u: not active\n", i);
}
}
 
/branches/network/kernel/generic/src/adt/hash_table.c
63,7 → 63,7
if (!h->entry) {
panic("cannot allocate memory for hash table\n");
}
memsetb((uintptr_t) h->entry, m * sizeof(link_t), 0);
memsetb(h->entry, m * sizeof(link_t), 0);
for (i = 0; i < m; i++)
list_initialize(&h->entry[i]);
/branches/network/kernel/generic/src/adt/btree.c
124,7 → 124,7
lnode = leaf_node;
if (!lnode) {
if (btree_search(t, key, &lnode)) {
panic("B-tree %p already contains key %d\n", t, key);
panic("B-tree %p already contains key %" PRIu64 "\n", t, key);
}
}
224,7 → 224,7
lnode = leaf_node;
if (!lnode) {
if (!btree_search(t, key, &lnode)) {
panic("B-tree %p does not contain key %d\n", t, key);
panic("B-tree %p does not contain key %" PRIu64 "\n", t, key);
}
}
524,7 → 524,7
return;
}
}
panic("node %p does not contain key %d\n", node, key);
panic("node %p does not contain key %" PRIu64 "\n", node, key);
}
 
/** Remove key and its right subtree pointer from B-tree node.
551,7 → 551,7
return;
}
}
panic("node %p does not contain key %d\n", node, key);
panic("node %p does not contain key %" PRIu64 "\n", node, key);
}
 
/** Split full B-tree node and insert new key-value-right-subtree triplet.
970,7 → 970,7
 
printf("(");
for (i = 0; i < node->keys; i++) {
printf("%llu%s", node->key[i], i < node->keys - 1 ? "," : "");
printf("%" PRIu64 "%s", node->key[i], i < node->keys - 1 ? "," : "");
if (node->depth && node->subtree[i]) {
list_append(&node->subtree[i]->bfs_link, &head);
}
992,7 → 992,7
 
printf("(");
for (i = 0; i < node->keys; i++)
printf("%llu%s", node->key[i], i < node->keys - 1 ? "," : "");
printf("%" PRIu64 "%s", node->key[i], i < node->keys - 1 ? "," : "");
printf(")");
}
printf("\n");
/branches/network/kernel/generic/src/debug/symtab.c
36,9 → 36,11
*/
 
#include <symtab.h>
#include <arch/byteorder.h>
#include <byteorder.h>
#include <func.h>
#include <print.h>
#include <arch/types.h>
#include <typedefs.h>
 
/** Return entry that seems most likely to correspond to argument.
*
53,12 → 55,12
{
count_t i;
 
for (i=1;symbol_table[i].address_le;++i) {
for (i = 1; symbol_table[i].address_le; ++i) {
if (addr < uint64_t_le2host(symbol_table[i].address_le))
break;
}
if (addr >= uint64_t_le2host(symbol_table[i-1].address_le))
return symbol_table[i-1].symbol_name;
if (addr >= uint64_t_le2host(symbol_table[i - 1].address_le))
return symbol_table[i - 1].symbol_name;
return NULL;
}
 
70,21 → 72,21
*/
static char * symtab_search_one(const char *name, int *startpos)
{
int namelen = strlen(name);
unsigned int namelen = strlen(name);
char *curname;
int i,j;
int i, j;
int colonoffset = -1;
 
for (i=0;name[i];i++)
for (i = 0; name[i]; i++)
if (name[i] == ':') {
colonoffset = i;
break;
}
 
for (i=*startpos;symbol_table[i].address_le;++i) {
for (i = *startpos; symbol_table[i].address_le; ++i) {
/* Find a ':' in name */
curname = symbol_table[i].symbol_name;
for (j=0; curname[j] && curname[j] != ':'; j++)
for (j = 0; curname[j] && curname[j] != ':'; j++)
;
if (!curname[j])
continue;
94,7 → 96,7
continue;
if (strncmp(curname, name, namelen) == 0) {
*startpos = i;
return curname+namelen;
return curname + namelen;
}
}
return NULL;
115,7 → 117,7
int i;
 
i = 0;
while ((hint=symtab_search_one(name, &i))) {
while ((hint = symtab_search_one(name, &i))) {
if (!strlen(hint)) {
addr = uint64_t_le2host(symbol_table[i].address_le);
found++;
139,7 → 141,7
while (symtab_search_one(name, &i)) {
addr = uint64_t_le2host(symbol_table[i].address_le);
realname = symbol_table[i].symbol_name;
printf("%.*p: %s\n", sizeof(uintptr_t) * 2, addr, realname);
printf("%p: %s\n", addr, realname);
i++;
}
}
151,7 → 153,7
*/
int symtab_compl(char *input)
{
char output[MAX_SYMBOL_NAME+1];
char output[MAX_SYMBOL_NAME + 1];
int startpos = 0;
char *foundtxt;
int found = 0;
172,9 → 174,10
while ((foundtxt = symtab_search_one(name, &startpos))) {
startpos++;
if (!found)
strncpy(output, foundtxt, strlen(foundtxt)+1);
strncpy(output, foundtxt, strlen(foundtxt) + 1);
else {
for (i=0; output[i] && foundtxt[i] && output[i]==foundtxt[i]; i++)
for (i = 0; output[i] && foundtxt[i] &&
output[i] == foundtxt[i]; i++)
;
output[i] = '\0';
}
/branches/network/kernel/generic/src/printf/vprintf.c
37,6 → 37,8
#include <putchar.h>
#include <synch/spinlock.h>
#include <arch/asm.h>
#include <arch/types.h>
#include <typedefs.h>
 
SPINLOCK_INITIALIZE(printf_lock); /**< vprintf spinlock */
 
/branches/network/kernel/generic/src/printf/printf_core.c
75,7 → 75,6
PrintfQualifierInt,
PrintfQualifierLong,
PrintfQualifierLongLong,
PrintfQualifierNative,
PrintfQualifierPointer
} qualifier_t;
 
93,7 → 92,7
static int printf_putnchars(const char * buf, size_t count,
struct printf_spec *ps)
{
return ps->write((void *)buf, count, ps->data);
return ps->write((void *) buf, count, ps->data);
}
 
/** Print a string without adding a newline.
177,8 → 176,8
*
* @return Number of characters printed, negative value on failure.
*/
static int print_string(char *s, int width, int precision, uint64_t flags,
struct printf_spec *ps)
static int print_string(char *s, int width, unsigned int precision,
uint64_t flags, struct printf_spec *ps)
{
int counter = 0;
size_t size;
432,7 → 431,6
* - "" Signed or unsigned int (default value).@n
* - "l" Signed or unsigned long int.@n
* - "ll" Signed or unsigned long long int.@n
* - "z" unative_t (non-standard extension).@n
*
*
* CONVERSION:@n
486,7 → 484,7
while ((c = fmt[i])) {
/* control character */
if (c == '%' ) {
if (c == '%') {
/* print common characters if any processed */
if (i > j) {
if ((retval = printf_putnchars(&fmt[j],
536,7 → 534,7
} else if (fmt[i] == '*') {
/* get width value from argument list */
i++;
width = (int)va_arg(ap, int);
width = (int) va_arg(ap, int);
if (width < 0) {
/* negative width sets '-' flag */
width *= -1;
559,7 → 557,7
* list.
*/
i++;
precision = (int)va_arg(ap, int);
precision = (int) va_arg(ap, int);
if (precision < 0) {
/* ignore negative precision */
precision = 0;
585,9 → 583,6
qualifier = PrintfQualifierLongLong;
}
break;
case 'z': /* unative_t */
qualifier = PrintfQualifierNative;
break;
default:
/* default type */
qualifier = PrintfQualifierInt;
627,7 → 622,7
* Integer values
*/
case 'P': /* pointer */
flags |= __PRINTF_FLAG_BIGCHARS;
flags |= __PRINTF_FLAG_BIGCHARS;
case 'p':
flags |= __PRINTF_FLAG_PREFIX;
base = 16;
670,34 → 665,28
switch (qualifier) {
case PrintfQualifierByte:
size = sizeof(unsigned char);
number = (uint64_t)va_arg(ap, unsigned int);
number = (uint64_t) va_arg(ap, unsigned int);
break;
case PrintfQualifierShort:
size = sizeof(unsigned short);
number = (uint64_t)va_arg(ap, unsigned int);
number = (uint64_t) va_arg(ap, unsigned int);
break;
case PrintfQualifierInt:
size = sizeof(unsigned int);
number = (uint64_t)va_arg(ap, unsigned int);
number = (uint64_t) va_arg(ap, unsigned int);
break;
case PrintfQualifierLong:
size = sizeof(unsigned long);
number = (uint64_t)va_arg(ap, unsigned long);
number = (uint64_t) va_arg(ap, unsigned long);
break;
case PrintfQualifierLongLong:
size = sizeof(unsigned long long);
number = (uint64_t)va_arg(ap,
unsigned long long);
number = (uint64_t) va_arg(ap, unsigned long long);
break;
case PrintfQualifierPointer:
size = sizeof(void *);
number = (uint64_t)(unsigned long)va_arg(ap,
void *);
number = (uint64_t) (unsigned long) va_arg(ap, void *);
break;
case PrintfQualifierNative:
size = sizeof(unative_t);
number = (uint64_t)va_arg(ap, unative_t);
break;
default: /* Unknown qualifier */
counter = -counter;
goto out;
708,7 → 697,7
flags |= __PRINTF_FLAG_NEGATIVE;
if (size == sizeof(uint64_t)) {
number = -((int64_t)number);
number = -((int64_t) number);
} else {
number = ~number;
number &=
734,7 → 723,7
}
if (i > j) {
if ((retval = printf_putnchars(&fmt[j], (unative_t)(i - j),
if ((retval = printf_putnchars(&fmt[j], (unative_t) (i - j),
ps)) < 0) { /* error */
counter = -counter;
goto out;
744,7 → 733,6
}
 
out:
return counter;
}
 
/branches/network/kernel/generic/src/interrupt/interrupt.c
103,31 → 103,37
/** kconsole cmd - print all exceptions */
static int exc_print_cmd(cmd_arg_t *argv)
{
#if (IVT_ITEMS > 0)
unsigned int i;
char *symbol;
 
spinlock_lock(&exctbl_lock);
 
#ifdef __32_BITS__
printf("Exc Description Handler Symbol\n");
printf("--- -------------------- ---------- --------\n");
#endif
 
#ifdef __64_BITS__
printf("Exc Description Handler Symbol\n");
printf("--- -------------------- ------------------ --------\n");
#endif
if (sizeof(void *) == 4) {
printf("Exc Description Handler Symbol\n");
printf("--- -------------------- ---------- --------\n");
} else {
printf("Exc Description Handler Symbol\n");
printf("--- -------------------- ------------------ --------\n");
}
for (i = 0; i < IVT_ITEMS; i++) {
symbol = get_symtab_entry((unative_t) exc_table[i].f);
if (!symbol)
symbol = "not found";
 
#ifdef __32_BITS__
printf("%-3u %-20s %10p %s\n", i + IVT_FIRST, exc_table[i].name,
exc_table[i].f, symbol);
#endif
 
#ifdef __64_BITS__
printf("%-3u %-20s %18p %s\n", i + IVT_FIRST, exc_table[i].name,
exc_table[i].f, symbol);
#endif
if (sizeof(void *) == 4)
printf("%-3u %-20s %#10zx %s\n", i + IVT_FIRST, exc_table[i].name,
exc_table[i].f, symbol);
else
printf("%-3u %-20s %#18zx %s\n", i + IVT_FIRST, exc_table[i].name,
exc_table[i].f, symbol);
if (((i + 1) % 20) == 0) {
printf(" -- Press any key to continue -- ");
spinlock_unlock(&exctbl_lock);
138,6 → 144,7
}
spinlock_unlock(&exctbl_lock);
#endif
return 1;
}
156,7 → 163,7
{
int i;
 
for (i=0;i < IVT_ITEMS; i++)
for (i = 0; i < IVT_ITEMS; i++)
exc_register(i, "undef", (iroutine) exc_undef);
 
cmd_initialize(&exc_info);
/branches/network/kernel/generic/src/time/timeout.c
32,7 → 32,7
 
/**
* @file
* @brief Timeout management functions.
* @brief Timeout management functions.
*/
 
#include <time/timeout.h>
61,7 → 61,7
*
* Initialize all members except the lock.
*
* @param t Timeout to be initialized.
* @param t Timeout to be initialized.
*
*/
void timeout_reinitialize(timeout_t *t)
78,7 → 78,7
*
* Initialize all members including the lock.
*
* @param t Timeout to be initialized.
* @param t Timeout to be initialized.
*
*/
void timeout_initialize(timeout_t *t)
94,14 → 94,14
* to timeout list and make it execute in
* time microseconds (or slightly more).
*
* @param t Timeout structure.
* @param time Number of usec in the future to execute
* the handler.
* @param f Timeout handler function.
* @param arg Timeout handler argument.
* @param t Timeout structure.
* @param time Number of usec in the future to execute the handler.
* @param f Timeout handler function.
* @param arg Timeout handler argument.
*
*/
void timeout_register(timeout_t *t, uint64_t time, timeout_handler_t f, void *arg)
void
timeout_register(timeout_t *t, uint64_t time, timeout_handler_t f, void *arg)
{
timeout_t *hlp = NULL;
link_t *l, *m;
165,9 → 165,9
*
* Remove timeout from timeout list.
*
* @param t Timeout to unregister.
* @param t Timeout to unregister.
*
* @return true on success, false on failure.
* @return True on success, false on failure.
*/
bool timeout_unregister(timeout_t *t)
{
/branches/network/kernel/generic/src/time/clock.c
137,7 → 137,7
timeout_handler_t f;
void *arg;
count_t missed_clock_ticks = CPU->missed_clock_ticks;
int i;
unsigned int i;
 
/*
* To avoid lock ordering problems,
/branches/network/kernel/generic/include/ipc/ipc.h
205,6 → 205,8
 
#define IPC_MAX_PHONES 16
 
#include <synch/spinlock.h>
#include <synch/mutex.h>
#include <synch/waitq.h>
 
struct answerbox;
225,7 → 227,7
 
/** Structure identifying phone (in TASK structure) */
typedef struct {
SPINLOCK_DECLARE(lock);
mutex_t lock;
link_t link;
struct answerbox *callee;
ipc_phone_state_t state;
258,6 → 260,12
typedef struct {
unative_t args[IPC_CALL_LEN];
phone_t *phone;
/*
* The forward operation can masquerade the caller phone. For those
* cases, we must keep it aside so that the answer is processed
* correctly.
*/
phone_t *caller_phone;
} ipc_data_t;
 
typedef struct {
282,23 → 290,22
} call_t;
 
extern void ipc_init(void);
extern call_t * ipc_wait_for_call(answerbox_t *box, uint32_t usec, int flags);
extern void ipc_answer(answerbox_t *box, call_t *request);
extern int ipc_call(phone_t *phone, call_t *call);
extern void ipc_call_sync(phone_t *phone, call_t *request);
extern void ipc_phone_init(phone_t *phone);
extern void ipc_phone_connect(phone_t *phone, answerbox_t *box);
extern void ipc_call_free(call_t *call);
extern call_t * ipc_call_alloc(int flags);
extern void ipc_answerbox_init(answerbox_t *box);
extern void ipc_call_static_init(call_t *call);
extern call_t * ipc_wait_for_call(answerbox_t *, uint32_t, int);
extern void ipc_answer(answerbox_t *, call_t *);
extern int ipc_call(phone_t *, call_t *);
extern int ipc_call_sync(phone_t *, call_t *);
extern void ipc_phone_init(phone_t *);
extern void ipc_phone_connect(phone_t *, answerbox_t *);
extern void ipc_call_free(call_t *);
extern call_t * ipc_call_alloc(int);
extern void ipc_answerbox_init(answerbox_t *, struct task *);
extern void ipc_call_static_init(call_t *);
extern void task_print_list(void);
extern int ipc_forward(call_t *call, phone_t *newphone, answerbox_t *oldbox,
int mode);
extern int ipc_forward(call_t *, phone_t *, answerbox_t *, int);
extern void ipc_cleanup(void);
extern int ipc_phone_hangup(phone_t *phone);
extern void ipc_backsend_err(phone_t *phone, call_t *call, unative_t err);
extern void ipc_print_task(task_id_t taskid);
extern int ipc_phone_hangup(phone_t *);
extern void ipc_backsend_err(phone_t *, call_t *, unative_t);
extern void ipc_print_task(task_id_t);
 
extern answerbox_t *ipc_phone_0;
 
/branches/network/kernel/generic/include/errno.h
56,6 → 56,7
#define EINVAL -13 /* Invalid value */
#define EBUSY -14 /* Resource is busy */
#define EOVERFLOW -15 /* The result does not fit its size. */
#define EINTR -16 /* Operation was interrupted. */
 
#endif
 
/branches/network/kernel/generic/include/lib/objc_ext.h
File deleted
/branches/network/kernel/generic/include/lib/objc.h
File deleted
/branches/network/kernel/generic/include/lib/elf.h
114,7 → 114,8
#define EE_MEMORY 2 /* Cannot allocate address space */
#define EE_INCOMPATIBLE 3 /* ELF image is not compatible with current architecture */
#define EE_UNSUPPORTED 4 /* Non-supported ELF (e.g. dynamic ELFs) */
#define EE_IRRECOVERABLE 5
#define EE_LOADER 5 /* The image is actually a program loader */
#define EE_IRRECOVERABLE 6
 
/**
* ELF section types
336,8 → 337,12
typedef struct elf64_symbol elf_symbol_t;
#endif
 
extern char *elf_error(int rc);
extern char *elf_error(unsigned int rc);
 
/* Interpreter string used to recognize the program loader */
#define ELF_INTERP_ZSTR "kernel"
#define ELF_INTERP_ZLEN sizeof(ELF_INTERP_ZSTR)
 
#endif
 
/** @}
/branches/network/kernel/generic/include/lib/rd.h
66,16 → 66,18
#define RE_UNSUPPORTED 2 /* Non-supported image (e.g. wrong version) */
 
/** RAM disk header */
typedef struct {
struct rd_header {
uint8_t magic[RD_MAGIC_SIZE];
uint8_t version;
uint8_t data_type;
uint32_t header_size;
uint64_t data_size;
} rd_header;
} __attribute__ ((packed));
 
extern int init_rd(rd_header * addr, size_t size);
typedef struct rd_header rd_header_t;
 
extern int init_rd(rd_header_t *addr, size_t size);
 
#endif
 
/** @}
/branches/network/kernel/generic/include/mm/as.h
53,10 → 53,6
#include <adt/btree.h>
#include <lib/elf.h>
 
#ifdef __OBJC__
#include <lib/objc.h>
#endif
 
/**
* Defined to be true if user address space and kernel address space shadow each
* other.
84,47 → 80,6
/** The page fault was caused by memcpy_from_uspace() or memcpy_to_uspace(). */
#define AS_PF_DEFER 2
 
#ifdef __OBJC__
@interface as_t : base_t {
@public
/** Protected by asidlock. */
link_t inactive_as_with_asid_link;
/**
* Number of processors on wich is this address space active.
* Protected by asidlock.
*/
count_t cpu_refcount;
/**
* Address space identifier.
* Constant on architectures that do not support ASIDs.
* Protected by asidlock.
*/
asid_t asid;
/** Number of references (i.e tasks that reference this as). */
atomic_t refcount;
 
mutex_t lock;
/** B+tree of address space areas. */
btree_t as_area_btree;
/** Non-generic content. */
as_genarch_t genarch;
/** Architecture specific content. */
as_arch_t arch;
}
 
+ (pte_t *) page_table_create: (int) flags;
+ (void) page_table_destroy: (pte_t *) page_table;
- (void) page_table_lock: (bool) _lock;
- (void) page_table_unlock: (bool) unlock;
 
@end
 
#else
 
/** Address space structure.
*
* as_t contains the list of as_areas of userspace accessible
168,7 → 123,6
void (* page_table_lock)(as_t *as, bool lock);
void (* page_table_unlock)(as_t *as, bool unlock);
} as_operations_t;
#endif
 
/**
* This structure contains information associated with the shared address space
249,10 → 203,7
 
extern as_t *AS_KERNEL;
 
#ifndef __OBJC__
extern as_operations_t *as_operations;
#endif
 
extern link_t inactive_as_with_asid_head;
 
extern void as_init(void);
269,6 → 220,7
extern int as_area_resize(as_t *as, uintptr_t address, size_t size, int flags);
int as_area_share(as_t *src_as, uintptr_t src_base, size_t acc_size,
as_t *dst_as, uintptr_t dst_base, int dst_flags_mask);
extern int as_area_change_flags(as_t *as, int flags, uintptr_t address);
 
extern int as_area_get_flags(as_area_t *area);
extern bool as_area_check_access(as_area_t *area, pf_access_t access);
299,11 → 251,19
extern mem_backend_t elf_backend;
extern mem_backend_t phys_backend;
 
extern int elf_load(elf_header_t *header, as_t *as);
/**
* This flags is passed when running the loader, otherwise elf_load()
* would return with a EE_LOADER error code.
*/
#define ELD_F_NONE 0
#define ELD_F_LOADER 1
 
extern unsigned int elf_load(elf_header_t *header, as_t *as, int flags);
 
/* Address space area related syscalls. */
extern unative_t sys_as_area_create(uintptr_t address, size_t size, int flags);
extern unative_t sys_as_area_resize(uintptr_t address, size_t size, int flags);
extern unative_t sys_as_area_change_flags(uintptr_t address, int flags);
extern unative_t sys_as_area_destroy(uintptr_t address);
 
/* Introspection functions. */
/branches/network/kernel/generic/include/mm/page.h
39,11 → 39,6
#include <mm/as.h>
#include <memstr.h>
 
/**
* Macro for computing page color.
*/
#define PAGE_COLOR(va) (((va) >> PAGE_WIDTH) & ((1 << PAGE_COLOR_BITS) - 1))
 
/** Operations to manipulate page mappings. */
typedef struct {
void (* mapping_insert)(as_t *as, uintptr_t page, uintptr_t frame,
/branches/network/kernel/generic/include/mm/frame.h
57,15 → 57,14
/** Maximum number of zones in system. */
#define ZONES_MAX 16
 
/** If possible, merge with neighbouring zones. */
#define ZONE_JOIN 0x1
 
/** Convert the frame address to kernel va. */
#define FRAME_KA 0x1
/** Do not panic and do not sleep on failure. */
#define FRAME_ATOMIC 0x2
#define FRAME_ATOMIC 0x2
/** Do not start reclaiming when no free memory. */
#define FRAME_NO_RECLAIM 0x4
#define FRAME_NO_RECLAIM 0x4
/** Do not allocate above 4 GiB. */
#define FRAME_LOW_4_GiB 0x8
 
static inline uintptr_t PFN2ADDR(pfn_t frame)
{
90,30 → 89,30
}
 
#define IS_BUDDY_ORDER_OK(index, order) \
((~(((unative_t) -1) << (order)) & (index)) == 0)
((~(((unative_t) -1) << (order)) & (index)) == 0)
#define IS_BUDDY_LEFT_BLOCK(zone, frame) \
(((frame_index((zone), (frame)) >> (frame)->buddy_order) & 0x1) == 0)
(((frame_index((zone), (frame)) >> (frame)->buddy_order) & 0x1) == 0)
#define IS_BUDDY_RIGHT_BLOCK(zone, frame) \
(((frame_index((zone), (frame)) >> (frame)->buddy_order) & 0x1) == 1)
(((frame_index((zone), (frame)) >> (frame)->buddy_order) & 0x1) == 1)
#define IS_BUDDY_LEFT_BLOCK_ABS(zone, frame) \
(((frame_index_abs((zone), (frame)) >> (frame)->buddy_order) & 0x1) == 0)
(((frame_index_abs((zone), (frame)) >> (frame)->buddy_order) & 0x1) == 0)
#define IS_BUDDY_RIGHT_BLOCK_ABS(zone, frame) \
(((frame_index_abs((zone), (frame)) >> (frame)->buddy_order) & 0x1) == 1)
(((frame_index_abs((zone), (frame)) >> (frame)->buddy_order) & 0x1) == 1)
 
#define frame_alloc(order, flags) \
frame_alloc_generic(order, flags, NULL)
frame_alloc_generic(order, flags, NULL)
 
extern void frame_init(void);
extern void *frame_alloc_generic(uint8_t order, int flags, unsigned int *pzone);
extern void frame_free(uintptr_t frame);
extern void frame_reference_add(pfn_t pfn);
extern void *frame_alloc_generic(uint8_t, int, unsigned int *);
extern void frame_free(uintptr_t);
extern void frame_reference_add(pfn_t);
 
extern int zone_create(pfn_t start, count_t count, pfn_t confframe, int flags);
extern void *frame_get_parent(pfn_t frame, unsigned int hint);
extern void frame_set_parent(pfn_t frame, void *data, unsigned int hint);
extern void frame_mark_unavailable(pfn_t start, count_t count);
extern uintptr_t zone_conf_size(count_t count);
extern void zone_merge(unsigned int z1, unsigned int z2);
extern int zone_create(pfn_t, count_t, pfn_t, int);
extern void *frame_get_parent(pfn_t, unsigned int);
extern void frame_set_parent(pfn_t, void *, unsigned int);
extern void frame_mark_unavailable(pfn_t, count_t);
extern uintptr_t zone_conf_size(count_t);
extern void zone_merge(unsigned int, unsigned int);
extern void zone_merge_all(void);
extern uint64_t zone_total_size(void);
 
121,7 → 120,7
* Console functions
*/
extern void zone_print_list(void);
extern void zone_print_one(unsigned int znum);
extern void zone_print_one(unsigned int);
 
#endif
 
/branches/network/kernel/generic/include/mm/buddy.h
66,7 → 66,6
void (*mark_available)(struct buddy_system *, link_t *);
/** Find parent of block that has given order */
link_t *(* find_block)(struct buddy_system *, link_t *, uint8_t);
void (* print_id)(struct buddy_system *, link_t *);
} buddy_system_operations_t;
 
typedef struct buddy_system {
78,14 → 77,13
void *data;
} buddy_system_t;
 
extern void buddy_system_create(buddy_system_t *b, uint8_t max_order,
buddy_system_operations_t *op, void *data);
extern link_t *buddy_system_alloc(buddy_system_t *b, uint8_t i);
extern bool buddy_system_can_alloc(buddy_system_t *b, uint8_t order);
extern void buddy_system_free(buddy_system_t *b, link_t *block);
extern void buddy_system_structure_print(buddy_system_t *b, size_t elem_size);
extern size_t buddy_conf_size(int max_order);
extern link_t *buddy_system_alloc_block(buddy_system_t *b, link_t *block);
extern void buddy_system_create(buddy_system_t *, uint8_t,
buddy_system_operations_t *, void *);
extern link_t *buddy_system_alloc(buddy_system_t *, uint8_t);
extern bool buddy_system_can_alloc(buddy_system_t *, uint8_t);
extern void buddy_system_free(buddy_system_t *, link_t *);
extern size_t buddy_conf_size(int);
extern link_t *buddy_system_alloc_block(buddy_system_t *, link_t *);
 
#endif
 
/branches/network/kernel/generic/include/mm/slab.h
53,7 → 53,8
#define SLAB_INSIDE_SIZE (PAGE_SIZE >> 3)
 
/** Maximum wasted space we allow for cache */
#define SLAB_MAX_BADNESS(cache) ((PAGE_SIZE << (cache)->order) >> 2)
#define SLAB_MAX_BADNESS(cache) \
(((unsigned int) PAGE_SIZE << (cache)->order) >> 2)
 
/* slab_reclaim constants */
 
99,8 → 100,8
int flags;
 
/* Computed values */
uint8_t order; /**< Order of frames to be allocated */
int objects; /**< Number of objects that fit in */
uint8_t order; /**< Order of frames to be allocated */
unsigned int objects; /**< Number of objects that fit in */
 
/* Statistics */
atomic_t allocated_slabs;
121,14 → 122,13
slab_mag_cache_t *mag_cache;
} slab_cache_t;
 
extern slab_cache_t * slab_cache_create(char *name, size_t size, size_t align,
int (*constructor)(void *obj, int kmflag), int (*destructor)(void *obj),
int flags);
extern void slab_cache_destroy(slab_cache_t *cache);
extern slab_cache_t *slab_cache_create(char *, size_t, size_t,
int (*)(void *, int), int (*)(void *), int);
extern void slab_cache_destroy(slab_cache_t *);
 
extern void * slab_alloc(slab_cache_t *cache, int flags);
extern void slab_free(slab_cache_t *cache, void *obj);
extern count_t slab_reclaim(int flags);
extern void * slab_alloc(slab_cache_t *, int);
extern void slab_free(slab_cache_t *, void *);
extern count_t slab_reclaim(int);
 
/* slab subsytem initialization */
extern void slab_cache_init(void);
138,9 → 138,9
extern void slab_print_list(void);
 
/* malloc support */
extern void * malloc(unsigned int size, int flags);
extern void * realloc(void *ptr, unsigned int size, int flags);
extern void free(void *ptr);
extern void *malloc(unsigned int, int);
extern void *realloc(void *, unsigned int, int);
extern void free(void *);
#endif
 
/** @}
/branches/network/kernel/generic/include/macros.h
40,20 → 40,20
#define isdigit(d) (((d) >= '0') && ((d) <= '9'))
#define islower(c) (((c) >= 'a') && ((c) <= 'z'))
#define isupper(c) (((c) >= 'A') && ((c) <= 'Z'))
#define isalpha(c) (is_lower(c) || is_upper(c))
#define isalphanum(c) (is_alpha(c) || is_digit(c))
#define isalpha(c) (is_lower((c)) || is_upper((c)))
#define isalphanum(c) (is_alpha((c)) || is_digit((c)))
#define isspace(c) (((c) == ' ') || ((c) == '\t') || ((c) == '\n') || \
((c) == '\r'))
((c) == '\r'))
 
#define min(a,b) ((a) < (b) ? (a) : (b))
#define max(a,b) ((a) > (b) ? (a) : (b))
 
/** Return true if the interlvals overlap.
/** Return true if the intervals overlap.
*
* @param s1 Start address of the first interval.
* @param sz1 Size of the first interval.
* @param s2 Start address of the second interval.
* @param sz2 Size of the second interval.
* @param s1 Start address of the first interval.
* @param sz1 Size of the first interval.
* @param s2 Start address of the second interval.
* @param sz2 Size of the second interval.
*/
static inline int overlaps(uintptr_t s1, size_t sz1, uintptr_t s2, size_t sz2)
{
64,11 → 64,15
}
 
/* Compute overlapping of physical addresses */
#define PA_overlaps(x, szx, y, szy) overlaps(KA2PA(x), szx, KA2PA(y), szy)
#define PA_overlaps(x, szx, y, szy) \
overlaps(KA2PA((x)), (szx), KA2PA((y)), (szy))
 
#define SIZE2KB(size) (size >> 10)
#define SIZE2MB(size) (size >> 20)
#define SIZE2KB(size) ((size) >> 10)
#define SIZE2MB(size) ((size) >> 20)
 
#define KB2SIZE(kb) ((kb) << 10)
#define MB2SIZE(mb) ((mb) << 20)
 
#define STRING(arg) STRING_ARG(arg)
#define STRING_ARG(arg) #arg
 
/branches/network/kernel/generic/include/config.h
40,8 → 40,6
 
#define STACK_SIZE PAGE_SIZE
 
#define CONFIG_MEMORY_SIZE (8 * 1024 * 1024)
 
#define CONFIG_INIT_TASKS 32
 
typedef struct {
/branches/network/kernel/generic/include/proc/task.h
116,7 → 116,6
extern void task_done(void);
extern task_t *task_create(as_t *as, char *name);
extern void task_destroy(task_t *t);
extern task_t *task_run_program(void *program_addr, char *name);
extern task_t *task_find_by_id(task_id_t id);
extern int task_kill(task_id_t id);
extern uint64_t task_get_accounting(task_t *t);
/branches/network/kernel/generic/include/proc/program.h
0,0 → 1,65
/*
* Copyright (c) 2008 Jiri Svoboda
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* - The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
 
/** @addtogroup genericproc
* @{
*/
/** @file
*/
 
#ifndef KERN_PROGRAM_H_
#define KERN_PROGRAM_H_
 
#include <arch/types.h>
 
struct task;
struct thread;
 
/** Program info structure.
*
* A program is an abstraction of a freshly created (not yet running)
* userspace task containing a main thread along with its userspace stack.
*/
typedef struct program {
struct task *task; /**< Program task */
struct thread *main_thread; /**< Program main thread */
} program_t;
 
extern void *program_loader;
 
extern void program_create(as_t *as, uintptr_t entry_addr, program_t *p);
extern int program_create_from_image(void *image_addr, program_t *p);
extern int program_create_loader(program_t *p);
extern void program_ready(program_t *p);
 
extern unative_t sys_program_spawn_loader(int *uspace_phone_id);
 
#endif
 
/** @}
*/
/branches/network/kernel/generic/include/proc/tasklet.h
0,0 → 1,73
/*
* Copyright (c) 2007 Jan Hudecek
* Copyright (c) 2008 Martin Decky
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* - The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
 
/** @addtogroup genericproc
* @{
*/
/** @file tasklet.h
* @brief Tasklets declarations
*/
 
#ifndef KERN_TASKLET_H_
#define KERN_TASKLET_H_
 
#include <adt/list.h>
 
/** Tasklet callback type */
typedef void (* tasklet_callback_t)(void *arg);
 
/** Tasklet state */
typedef enum {
NotActive,
Scheduled,
InProgress,
Disabled
} tasklet_state_t;
 
/** Structure describing a tasklet */
typedef struct tasklet_descriptor {
link_t link;
/** Callback to call */
tasklet_callback_t callback;
/** Argument passed to the callback */
void *arg;
/** State of the tasklet */
tasklet_state_t state;
} tasklet_descriptor_t;
 
 
extern void tasklet_init(void);
 
#endif
 
/** @}
*/
/branches/network/kernel/generic/include/synch/smc.h
0,0 → 1,43
/*
* Copyright (c) 2008 Jiri Svoboda
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* - The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
 
/** @addtogroup sync
* @{
*/
/** @file
*/
 
#ifndef KERN_SMC_H_
#define KERN_SMC_H_
 
extern unative_t sys_smc_coherence(uintptr_t va, size_t size);
 
#endif
 
/** @}
*/
/branches/network/kernel/generic/include/synch/mutex.h
39,20 → 39,26
#include <synch/semaphore.h>
#include <synch/synch.h>
 
typedef enum {
MUTEX_PASSIVE,
MUTEX_ACTIVE
} mutex_type_t;
 
typedef struct {
mutex_type_t type;
semaphore_t sem;
} mutex_t;
 
#define mutex_lock(mtx) \
#define mutex_lock(mtx) \
_mutex_lock_timeout((mtx), SYNCH_NO_TIMEOUT, SYNCH_FLAGS_NONE)
#define mutex_trylock(mtx) \
#define mutex_trylock(mtx) \
_mutex_lock_timeout((mtx), SYNCH_NO_TIMEOUT, SYNCH_FLAGS_NON_BLOCKING)
#define mutex_lock_timeout(mtx, usec) \
#define mutex_lock_timeout(mtx, usec) \
_mutex_lock_timeout((mtx), (usec), SYNCH_FLAGS_NON_BLOCKING)
 
extern void mutex_initialize(mutex_t *mtx);
extern int _mutex_lock_timeout(mutex_t *mtx, uint32_t usec, int flags);
extern void mutex_unlock(mutex_t *mtx);
extern void mutex_initialize(mutex_t *, mutex_type_t);
extern int _mutex_lock_timeout(mutex_t *, uint32_t, int);
extern void mutex_unlock(mutex_t *);
 
#endif
 
/branches/network/kernel/generic/include/synch/spinlock.h
110,8 → 110,8
#define DEADLOCK_PROBE(pname, value) \
if ((pname)++ > (value)) { \
(pname) = 0; \
printf("Deadlock probe %s: exceeded threshold %d\n", \
"cpu%d: function=%s, line=%d\n", \
printf("Deadlock probe %s: exceeded threshold %u\n", \
"cpu%u: function=%s, line=%u\n", \
#pname, (value), CPU->id, __func__, __LINE__); \
}
#else
/branches/network/kernel/generic/include/syscall/syscall.h
36,17 → 36,25
#define KERN_SYSCALL_H_
 
typedef enum {
SYS_IO = 0,
SYS_KLOG = 0,
SYS_TLS_SET = 1, /* Hardcoded in AMD64, IA32 uspace - fibril.S */
SYS_THREAD_CREATE,
SYS_THREAD_EXIT,
SYS_THREAD_GET_ID,
SYS_TASK_GET_ID,
SYS_PROGRAM_SPAWN_LOADER,
SYS_FUTEX_SLEEP,
SYS_FUTEX_WAKEUP,
SYS_SMC_COHERENCE,
SYS_AS_AREA_CREATE,
SYS_AS_AREA_RESIZE,
SYS_AS_AREA_CHANGE_FLAGS,
SYS_AS_AREA_DESTROY,
SYS_IPC_CALL_SYNC_FAST,
SYS_IPC_CALL_SYNC_SLOW,
SYS_IPC_CALL_ASYNC_FAST,
58,13 → 66,17
SYS_IPC_HANGUP,
SYS_IPC_REGISTER_IRQ,
SYS_IPC_UNREGISTER_IRQ,
SYS_CAP_GRANT,
SYS_CAP_REVOKE,
SYS_PHYSMEM_MAP,
SYS_IOSPACE_ENABLE,
SYS_PREEMPT_CONTROL,
SYS_SYSINFO_VALID,
SYS_SYSINFO_VALUE,
SYS_DEBUG_ENABLE_CONSOLE,
SYSCALL_END
} syscall_t;
/branches/network/kernel/generic/include/memstr.h
42,8 → 42,8
* Architecture independent variants.
*/
extern void *_memcpy(void *dst, const void *src, size_t cnt);
extern void _memsetb(uintptr_t dst, size_t cnt, uint8_t x);
extern void _memsetw(uintptr_t dst, size_t cnt, uint16_t x);
extern void _memsetb(void *dst, size_t cnt, uint8_t x);
extern void _memsetw(void *dst, size_t cnt, uint16_t x);
extern char *strcpy(char *dest, const char *src);
 
#endif
/branches/network/kernel/generic/include/typedefs.h
35,8 → 35,22
#ifndef KERN_TYPEDEFS_H_
#define KERN_TYPEDEFS_H_
 
#include <arch/types.h>
 
#define NULL 0
#define false 0
#define true 1
 
typedef void (* function)();
 
typedef uint8_t bool;
typedef uint64_t thread_id_t;
typedef uint64_t task_id_t;
typedef uint32_t context_id_t;
 
typedef int32_t inr_t;
typedef int32_t devno_t;
 
#endif
 
/** @}
/branches/network/kernel/generic/include/console/klog.h
File deleted
/branches/network/kernel/generic/include/console/console.h
41,6 → 41,9
extern chardev_t *stdin;
extern chardev_t *stdout;
 
extern void klog_init(void);
extern void klog_update(void);
 
extern uint8_t getc(chardev_t *chardev);
uint8_t _getc(chardev_t *chardev);
extern count_t gets(chardev_t *chardev, char *buf, size_t buflen);
/branches/network/kernel/generic/include/stackarg.h
52,9 → 52,9
(ap).last = (uint8_t *) &(lst)
 
#define va_arg(ap, type) \
(*((type *)((ap).last + ((ap).pos += sizeof(type) ) - sizeof(type))))
(*((type *)((ap).last + ((ap).pos += sizeof(type)) - sizeof(type))))
 
#define va_copy(dst,src) dst=src
#define va_copy(dst, src) dst = src
#define va_end(ap)
 
 
/branches/network/kernel/generic/include/interrupt.h
40,7 → 40,6
#include <proc/task.h>
#include <proc/thread.h>
#include <arch.h>
#include <console/klog.h>
#include <ddi/irq.h>
 
typedef void (* iroutine)(int n, istate_t *istate);
49,8 → 48,8
{ \
if (istate_from_uspace(istate)) { \
task_t *task = TASK; \
klog_printf("Task %llu killed due to an exception at %p.", task->taskid, istate_get_pc(istate)); \
klog_printf(" " cmd, ##__VA_ARGS__); \
printf("Task %" PRIu64 " killed due to an exception at %p.", task->taskid, istate_get_pc(istate)); \
printf(" " cmd, ##__VA_ARGS__); \
task_kill(task->taskid); \
thread_exit(); \
} \
/branches/network/kernel/generic/include/ddi/device.h
35,6 → 35,9
#ifndef KERN_DEVICE_H_
#define KERN_DEVICE_H_
 
#include <arch/types.h>
#include <typedefs.h>
 
extern devno_t device_assign_devno(void);
 
#endif
/branches/network/kernel/generic/include/adt/list.h
36,6 → 36,7
#define KERN_LIST_H_
 
#include <arch/types.h>
#include <typedefs.h>
 
/** Doubly linked list head and link type. */
typedef struct link {
/branches/network/kernel/generic/include/adt/avl.h
36,6 → 36,7
#define KERN_AVLTREE_H_
 
#include <arch/types.h>
#include <typedefs.h>
 
/**
* Macro for getting a pointer to the structure which contains the avltree
/branches/network/kernel/generic/include/debug.h
38,11 → 38,11
#include <panic.h>
#include <arch/debug.h>
 
#define CALLER ((uintptr_t)__builtin_return_address(0))
#define CALLER ((uintptr_t) __builtin_return_address(0))
 
#ifndef HERE
/** Current Instruction Pointer address */
# define HERE ((uintptr_t *) 0)
# define HERE ((uintptr_t *) 0)
#endif
 
/** Debugging ASSERT macro
55,12 → 55,51
*
*/
#ifdef CONFIG_DEBUG
# define ASSERT(expr) if (!(expr)) { panic("assertion failed (%s), caller=%.*p\n", #expr, sizeof(uintptr_t) * 2, CALLER); }
# define ASSERT(expr) \
if (!(expr)) { \
panic("assertion failed (%s), caller=%p\n", #expr, CALLER); \
}
#else
# define ASSERT(expr)
#endif
 
/** Extensive debugging output macro
*
* If CONFIG_EDEBUG is set, the LOG() macro
* will print whatever message is indicated plus
* an information about the location.
*
*/
 
#ifdef CONFIG_EDEBUG
# define LOG(format, ...) \
printf("%s() at %s:%u: " format "\n", __func__, __FILE__, \
__LINE__, ##__VA_ARGS__);
#else
# define LOG(format, ...)
#endif
 
/** Extensive debugging execute macro
*
* If CONFIG_EDEBUG is set, the LOG_EXEC() macro
* will print an information about calling a given
* function and call it.
*
*/
 
#ifdef CONFIG_EDEBUG
# define LOG_EXEC(fnc) \
{ \
printf("%s() at %s:%u: " #fnc "\n", __func__, __FILE__, \
__LINE__); \
fnc; \
}
#else
# define LOG_EXEC(fnc) fnc
#endif
 
 
#endif
 
/** @}
*/
/branches/network/kernel/generic/include/panic.h
36,15 → 36,15
#define KERN_PANIC_H_
 
#ifdef CONFIG_DEBUG
#define panic(format, ...) \
panic_printf("Kernel panic in %s() at %s on line %d: " format, __func__, \
__FILE__, __LINE__, ##__VA_ARGS__);
# define panic(format, ...) \
panic_printf("Kernel panic in %s() at %s:%u: " format, __func__, \
__FILE__, __LINE__, ##__VA_ARGS__);
#else
#define panic(format, ...) \
panic_printf("Kernel panic: " format, ##__VA_ARGS__);
# define panic(format, ...) \
panic_printf("Kernel panic: " format, ##__VA_ARGS__);
#endif
 
extern void panic_printf(char *fmt, ...) __attribute__((noreturn)) ;
extern void panic_printf(char *fmt, ...) __attribute__((noreturn));
 
#endif
 
/branches/network/kernel/generic/include/byteorder.h
35,26 → 35,60
#ifndef KERN_BYTEORDER_H_
#define KERN_BYTEORDER_H_
 
#include <arch/byteorder.h>
 
#if !(defined(ARCH_IS_BIG_ENDIAN) ^ defined(ARCH_IS_LITTLE_ENDIAN))
#error The architecture must be either big-endian or little-endian.
#endif
 
#ifdef ARCH_IS_BIG_ENDIAN
 
#define uint16_t_le2host(n) uint16_t_byteorder_swap(n)
#define uint32_t_le2host(n) uint32_t_byteorder_swap(n)
#define uint64_t_le2host(n) uint64_t_byteorder_swap(n)
 
#define uint16_t_be2host(n) (n)
#define uint32_t_be2host(n) (n)
#define uint64_t_be2host(n) (n)
 
#else
 
#define uint16_t_le2host(n) (n)
#define uint32_t_le2host(n) (n)
#define uint64_t_le2host(n) (n)
 
#define uint16_t_be2host(n) uint16_t_byteorder_swap(n)
#define uint32_t_be2host(n) uint32_t_byteorder_swap(n)
#define uint64_t_be2host(n) uint64_t_byteorder_swap(n)
 
#endif
 
static inline uint64_t uint64_t_byteorder_swap(uint64_t n)
{
return ((n & 0xff) << 56) |
((n & 0xff00) << 40) |
((n & 0xff0000) << 24) |
((n & 0xff000000LL) << 8) |
((n & 0xff00000000LL) >> 8) |
((n & 0xff0000000000LL) >> 24) |
((n & 0xff000000000000LL) >> 40) |
((n & 0xff00000000000000LL) >> 56);
((n & 0xff00) << 40) |
((n & 0xff0000) << 24) |
((n & 0xff000000LL) << 8) |
((n & 0xff00000000LL) >> 8) |
((n & 0xff0000000000LL) >> 24) |
((n & 0xff000000000000LL) >> 40) |
((n & 0xff00000000000000LL) >> 56);
}
 
static inline uint32_t uint32_t_byteorder_swap(uint32_t n)
{
return ((n & 0xff) << 24) |
((n & 0xff00) << 8) |
((n & 0xff0000) >> 8) |
((n & 0xff000000) >> 24);
((n & 0xff00) << 8) |
((n & 0xff0000) >> 8) |
((n & 0xff000000) >> 24);
}
 
static inline uint16_t uint16_t_byteorder_swap(uint16_t n)
{
return ((n & 0xff) << 8) |
((n & 0xff00) >> 8);
}
 
#endif
 
/** @}
/branches/network/kernel/arch/ia32/include/atomic.h
41,17 → 41,17
 
static inline void atomic_inc(atomic_t *val) {
#ifdef CONFIG_SMP
asm volatile ("lock incl %0\n" : "=m" (val->count));
asm volatile ("lock incl %0\n" : "+m" (val->count));
#else
asm volatile ("incl %0\n" : "=m" (val->count));
asm volatile ("incl %0\n" : "+m" (val->count));
#endif /* CONFIG_SMP */
}
 
static inline void atomic_dec(atomic_t *val) {
#ifdef CONFIG_SMP
asm volatile ("lock decl %0\n" : "=m" (val->count));
asm volatile ("lock decl %0\n" : "+m" (val->count));
#else
asm volatile ("decl %0\n" : "=m" (val->count));
asm volatile ("decl %0\n" : "+m" (val->count));
#endif /* CONFIG_SMP */
}
 
61,7 → 61,7
 
asm volatile (
"lock xaddl %1, %0\n"
: "=m" (val->count), "+r" (r)
: "+m" (val->count), "+r" (r)
);
 
return r;
73,14 → 73,14
asm volatile (
"lock xaddl %1, %0\n"
: "=m" (val->count), "+r"(r)
: "+m" (val->count), "+r"(r)
);
return r;
}
 
#define atomic_preinc(val) (atomic_postinc(val)+1)
#define atomic_predec(val) (atomic_postdec(val)-1)
#define atomic_preinc(val) (atomic_postinc(val) + 1)
#define atomic_predec(val) (atomic_postdec(val) - 1)
 
static inline uint32_t test_and_set(atomic_t *val) {
uint32_t v;
88,7 → 88,7
asm volatile (
"movl $1, %0\n"
"xchgl %0, %1\n"
: "=r" (v),"=m" (val->count)
: "=r" (v),"+m" (val->count)
);
return v;
101,20 → 101,20
 
preemption_disable();
asm volatile (
"0:;"
"0:\n"
#ifdef CONFIG_HT
"pause;" /* Pentium 4's HT love this instruction */
"pause\n" /* Pentium 4's HT love this instruction */
#endif
"mov %0, %1;"
"testl %1, %1;"
"jnz 0b;" /* Lightweight looping on locked spinlock */
"mov %0, %1\n"
"testl %1, %1\n"
"jnz 0b\n" /* lightweight looping on locked spinlock */
"incl %1;" /* now use the atomic operation */
"xchgl %0, %1;"
"testl %1, %1;"
"jnz 0b;"
: "=m"(val->count),"=r"(tmp)
);
"incl %1\n" /* now use the atomic operation */
"xchgl %0, %1\n"
"testl %1, %1\n"
"jnz 0b\n"
: "+m" (val->count), "=&r"(tmp)
);
/*
* Prevent critical section code from bleeding out this way up.
*/
/branches/network/kernel/arch/ia32/include/mm/page.h
40,8 → 40,6
#define PAGE_WIDTH FRAME_WIDTH
#define PAGE_SIZE FRAME_SIZE
 
#define PAGE_COLOR_BITS 0 /* dummy */
 
#ifdef KERNEL
 
#ifndef __ASM__
128,6 → 126,8
 
#include <mm/mm.h>
#include <arch/interrupt.h>
#include <arch/types.h>
#include <typedefs.h>
 
/* Page fault error codes. */
 
/branches/network/kernel/arch/ia32/include/barrier.h
84,6 → 84,15
# endif
#endif
 
/*
* On ia32, the hardware takes care about instruction and data cache coherence,
* even on SMP systems. We issue a write barrier to be sure that writes
* queueing in the store buffer drain to the memory (even though it would be
* sufficient for them to drain to the D-cache).
*/
#define smc_coherence(a) write_barrier()
#define smc_coherence_block(a, l) write_barrier()
 
#endif
 
/** @}
/branches/network/kernel/arch/ia32/include/memstr.h
35,116 → 35,13
#ifndef KERN_ia32_MEMSTR_H_
#define KERN_ia32_MEMSTR_H_
 
/** Copy memory
*
* Copy a given number of bytes (3rd argument)
* from the memory location defined by 2nd argument
* to the memory location defined by 1st argument.
* The memory areas cannot overlap.
*
* @param dst Destination
* @param src Source
* @param cnt Number of bytes
* @return Destination
*/
static inline void * memcpy(void * dst, const void * src, size_t cnt)
{
unative_t d0, d1, d2;
#define memcpy(dst, src, cnt) __builtin_memcpy((dst), (src), (cnt))
 
asm volatile(
/* copy all full dwords */
"rep movsl\n\t"
/* load count again */
"movl %4, %%ecx\n\t"
/* ecx = ecx mod 4 */
"andl $3, %%ecx\n\t"
/* are there last <=3 bytes? */
"jz 1f\n\t"
/* copy last <=3 bytes */
"rep movsb\n\t"
/* exit from asm block */
"1:\n"
: "=&c" (d0), "=&D" (d1), "=&S" (d2)
: "0" ((unative_t) (cnt / 4)), "g" ((unative_t) cnt), "1" ((unative_t) dst), "2" ((unative_t) src)
: "memory");
extern void memsetw(void *dst, size_t cnt, uint16_t x);
extern void memsetb(void *dst, size_t cnt, uint8_t x);
 
return dst;
}
extern int memcmp(const void *a, const void *b, size_t cnt);
 
 
/** Compare memory regions for equality
*
* Compare a given number of bytes (3rd argument)
* at memory locations defined by 1st and 2nd argument
* for equality. If bytes are equal function returns 0.
*
* @param src Region 1
* @param dst Region 2
* @param cnt Number of bytes
* @return Zero if bytes are equal, non-zero otherwise
*/
static inline int memcmp(const void * src, const void * dst, size_t cnt)
{
uint32_t d0, d1, d2;
int ret;
asm (
"repe cmpsb\n\t"
"je 1f\n\t"
"movl %3, %0\n\t"
"addl $1, %0\n\t"
"1:\n"
: "=a" (ret), "=%S" (d0), "=&D" (d1), "=&c" (d2)
: "0" (0), "1" ((unative_t) src), "2" ((unative_t) dst), "3" ((unative_t) cnt)
);
return ret;
}
 
/** Fill memory with words
* Fill a given number of words (2nd argument)
* at memory defined by 1st argument with the
* word value defined by 3rd argument.
*
* @param dst Destination
* @param cnt Number of words
* @param x Value to fill
*/
static inline void memsetw(uintptr_t dst, size_t cnt, uint16_t x)
{
uint32_t d0, d1;
asm volatile (
"rep stosw\n\t"
: "=&D" (d0), "=&c" (d1), "=a" (x)
: "0" (dst), "1" (cnt), "2" (x)
: "memory"
);
 
}
 
/** Fill memory with bytes
* Fill a given number of bytes (2nd argument)
* at memory defined by 1st argument with the
* word value defined by 3rd argument.
*
* @param dst Destination
* @param cnt Number of bytes
* @param x Value to fill
*/
static inline void memsetb(uintptr_t dst, size_t cnt, uint8_t x)
{
uint32_t d0, d1;
asm volatile (
"rep stosb\n\t"
: "=&D" (d0), "=&c" (d1), "=a" (x)
: "0" (dst), "1" (cnt), "2" (x)
: "memory"
);
 
}
 
#endif
 
/** @}
/branches/network/kernel/arch/ia32/include/types.h
35,10 → 35,6
#ifndef KERN_ia32_TYPES_H_
#define KERN_ia32_TYPES_H_
 
#define NULL 0
#define false 0
#define true 1
 
typedef signed char int8_t;
typedef signed short int16_t;
typedef signed long int32_t;
61,14 → 57,29
typedef uint32_t unative_t;
typedef int32_t native_t;
 
typedef uint8_t bool;
typedef uint64_t thread_id_t;
typedef uint64_t task_id_t;
typedef uint32_t context_id_t;
#define PRIp "x" /**< Format for uintptr_t. */
#define PRIs "u" /**< Format for size_t. */
#define PRIc "u" /**< Format for count_t. */
#define PRIi "u" /**< Format for index_t. */
 
typedef int32_t inr_t;
typedef int32_t devno_t;
#define PRId8 "d" /**< Format for int8_t. */
#define PRId16 "d" /**< Format for int16_t. */
#define PRId32 "d" /**< Format for int32_t. */
#define PRId64 "lld" /**< Format for int64_t. */
#define PRIdn "d" /**< Format for native_t. */
 
#define PRIu8 "u" /**< Format for uint8_t. */
#define PRIu16 "u" /**< Format for uint16_t. */
#define PRIu32 "u" /**< Format for uint32_t. */
#define PRIu64 "llu" /**< Format for uint64_t. */
#define PRIun "u" /**< Format for unative_t. */
 
#define PRIx8 "x" /**< Format for hexadecimal (u)int8_t. */
#define PRIx16 "x" /**< Format for hexadecimal (u)int16_t. */
#define PRIx32 "x" /**< Format for hexadecimal (u)uint32_t. */
#define PRIx64 "llx" /**< Format for hexadecimal (u)int64_t. */
#define PRIxn "x" /**< Format for hexadecimal (u)native_t. */
 
/** Page Table Entry. */
typedef struct {
unsigned present : 1;
/branches/network/kernel/arch/ia32/include/smp/apic.h
105,8 → 105,8
#define MODEL_CLUSTER 0x0
 
/** Interrupt Command Register. */
#define ICRlo (0x300/sizeof(uint32_t))
#define ICRhi (0x310/sizeof(uint32_t))
#define ICRlo (0x300 / sizeof(uint32_t))
#define ICRhi (0x310 / sizeof(uint32_t))
typedef struct {
union {
uint32_t lo;
133,10 → 133,10
} __attribute__ ((packed)) icr_t;
 
/* End Of Interrupt. */
#define EOI (0x0b0/sizeof(uint32_t))
#define EOI (0x0b0 / sizeof(uint32_t))
 
/** Error Status Register. */
#define ESR (0x280/sizeof(uint32_t))
#define ESR (0x280 / sizeof(uint32_t))
typedef union {
uint32_t value;
uint8_t err_bitmap;
154,7 → 154,7
} esr_t;
 
/* Task Priority Register */
#define TPR (0x080/sizeof(uint32_t))
#define TPR (0x080 / sizeof(uint32_t))
typedef union {
uint32_t value;
struct {
164,7 → 164,7
} tpr_t;
 
/** Spurious-Interrupt Vector Register. */
#define SVR (0x0f0/sizeof(uint32_t))
#define SVR (0x0f0 / sizeof(uint32_t))
typedef union {
uint32_t value;
struct {
176,7 → 176,7
} svr_t;
 
/** Time Divide Configuration Register. */
#define TDCR (0x3e0/sizeof(uint32_t))
#define TDCR (0x3e0 / sizeof(uint32_t))
typedef union {
uint32_t value;
struct {
186,13 → 186,13
} tdcr_t;
 
/* Initial Count Register for Timer */
#define ICRT (0x380/sizeof(uint32_t))
#define ICRT (0x380 / sizeof(uint32_t))
 
/* Current Count Register for Timer */
#define CCRT (0x390/sizeof(uint32_t))
#define CCRT (0x390 / sizeof(uint32_t))
 
/** LVT Timer register. */
#define LVT_Tm (0x320/sizeof(uint32_t))
#define LVT_Tm (0x320 / sizeof(uint32_t))
typedef union {
uint32_t value;
struct {
207,8 → 207,8
} lvt_tm_t;
 
/** LVT LINT registers. */
#define LVT_LINT0 (0x350/sizeof(uint32_t))
#define LVT_LINT1 (0x360/sizeof(uint32_t))
#define LVT_LINT0 (0x350 / sizeof(uint32_t))
#define LVT_LINT1 (0x360 / sizeof(uint32_t))
typedef union {
uint32_t value;
struct {
225,7 → 225,7
} lvt_lint_t;
 
/** LVT Error register. */
#define LVT_Err (0x370/sizeof(uint32_t))
#define LVT_Err (0x370 / sizeof(uint32_t))
typedef union {
uint32_t value;
struct {
239,7 → 239,7
} lvt_error_t;
 
/** Local APIC ID Register. */
#define L_APIC_ID (0x020/sizeof(uint32_t))
#define L_APIC_ID (0x020 / sizeof(uint32_t))
typedef union {
uint32_t value;
struct {
249,14 → 249,14
} l_apic_id_t;
 
/** Local APIC Version Register */
#define LAVR (0x030/sizeof(uint32_t))
#define LAVR (0x030 / sizeof(uint32_t))
#define LAVR_Mask 0xff
#define is_local_apic(x) (((x)&LAVR_Mask&0xf0)==0x1)
#define is_82489DX_apic(x) ((((x)&LAVR_Mask&0xf0)==0x0))
#define is_local_xapic(x) (((x)&LAVR_Mask)==0x14)
#define is_local_apic(x) (((x) & LAVR_Mask & 0xf0) == 0x1)
#define is_82489DX_apic(x) ((((x) & LAVR_Mask & 0xf0) == 0x0))
#define is_local_xapic(x) (((x) & LAVR_Mask) == 0x14)
 
/** Logical Destination Register. */
#define LDR (0x0d0/sizeof(uint32_t))
#define LDR (0x0d0 / sizeof(uint32_t))
typedef union {
uint32_t value;
struct {
266,7 → 266,7
} ldr_t;
 
/** Destination Format Register. */
#define DFR (0x0e0/sizeof(uint32_t))
#define DFR (0x0e0 / sizeof(uint32_t))
typedef union {
uint32_t value;
struct {
276,8 → 276,8
} dfr_t;
 
/* IO APIC */
#define IOREGSEL (0x00/sizeof(uint32_t))
#define IOWIN (0x10/sizeof(uint32_t))
#define IOREGSEL (0x00 / sizeof(uint32_t))
#define IOWIN (0x10 / sizeof(uint32_t))
 
#define IOAPICID 0x00
#define IOAPICVER 0x01
/branches/network/kernel/arch/ia32/include/byteorder.h
35,15 → 35,9
#ifndef KERN_ia32_BYTEORDER_H_
#define KERN_ia32_BYTEORDER_H_
 
#include <byteorder.h>
 
/* IA-32 is little-endian */
#define uint32_t_le2host(n) (n)
#define uint64_t_le2host(n) (n)
#define ARCH_IS_LITTLE_ENDIAN
 
#define uint32_t_be2host(n) uint32_t_byteorder_swap(n)
#define uint64_t_be2host(n) uint64_t_byteorder_swap(n)
 
#endif
 
/** @}
/branches/network/kernel/arch/ia32/include/context_offset.h
0,0 → 1,83
/*
* Copyright (c) 2008 Josef Cejka
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* - The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
 
/** @addtogroup ia32
* @{
*/
/** @file
*/
 
#ifndef KERN_ia32_CONTEXT_OFFSET_H_
#define KERN_ia32_CONTEXT_OFFSET_H_
 
#define OFFSET_SP 0x0
#define OFFSET_PC 0x4
#define OFFSET_EBX 0x8
#define OFFSET_ESI 0xC
#define OFFSET_EDI 0x10
#define OFFSET_EBP 0x14
 
#ifdef KERNEL
# define OFFSET_IPL 0x18
#else
# define OFFSET_TLS 0x18
#endif
 
 
#ifdef __ASM__
 
# ctx: address of the structure with saved context
# pc: return address
 
.macro CONTEXT_SAVE_ARCH_CORE ctx:req pc:req
movl %esp,OFFSET_SP(\ctx) # %esp -> ctx->sp
movl \pc,OFFSET_PC(\ctx) # %eip -> ctx->pc
movl %ebx,OFFSET_EBX(\ctx) # %ebx -> ctx->ebx
movl %esi,OFFSET_ESI(\ctx) # %esi -> ctx->esi
movl %edi,OFFSET_EDI(\ctx) # %edi -> ctx->edi
movl %ebp,OFFSET_EBP(\ctx) # %ebp -> ctx->ebp
.endm
 
# ctx: address of the structure with saved context
 
.macro CONTEXT_RESTORE_ARCH_CORE ctx:req pc:req
movl OFFSET_SP(\ctx),%esp # ctx->sp -> %esp
movl OFFSET_PC(\ctx),\pc # ctx->pc -> \pc
movl OFFSET_EBX(\ctx),%ebx # ctx->ebx -> %ebx
movl OFFSET_ESI(\ctx),%esi # ctx->esi -> %esi
movl OFFSET_EDI(\ctx),%edi # ctx->edi -> %edi
movl OFFSET_EBP(\ctx),%ebp # ctx->ebp -> %ebp
.endm
 
#endif /* __ASM__ */
 
#endif
 
/** @}
*/
 
/branches/network/kernel/arch/ia32/include/context.h
35,6 → 35,7
#ifndef KERN_ia32_CONTEXT_H_
#define KERN_ia32_CONTEXT_H_
 
#ifdef KERNEL
#include <arch/types.h>
 
#define STACK_ITEM_SIZE 4
47,6 → 48,8
*/
#define SP_DELTA (8 + STACK_ITEM_SIZE)
 
#endif /* KERNEL */
 
/*
* Only save registers that must be preserved across
* function calls.
/branches/network/kernel/arch/ia32/Makefile.inc
29,11 → 29,15
## Toolchain configuration
#
 
ifndef CROSS_PREFIX
CROSS_PREFIX = /usr/local
endif
 
BFD_NAME = elf32-i386
BFD_ARCH = i386
BFD = binary
TARGET = i686-pc-linux-gnu
TOOLCHAIN_DIR = /usr/local/i686
TOOLCHAIN_DIR = $(CROSS_PREFIX)/i686
 
DEFS += -DMACHINE=$(MACHINE) -D__32_BITS__
 
46,7 → 50,8
#
 
ifeq ($(MACHINE),athlon-xp)
CMN2 = -march=athlon-xp -mmmx -msse -m3dnow
FPU_NO_CFLAGS = -mno-mmx -mno-sse -mno-3dnow
CMN2 = -march=athlon-xp
GCC_CFLAGS += $(CMN2)
ICC_CFLAGS += $(CMN2)
SUNCC_CFLAGS += -xarch=ssea
55,7 → 60,8
CONFIG_HT = n
endif
ifeq ($(MACHINE),athlon-mp)
CMN2 = -march=athlon-mp -mmmx -msse -m3dnow
FPU_NO_CFLAGS = -mno-mmx -mno-sse -mno-3dnow
CMN2 = -march=athlon-mp
GCC_CFLAGS += $(CMN2)
ICC_CFLAGS += $(CMN2)
SUNCC_CFLAGS += xarch=ssea
63,7 → 69,8
CONFIG_HT = n
endif
ifeq ($(MACHINE),pentium3)
CMN2 = -march=pentium3 -mmmx -msse
FPU_NO_CFLAGS = -mno-mmx -mno-sse
CMN2 = -march=pentium3
GCC_CFLAGS += $(CMN2)
ICC_CFLAGS += $(CMN2)
SUNCC_CFLAGS += -xarch=sse
71,7 → 78,8
CONFIG_HT = n
endif
ifeq ($(MACHINE),core)
CMN2 = -march=prescott -mfpmath=sse -mmmx -msse -msse2 -msse3
FPU_NO_CFLAGS = -mno-mmx -mno-sse -mno-sse2 -mno-sse3
CMN2 = -march=prescott
GCC_CFLAGS += $(CMN2)
ICC_CFLAGS += $(CMN2)
SUNCC_CFLAGS += -xarch=sse3
78,7 → 86,8
DEFS += -DCONFIG_FENCES_P4
endif
ifeq ($(MACHINE),pentium4)
GCC_CFLAGS += -march=pentium4 -mfpmath=sse -mmmx -msse -msse2
FPU_NO_CFLAGS = -mno-mmx -mno-sse -mno-sse2
GCC_CFLAGS += -march=pentium4
ICC_CFLAGS += -march=pentium4
SUNCC_CFLAGS += -xarch=sse2
DEFS += -DCONFIG_FENCES_P4
120,7 → 129,7
CONFIG_SOFTINT = y
 
ARCH_SOURCES = \
arch/$(ARCH)/src/context.s \
arch/$(ARCH)/src/context.S \
arch/$(ARCH)/src/debug/panic.s \
arch/$(ARCH)/src/delay.s \
arch/$(ARCH)/src/asm.S \
/branches/network/kernel/arch/ia32/src/context.s
File deleted
/branches/network/kernel/arch/ia32/src/asm.S
37,6 → 37,8
.global paging_on
.global enable_l_apic_in_msr
.global interrupt_handlers
.global memsetb
.global memsetw
.global memcpy
.global memcpy_from_uspace
.global memcpy_from_uspace_failover_address
44,6 → 46,15
.global memcpy_to_uspace_failover_address
 
 
# Wrapper for generic memsetb
memsetb:
jmp _memsetb
 
# Wrapper for generic memsetw
memsetw:
jmp _memsetw
 
 
#define MEMCPY_DST 4
#define MEMCPY_SRC 8
#define MEMCPY_SIZE 12
60,7 → 71,7
* @param MEMCPY_SRC(%esp) Source address.
* @param MEMCPY_SIZE(%esp) Size.
*
* @return MEMCPY_SRC(%esp) on success and 0 on failure.
* @return MEMCPY_DST(%esp) on success and 0 on failure.
*/
memcpy:
memcpy_from_uspace:
85,7 → 96,7
0:
movl %edx, %edi
movl %eax, %esi
movl MEMCPY_SRC(%esp), %eax /* MEMCPY_SRC(%esp), success */
movl MEMCPY_DST(%esp), %eax /* MEMCPY_DST(%esp), success */
ret
/*
173,6 → 184,7
movw %ax, %ds
movw %ax, %es
cld
sti
# syscall_handler(edx, ecx, ebx, esi, edi, ebp, eax)
call syscall_handler
233,6 → 245,8
movw %ax, %ds
movw %ax, %es
 
cld
 
pushl %esp # *istate
pushl $(\i) # intnum
call exc_dispatch # excdispatch(intnum, *istate)
/branches/network/kernel/arch/ia32/src/mm/as.c
39,9 → 39,7
/** Architecture dependent address space init. */
void as_arch_init(void)
{
#ifndef __OBJC__
as_operations = &as_pt_operations;
#endif
}
 
/** @}
/branches/network/kernel/arch/ia32/src/drivers/ega.c
93,12 → 93,6
sysinfo_set_item_val("fb.width", NULL, ROW);
sysinfo_set_item_val("fb.height", NULL, ROWS);
sysinfo_set_item_val("fb.address.physical", NULL, VIDEORAM);
sysinfo_set_item_val("fb.address.color", NULL, PAGE_COLOR((uintptr_t)
videoram));
#ifndef CONFIG_FB
putchar('\n');
#endif
}
 
static void ega_display_char(char ch)
115,7 → 109,7
return;
 
memcpy((void *) videoram, (void *) (videoram + ROW * 2), (SCREEN - ROW) * 2);
memsetw((uintptr_t) (videoram + (SCREEN - ROW) * 2), ROW, 0x0720);
memsetw(videoram + (SCREEN - ROW) * 2, ROW, 0x0720);
ega_cursor = ega_cursor - ROW;
}
 
/branches/network/kernel/arch/ia32/src/userspace.c
70,6 → 70,10
"pushl %3\n"
"pushl %4\n"
"movl %5, %%eax\n"
 
/* %ebx is defined to hold pcb_ptr - set it to 0 */
"xorl %%ebx, %%ebx\n"
 
"iret\n"
:
: "i" (selector(UDATA_DES) | PL_USER),
/branches/network/kernel/arch/ia32/src/smp/smp.c
155,13 → 155,12
* Prepare new GDT for CPU in question.
*/
gdt_new = (struct descriptor *) malloc(GDT_ITEMS *
sizeof(struct descriptor), FRAME_ATOMIC);
sizeof(struct descriptor), FRAME_ATOMIC | FRAME_LOW_4_GiB);
if (!gdt_new)
panic("couldn't allocate memory for GDT\n");
 
memcpy(gdt_new, gdt, GDT_ITEMS * sizeof(struct descriptor));
memsetb((uintptr_t)(&gdt_new[TSS_DES]),
sizeof(struct descriptor), 0);
memsetb(&gdt_new[TSS_DES], sizeof(struct descriptor), 0);
protected_ap_gdtr.limit = GDT_ITEMS * sizeof(struct descriptor);
protected_ap_gdtr.base = KA2PA((uintptr_t) gdt_new);
gdtr.base = (uintptr_t) gdt_new;
/branches/network/kernel/arch/ia32/src/smp/ap.S
45,7 → 45,7
KTEXT=8
KDATA=16
 
# This piece of code is real-mode and is meant to be alligned at 4K boundary.
# This piece of code is real-mode and is meant to be aligned at 4K boundary.
# The requirement for such an alignment comes from MP Specification's STARTUP IPI
# requirements.
 
/branches/network/kernel/arch/ia32/src/pm.c
112,7 → 112,7
 
void tss_initialize(tss_t *t)
{
memsetb((uintptr_t) t, sizeof(struct tss), 0);
memsetb(t, sizeof(struct tss), 0);
}
 
/*
240,7 → 240,7
preemption_disable();
ipl_t ipl = interrupts_disable();
memsetb((uintptr_t) idt, sizeof(idt), 0);
memsetb(idt, sizeof(idt), 0);
ptr_16_32_t idtr;
idtr.limit = sizeof(idt);
/branches/network/kernel/arch/ia32/src/debug/panic.s
30,5 → 30,5
.global panic_printf
 
panic_printf:
movl $halt,(%esp) # fake stack to make printf return to halt
movl $halt, (%esp) # fake stack to make printf return to halt
jmp printf
/branches/network/kernel/arch/ia32/src/boot/boot.S
50,6 → 50,7
.long multiboot_image_start
multiboot_image_start:
cld
movl $START_STACK, %esp # initialize stack pointer
lgdt KA2PA(bootstrap_gdtr) # initialize Global Descriptor Table register
 
85,7 → 86,6
mov $vesa_init, %esi
mov $VESA_INIT_SEGMENT << 4, %edi
mov $e_vesa_init - vesa_init, %ecx
cld
rep movsb
 
mov $VESA_INIT_SEGMENT << 4, %edi
206,7 → 206,6
movl $BOOT_OFFSET, %esi
movl $AP_BOOT_OFFSET, %edi
movl $_hardcoded_unmapped_size, %ecx
cld
rep movsb
#endif
279,7 → 278,6
addl %eax, %edi
movw $0x0c00, %ax # black background, light red foreground
cld
ploop:
lodsb
/branches/network/kernel/arch/ia32/src/context.S
0,0 → 1,67
#
# Copyright (c) 2001-2004 Jakub Jermar
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
#
# - Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# - Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
# - The name of the author may not be used to endorse or promote products
# derived from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
# IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
# OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
# IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
# INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
# NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
# THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
 
#include <arch/context_offset.h>
 
.text
 
.global context_save_arch
.global context_restore_arch
 
 
## Save current CPU context
#
# Save CPU context to the context_t variable
# pointed by the 1st argument. Returns 1 in EAX.
#
context_save_arch:
movl 0(%esp),%eax # save pc value into eax
movl 4(%esp),%edx # address of the context variable to save context to
 
# save registers to given structure
CONTEXT_SAVE_ARCH_CORE %edx %eax
 
xorl %eax,%eax # context_save returns 1
incl %eax
ret
 
 
## Restore saved CPU context
#
# Restore CPU context from context_t variable
# pointed by the 1st argument. Returns 0 in EAX.
#
context_restore_arch:
movl 4(%esp),%eax # address of the context variable to restore context from
 
# restore registers from given structure
CONTEXT_RESTORE_ARCH_CORE %eax %edx
 
movl %edx,0(%esp) # put saved pc on stack
xorl %eax,%eax # context_restore returns 0
ret
/branches/network/kernel/arch/amd64/include/atomic.h
41,17 → 41,17
 
static inline void atomic_inc(atomic_t *val) {
#ifdef CONFIG_SMP
asm volatile ("lock incq %0\n" : "=m" (val->count));
asm volatile ("lock incq %0\n" : "+m" (val->count));
#else
asm volatile ("incq %0\n" : "=m" (val->count));
asm volatile ("incq %0\n" : "+m" (val->count));
#endif /* CONFIG_SMP */
}
 
static inline void atomic_dec(atomic_t *val) {
#ifdef CONFIG_SMP
asm volatile ("lock decq %0\n" : "=m" (val->count));
asm volatile ("lock decq %0\n" : "+m" (val->count));
#else
asm volatile ("decq %0\n" : "=m" (val->count));
asm volatile ("decq %0\n" : "+m" (val->count));
#endif /* CONFIG_SMP */
}
 
61,7 → 61,7
 
asm volatile (
"lock xaddq %1, %0\n"
: "=m" (val->count), "+r" (r)
: "+m" (val->count), "+r" (r)
);
 
return r;
73,14 → 73,14
asm volatile (
"lock xaddq %1, %0\n"
: "=m" (val->count), "+r" (r)
: "+m" (val->count), "+r" (r)
);
return r;
}
 
#define atomic_preinc(val) (atomic_postinc(val)+1)
#define atomic_predec(val) (atomic_postdec(val)-1)
#define atomic_preinc(val) (atomic_postinc(val) + 1)
#define atomic_predec(val) (atomic_postdec(val) - 1)
 
static inline uint64_t test_and_set(atomic_t *val) {
uint64_t v;
88,7 → 88,7
asm volatile (
"movq $1, %0\n"
"xchgq %0, %1\n"
: "=r" (v),"=m" (val->count)
: "=r" (v), "+m" (val->count)
);
return v;
102,20 → 102,20
 
preemption_disable();
asm volatile (
"0:;"
"0:\n"
#ifdef CONFIG_HT
"pause;"
"pause\n"
#endif
"mov %0, %1;"
"testq %1, %1;"
"jnz 0b;" /* Lightweight looping on locked spinlock */
"mov %0, %1\n"
"testq %1, %1\n"
"jnz 0b\n" /* lightweight looping on locked spinlock */
"incq %1;" /* now use the atomic operation */
"xchgq %0, %1;"
"testq %1, %1;"
"jnz 0b;"
: "=m"(val->count),"=r"(tmp)
);
"incq %1\n" /* now use the atomic operation */
"xchgq %0, %1\n"
"testq %1, %1\n"
"jnz 0b\n"
: "+m" (val->count), "=&r" (tmp)
);
/*
* Prevent critical section code from bleeding out this way up.
*/
/branches/network/kernel/arch/amd64/include/mm/page.h
52,8 → 52,6
#define PAGE_WIDTH FRAME_WIDTH
#define PAGE_SIZE FRAME_SIZE
 
#define PAGE_COLOR_BITS 0 /* dummy */
 
#ifdef KERNEL
 
#ifndef __ASM__
/branches/network/kernel/arch/amd64/include/memstr.h
35,110 → 35,13
#ifndef KERN_amd64_MEMSTR_H_
#define KERN_amd64_MEMSTR_H_
 
/** Copy memory
*
* Copy a given number of bytes (3rd argument)
* from the memory location defined by 2nd argument
* to the memory location defined by 1st argument.
* The memory areas cannot overlap.
*
* @param dst Destination
* @param src Source
* @param cnt Number of bytes
* @return Destination
*/
static inline void * memcpy(void * dst, const void * src, size_t cnt)
{
unative_t d0, d1, d2;
#define memcpy(dst, src, cnt) __builtin_memcpy((dst), (src), (cnt))
 
asm volatile(
"rep movsq\n\t"
"movq %4, %%rcx\n\t"
"andq $7, %%rcx\n\t"
"jz 1f\n\t"
"rep movsb\n\t"
"1:\n"
: "=&c" (d0), "=&D" (d1), "=&S" (d2)
: "0" ((unative_t)(cnt / 8)), "g" ((unative_t)cnt), "1" ((unative_t) dst), "2" ((unative_t) src)
: "memory");
extern void memsetw(void *dst, size_t cnt, uint16_t x);
extern void memsetb(void *dst, size_t cnt, uint8_t x);
 
return dst;
}
extern int memcmp(const void *a, const void *b, size_t cnt);
 
 
/** Compare memory regions for equality
*
* Compare a given number of bytes (3rd argument)
* at memory locations defined by 1st and 2nd argument
* for equality. If bytes are equal function returns 0.
*
* @param src Region 1
* @param dst Region 2
* @param cnt Number of bytes
* @return Zero if bytes are equal, non-zero otherwise
*/
static inline int memcmp(const void * src, const void * dst, size_t cnt)
{
unative_t d0, d1, d2;
unative_t ret;
asm (
"repe cmpsb\n\t"
"je 1f\n\t"
"movq %3, %0\n\t"
"addq $1, %0\n\t"
"1:\n"
: "=a" (ret), "=%S" (d0), "=&D" (d1), "=&c" (d2)
: "0" (0), "1" (src), "2" (dst), "3" ((unative_t)cnt)
);
return ret;
}
 
/** Fill memory with words
* Fill a given number of words (2nd argument)
* at memory defined by 1st argument with the
* word value defined by 3rd argument.
*
* @param dst Destination
* @param cnt Number of words
* @param x Value to fill
*/
static inline void memsetw(uintptr_t dst, size_t cnt, uint16_t x)
{
unative_t d0, d1;
asm volatile (
"rep stosw\n\t"
: "=&D" (d0), "=&c" (d1), "=a" (x)
: "0" (dst), "1" ((unative_t)cnt), "2" (x)
: "memory"
);
 
}
 
/** Fill memory with bytes
* Fill a given number of bytes (2nd argument)
* at memory defined by 1st argument with the
* word value defined by 3rd argument.
*
* @param dst Destination
* @param cnt Number of bytes
* @param x Value to fill
*/
static inline void memsetb(uintptr_t dst, size_t cnt, uint8_t x)
{
unative_t d0, d1;
asm volatile (
"rep stosb\n\t"
: "=&D" (d0), "=&c" (d1), "=a" (x)
: "0" (dst), "1" ((unative_t)cnt), "2" (x)
: "memory"
);
 
}
 
#endif
 
/** @}
/branches/network/kernel/arch/amd64/include/types.h
35,10 → 35,6
#ifndef KERN_amd64_TYPES_H_
#define KERN_amd64_TYPES_H_
 
#define NULL 0
#define false 0
#define true 1
 
typedef signed char int8_t;
typedef signed short int16_t;
typedef signed int int32_t;
61,14 → 57,31
typedef uint64_t unative_t;
typedef int64_t native_t;
 
typedef uint8_t bool;
typedef uint64_t thread_id_t;
typedef uint64_t task_id_t;
typedef uint32_t context_id_t;
/**< Formats for uintptr_t, size_t, count_t and index_t */
#define PRIp "llx"
#define PRIs "llu"
#define PRIc "llu"
#define PRIi "llu"
 
typedef int32_t inr_t;
typedef int32_t devno_t;
/**< Formats for (u)int8_t, (u)int16_t, (u)int32_t, (u)int64_t and (u)native_t */
#define PRId8 "d"
#define PRId16 "d"
#define PRId32 "d"
#define PRId64 "lld"
#define PRIdn "lld"
 
#define PRIu8 "u"
#define PRIu16 "u"
#define PRIu32 "u"
#define PRIu64 "llu"
#define PRIun "llu"
 
#define PRIx8 "x"
#define PRIx16 "x"
#define PRIx32 "x"
#define PRIx64 "llx"
#define PRIxn "llx"
 
/** Page Table Entry. */
typedef struct {
unsigned present : 1;
/branches/network/kernel/arch/amd64/include/byteorder.h
35,15 → 35,9
#ifndef KERN_amd64_BYTEORDER_H_
#define KERN_amd64_BYTEORDER_H_
 
#include <byteorder.h>
 
/* AMD64 is little-endian */
#define uint32_t_le2host(n) (n)
#define uint64_t_le2host(n) (n)
#define ARCH_IS_LITTLE_ENDIAN
 
#define uint32_t_be2host(n) uint32_t_byteorder_swap(n)
#define uint64_t_be2host(n) uint64_t_byteorder_swap(n)
 
#endif
 
/** @}
/branches/network/kernel/arch/amd64/include/cpu.h
35,8 → 35,9
#ifndef KERN_amd64_CPU_H_
#define KERN_amd64_CPU_H_
 
#define RFLAGS_IF (1 << 9)
#define RFLAGS_RF (1 << 16)
#define RFLAGS_IF (1 << 9)
#define RFLAGS_DF (1 << 10)
#define RFLAGS_RF (1 << 16)
 
#define EFER_MSR_NUM 0xc0000080
#define AMD_SCE_FLAG 0
/branches/network/kernel/arch/amd64/include/context_offset.h
37,6 → 37,43
#define OFFSET_R13 0x28
#define OFFSET_R14 0x30
#define OFFSET_R15 0x38
#define OFFSET_IPL 0x40
 
#ifdef KERNEL
# define OFFSET_IPL 0x40
#else
# define OFFSET_TLS 0x40
#endif
 
#ifdef __ASM__
 
# ctx: address of the structure with saved context
# pc: return address
.macro CONTEXT_SAVE_ARCH_CORE ctx:req pc:req
movq \pc, OFFSET_PC(\ctx)
movq %rsp, OFFSET_SP(\ctx)
movq %rbx, OFFSET_RBX(\ctx)
movq %rbp, OFFSET_RBP(\ctx)
movq %r12, OFFSET_R12(\ctx)
movq %r13, OFFSET_R13(\ctx)
movq %r14, OFFSET_R14(\ctx)
movq %r15, OFFSET_R15(\ctx)
.endm
 
# ctx: address of the structure with saved context
.macro CONTEXT_RESTORE_ARCH_CORE ctx:req pc:req
movq OFFSET_R15(\ctx), %r15
movq OFFSET_R14(\ctx), %r14
movq OFFSET_R13(\ctx), %r13
movq OFFSET_R12(\ctx), %r12
movq OFFSET_RBP(\ctx), %rbp
movq OFFSET_RBX(\ctx), %rbx
movq OFFSET_SP(\ctx), %rsp # ctx->sp -> %rsp
movq OFFSET_PC(\ctx), \pc
.endm
 
#endif
 
#endif
/branches/network/kernel/arch/amd64/include/context.h
35,6 → 35,8
#ifndef KERN_amd64_CONTEXT_H_
#define KERN_amd64_CONTEXT_H_
 
#ifdef KERNEL
 
#include <arch/types.h>
 
/* According to ABI the stack MUST be aligned on
43,6 → 45,8
*/
#define SP_DELTA 16
 
#endif /* KERNEL */
 
/* We include only registers that must be preserved
* during function call
*/
/branches/network/kernel/arch/amd64/Makefile.inc
29,12 → 29,17
## Toolchain configuration
#
 
ifndef CROSS_PREFIX
CROSS_PREFIX = /usr/local
endif
 
BFD_NAME = elf64-x86-64
BFD_ARCH = i386:x86-64
BFD = binary
TARGET = amd64-linux-gnu
TOOLCHAIN_DIR = /usr/local/amd64
TOOLCHAIN_DIR = $(CROSS_PREFIX)/amd64
 
FPU_NO_CFLAGS = -mno-sse -mno-sse2
CMN1 = -m64 -mcmodel=kernel -mno-red-zone -fno-unwind-tables
GCC_CFLAGS += $(CMN1)
ICC_CFLAGS += $(CMN1)
/branches/network/kernel/arch/amd64/src/asm_utils.S
65,6 → 65,8
.global get_cycle
.global read_efer_flag
.global set_efer_flag
.global memsetb
.global memsetw
.global memcpy
.global memcpy_from_uspace
.global memcpy_to_uspace
71,6 → 73,14
.global memcpy_from_uspace_failover_address
.global memcpy_to_uspace_failover_address
 
# Wrapper for generic memsetb
memsetb:
jmp _memsetb
 
# Wrapper for generic memsetw
memsetw:
jmp _memsetw
 
#define MEMCPY_DST %rdi
#define MEMCPY_SRC %rsi
#define MEMCPY_SIZE %rdx
88,12 → 98,12
* @param MEMCPY_SRC Source address.
* @param MEMCPY_SIZE Number of bytes to copy.
*
* @retrun MEMCPY_SRC on success, 0 on failure.
* @retrun MEMCPY_DST on success, 0 on failure.
*/
memcpy:
memcpy_from_uspace:
memcpy_to_uspace:
movq MEMCPY_SRC, %rax
movq MEMCPY_DST, %rax
 
movq MEMCPY_SIZE, %rcx
shrq $3, %rcx /* size / 8 */
248,6 → 258,7
.endif
 
save_all_gpr
cld
 
movq $(\i), %rdi # %rdi - first parameter
movq %rsp, %rsi # %rsi - pointer to istate
/branches/network/kernel/arch/amd64/src/userspace.c
61,6 → 61,8
"pushq %3\n"
"pushq %4\n"
"movq %5, %%rax\n"
/* %rdi is defined to hold pcb_ptr - set it to 0 */
"xorq %%rdi, %%rdi\n"
"iretq\n"
: :
"i" (gdtselector(UDATA_DES) | PL_USER),
/branches/network/kernel/arch/amd64/src/debugger.c
106,25 → 106,33
{
unsigned int i;
char *symbol;
 
#ifdef __32_BITS__
printf("# Count Address In symbol\n");
printf("-- ----- ---------- ---------\n");
#endif
 
#ifdef __64_BITS__
printf("# Count Address In symbol\n");
printf("-- ----- ------------------ ---------\n");
#endif
if (sizeof(void *) == 4) {
printf("# Count Address In symbol\n");
printf("-- ----- ---------- ---------\n");
} else {
printf("# Count Address In symbol\n");
printf("-- ----- ------------------ ---------\n");
}
for (i = 0; i < BKPOINTS_MAX; i++)
if (breakpoints[i].address) {
symbol = get_symtab_entry(breakpoints[i].address);
if (sizeof(void *) == 4)
printf("%-2u %-5d %#10zx %s\n", i, breakpoints[i].counter,
breakpoints[i].address, symbol);
else
printf("%-2u %-5d %#18zx %s\n", i, breakpoints[i].counter,
breakpoints[i].address, symbol);
 
#ifdef __32_BITS__
printf("%-2u %-5d %#10zx %s\n", i,
breakpoints[i].counter, breakpoints[i].address,
symbol);
#endif
 
#ifdef __64_BITS__
printf("%-2u %-5d %#18zx %s\n", i,
breakpoints[i].counter, breakpoints[i].address,
symbol);
#endif
 
}
return 1;
}
162,19 → 170,23
if ((flags & BKPOINT_INSTR)) {
;
} else {
if (sizeof(int) == 4)
dr7 |= ((unative_t) 0x3) << (18 + 4*curidx);
else /* 8 */
dr7 |= ((unative_t) 0x2) << (18 + 4*curidx);
#ifdef __32_BITS__
dr7 |= ((unative_t) 0x3) << (18 + 4 * curidx);
#endif
 
#ifdef __64_BITS__
dr7 |= ((unative_t) 0x2) << (18 + 4 * curidx);
#endif
if ((flags & BKPOINT_WRITE))
dr7 |= ((unative_t) 0x1) << (16 + 4*curidx);
dr7 |= ((unative_t) 0x1) << (16 + 4 * curidx);
else if ((flags & BKPOINT_READ_WRITE))
dr7 |= ((unative_t) 0x3) << (16 + 4*curidx);
dr7 |= ((unative_t) 0x3) << (16 + 4 * curidx);
}
 
/* Enable global breakpoint */
dr7 |= 0x2 << (curidx*2);
dr7 |= 0x2 << (curidx * 2);
 
write_dr7(dr7);
246,15 → 258,15
if ((breakpoints[slot].flags & BKPOINT_CHECK_ZERO)) {
if (*((unative_t *) breakpoints[slot].address) != 0)
return;
printf("**** Found ZERO on address %lx (slot %d) ****\n",
breakpoints[slot].address, slot);
printf("*** Found ZERO on address %lx (slot %d) ***\n",
breakpoints[slot].address, slot);
} else {
printf("Data watchpoint - new data: %lx\n",
*((unative_t *) breakpoints[slot].address));
*((unative_t *) breakpoints[slot].address));
}
}
printf("Reached breakpoint %d:%lx(%s)\n", slot, getip(istate),
get_symtab_entry(getip(istate)));
get_symtab_entry(getip(istate)));
printf("***Type 'exit' to exit kconsole.\n");
atomic_set(&haltstate,1);
kconsole((void *) "debug");
292,7 → 304,8
/** Remove breakpoint from table */
int cmd_del_breakpoint(cmd_arg_t *argv)
{
if (argv->intval < 0 || argv->intval > BKPOINTS_MAX) {
unative_t bpno = argv->intval;
if (bpno > BKPOINTS_MAX) {
printf("Invalid breakpoint number.\n");
return 0;
}
346,7 → 359,9
}
 
#ifdef CONFIG_SMP
static void debug_ipi(int n __attribute__((unused)), istate_t *istate __attribute__((unused)))
static void
debug_ipi(int n __attribute__((unused)),
istate_t *istate __attribute__((unused)))
{
int i;
 
362,7 → 377,7
{
int i;
 
for (i=0; i<BKPOINTS_MAX; i++)
for (i = 0; i < BKPOINTS_MAX; i++)
breakpoints[i].address = NULL;
cmd_initialize(&bkpts_info);
383,11 → 398,9
panic("could not register command %s\n", addwatchp_info.name);
#endif
exc_register(VECTOR_DEBUG, "debugger",
debug_exception);
exc_register(VECTOR_DEBUG, "debugger", debug_exception);
#ifdef CONFIG_SMP
exc_register(VECTOR_DEBUG_IPI, "debugger_smp",
debug_ipi);
exc_register(VECTOR_DEBUG_IPI, "debugger_smp", debug_ipi);
#endif
}
 
/branches/network/kernel/arch/amd64/src/pm.c
155,7 → 155,7
 
void tss_initialize(tss_t *t)
{
memsetb((uintptr_t) t, sizeof(tss_t), 0);
memsetb(t, sizeof(tss_t), 0);
}
 
/*
239,7 → 239,7
preemption_disable();
ipl_t ipl = interrupts_disable();
memsetb((uintptr_t) idt, sizeof(idt), 0);
memsetb(idt, sizeof(idt), 0);
idtr_load(&idtr);
interrupts_restore(ipl);
/branches/network/kernel/arch/amd64/src/proc/thread.c
46,7 → 46,7
* Kernel RSP can be precalculated at thread creation time.
*/
t->arch.syscall_rsp[SYSCALL_KSTACK_RSP] =
(uintptr_t)&t->kstack[PAGE_SIZE - sizeof(uint64_t)];
(uintptr_t) &t->kstack[PAGE_SIZE - sizeof(uint64_t)];
}
 
/** @}
/branches/network/kernel/arch/amd64/src/syscall.c
62,9 → 62,11
write_msr(AMD_MSR_LSTAR, (uint64_t)syscall_entry);
/* Mask RFLAGS on syscall
* - disable interrupts, until we exchange the stack register
* (mask the IE bit)
* (mask the IF bit)
* - clear DF so that the string instructions operate in
* the right direction
*/
write_msr(AMD_MSR_SFMASK, 0x200);
write_msr(AMD_MSR_SFMASK, RFLAGS_IF | RFLAGS_DF);
}
 
/** @}
/branches/network/kernel/arch/amd64/src/boot/boot.S
54,6 → 54,7
.long multiboot_image_start
 
multiboot_image_start:
cld
movl $START_STACK, %esp # initialize stack pointer
lgdtl bootstrap_gdtr # initialize Global Descriptor Table register
 
126,7 → 127,6
mov $vesa_init, %esi
mov $VESA_INIT_SEGMENT << 4, %edi
mov $e_vesa_init - vesa_init, %ecx
cld
rep movsb
 
mov $VESA_INIT_SEGMENT << 4, %edi
282,7 → 282,6
movq $BOOT_OFFSET, %rsi
movq $AP_BOOT_OFFSET, %rdi
movq $_hardcoded_unmapped_size, %rcx
cld
rep movsb
#endif
556,7 → 555,6
addl %eax, %edi
movw $0x0c00, %ax # black background, light red foreground
cld
ploop:
lodsb
/branches/network/kernel/arch/amd64/src/cpu/cpu.c
124,7 → 124,8
void cpu_arch_init(void)
{
CPU->arch.tss = tss_p;
CPU->arch.tss->iomap_base = &CPU->arch.tss->iomap[0] - ((uint8_t *) CPU->arch.tss);
CPU->arch.tss->iomap_base = &CPU->arch.tss->iomap[0] -
((uint8_t *) CPU->arch.tss);
CPU->fpu_owner = NULL;
}
 
139,7 → 140,9
/*
* Check for AMD processor.
*/
if (info.cpuid_ebx==AMD_CPUID_EBX && info.cpuid_ecx==AMD_CPUID_ECX && info.cpuid_edx==AMD_CPUID_EDX) {
if (info.cpuid_ebx == AMD_CPUID_EBX &&
info.cpuid_ecx == AMD_CPUID_ECX &&
info.cpuid_edx == AMD_CPUID_EDX) {
CPU->arch.vendor = VendorAMD;
}
 
146,14 → 149,16
/*
* Check for Intel processor.
*/
if (info.cpuid_ebx==INTEL_CPUID_EBX && info.cpuid_ecx==INTEL_CPUID_ECX && info.cpuid_edx==INTEL_CPUID_EDX) {
if (info.cpuid_ebx == INTEL_CPUID_EBX &&
info.cpuid_ecx == INTEL_CPUID_ECX &&
info.cpuid_edx == INTEL_CPUID_EDX) {
CPU->arch.vendor = VendorIntel;
}
cpuid(1, &info);
CPU->arch.family = (info.cpuid_eax>>8)&0xf;
CPU->arch.model = (info.cpuid_eax>>4)&0xf;
CPU->arch.stepping = (info.cpuid_eax>>0)&0xf;
CPU->arch.family = (info.cpuid_eax >> 8) & 0xf;
CPU->arch.model = (info.cpuid_eax >> 4) & 0xf;
CPU->arch.stepping = (info.cpuid_eax >> 0) & 0xf;
}
}
 
160,8 → 165,8
void cpu_print_report(cpu_t* m)
{
printf("cpu%d: (%s family=%d model=%d stepping=%d) %dMHz\n",
m->id, vendor_str[m->arch.vendor], m->arch.family, m->arch.model, m->arch.stepping,
m->frequency_mhz);
m->id, vendor_str[m->arch.vendor], m->arch.family, m->arch.model,
m->arch.stepping, m->frequency_mhz);
}
 
/** @}
/branches/network/kernel/arch/amd64/src/context.S
40,17 → 40,10
#
context_save_arch:
movq (%rsp), %rdx # the caller's return %eip
 
# In %edi is passed 1st argument
movq %rdx, OFFSET_PC(%rdi)
movq %rsp, OFFSET_SP(%rdi)
CONTEXT_SAVE_ARCH_CORE %rdi %rdx
movq %rbx, OFFSET_RBX(%rdi)
movq %rbp, OFFSET_RBP(%rdi)
movq %r12, OFFSET_R12(%rdi)
movq %r13, OFFSET_R13(%rdi)
movq %r14, OFFSET_R14(%rdi)
movq %r15, OFFSET_R15(%rdi)
xorq %rax,%rax # context_save returns 1
incq %rax
ret
62,16 → 55,9
# pointed by the 1st argument. Returns 0 in EAX.
#
context_restore_arch:
movq OFFSET_R15(%rdi), %r15
movq OFFSET_R14(%rdi), %r14
movq OFFSET_R13(%rdi), %r13
movq OFFSET_R12(%rdi), %r12
movq OFFSET_RBP(%rdi), %rbp
movq OFFSET_RBX(%rdi), %rbx
movq OFFSET_SP(%rdi), %rsp # ctx->sp -> %rsp
movq OFFSET_PC(%rdi), %rdx
 
CONTEXT_RESTORE_ARCH_CORE %rdi %rdx
 
movq %rdx,(%rsp)
 
xorq %rax,%rax # context_restore returns 0
/branches/network/kernel/arch/amd64/src/mm/page.c
82,7 → 82,7
void page_arch_init(void)
{
uintptr_t cur;
int i;
unsigned int i;
int identity_flags = PAGE_CACHEABLE | PAGE_EXEC | PAGE_GLOBAL | PAGE_WRITE;
 
if (config.cpu_active == 1) {
/branches/network/kernel/arch/sparc64/include/atomic.h
37,6 → 37,7
 
#include <arch/barrier.h>
#include <arch/types.h>
#include <preemption.h>
 
/** Atomic add operation.
*
56,7 → 57,8
 
a = *((uint64_t *) x);
b = a + i;
asm volatile ("casx %0, %2, %1\n" : "+m" (*((uint64_t *)x)), "+r" (b) : "r" (a));
asm volatile ("casx %0, %2, %1\n" : "+m" (*((uint64_t *)x)),
"+r" (b) : "r" (a));
} while (a != b);
 
return a;
97,7 → 99,8
uint64_t v = 1;
volatile uintptr_t x = (uint64_t) &val->count;
 
asm volatile ("casx %0, %2, %1\n" : "+m" (*((uint64_t *) x)), "+r" (v) : "r" (0));
asm volatile ("casx %0, %2, %1\n" : "+m" (*((uint64_t *) x)),
"+r" (v) : "r" (0));
 
return v;
}
109,6 → 112,8
 
volatile uintptr_t x = (uint64_t) &val->count;
 
preemption_disable();
 
asm volatile (
"0:\n"
"casx %0, %3, %1\n"
/branches/network/kernel/arch/sparc64/include/mm/page.h
53,11 → 53,6
 
#define MMU_PAGES_PER_PAGE (1 << (PAGE_WIDTH - MMU_PAGE_WIDTH))
 
/*
* With 16K pages, there is only one page color.
*/
#define PAGE_COLOR_BITS 0 /**< 14 - 14; 2^14 == 16K == alias boundary. */
 
#ifdef KERNEL
 
#ifndef __ASM__
/branches/network/kernel/arch/sparc64/include/mm/tlb.h
160,7 → 160,7
static inline void mmu_primary_context_write(uint64_t v)
{
asi_u64_write(ASI_DMMU, VA_PRIMARY_CONTEXT_REG, v);
flush();
flush_pipeline();
}
 
/** Read MMU Secondary Context Register.
179,7 → 179,7
static inline void mmu_secondary_context_write(uint64_t v)
{
asi_u64_write(ASI_DMMU, VA_SECONDARY_CONTEXT_REG, v);
flush();
flush_pipeline();
}
 
/** Read IMMU TLB Data Access Register.
209,7 → 209,7
reg.value = 0;
reg.tlb_entry = entry;
asi_u64_write(ASI_ITLB_DATA_ACCESS_REG, reg.value, value);
flush();
flush_pipeline();
}
 
/** Read DMMU TLB Data Access Register.
279,7 → 279,7
static inline void itlb_tag_access_write(uint64_t v)
{
asi_u64_write(ASI_IMMU, VA_IMMU_TAG_ACCESS, v);
flush();
flush_pipeline();
}
 
/** Read IMMU TLB Tag Access Register.
318,7 → 318,7
static inline void itlb_data_in_write(uint64_t v)
{
asi_u64_write(ASI_ITLB_DATA_IN_REG, 0, v);
flush();
flush_pipeline();
}
 
/** Write DMMU TLB Data in Register.
347,7 → 347,7
static inline void itlb_sfsr_write(uint64_t v)
{
asi_u64_write(ASI_IMMU, VA_IMMU_SFSR, v);
flush();
flush_pipeline();
}
 
/** Read DTLB Synchronous Fault Status Register.
400,7 → 400,7
asi_u64_write(ASI_IMMU_DEMAP, da.value, 0); /* da.value is the
* address within the
* ASI */
flush();
flush_pipeline();
}
 
/** Perform DMMU TLB Demap Operation.
/branches/network/kernel/arch/sparc64/include/mm/cache_spec.h
0,0 → 1,57
/*
* Copyright (c) 2008 Jakub Jermar
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* - The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
 
/** @addtogroup sparc64mm
* @{
*/
/** @file
*/
 
#ifndef KERN_sparc64_CACHE_SPEC_H_
#define KERN_sparc64_CACHE_SPEC_H_
 
/*
* The following macros are valid for the following processors:
*
* UltraSPARC, UltraSPARC II, UltraSPARC IIi
*
* Should we support other UltraSPARC processors, we need to make sure that
* the macros are defined correctly for them.
*/
 
#define DCACHE_SIZE (16 * 1024)
#define DCACHE_LINE_SIZE 32
 
#define ICACHE_SIZE (16 * 1024)
#define ICACHE_WAYS 2
#define ICACHE_LINE_SIZE 32
 
#endif
 
/** @}
*/
/branches/network/kernel/arch/sparc64/include/barrier.h
57,8 → 57,11
#define write_barrier() \
asm volatile ("membar #StoreStore\n" ::: "memory")
 
/** Flush Instruction Memory instruction. */
static inline void flush(void)
#define flush(a) \
asm volatile ("flush %0\n" :: "r" ((a)) : "memory")
 
/** Flush Instruction pipeline. */
static inline void flush_pipeline(void)
{
/*
* The FLUSH instruction takes address parameter.
79,6 → 82,21
asm volatile ("membar #Sync\n");
}
 
#define smc_coherence(a) \
{ \
write_barrier(); \
flush((a)); \
}
 
#define FLUSH_INVAL_MIN 4
#define smc_coherence_block(a, l) \
{ \
unsigned long i; \
write_barrier(); \
for (i = 0; i < (l); i += FLUSH_INVAL_MIN) \
flush((void *)(a) + i); \
}
 
#endif
 
/** @}
/branches/network/kernel/arch/sparc64/include/memstr.h
37,10 → 37,10
 
#define memcpy(dst, src, cnt) __builtin_memcpy((dst), (src), (cnt))
 
extern void memsetw(uintptr_t dst, size_t cnt, uint16_t x);
extern void memsetb(uintptr_t dst, size_t cnt, uint8_t x);
extern void memsetw(void *dst, size_t cnt, uint16_t x);
extern void memsetb(void *dst, size_t cnt, uint8_t x);
 
extern int memcmp(uintptr_t src, uintptr_t dst, int cnt);
extern int memcmp(const void *a, const void *b, size_t cnt);
 
#endif
 
/branches/network/kernel/arch/sparc64/include/asm.h
37,6 → 37,7
 
#include <arch/arch.h>
#include <arch/types.h>
#include <typedefs.h>
#include <align.h>
#include <arch/register.h>
#include <config.h>
/branches/network/kernel/arch/sparc64/include/cpu.h
36,6 → 36,7
#define KERN_sparc64_CPU_H_
 
#include <arch/types.h>
#include <typedefs.h>
#include <arch/register.h>
#include <arch/asm.h>
 
/branches/network/kernel/arch/sparc64/include/types.h
35,10 → 35,6
#ifndef KERN_sparc64_TYPES_H_
#define KERN_sparc64_TYPES_H_
 
#define NULL 0
#define false 0
#define true 1
 
typedef signed char int8_t;
typedef signed short int16_t;
typedef signed int int32_t;
61,13 → 57,31
typedef uint64_t unative_t;
typedef int64_t native_t;
 
typedef uint8_t bool;
typedef uint64_t thread_id_t;
typedef uint64_t task_id_t;
typedef uint32_t context_id_t;
/**< Formats for uintptr_t, size_t, count_t and index_t */
#define PRIp "llx"
#define PRIs "llu"
#define PRIc "llu"
#define PRIi "llu"
 
typedef int32_t inr_t;
typedef int32_t devno_t;
/**< Formats for (u)int8_t, (u)int16_t, (u)int32_t, (u)int64_t and (u)native_t */
#define PRId8 "d"
#define PRId16 "d"
#define PRId32 "d"
#define PRId64 "lld"
#define PRIdn "lld"
 
#define PRIu8 "u"
#define PRIu16 "u"
#define PRIu32 "u"
#define PRIu64 "llu"
#define PRIun "llu"
 
#define PRIx8 "x"
#define PRIx16 "x"
#define PRIx32 "x"
#define PRIx64 "llx"
#define PRIxn "llx"
 
typedef uint8_t asi_t;
 
#endif
/branches/network/kernel/arch/sparc64/include/context_offset.h
48,4 → 48,60
#define OFFSET_L6 0x80
#define OFFSET_L7 0x88
 
#ifndef KERNEL
# define OFFSET_TP 0x90
#endif
 
#ifdef __ASM__
 
.macro CONTEXT_SAVE_ARCH_CORE ctx:req
stx %sp, [\ctx + OFFSET_SP]
stx %o7, [\ctx + OFFSET_PC]
stx %i0, [\ctx + OFFSET_I0]
stx %i1, [\ctx + OFFSET_I1]
stx %i2, [\ctx + OFFSET_I2]
stx %i3, [\ctx + OFFSET_I3]
stx %i4, [\ctx + OFFSET_I4]
stx %i5, [\ctx + OFFSET_I5]
stx %fp, [\ctx + OFFSET_FP]
stx %i7, [\ctx + OFFSET_I7]
stx %l0, [\ctx + OFFSET_L0]
stx %l1, [\ctx + OFFSET_L1]
stx %l2, [\ctx + OFFSET_L2]
stx %l3, [\ctx + OFFSET_L3]
stx %l4, [\ctx + OFFSET_L4]
stx %l5, [\ctx + OFFSET_L5]
stx %l6, [\ctx + OFFSET_L6]
stx %l7, [\ctx + OFFSET_L7]
#ifndef KERNEL
stx %g7, [\ctx + OFFSET_TP]
#endif
.endm
 
.macro CONTEXT_RESTORE_ARCH_CORE ctx:req
ldx [\ctx + OFFSET_SP], %sp
ldx [\ctx + OFFSET_PC], %o7
ldx [\ctx + OFFSET_I0], %i0
ldx [\ctx + OFFSET_I1], %i1
ldx [\ctx + OFFSET_I2], %i2
ldx [\ctx + OFFSET_I3], %i3
ldx [\ctx + OFFSET_I4], %i4
ldx [\ctx + OFFSET_I5], %i5
ldx [\ctx + OFFSET_FP], %fp
ldx [\ctx + OFFSET_I7], %i7
ldx [\ctx + OFFSET_L0], %l0
ldx [\ctx + OFFSET_L1], %l1
ldx [\ctx + OFFSET_L2], %l2
ldx [\ctx + OFFSET_L3], %l3
ldx [\ctx + OFFSET_L4], %l4
ldx [\ctx + OFFSET_L5], %l5
ldx [\ctx + OFFSET_L6], %l6
ldx [\ctx + OFFSET_L7], %l7
#ifndef KERNEL
ldx [\ctx + OFFSET_TP], %g7
#endif
.endm
 
#endif /* __ASM__ */
 
#endif
/branches/network/kernel/arch/sparc64/include/byteorder.h
35,14 → 35,8
#ifndef KERN_sparc64_BYTEORDER_H_
#define KERN_sparc64_BYTEORDER_H_
 
#include <byteorder.h>
#define ARCH_IS_BIG_ENDIAN
 
#define uint32_t_le2host(n) uint32_t_byteorder_swap(n)
#define uint64_t_le2host(n) uint64_t_byteorder_swap(n)
 
#define uint32_t_be2host(n) (n)
#define uint64_t_be2host(n) (n)
 
#endif
 
/** @}
/branches/network/kernel/arch/sparc64/Makefile.inc
29,11 → 29,15
## Toolchain configuration
#
 
ifndef CROSS_PREFIX
CROSS_PREFIX = /usr/local
endif
 
BFD_NAME = elf64-sparc
BFD_ARCH = sparc
BFD = binary
TARGET = sparc64-linux-gnu
TOOLCHAIN_DIR = /usr/local/sparc64
TOOLCHAIN_DIR = $(CROSS_PREFIX)/sparc64
 
GCC_CFLAGS += -m64 -mcpu=ultrasparc
SUNCC_CFLAGS += -m64 -xarch=sparc -xregs=appl,no%float
/branches/network/kernel/arch/sparc64/src/asm.S
41,6 → 41,7
*/
.global memcpy
memcpy:
mov %o0, %o3 ! save dst
add %o1, 7, %g1
and %g1, -8, %g1
cmp %o1, %g1
59,7 → 60,7
mov %g2, %g3
2:
jmp %o7 + 8 ! exit point
mov %o1, %o0
mov %o3, %o0
3:
and %g1, -8, %g1
cmp %o0, %g1
93,7 → 94,7
mov %g2, %g3
 
jmp %o7 + 8 ! exit point
mov %o1, %o0
mov %o3, %o0
 
/*
* Almost the same as memcpy() except the loads are from userspace.
100,6 → 101,7
*/
.global memcpy_from_uspace
memcpy_from_uspace:
mov %o0, %o3 ! save dst
add %o1, 7, %g1
and %g1, -8, %g1
cmp %o1, %g1
118,7 → 120,7
mov %g2, %g3
2:
jmp %o7 + 8 ! exit point
mov %o1, %o0
mov %o3, %o0
3:
and %g1, -8, %g1
cmp %o0, %g1
152,7 → 154,7
mov %g2, %g3
 
jmp %o7 + 8 ! exit point
mov %o1, %o0
mov %o3, %o0
 
/*
* Almost the same as memcpy() except the stores are to userspace.
159,6 → 161,7
*/
.global memcpy_to_uspace
memcpy_to_uspace:
mov %o0, %o3 ! save dst
add %o1, 7, %g1
and %g1, -8, %g1
cmp %o1, %g1
177,7 → 180,7
mov %g2, %g3
2:
jmp %o7 + 8 ! exit point
mov %o1, %o0
mov %o3, %o0
3:
and %g1, -8, %g1
cmp %o0, %g1
211,7 → 214,7
mov %g2, %g3
 
jmp %o7 + 8 ! exit point
mov %o1, %o0
mov %o3, %o0
 
.global memcpy_from_uspace_failover_address
.global memcpy_to_uspace_failover_address
274,6 → 277,8
wrpr %g0, 0, %cleanwin ! avoid information leak
 
mov %i2, %o0 ! uarg
xor %o1, %o1, %o1 ! %o1 is defined to hold pcb_ptr
! set it to 0
 
clr %i2
clr %i3
/branches/network/kernel/arch/sparc64/src/mm/cache.S
27,10 → 27,8
*/
 
#include <arch/arch.h>
#include <arch/mm/cache_spec.h>
 
#define DCACHE_SIZE (16 * 1024)
#define DCACHE_LINE_SIZE 32
 
#define DCACHE_TAG_SHIFT 2
 
.register %g2, #scratch
/branches/network/kernel/arch/sparc64/src/mm/as.c
76,7 → 76,7
as->arch.dtsb = (tsb_entry_t *) (tsb + ITSB_ENTRY_COUNT *
sizeof(tsb_entry_t));
 
memsetb((uintptr_t) as->arch.itsb,
memsetb(as->arch.itsb,
(ITSB_ENTRY_COUNT + DTSB_ENTRY_COUNT) * sizeof(tsb_entry_t), 0);
#endif
return 0;
/branches/network/kernel/arch/sparc64/src/mm/tlb.c
490,7 → 490,7
*/
void tlb_invalidate_pages(asid_t asid, uintptr_t page, count_t cnt)
{
int i;
unsigned int i;
tlb_context_reg_t pc_save, ctx;
/* switch to nucleus because we are mapped by the primary context */
/branches/network/kernel/arch/sparc64/src/mm/frame.c
48,7 → 48,7
*/
void frame_arch_init(void)
{
int i;
unsigned int i;
pfn_t confdata;
 
if (config.cpu_active == 1) {
/branches/network/kernel/arch/sparc64/src/mm/page.c
66,7 → 66,7
} else {
 
#ifdef CONFIG_SMP
int i;
unsigned int i;
 
/*
* Copy locked DTLB entries from the BSP.
98,7 → 98,7
uintptr_t hw_map(uintptr_t physaddr, size_t size)
{
unsigned int order;
int i;
unsigned int i;
 
ASSERT(config.cpu_active == 1);
 
/branches/network/kernel/arch/sparc64/src/smp/smp.c
99,7 → 99,7
waking_up_mid = mid;
if (waitq_sleep_timeout(&ap_completion_wq, 1000000, SYNCH_FLAGS_NONE) == ESYNCH_TIMEOUT)
printf("%s: waiting for processor (mid = %d) timed out\n",
printf("%s: waiting for processor (mid = %" PRIu32 ") timed out\n",
__func__, mid);
}
}
/branches/network/kernel/arch/sparc64/src/smp/ipi.c
116,7 → 116,7
*/
void ipi_broadcast_arch(int ipi)
{
int i;
unsigned int i;
void (* func)(void);
/branches/network/kernel/arch/sparc64/src/trap/exception.c
45,9 → 45,9
 
void dump_istate(istate_t *istate)
{
printf("TSTATE=%#llx\n", istate->tstate);
printf("TPC=%#llx (%s)\n", istate->tpc, get_symtab_entry(istate->tpc));
printf("TNPC=%#llx (%s)\n", istate->tnpc, get_symtab_entry(istate->tnpc));
printf("TSTATE=%#" PRIx64 "\n", istate->tstate);
printf("TPC=%#" PRIx64 " (%s)\n", istate->tpc, get_symtab_entry(istate->tpc));
printf("TNPC=%#" PRIx64 " (%s)\n", istate->tnpc, get_symtab_entry(istate->tnpc));
}
 
/** Handle instruction_access_exception. (0x8) */
/branches/network/kernel/arch/sparc64/src/trap/interrupt.c
97,8 → 97,8
* Spurious interrupt.
*/
#ifdef CONFIG_DEBUG
printf("cpu%d: spurious interrupt (intrcv=%#llx, "
"data0=%#llx)\n", CPU->id, intrcv, data0);
printf("cpu%u: spurious interrupt (intrcv=%#" PRIx64
", data0=%#" PRIx64 ")\n", CPU->id, intrcv, data0);
#endif
}
 
/branches/network/kernel/arch/sparc64/src/cpu/cpu.c
135,7 → 135,7
break;
}
 
printf("cpu%d: manuf=%s, impl=%s, mask=%d (%dMHz)\n", m->id, manuf,
printf("cpu%d: manuf=%s, impl=%s, mask=%d (%d MHz)\n", m->id, manuf,
impl, m->arch.ver.mask, m->arch.clock_frequency / 1000000);
}
 
/branches/network/kernel/arch/sparc64/src/context.S
36,55 → 36,15
* functions.
*/
#include <arch/context_offset.h>
 
.text
 
.global context_save_arch
.global context_restore_arch
 
.macro CONTEXT_STORE r
stx %sp, [\r + OFFSET_SP]
stx %o7, [\r + OFFSET_PC]
stx %i0, [\r + OFFSET_I0]
stx %i1, [\r + OFFSET_I1]
stx %i2, [\r + OFFSET_I2]
stx %i3, [\r + OFFSET_I3]
stx %i4, [\r + OFFSET_I4]
stx %i5, [\r + OFFSET_I5]
stx %fp, [\r + OFFSET_FP]
stx %i7, [\r + OFFSET_I7]
stx %l0, [\r + OFFSET_L0]
stx %l1, [\r + OFFSET_L1]
stx %l2, [\r + OFFSET_L2]
stx %l3, [\r + OFFSET_L3]
stx %l4, [\r + OFFSET_L4]
stx %l5, [\r + OFFSET_L5]
stx %l6, [\r + OFFSET_L6]
stx %l7, [\r + OFFSET_L7]
.endm
 
.macro CONTEXT_LOAD r
ldx [\r + OFFSET_SP], %sp
ldx [\r + OFFSET_PC], %o7
ldx [\r + OFFSET_I0], %i0
ldx [\r + OFFSET_I1], %i1
ldx [\r + OFFSET_I2], %i2
ldx [\r + OFFSET_I3], %i3
ldx [\r + OFFSET_I4], %i4
ldx [\r + OFFSET_I5], %i5
ldx [\r + OFFSET_FP], %fp
ldx [\r + OFFSET_I7], %i7
ldx [\r + OFFSET_L0], %l0
ldx [\r + OFFSET_L1], %l1
ldx [\r + OFFSET_L2], %l2
ldx [\r + OFFSET_L3], %l3
ldx [\r + OFFSET_L4], %l4
ldx [\r + OFFSET_L5], %l5
ldx [\r + OFFSET_L6], %l6
ldx [\r + OFFSET_L7], %l7
.endm
 
context_save_arch:
CONTEXT_STORE %o0
CONTEXT_SAVE_ARCH_CORE %o0
retl
mov 1, %o0 ! context_save_arch returns 1
 
98,6 → 58,6
#
flushw
CONTEXT_LOAD %o0
CONTEXT_RESTORE_ARCH_CORE %o0
retl
xor %o0, %o0, %o0 ! context_restore_arch returns 0
/branches/network/kernel/arch/ia64/Makefile.inc
29,10 → 29,14
## Toolchain configuration
#
 
ifndef CROSS_PREFIX
CROSS_PREFIX = /usr/local
endif
 
BFD_NAME = elf64-little
BFD_ARCH = ia64-elf64
TARGET = ia64-pc-linux-gnu
TOOLCHAIN_DIR = /usr/local/ia64
TOOLCHAIN_DIR = $(CROSS_PREFIX)/ia64
 
INIT0_ADDRESS = 0xe000000004404000
INIT0_SIZE = 0x100000
/branches/network/kernel/arch/ia64/src/asm.S
51,7 → 51,7
 
adds r14 = 7, in1
mov r2 = ar.lc
mov r8 = in1 ;;
mov r8 = in0
and r14 = -8, r14 ;;
cmp.ne p6, p7 = r14, in1
(p7) br.cond.dpnt 3f ;;
63,7 → 63,7
(p6) mov r17 = r0 ;;
(p6) mov ar.lc = r14
1:
add r14 = r16, r8
add r14 = r16, in1
add r15 = r16, in0
adds r17 = 1, r17 ;;
ld1 r14 = [r14]
72,7 → 72,6
br.cloop.sptk.few 1b ;;
2:
mov ar.lc = r2
 
mov ar.pfs = loc0
br.ret.sptk.many rp
3:
90,7 → 89,7
4:
shladd r14 = r16, 3, r0
adds r16 = 1, r17 ;;
add r15 = r8, r14
add r15 = in1, r14
add r14 = in0, r14
mov r17 = r16 ;;
ld8 r15 = [r15] ;;
104,7 → 103,7
cmp.eq p6, p7 = 0, r15
add in0 = r14, in0
adds r15 = -1, r15
add r17 = r14, r8
add r17 = r14, in1
(p6) br.cond.dpnt 2b ;;
mov ar.lc = r15
6:
116,7 → 115,6
st1 [r15] = r14
br.cloop.sptk.few 6b ;;
mov ar.lc = r2
 
mov ar.pfs = loc0
br.ret.sptk.many rp
163,6 → 161,9
 
xor r1 = r1, r1
/* r2 is defined to hold pcb_ptr - set it to 0 */
xor r2 = r2, r2
mov loc1 = cr.ifs
movl loc2 = PFM_MASK ;;
and loc1 = loc2, loc1 ;;
/branches/network/kernel/arch/ia64/src/mm/vhpt.c
81,7 → 81,7
 
void vhpt_invalidate_all()
{
memsetb((uintptr_t) vhpt_base, 1 << VHPT_WIDTH, 0);
memsetb(vhpt_base, 1 << VHPT_WIDTH, 0);
}
 
void vhpt_invalidate_asid(asid_t asid)
/branches/network/kernel/arch/ia64/src/mm/tlb.c
59,7 → 59,7
uintptr_t adr;
uint32_t count1, count2, stride1, stride2;
int i, j;
unsigned int i, j;
adr = PAL_PTCE_INFO_BASE();
count1 = PAL_PTCE_INFO_COUNT1();
69,8 → 69,8
ipl = interrupts_disable();
 
for(i = 0; i < count1; i++) {
for(j = 0; j < count2; j++) {
for (i = 0; i < count1; i++) {
for (j = 0; j < count2; j++) {
asm volatile (
"ptc.e %0 ;;"
:
/branches/network/kernel/arch/ia64/src/drivers/ega.c
71,7 → 71,7
/*
* Clear the screen.
*/
_memsetw((uintptr_t) videoram, SCREEN, 0x0720);
_memsetw(videoram, SCREEN, 0x0720);
 
chardev_initialize("ega_out", &ega_console, &ega_ops);
stdout = &ega_console;
102,7 → 102,7
return;
 
memcpy((void *) videoram, (void *) (videoram + ROW * 2), (SCREEN - ROW) * 2);
_memsetw((uintptr_t) (videoram + (SCREEN - ROW) * 2), ROW, 0x0720);
_memsetw(videoram + (SCREEN - ROW) * 2, ROW, 0x0720);
ega_cursor = ega_cursor - ROW;
}
 
/branches/network/kernel/arch/ia64/src/ia64.c
62,12 → 62,13
/* Setup usermode init tasks. */
 
//#ifdef I460GX
int i;
unsigned int i;
init.cnt = bootinfo->taskmap.count;
for(i=0;i<init.cnt;i++)
{
init.tasks[i].addr = ((unsigned long)bootinfo->taskmap.tasks[i].addr)|VRN_MASK;
init.tasks[i].size = bootinfo->taskmap.tasks[i].size;
for (i = 0; i < init.cnt; i++) {
init.tasks[i].addr = ((unsigned long) bootinfo->taskmap.tasks[i].addr) | VRN_MASK;
init.tasks[i].size = bootinfo->taskmap.tasks[i].size;
}
/*
#else
/branches/network/kernel/arch/ia64/include/mm/page.h
41,8 → 41,6
#define PAGE_SIZE FRAME_SIZE
#define PAGE_WIDTH FRAME_WIDTH
 
#define PAGE_COLOR_BITS 0 /* dummy */
 
#ifdef KERNEL
 
/** Bit width of the TLB-locked portion of kernel address space. */
/branches/network/kernel/arch/ia64/include/barrier.h
45,9 → 45,33
#define read_barrier() memory_barrier()
#define write_barrier() memory_barrier()
 
#define srlz_i() asm volatile (";; srlz.i ;;\n" ::: "memory")
#define srlz_d() asm volatile (";; srlz.d\n" ::: "memory")
#define srlz_i() \
asm volatile (";; srlz.i ;;\n" ::: "memory")
#define srlz_d() \
asm volatile (";; srlz.d\n" ::: "memory")
 
#define fc_i(a) \
asm volatile ("fc.i %0\n" :: "r" ((a)) : "memory")
#define sync_i() \
asm volatile (";; sync.i\n" ::: "memory")
 
#define smc_coherence(a) \
{ \
fc_i((a)); \
sync_i(); \
srlz_i(); \
}
 
#define FC_INVAL_MIN 32
#define smc_coherence_block(a, l) \
{ \
unsigned long i; \
for (i = 0; i < (l); i += FC_INVAL_MIN) \
fc_i((void *)(a) + i); \
sync_i(); \
srlz_i(); \
}
 
#endif
 
/** @}
/branches/network/kernel/arch/ia64/include/memstr.h
37,10 → 37,10
 
#define memcpy(dst, src, cnt) __builtin_memcpy((dst), (src), (cnt))
 
extern void memsetw(uintptr_t dst, size_t cnt, uint16_t x);
extern void memsetb(uintptr_t dst, size_t cnt, uint8_t x);
extern void memsetw(void *dst, size_t cnt, uint16_t x);
extern void memsetb(void *dst, size_t cnt, uint8_t x);
 
extern int memcmp(uintptr_t src, uintptr_t dst, int cnt);
extern int memcmp(const void *a, const void *b, size_t cnt);
 
#endif
 
/branches/network/kernel/arch/ia64/include/types.h
35,10 → 35,6
#ifndef KERN_ia64_TYPES_H_
#define KERN_ia64_TYPES_H_
 
#define NULL 0
#define false 0
#define true 1
 
typedef signed char int8_t;
typedef signed short int16_t;
typedef signed int int32_t;
69,14 → 65,29
typedef uint64_t unative_t;
typedef int64_t native_t;
 
typedef uint8_t bool;
typedef uint64_t thread_id_t;
typedef uint64_t task_id_t;
typedef uint32_t context_id_t;
#define PRIp "lx" /**< Format for uintptr_t. */
#define PRIs "lu" /**< Format for size_t. */
#define PRIc "lu" /**< Format for count_t. */
#define PRIi "lu" /**< Format for index_t. */
 
typedef int32_t inr_t;
typedef int32_t devno_t;
#define PRId8 "d" /**< Format for int8_t. */
#define PRId16 "d" /**< Format for int16_t. */
#define PRId32 "d" /**< Format for int32_t. */
#define PRId64 "ld" /**< Format for int64_t. */
#define PRIdn "d" /**< Format for native_t. */
 
#define PRIu8 "u" /**< Format for uint8_t. */
#define PRIu16 "u" /**< Format for uint16_t. */
#define PRIu32 "u" /**< Format for uint32_t. */
#define PRIu64 "lu" /**< Format for uint64_t. */
#define PRIun "u" /**< Format for unative_t. */
 
#define PRIx8 "x" /**< Format for hexadecimal (u)int8_t. */
#define PRIx16 "x" /**< Format for hexadecimal (u)int16_t. */
#define PRIx32 "x" /**< Format for hexadecimal (u)uint32_t. */
#define PRIx64 "lx" /**< Format for hexadecimal (u)int64_t. */
#define PRIxn "x" /**< Format for hexadecimal (u)native_t. */
 
#endif
 
/** @}
/branches/network/kernel/arch/ia64/include/byteorder.h
35,15 → 35,9
#ifndef KERN_ia64_BYTEORDER_H_
#define KERN_ia64_BYTEORDER_H_
 
#include <byteorder.h>
 
/* IA-64 is little-endian */
#define uint32_t_le2host(n) (n)
#define uint64_t_le2host(n) (n)
#define ARCH_IS_LITTLE_ENDIAN
 
#define uint32_t_be2host(n) uint32_t_byteorder_swap(n)
#define uint64_t_be2host(n) uint64_t_byteorder_swap(n)
 
#endif
 
/** @}
/branches/network/kernel/arch/arm32/Makefile.inc
29,17 → 29,21
## Toolchain configuration
#
 
ifndef CROSS_PREFIX
CROSS_PREFIX = /usr/local
endif
 
BFD_NAME = elf32-littlearm
BFD_ARCH = arm
BFD = binary
TARGET = arm-linux-gnu
TOOLCHAIN_DIR = /usr/local/arm
TOOLCHAIN_DIR = $(CROSS_PREFIX)/arm
 
KERNEL_LOAD_ADDRESS = 0x80200000
 
ifeq ($(MACHINE), gxemul_testarm)
# ifeq ($(MACHINE), gxemul_testarm)
DMACHINE = MACHINE_GXEMUL_TESTARM
endif
# endif
 
ATSIGN = %
 
90,7 → 94,7
arch/$(ARCH)/src/mm/tlb.c \
arch/$(ARCH)/src/mm/page_fault.c
 
ifeq ($(MACHINE), gxemul_testarm)
# ifeq ($(MACHINE), gxemul_testarm)
ARCH_SOURCES += arch/$(ARCH)/src/drivers/gxemul.c
endif
# endif
 
/branches/network/kernel/arch/arm32/src/asm.S
45,7 → 45,8
add r3, r1, #3
bic r3, r3, #3
cmp r1, r3
stmdb sp!, {r4, lr}
stmdb sp!, {r4, r5, lr}
mov r5, r0 /* save dst */
beq 4f
1:
cmp r2, #0
58,8 → 59,8
cmp ip, r2
bne 2b
3:
mov r0, r1
ldmia sp!, {r4, pc}
mov r0, r5
ldmia sp!, {r4, r5, pc}
4:
add r3, r0, #3
bic r3, r3, #3
94,5 → 95,5
 
memcpy_from_uspace_failover_address:
memcpy_to_uspace_failover_address:
mov r0, #0
ldmia sp!, {r4, pc}
mov r0, #0
ldmia sp!, {r4, r5, pc}
/branches/network/kernel/arch/arm32/src/userspace.c
70,8 → 70,11
/* set first parameter */
ustate.r0 = (uintptr_t) kernel_uarg->uspace_uarg;
 
/* %r1 is defined to hold pcb_ptr - set it to 0 */
ustate.r1 = 0;
 
/* clear other registers */
ustate.r1 = ustate.r2 = ustate.r3 = ustate.r4 = ustate.r5 =
ustate.r2 = ustate.r3 = ustate.r4 = ustate.r5 =
ustate.r6 = ustate.r7 = ustate.r8 = ustate.r9 = ustate.r10 =
ustate.r11 = ustate.r12 = ustate.lr = 0;
 
/branches/network/kernel/arch/arm32/src/exception.c
40,6 → 40,7
#include <interrupt.h>
#include <arch/machine.h>
#include <arch/mm/page_fault.h>
#include <arch/barrier.h>
#include <print.h>
#include <syscall/syscall.h>
 
209,7 → 210,7
*
* Addresses of handlers are stored in memory following exception vectors.
*/
static void install_handler (unsigned handler_addr, unsigned* vector)
static void install_handler(unsigned handler_addr, unsigned *vector)
{
/* relative address (related to exc. vector) of the word
* where handler's address is stored
219,6 → 220,7
/* make it LDR instruction and store at exception vector */
*vector = handler_address_ptr | LDR_OPCODE;
smc_coherence(*vector);
/* store handler's address */
*(vector + EXC_VECTORS) = handler_addr;
226,31 → 228,31
}
 
/** Low-level Reset Exception handler. */
static void reset_exception_entry()
static void reset_exception_entry(void)
{
PROCESS_EXCEPTION(EXC_RESET);
}
 
/** Low-level Software Interrupt Exception handler. */
static void swi_exception_entry()
static void swi_exception_entry(void)
{
PROCESS_EXCEPTION(EXC_SWI);
}
 
/** Low-level Undefined Instruction Exception handler. */
static void undef_instr_exception_entry()
static void undef_instr_exception_entry(void)
{
PROCESS_EXCEPTION(EXC_UNDEF_INSTR);
}
 
/** Low-level Fast Interrupt Exception handler. */
static void fiq_exception_entry()
static void fiq_exception_entry(void)
{
PROCESS_EXCEPTION(EXC_FIQ);
}
 
/** Low-level Prefetch Abort Exception handler. */
static void prefetch_abort_exception_entry()
static void prefetch_abort_exception_entry(void)
{
asm("sub lr, lr, #4");
PROCESS_EXCEPTION(EXC_PREFETCH_ABORT);
257,7 → 259,7
}
 
/** Low-level Data Abort Exception handler. */
static void data_abort_exception_entry()
static void data_abort_exception_entry(void)
{
asm("sub lr, lr, #8");
PROCESS_EXCEPTION(EXC_DATA_ABORT);
269,7 → 271,7
* because of possible occurence of nested interrupt exception, which
* would overwrite (and thus spoil) stack pointer.
*/
static void irq_exception_entry()
static void irq_exception_entry(void)
{
asm("sub lr, lr, #4");
setup_stack_and_save_regs();
/branches/network/kernel/arch/arm32/src/mm/page_fault.c
40,6 → 40,7
#include <genarch/mm/page_pt.h>
#include <arch.h>
#include <interrupt.h>
#include <print.h>
 
/** Returns value stored in fault status register.
*
173,7 → 174,8
*/
void data_abort(int exc_no, istate_t *istate)
{
fault_status_t fsr = read_fault_status_register();
fault_status_t fsr __attribute__ ((unused)) =
read_fault_status_register();
uintptr_t badvaddr = read_fault_address_register();
 
pf_access_t access = get_memory_access_type(istate->pc, badvaddr);
/branches/network/kernel/arch/arm32/src/arm32.c
55,7 → 55,7
/** Performs arm32 specific initialization before main_bsp() is called. */
void arch_pre_main(void)
{
int i;
unsigned int i;
 
init.cnt = bootinfo.cnt;
 
/branches/network/kernel/arch/arm32/src/debug/print.c
56,10 → 56,10
*/
static int debug_write(const char *str, size_t count, void *unused)
{
int i;
for (i = 0; i < count; ++i) {
unsigned int i;
for (i = 0; i < count; ++i)
putc(str[i]);
}
return i;
}
 
/branches/network/kernel/arch/arm32/src/cpu/cpu.c
56,7 → 56,7
};
 
/** Length of the #imp_data array */
static int imp_data_length = sizeof(imp_data) / sizeof(char *);
static unsigned int imp_data_length = sizeof(imp_data) / sizeof(char *);
 
/** Architecture names */
static char *arch_data[] = {
71,7 → 71,7
};
 
/** Length of the #arch_data array */
static int arch_data_length = sizeof(arch_data) / sizeof(char *);
static unsigned int arch_data_length = sizeof(arch_data) / sizeof(char *);
 
 
/** Retrieves processor identification from CP15 register 0.
/branches/network/kernel/arch/arm32/include/mm/page.h
43,8 → 43,6
#define PAGE_WIDTH FRAME_WIDTH
#define PAGE_SIZE FRAME_SIZE
 
#define PAGE_COLOR_BITS 0 /* dummy */
 
#ifndef __ASM__
# define KA2PA(x) (((uintptr_t) (x)) - 0x80000000)
# define PA2KA(x) (((uintptr_t) (x)) + 0x80000000)
/branches/network/kernel/arch/arm32/include/barrier.h
46,6 → 46,9
#define read_barrier() asm volatile ("" ::: "memory")
#define write_barrier() asm volatile ("" ::: "memory")
 
#define smc_coherence(a)
#define smc_coherence_block(a, l)
 
#endif
 
/** @}
/branches/network/kernel/arch/arm32/include/memstr.h
38,10 → 38,10
 
#define memcpy(dst, src, cnt) __builtin_memcpy((dst), (src), (cnt))
 
extern void memsetw(uintptr_t dst, size_t cnt, uint16_t x);
extern void memsetb(uintptr_t dst, size_t cnt, uint8_t x);
extern void memsetw(void *dst, size_t cnt, uint16_t x);
extern void memsetb(void *dst, size_t cnt, uint8_t x);
 
extern int memcmp(uintptr_t src, uintptr_t dst, int cnt);
extern int memcmp(const void *a, const void *b, size_t cnt);
 
#endif
 
/branches/network/kernel/arch/arm32/include/types.h
42,10 → 42,6
# define ATTRIBUTE_PACKED
#endif
 
#define NULL 0
#define false 0
#define true 1
 
typedef signed char int8_t;
typedef signed short int16_t;
typedef signed long int32_t;
68,15 → 64,29
typedef uint32_t unative_t;
typedef int32_t native_t;
 
typedef uint8_t bool;
typedef uint64_t thread_id_t;
typedef uint64_t task_id_t;
typedef uint32_t context_id_t;
#define PRIp "x" /**< Format for uintptr_t. */
#define PRIs "u" /**< Format for size_t. */
#define PRIc "u" /**< Format for count_t. */
#define PRIi "u" /**< Format for index_t. */
 
typedef int32_t inr_t;
typedef int32_t devno_t;
#define PRId8 "d" /**< Format for int8_t. */
#define PRId16 "d" /**< Format for int16_t. */
#define PRId32 "d" /**< Format for int32_t. */
#define PRId64 "lld" /**< Format for int64_t. */
#define PRIdn "d" /**< Format for native_t. */
 
#define PRIu8 "u" /**< Format for uint8_t. */
#define PRIu16 "u" /**< Format for uint16_t. */
#define PRIu32 "u" /**< Format for uint32_t. */
#define PRIu64 "llu" /**< Format for uint64_t. */
#define PRIun "u" /**< Format for unative_t. */
 
#define PRIx8 "x" /**< Format for hexadecimal (u)int8_t. */
#define PRIx16 "x" /**< Format for hexadecimal (u)int16_t. */
#define PRIx32 "x" /**< Format for hexadecimal (u)uint32_t. */
#define PRIx64 "llx" /**< Format for hexadecimal (u)int64_t. */
#define PRIxn "x" /**< Format for hexadecimal (u)native_t. */
 
/** Page table entry.
*
* We have different structs for level 0 and level 1 page table entries.
/branches/network/kernel/arch/arm32/include/byteorder.h
36,24 → 36,10
#ifndef KERN_arm32_BYTEORDER_H_
#define KERN_arm32_BYTEORDER_H_
 
#include <byteorder.h>
 
#ifdef BIG_ENDIAN
 
#define uint32_t_le2host(n) uint32_t_byteorder_swap(n)
#define uint64_t_le2host(n) uint64_t_byteorder_swap(n)
 
#define uint32_t_be2host(n) (n)
#define uint64_t_be2host(n) (n)
 
#define ARCH_IS_BIG_ENDIAN
#else
 
#define uint32_t_le2host(n) (n)
#define uint64_t_le2host(n) (n)
 
#define uint32_t_be2host(n) uint32_t_byteorder_swap(n)
#define uint64_t_be2host(n) uint64_t_byteorder_swap(n)
 
#define ARCH_IS_LITTLE_ENDIAN
#endif
 
#endif
/branches/network/kernel/arch/ppc32/Makefile.inc
29,11 → 29,15
## Toolchain configuration
#
 
ifndef CROSS_PREFIX
CROSS_PREFIX = /usr/local
endif
 
BFD_NAME = elf32-powerpc
BFD_ARCH = powerpc:common
BFD = binary
TARGET = ppc-linux-gnu
TOOLCHAIN_DIR = /usr/local/ppc
TOOLCHAIN_DIR = $(CROSS_PREFIX)/ppc
 
GCC_CFLAGS += -mcpu=powerpc -msoft-float -m32
AFLAGS += -a32
/branches/network/kernel/arch/ppc32/include/mm/page.h
40,8 → 40,6
#define PAGE_WIDTH FRAME_WIDTH
#define PAGE_SIZE FRAME_SIZE
 
#define PAGE_COLOR_BITS 0 /* dummy */
 
#ifdef KERNEL
 
#ifndef __ASM__
/branches/network/kernel/arch/ppc32/include/mm/tlb.h
36,6 → 36,8
#define KERN_ppc32_TLB_H_
 
#include <arch/interrupt.h>
#include <arch/types.h>
#include <typedefs.h>
 
typedef struct {
unsigned v : 1; /**< Valid */
/branches/network/kernel/arch/ppc32/include/barrier.h
42,6 → 42,43
#define read_barrier() asm volatile ("sync" ::: "memory")
#define write_barrier() asm volatile ("eieio" ::: "memory")
 
/*
* The IMB sequence used here is valid for all possible cache models
* on uniprocessor. SMP might require a different sequence.
* See PowerPC Programming Environment for 32-Bit Microprocessors,
* chapter 5.1.5.2
*/
 
static inline void smc_coherence(void *addr)
{
asm volatile (
"dcbst 0, %0\n"
"sync\n"
"icbi 0, %0\n"
"isync\n"
:: "r" (addr)
);
}
 
#define COHERENCE_INVAL_MIN 4
 
static inline void smc_coherence_block(void *addr, unsigned long len)
{
unsigned long i;
 
for (i = 0; i < len; i += COHERENCE_INVAL_MIN) {
asm volatile ("dcbst 0, %0\n" :: "r" (addr + i));
}
 
asm volatile ("sync");
 
for (i = 0; i < len; i += COHERENCE_INVAL_MIN) {
asm volatile ("icbi 0, %0\n" :: "r" (addr + i));
}
 
asm volatile ("isync");
}
 
#endif
 
/** @}
/branches/network/kernel/arch/ppc32/include/memstr.h
37,10 → 37,10
 
#define memcpy(dst, src, cnt) __builtin_memcpy((dst), (src), (cnt))
 
extern void memsetw(uintptr_t dst, size_t cnt, uint16_t x);
extern void memsetb(uintptr_t dst, size_t cnt, uint8_t x);
extern void memsetw(void *dst, size_t cnt, uint16_t x);
extern void memsetb(void *dst, size_t cnt, uint8_t x);
 
extern int memcmp(uintptr_t src, uintptr_t dst, int cnt);
extern int memcmp(const void *a, const void *b, size_t cnt);
 
#endif
 
/branches/network/kernel/arch/ppc32/include/exception.h
82,6 → 82,7
{
istate->pc = retaddr;
}
 
/** Return true if exception happened while in userspace */
#include <panic.h>
static inline int istate_from_uspace(istate_t *istate)
89,6 → 90,7
panic("istate_from_uspace not yet implemented");
return 0;
}
 
static inline unative_t istate_get_pc(istate_t *istate)
{
return istate->pc;
/branches/network/kernel/arch/ppc32/include/boot/boot.h
38,7 → 38,7
#define BOOT_OFFSET 0x8000
 
/* Temporary stack size for boot process */
#define TEMP_STACK_SIZE 0x100
#define TEMP_STACK_SIZE 0x1000
 
#define TASKMAP_MAX_RECORDS 32
#define MEMMAP_MAX_RECORDS 32
/branches/network/kernel/arch/ppc32/include/drivers/cuda.h
36,6 → 36,7
#define KERN_ppc32_CUDA_H_
 
#include <arch/types.h>
#include <typedefs.h>
 
extern void cuda_init(devno_t devno, uintptr_t base, size_t size);
extern int cuda_get_scancode(void);
/branches/network/kernel/arch/ppc32/include/types.h
35,10 → 35,6
#ifndef KERN_ppc32_TYPES_H_
#define KERN_ppc32_TYPES_H_
 
#define NULL 0
#define false 0
#define true 1
 
typedef signed char int8_t;
typedef signed short int16_t;
typedef signed int int32_t;
61,14 → 57,31
typedef uint32_t unative_t;
typedef int32_t native_t;
 
typedef uint8_t bool;
typedef uint64_t thread_id_t;
typedef uint64_t task_id_t;
typedef uint32_t context_id_t;
/**< Formats for uintptr_t, size_t, count_t and index_t */
#define PRIp "x"
#define PRIs "u"
#define PRIc "u"
#define PRIi "u"
 
typedef int32_t inr_t;
typedef int32_t devno_t;
/**< Formats for (u)int8_t, (u)int16_t, (u)int32_t, (u)int64_t and (u)native_t */
#define PRId8 "d"
#define PRId16 "d"
#define PRId32 "d"
#define PRId64 "lld"
#define PRIdn "d"
 
#define PRIu8 "u"
#define PRIu16 "u"
#define PRIu32 "u"
#define PRIu64 "llu"
#define PRIun "u"
 
#define PRIx8 "x"
#define PRIx16 "x"
#define PRIx32 "x"
#define PRIx64 "llx"
#define PRIxn "x"
 
/** Page Table Entry. */
typedef struct {
unsigned p : 1; /**< Present bit. */
/branches/network/kernel/arch/ppc32/include/context_offset.h
73,4 → 73,59
#define OFFSET_FR31 0x88
#define OFFSET_FPSCR 0x90
 
#ifdef __ASM__
# include <arch/asm/regname.h>
 
# ctx: address of the structure with saved context
.macro CONTEXT_SAVE_ARCH_CORE ctx:req
stw sp, OFFSET_SP(\ctx)
stw r2, OFFSET_R2(\ctx)
stw r13, OFFSET_R13(\ctx)
stw r14, OFFSET_R14(\ctx)
stw r15, OFFSET_R15(\ctx)
stw r16, OFFSET_R16(\ctx)
stw r17, OFFSET_R17(\ctx)
stw r18, OFFSET_R18(\ctx)
stw r19, OFFSET_R19(\ctx)
stw r20, OFFSET_R20(\ctx)
stw r21, OFFSET_R21(\ctx)
stw r22, OFFSET_R22(\ctx)
stw r23, OFFSET_R23(\ctx)
stw r24, OFFSET_R24(\ctx)
stw r25, OFFSET_R25(\ctx)
stw r26, OFFSET_R26(\ctx)
stw r27, OFFSET_R27(\ctx)
stw r28, OFFSET_R28(\ctx)
stw r29, OFFSET_R29(\ctx)
stw r30, OFFSET_R30(\ctx)
stw r31, OFFSET_R31(\ctx)
.endm
 
# ctx: address of the structure with saved context
.macro CONTEXT_RESTORE_ARCH_CORE ctx:req
lwz sp, OFFSET_SP(\ctx)
lwz r2, OFFSET_R2(\ctx)
lwz r13, OFFSET_R13(\ctx)
lwz r14, OFFSET_R14(\ctx)
lwz r15, OFFSET_R15(\ctx)
lwz r16, OFFSET_R16(\ctx)
lwz r17, OFFSET_R17(\ctx)
lwz r18, OFFSET_R18(\ctx)
lwz r19, OFFSET_R19(\ctx)
lwz r20, OFFSET_R20(\ctx)
lwz r21, OFFSET_R21(\ctx)
lwz r22, OFFSET_R22(\ctx)
lwz r23, OFFSET_R23(\ctx)
lwz r24, OFFSET_R24(\ctx)
lwz r25, OFFSET_R25(\ctx)
lwz r26, OFFSET_R26(\ctx)
lwz r27, OFFSET_R27(\ctx)
lwz r28, OFFSET_R28(\ctx)
lwz r29, OFFSET_R29(\ctx)
lwz r30, OFFSET_R30(\ctx)
lwz r31, OFFSET_R31(\ctx)
.endm
 
#endif /* __ASM__ */
 
#endif
/branches/network/kernel/arch/ppc32/include/byteorder.h
35,14 → 35,8
#ifndef KERN_ppc32_BYTEORDER_H_
#define KERN_ppc32_BYTEORDER_H_
 
#include <byteorder.h>
#define ARCH_IS_BIG_ENDIAN
 
#define uint32_t_le2host(n) uint32_t_byteorder_swap(n)
#define uint64_t_le2host(n) uint64_t_byteorder_swap(n)
 
#define uint32_t_be2host(n) (n)
#define uint64_t_be2host(n) (n)
 
#endif
 
/** @}
/branches/network/kernel/arch/ppc32/src/asm.S
65,6 → 65,10
# set stack
mr sp, r4
 
# %r3 is defined to hold pcb_ptr - set it to 0
 
xor r3, r3, r3
# jump to userspace
199,47 → 203,7
rfi
memsetb:
rlwimi r5, r5, 8, 16, 23
rlwimi r5, r5, 16, 0, 15
addi r14, r3, -4
cmplwi 0, r4, 4
blt 7f
stwu r5, 4(r14)
beqlr
andi. r15, r14, 3
add r4, r15, r4
subf r14, r15, r14
srwi r15, r4, 2
mtctr r15
bdz 6f
1:
stwu r5, 4(r14)
bdnz 1b
6:
andi. r4, r4, 3
7:
cmpwi 0, r4, 0
beqlr
mtctr r4
addi r6, r6, 3
8:
stbu r5, 1(r14)
bdnz 8b
blr
b _memsetb
 
memcpy:
memcpy_from_uspace:
308,4 → 272,6
 
memcpy_from_uspace_failover_address:
memcpy_to_uspace_failover_address:
b memcpy_from_uspace_failover_address
# return zero, failure
xor r3, r3, r3
blr
/branches/network/kernel/arch/ppc32/src/mm/tlb.c
47,16 → 47,19
* The as->lock must be held on entry to this function
* if lock is true.
*
* @param as Address space.
* @param lock Lock/unlock the address space.
* @param badvaddr Faulting virtual address.
* @param access Access mode that caused the fault.
* @param istate Pointer to interrupted state.
* @param pfrc Pointer to variable where as_page_fault() return code will be stored.
* @return PTE on success, NULL otherwise.
* @param as Address space.
* @param lock Lock/unlock the address space.
* @param badvaddr Faulting virtual address.
* @param access Access mode that caused the fault.
* @param istate Pointer to interrupted state.
* @param pfrc Pointer to variable where as_page_fault() return code
* will be stored.
* @return PTE on success, NULL otherwise.
*
*/
static pte_t *find_mapping_and_check(as_t *as, bool lock, uintptr_t badvaddr, int access, istate_t *istate, int *pfrc)
static pte_t *
find_mapping_and_check(as_t *as, bool lock, uintptr_t badvaddr, int access,
istate_t *istate, int *pfrc)
{
/*
* Check if the mapping exists in page tables.
77,27 → 80,27
*/
page_table_unlock(as, lock);
switch (rc = as_page_fault(badvaddr, access, istate)) {
case AS_PF_OK:
/*
* The higher-level page fault handler succeeded,
* The mapping ought to be in place.
*/
page_table_lock(as, lock);
pte = page_mapping_find(as, badvaddr);
ASSERT((pte) && (pte->p));
*pfrc = 0;
return pte;
case AS_PF_DEFER:
page_table_lock(as, lock);
*pfrc = rc;
return NULL;
case AS_PF_FAULT:
page_table_lock(as, lock);
printf("Page fault.\n");
*pfrc = rc;
return NULL;
default:
panic("unexpected rc (%d)\n", rc);
case AS_PF_OK:
/*
* The higher-level page fault handler succeeded,
* The mapping ought to be in place.
*/
page_table_lock(as, lock);
pte = page_mapping_find(as, badvaddr);
ASSERT((pte) && (pte->p));
*pfrc = 0;
return pte;
case AS_PF_DEFER:
page_table_lock(as, lock);
*pfrc = rc;
return NULL;
case AS_PF_FAULT:
page_table_lock(as, lock);
printf("Page fault.\n");
*pfrc = rc;
return NULL;
default:
panic("unexpected rc (%d)\n", rc);
}
}
}
114,7 → 117,8
s = get_symtab_entry(istate->lr);
if (s)
sym2 = s;
panic("%p: PHT Refill Exception at %p (%s<-%s)\n", badvaddr, istate->pc, symbol, sym2);
panic("%p: PHT Refill Exception at %p (%s<-%s)\n", badvaddr,
istate->pc, symbol, sym2);
}
 
 
147,7 → 151,8
/* Find unused or colliding
PTE in PTEG */
for (i = 0; i < 8; i++) {
if ((!phte[base + i].v) || ((phte[base + i].vsid == vsid) && (phte[base + i].api == api))) {
if ((!phte[base + i].v) || ((phte[base + i].vsid == vsid) &&
(phte[base + i].api == api))) {
found = true;
break;
}
160,7 → 165,9
/* Find unused or colliding
PTE in PTEG */
for (i = 0; i < 8; i++) {
if ((!phte[base2 + i].v) || ((phte[base2 + i].vsid == vsid) && (phte[base2 + i].api == api))) {
if ((!phte[base2 + i].v) ||
((phte[base2 + i].vsid == vsid) &&
(phte[base2 + i].api == api))) {
found = true;
base = base2;
h = 1;
214,7 → 221,9
/* Find unused or colliding
PTE in PTEG */
for (i = 0; i < 8; i++) {
if ((!phte_physical[base + i].v) || ((phte_physical[base + i].vsid == vsid) && (phte_physical[base + i].api == api))) {
if ((!phte_physical[base + i].v) ||
((phte_physical[base + i].vsid == vsid) &&
(phte_physical[base + i].api == api))) {
found = true;
break;
}
227,7 → 236,9
/* Find unused or colliding
PTE in PTEG */
for (i = 0; i < 8; i++) {
if ((!phte_physical[base2 + i].v) || ((phte_physical[base2 + i].vsid == vsid) && (phte_physical[base2 + i].api == api))) {
if ((!phte_physical[base2 + i].v) ||
((phte_physical[base2 + i].vsid == vsid) &&
(phte_physical[base2 + i].api == api))) {
found = true;
base = base2;
h = 1;
254,8 → 265,8
 
/** Process Instruction/Data Storage Interrupt
*
* @param n Interrupt vector number.
* @param istate Interrupted register context.
* @param n Interrupt vector number.
* @param istate Interrupted register context.
*
*/
void pht_refill(int n, istate_t *istate)
284,21 → 295,22
page_table_lock(as, lock);
pte = find_mapping_and_check(as, lock, badvaddr, PF_ACCESS_READ /* FIXME */, istate, &pfrc);
pte = find_mapping_and_check(as, lock, badvaddr,
PF_ACCESS_READ /* FIXME */, istate, &pfrc);
if (!pte) {
switch (pfrc) {
case AS_PF_FAULT:
goto fail;
break;
case AS_PF_DEFER:
/*
* The page fault came during copy_from_uspace()
* or copy_to_uspace().
*/
page_table_unlock(as, lock);
return;
default:
panic("Unexpected pfrc (%d)\n", pfrc);
case AS_PF_FAULT:
goto fail;
break;
case AS_PF_DEFER:
/*
* The page fault came during copy_from_uspace()
* or copy_to_uspace().
*/
page_table_unlock(as, lock);
return;
default:
panic("Unexpected pfrc (%d)\n", pfrc);
}
}
316,8 → 328,8
 
/** Process Instruction/Data Storage Interrupt in Real Mode
*
* @param n Interrupt vector number.
* @param istate Interrupted register context.
* @param n Interrupt vector number.
* @param istate Interrupted register context.
*
*/
bool pht_real_refill(int n, istate_t *istate)
373,7 → 385,8
uint32_t i;
for (i = 0; i < 8192; i++) {
if ((phte[i].v) && (phte[i].vsid >= (asid << 4)) && (phte[i].vsid < ((asid << 4) + 16)))
if ((phte[i].v) && (phte[i].vsid >= (asid << 4)) &&
(phte[i].vsid < ((asid << 4) + 16)))
phte[i].v = 0;
}
tlb_invalidate_all();
407,7 → 420,11
} \
} else \
length = 0; \
printf(name ": page=%.*p frame=%.*p length=%d KB (mask=%#x)%s%s\n", sizeof(upper) * 2, upper & 0xffff0000, sizeof(lower) * 2, lower & 0xffff0000, length, mask, ((upper >> 1) & 1) ? " supervisor" : "", (upper & 1) ? " user" : "");
printf(name ": page=%.*p frame=%.*p length=%d KB (mask=%#x)%s%s\n", \
sizeof(upper) * 2, upper & 0xffff0000, sizeof(lower) * 2, \
lower & 0xffff0000, length, mask, \
((upper >> 1) & 1) ? " supervisor" : "", \
(upper & 1) ? " user" : "");
 
 
void tlb_print(void)
421,7 → 438,10
: "=r" (vsid)
: "r" (sr << 28)
);
printf("vsid[%d]: VSID=%.*p (ASID=%d)%s%s\n", sr, sizeof(vsid) * 2, vsid & 0xffffff, (vsid & 0xffffff) >> 4, ((vsid >> 30) & 1) ? " supervisor" : "", ((vsid >> 29) & 1) ? " user" : "");
printf("vsid[%d]: VSID=%.*p (ASID=%d)%s%s\n", sr,
sizeof(vsid) * 2, vsid & 0xffffff, (vsid & 0xffffff) >> 4,
((vsid >> 30) & 1) ? " supervisor" : "",
((vsid >> 29) & 1) ? " user" : "");
}
uint32_t upper;
/branches/network/kernel/arch/ppc32/src/mm/page.c
47,13 → 47,16
 
uintptr_t hw_map(uintptr_t physaddr, size_t size)
{
if (last_frame + ALIGN_UP(size, PAGE_SIZE) > KA2PA(KERNEL_ADDRESS_SPACE_END_ARCH))
panic("Unable to map physical memory %p (%d bytes)", physaddr, size)
if (last_frame + ALIGN_UP(size, PAGE_SIZE) >
KA2PA(KERNEL_ADDRESS_SPACE_END_ARCH))
panic("Unable to map physical memory %p (%" PRIs " bytes)",
physaddr, size)
uintptr_t virtaddr = PA2KA(last_frame);
pfn_t i;
for (i = 0; i < ADDR2PFN(ALIGN_UP(size, PAGE_SIZE)); i++)
page_mapping_insert(AS_KERNEL, virtaddr + PFN2ADDR(i), physaddr + PFN2ADDR(i), PAGE_NOT_CACHEABLE | PAGE_WRITE);
page_mapping_insert(AS_KERNEL, virtaddr + PFN2ADDR(i),
physaddr + PFN2ADDR(i), PAGE_NOT_CACHEABLE | PAGE_WRITE);
last_frame = ALIGN_UP(last_frame + size, FRAME_SIZE);
/branches/network/kernel/arch/ppc32/src/interrupt.c
80,7 → 80,7
* Spurious interrupt.
*/
#ifdef CONFIG_DEBUG
printf("cpu%d: spurious interrupt (inum=%d)\n", CPU->id, inum);
printf("cpu%u: spurious interrupt (inum=%d)\n", CPU->id, inum);
#endif
}
/branches/network/kernel/arch/ppc32/src/context.S
26,7 → 26,6
# THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
 
#include <arch/asm/regname.h>
#include <arch/context_offset.h>
 
.text
34,56 → 33,8
.global context_save_arch
.global context_restore_arch
 
.macro CONTEXT_STORE r
stw sp, OFFSET_SP(\r)
stw r2, OFFSET_R2(\r)
stw r13, OFFSET_R13(\r)
stw r14, OFFSET_R14(\r)
stw r15, OFFSET_R15(\r)
stw r16, OFFSET_R16(\r)
stw r17, OFFSET_R17(\r)
stw r18, OFFSET_R18(\r)
stw r19, OFFSET_R19(\r)
stw r20, OFFSET_R20(\r)
stw r21, OFFSET_R21(\r)
stw r22, OFFSET_R22(\r)
stw r23, OFFSET_R23(\r)
stw r24, OFFSET_R24(\r)
stw r25, OFFSET_R25(\r)
stw r26, OFFSET_R26(\r)
stw r27, OFFSET_R27(\r)
stw r28, OFFSET_R28(\r)
stw r29, OFFSET_R29(\r)
stw r30, OFFSET_R30(\r)
stw r31, OFFSET_R31(\r)
.endm
 
.macro CONTEXT_LOAD r
lwz sp, OFFSET_SP(\r)
lwz r2, OFFSET_R2(\r)
lwz r13, OFFSET_R13(\r)
lwz r14, OFFSET_R14(\r)
lwz r15, OFFSET_R15(\r)
lwz r16, OFFSET_R16(\r)
lwz r17, OFFSET_R17(\r)
lwz r18, OFFSET_R18(\r)
lwz r19, OFFSET_R19(\r)
lwz r20, OFFSET_R20(\r)
lwz r21, OFFSET_R21(\r)
lwz r22, OFFSET_R22(\r)
lwz r23, OFFSET_R23(\r)
lwz r24, OFFSET_R24(\r)
lwz r25, OFFSET_R25(\r)
lwz r26, OFFSET_R26(\r)
lwz r27, OFFSET_R27(\r)
lwz r28, OFFSET_R28(\r)
lwz r29, OFFSET_R29(\r)
lwz r30, OFFSET_R30(\r)
lwz r31, OFFSET_R31(\r)
.endm
 
context_save_arch:
CONTEXT_STORE r3
CONTEXT_SAVE_ARCH_CORE r3
mflr r4
stw r4, OFFSET_PC(r3)
96,7 → 47,7
blr
context_restore_arch:
CONTEXT_LOAD r3
CONTEXT_RESTORE_ARCH_CORE r3
lwz r4, OFFSET_CR(r3)
mtcr r4
/branches/network/kernel/arch/ia32xen/Makefile.inc
29,11 → 29,15
## Toolchain configuration
#
 
ifndef CROSS_PREFIX
CROSS_PREFIX = /usr/local
endif
 
BFD_NAME = elf32-i386
BFD_ARCH = i386
BFD = elf32-i386
TARGET = i686-pc-linux-gnu
TOOLCHAIN_DIR = /usr/local/i686
TOOLCHAIN_DIR = $(CROSS_PREFIX)/i686
 
DEFS += -DMACHINE=$(MACHINE) -D__32_BITS__
 
111,7 → 115,7
CONFIG_SOFTINT = y
 
ARCH_SOURCES = \
arch/$(ARCH)/src/context.s \
arch/$(ARCH)/src/context.S \
arch/$(ARCH)/src/debug/panic.s \
arch/$(ARCH)/src/delay.s \
arch/$(ARCH)/src/asm.S \
/branches/network/kernel/arch/ia32xen/src/context.s
File deleted
\ No newline at end of file
Property changes:
Deleted: svn:special
-*
\ No newline at end of property
/branches/network/kernel/arch/ia32xen/src/asm.S
67,7 → 67,7
* @param MEMCPY_SRC(%esp) Source address.
* @param MEMCPY_SIZE(%esp) Size.
*
* @return MEMCPY_SRC(%esp) on success and 0 on failure.
* @return MEMCPY_DST(%esp) on success and 0 on failure.
*/
memcpy:
memcpy_from_uspace:
92,7 → 92,7
0:
movl %edx, %edi
movl %eax, %esi
movl MEMCPY_SRC(%esp), %eax /* MEMCPY_SRC(%esp), success */
movl MEMCPY_DST(%esp), %eax /* MEMCPY_DST(%esp), success */
ret
/*
/branches/network/kernel/arch/ia32xen/src/userspace.c
68,6 → 68,10
"pushl %3\n"
"pushl %4\n"
"movl %5, %%eax\n"
 
/* %ebx is defined to hold pcb_ptr - set it to 0 */
"xorl %%ebx, %%ebx\n"
 
"iret\n"
:
: "i" (selector(UDATA_DES) | PL_USER),
/branches/network/kernel/arch/ia32xen/src/ia32xen.c
69,7 → 69,7
void arch_pre_main(void)
{
pte_t pte;
memsetb((uintptr_t) &pte, sizeof(pte), 0);
memsetb(&pte, sizeof(pte), 0);
pte.present = 1;
pte.writeable = 1;
103,7 → 103,7
uintptr_t tpa = PFN2ADDR(meminfo.start + meminfo.reserved);
uintptr_t tva = PA2KA(tpa);
memsetb(tva, PAGE_SIZE, 0);
memsetb((void *) tva, PAGE_SIZE, 0);
pte_t *tptl3 = (pte_t *) PA2KA(GET_PTL1_ADDRESS(start_info.ptl0, PTL0_INDEX(tva)));
SET_FRAME_ADDRESS(tptl3, PTL3_INDEX(tva), 0);
/branches/network/kernel/arch/ia32xen/src/pm.c
98,7 → 98,7
 
void tss_initialize(tss_t *t)
{
memsetb((uintptr_t) t, sizeof(struct tss), 0);
memsetb(t, sizeof(struct tss), 0);
}
 
static void trap(void)
/branches/network/kernel/arch/ia32xen/src/smp/smp.c
98,7 → 98,7
*/
void kmp(void *arg)
{
int i;
unsigned int i;
ASSERT(ops != NULL);
 
142,11 → 142,11
/*
* Prepare new GDT for CPU in question.
*/
if (!(gdt_new = (struct descriptor *) malloc(GDT_ITEMS*sizeof(struct descriptor), FRAME_ATOMIC)))
if (!(gdt_new = (struct descriptor *) malloc(GDT_ITEMS * sizeof(struct descriptor), FRAME_ATOMIC)))
panic("couldn't allocate memory for GDT\n");
 
memcpy(gdt_new, gdt, GDT_ITEMS * sizeof(struct descriptor));
memsetb((uintptr_t)(&gdt_new[TSS_DES]), sizeof(struct descriptor), 0);
memsetb(&gdt_new[TSS_DES], sizeof(struct descriptor), 0);
gdtr.base = (uintptr_t) gdt_new;
 
if (l_apic_send_init_ipi(ops->cpu_apic_id(i))) {
/branches/network/kernel/arch/ia32xen/src/smp/mps.c
77,11 → 77,11
struct __io_intr_entry *io_intr_entries = NULL;
struct __l_intr_entry *l_intr_entries = NULL;
 
int processor_entry_cnt = 0;
int bus_entry_cnt = 0;
int io_apic_entry_cnt = 0;
int io_intr_entry_cnt = 0;
int l_intr_entry_cnt = 0;
unsigned int processor_entry_cnt = 0;
unsigned int bus_entry_cnt = 0;
unsigned int io_apic_entry_cnt = 0;
unsigned int io_intr_entry_cnt = 0;
unsigned int l_intr_entry_cnt = 0;
 
waitq_t ap_completion_wq;
 
417,7 → 417,7
 
int mps_irq_to_pin(unsigned int irq)
{
int i;
unsigned int i;
for (i = 0; i < io_intr_entry_cnt; i++) {
if (io_intr_entries[i].src_bus_irq == irq && io_intr_entries[i].intr_type == 0)
/branches/network/kernel/arch/ia32xen/src/context.S
0,0 → 1,0
link ../../ia32/src/context.S
Property changes:
Added: svn:special
+*
\ No newline at end of property
/branches/network/kernel/arch/ia32xen/src/mm/tlb.c
65,7 → 65,7
*/
void tlb_invalidate_pages(asid_t asid, uintptr_t page, count_t cnt)
{
int i;
unsigned int i;
 
for (i = 0; i < cnt; i++)
invlpg(page + i * PAGE_SIZE);
/branches/network/kernel/arch/ia32xen/include/mm/page.h
40,8 → 40,6
#define PAGE_WIDTH FRAME_WIDTH
#define PAGE_SIZE FRAME_SIZE
 
#define PAGE_COLOR_BITS 0 /* dummy */
 
#ifdef KERNEL
 
#ifndef __ASM__
/branches/network/kernel/arch/ia32xen/include/types.h
61,14 → 61,6
typedef uint32_t unative_t;
typedef int32_t native_t;
 
typedef uint8_t bool;
typedef uint64_t thread_id_t;
typedef uint64_t task_id_t;
typedef uint32_t context_id_t;
 
typedef int32_t inr_t;
typedef int32_t devno_t;
 
/** Page Table Entry. */
typedef struct {
unsigned present : 1;
/branches/network/kernel/arch/ia32xen/include/context_offset.h
0,0 → 1,0
link ../../ia32/include/context_offset.h
Property changes:
Added: svn:special
+*
\ No newline at end of property
/branches/network/kernel/arch/ppc64/Makefile.inc
29,11 → 29,15
## Toolchain configuration
#
 
ifndef CROSS_PREFIX
CROSS_PREFIX = /usr/local
endif
 
BFD_NAME = elf64-powerpc
BFD_ARCH = powerpc:common64
BFD = binary
TARGET = ppc64-linux-gnu
TOOLCHAIN_DIR = /usr/local/ppc64
TOOLCHAIN_DIR = $(CROSS_PREFIX)/ppc64
 
GCC_CFLAGS += -mcpu=powerpc64 -msoft-float -m64
AFLAGS += -a64
/branches/network/kernel/arch/ppc64/include/mm/page.h
40,8 → 40,6
#define PAGE_WIDTH FRAME_WIDTH
#define PAGE_SIZE FRAME_SIZE
 
#define PAGE_COLOR_BITS 0 /* dummy */
 
#ifdef KERNEL
 
#ifndef __ASM__
/branches/network/kernel/arch/ppc64/include/barrier.h
38,10 → 38,13
#define CS_ENTER_BARRIER() asm volatile ("" ::: "memory")
#define CS_LEAVE_BARRIER() asm volatile ("" ::: "memory")
 
#define memory_barrier() asm volatile ("sync" ::: "memory")
#define read_barrier() asm volatile ("sync" ::: "memory")
#define write_barrier() asm volatile ("eieio" ::: "memory")
#define memory_barrier() asm volatile ("sync" ::: "memory")
#define read_barrier() asm volatile ("sync" ::: "memory")
#define write_barrier() asm volatile ("eieio" ::: "memory")
 
#define smc_coherence(a)
#define smc_coherence_block(a, l)
 
#endif
 
/** @}
/branches/network/kernel/arch/ppc64/include/memstr.h
37,10 → 37,10
 
#define memcpy(dst, src, cnt) __builtin_memcpy((dst), (src), (cnt))
 
extern void memsetw(uintptr_t dst, size_t cnt, uint16_t x);
extern void memsetb(uintptr_t dst, size_t cnt, uint8_t x);
extern void memsetw(void *dst, size_t cnt, uint16_t x);
extern void memsetb(void *dst, size_t cnt, uint8_t x);
 
extern int memcmp(uintptr_t src, uintptr_t dst, int cnt);
extern int memcmp(const void *a, const void *b, size_t cnt);
 
#endif
 
/branches/network/kernel/arch/ppc64/include/exception.h
82,6 → 82,7
{
istate->pc = retaddr;
}
 
/** Return true if exception happened while in userspace */
#include <panic.h>
static inline int istate_from_uspace(istate_t *istate)
89,6 → 90,7
panic("istate_from_uspace not yet implemented");
return 0;
}
 
static inline unative_t istate_get_pc(istate_t *istate)
{
return istate->pc;
/branches/network/kernel/arch/ppc64/include/types.h
35,10 → 35,6
#ifndef KERN_ppc64_TYPES_H_
#define KERN_ppc64_TYPES_H_
 
#define NULL 0
#define false 0
#define true 1
 
typedef signed char int8_t;
typedef signed short int16_t;
typedef signed int int32_t;
61,14 → 57,6
typedef uint64_t unative_t;
typedef int64_t native_t;
 
typedef uint8_t bool;
typedef uint64_t thread_id_t;
typedef uint64_t task_id_t;
typedef uint32_t context_id_t;
 
typedef int32_t inr_t;
typedef int32_t devno_t;
 
/** Page Table Entry. */
typedef struct {
unsigned p : 1; /**< Present bit. */
/branches/network/kernel/arch/ppc64/include/context_offset.h
73,4 → 73,60
#define OFFSET_FR31 0x88
#define OFFSET_FPSCR 0x90
 
 
#ifdef __ASM__
# include <arch/asm/regname.h>
 
# ctx: address of the structure with saved context
.macro CONTEXT_SAVE_ARCH_CORE ctx:req
stw sp, OFFSET_SP(\ctx)
stw r2, OFFSET_R2(\ctx)
stw r13, OFFSET_R13(\ctx)
stw r14, OFFSET_R14(\ctx)
stw r15, OFFSET_R15(\ctx)
stw r16, OFFSET_R16(\ctx)
stw r17, OFFSET_R17(\ctx)
stw r18, OFFSET_R18(\ctx)
stw r19, OFFSET_R19(\ctx)
stw r20, OFFSET_R20(\ctx)
stw r21, OFFSET_R21(\ctx)
stw r22, OFFSET_R22(\ctx)
stw r23, OFFSET_R23(\ctx)
stw r24, OFFSET_R24(\ctx)
stw r25, OFFSET_R25(\ctx)
stw r26, OFFSET_R26(\ctx)
stw r27, OFFSET_R27(\ctx)
stw r28, OFFSET_R28(\ctx)
stw r29, OFFSET_R29(\ctx)
stw r30, OFFSET_R30(\ctx)
stw r31, OFFSET_R31(\ctx)
.endm
 
# ctx: address of the structure with saved context
.macro CONTEXT_RESTORE_ARCH_CORE ctx:req
lwz sp, OFFSET_SP(\ctx)
lwz r2, OFFSET_R2(\ctx)
lwz r13, OFFSET_R13(\ctx)
lwz r14, OFFSET_R14(\ctx)
lwz r15, OFFSET_R15(\ctx)
lwz r16, OFFSET_R16(\ctx)
lwz r17, OFFSET_R17(\ctx)
lwz r18, OFFSET_R18(\ctx)
lwz r19, OFFSET_R19(\ctx)
lwz r20, OFFSET_R20(\ctx)
lwz r21, OFFSET_R21(\ctx)
lwz r22, OFFSET_R22(\ctx)
lwz r23, OFFSET_R23(\ctx)
lwz r24, OFFSET_R24(\ctx)
lwz r25, OFFSET_R25(\ctx)
lwz r26, OFFSET_R26(\ctx)
lwz r27, OFFSET_R27(\ctx)
lwz r28, OFFSET_R28(\ctx)
lwz r29, OFFSET_R29(\ctx)
lwz r30, OFFSET_R30(\ctx)
lwz r31, OFFSET_R31(\ctx)
.endm
 
#endif /* __ASM__ */
 
#endif
/branches/network/kernel/arch/ppc64/include/byteorder.h
35,14 → 35,8
#ifndef KERN_ppc64_BYTEORDER_H_
#define KERN_ppc64_BYTEORDER_H_
 
#include <byteorder.h>
#define ARCH_IS_BIG_ENDIAN
 
#define uint32_t_le2host(n) uint32_t_byteorder_swap(n)
#define uint64_t_le2host(n) uint64_t_byteorder_swap(n)
 
#define uint32_t_be2host(n) (n)
#define uint64_t_be2host(n) (n)
 
#endif
 
/** @}
/branches/network/kernel/arch/ppc64/src/asm.S
66,6 → 66,10
mr sp, r4
# %r3 is defined to hold pcb_ptr - set it to 0
 
xor r3, r3, r3
 
# jump to userspace
rfi
/branches/network/kernel/arch/ppc64/src/mm/page.c
252,7 → 252,7
 
void pht_init(void)
{
memsetb((uintptr_t) phte, 1 << PHT_BITS, 0);
memsetb(phte, 1 << PHT_BITS, 0);
}
 
 
289,7 → 289,7
uintptr_t hw_map(uintptr_t physaddr, size_t size)
{
if (last_frame + ALIGN_UP(size, PAGE_SIZE) > KA2PA(KERNEL_ADDRESS_SPACE_END_ARCH))
panic("Unable to map physical memory %p (%d bytes)", physaddr, size)
panic("Unable to map physical memory %p (%" PRIs " bytes)", physaddr, size)
uintptr_t virtaddr = PA2KA(last_frame);
pfn_t i;
/branches/network/kernel/arch/ppc64/src/cpu/cpu.c
53,7 → 53,7
 
void cpu_print_report(cpu_t *m)
{
printf("cpu%d: version=%d, revision=%d\n", m->id, m->arch.version, m->arch.revision);
printf("cpu%u: version=%d, revision=%d\n", m->id, m->arch.version, m->arch.revision);
}
 
/** @}
/branches/network/kernel/arch/ppc64/src/interrupt.c
80,7 → 80,7
* Spurious interrupt.
*/
#ifdef CONFIG_DEBUG
printf("cpu%d: spurious interrupt (inum=%d)\n", CPU->id, inum);
printf("cpu%u: spurious interrupt (inum=%d)\n", CPU->id, inum);
#endif
}
/branches/network/kernel/arch/ppc64/src/context.S
34,56 → 34,8
.global context_save_arch
.global context_restore_arch
 
.macro CONTEXT_STORE r
stw sp, OFFSET_SP(\r)
stw r2, OFFSET_R2(\r)
stw r13, OFFSET_R13(\r)
stw r14, OFFSET_R14(\r)
stw r15, OFFSET_R15(\r)
stw r16, OFFSET_R16(\r)
stw r17, OFFSET_R17(\r)
stw r18, OFFSET_R18(\r)
stw r19, OFFSET_R19(\r)
stw r20, OFFSET_R20(\r)
stw r21, OFFSET_R21(\r)
stw r22, OFFSET_R22(\r)
stw r23, OFFSET_R23(\r)
stw r24, OFFSET_R24(\r)
stw r25, OFFSET_R25(\r)
stw r26, OFFSET_R26(\r)
stw r27, OFFSET_R27(\r)
stw r28, OFFSET_R28(\r)
stw r29, OFFSET_R29(\r)
stw r30, OFFSET_R30(\r)
stw r31, OFFSET_R31(\r)
.endm
 
.macro CONTEXT_LOAD r
lwz sp, OFFSET_SP(\r)
lwz r2, OFFSET_R2(\r)
lwz r13, OFFSET_R13(\r)
lwz r14, OFFSET_R14(\r)
lwz r15, OFFSET_R15(\r)
lwz r16, OFFSET_R16(\r)
lwz r17, OFFSET_R17(\r)
lwz r18, OFFSET_R18(\r)
lwz r19, OFFSET_R19(\r)
lwz r20, OFFSET_R20(\r)
lwz r21, OFFSET_R21(\r)
lwz r22, OFFSET_R22(\r)
lwz r23, OFFSET_R23(\r)
lwz r24, OFFSET_R24(\r)
lwz r25, OFFSET_R25(\r)
lwz r26, OFFSET_R26(\r)
lwz r27, OFFSET_R27(\r)
lwz r28, OFFSET_R28(\r)
lwz r29, OFFSET_R29(\r)
lwz r30, OFFSET_R30(\r)
lwz r31, OFFSET_R31(\r)
.endm
 
context_save_arch:
CONTEXT_STORE r3
CONTEXT_SAVE_ARCH_CORE r3
mflr r4
stw r4, OFFSET_PC(r3)
96,7 → 48,7
blr
context_restore_arch:
CONTEXT_LOAD r3
CONTEXT_RESTORE_ARCH_CORE r3
lwz r4, OFFSET_CR(r3)
mtcr r4
/branches/network/kernel/arch/mips32/Makefile.inc
29,9 → 29,13
## Toolchain configuration
#
 
ifndef CROSS_PREFIX
CROSS_PREFIX = /usr/local
endif
 
BFD_ARCH = mips
TARGET = mipsel-linux-gnu
TOOLCHAIN_DIR = /usr/local/mipsel
TOOLCHAIN_DIR = $(CROSS_PREFIX)/mipsel
 
KERNEL_LOAD_ADDRESS = 0x80100000
INIT_ADDRESS = 0x81000000
56,20 → 60,6
## Accepted MACHINEs
#
 
ifeq ($(MACHINE),indy)
# GCC 4.0.1 compiled for mipsEL has problems compiling in
# BigEndian mode with the swl/swr/lwl/lwr instructions.
# We have to compile it with mips-sgi-irix5 to get it right.
BFD_NAME = elf32-bigmips
BFD = ecoff-bigmips --impure
TARGET = mips-sgi-irix5
TOOLCHAIN_DIR = /usr/local/mips/bin
KERNEL_LOAD_ADDRESS = 0x88002000
GCC_CFLAGS += -EB -DBIG_ENDIAN -DARCH_HAS_FPU -march=r4600
INIT_ADDRESS = 0
INIT_SIZE = 0
endif
ifeq ($(MACHINE),lgxemul)
BFD_NAME = elf32-tradlittlemips
BFD = binary
79,7 → 69,7
BFD_NAME = elf32-bigmips
BFD = ecoff-bigmips
TARGET = mips-sgi-irix5
TOOLCHAIN_DIR = /usr/local/mips/bin
TOOLCHAIN_DIR = $(CROSS_PREFIX)/mips/bin
GCC_CFLAGS += -EB -DBIG_ENDIAN -DARCH_HAS_FPU -mips3
INIT_ADDRESS = 0x81800000
endif
123,7 → 113,6
arch/$(ARCH)/src/mm/as.c \
arch/$(ARCH)/src/fpu_context.c \
arch/$(ARCH)/src/ddi/ddi.c \
arch/$(ARCH)/src/drivers/arc.c \
arch/$(ARCH)/src/drivers/msim.c \
arch/$(ARCH)/src/drivers/serial.c \
arch/$(ARCH)/src/smp/order.c
/branches/network/kernel/arch/mips32/src/asm.S
71,6 → 71,7
and $v0,$v0,$v1
beq $a1,$v0,3f
move $t0,$a0
move $t2,$a0 # save dst
 
0:
beq $a2,$zero,2f
86,7 → 87,7
 
2:
jr $ra
move $v0,$a1
move $v0,$t2
 
3:
addiu $v0,$a0,3
126,7 → 127,7
sb $a0,0($v1)
 
jr $ra
move $v0,$a1
move $v0,$t2
 
memcpy_from_uspace_failover_address:
memcpy_to_uspace_failover_address:
/branches/network/kernel/arch/mips32/src/mm/frame.c
32,27 → 32,238
/** @file
*/
 
#include <macros.h>
#include <arch/mm/frame.h>
#include <arch/mm/tlb.h>
#include <interrupt.h>
#include <mm/frame.h>
#include <mm/asid.h>
#include <config.h>
#include <arch/drivers/arc.h>
#include <arch/drivers/msim.h>
#include <arch/drivers/serial.h>
#include <print.h>
 
#define ZERO_PAGE_MASK TLB_PAGE_MASK_256K
#define ZERO_FRAMES 2048
#define ZERO_PAGE_WIDTH 18 /* 256K */
#define ZERO_PAGE_SIZE (1 << ZERO_PAGE_WIDTH)
#define ZERO_PAGE_ASID ASID_INVALID
#define ZERO_PAGE_TLBI 0
#define ZERO_PAGE_ADDR 0
#define ZERO_PAGE_OFFSET (ZERO_PAGE_SIZE / sizeof(uint32_t) - 1)
#define ZERO_PAGE_VALUE (((volatile uint32_t *) ZERO_PAGE_ADDR)[ZERO_PAGE_OFFSET])
 
#define ZERO_PAGE_VALUE_KSEG1(frame) (((volatile uint32_t *) (0xa0000000 + (frame << ZERO_PAGE_WIDTH)))[ZERO_PAGE_OFFSET])
 
#define MAX_REGIONS 32
 
typedef struct {
pfn_t start;
pfn_t count;
} phys_region_t;
 
static count_t phys_regions_count = 0;
static phys_region_t phys_regions[MAX_REGIONS];
 
 
/** Check whether frame is available
*
* Returns true if given frame is generally available for use.
* Returns false if given frame is used for physical memory
* mapped devices and cannot be used.
*
*/
static bool frame_available(pfn_t frame)
{
#if MACHINE == msim
/* MSIM device (dprinter) */
if (frame == (KA2PA(MSIM_VIDEORAM) >> ZERO_PAGE_WIDTH))
return false;
/* MSIM device (dkeyboard) */
if (frame == (KA2PA(MSIM_KBD_ADDRESS) >> ZERO_PAGE_WIDTH))
return false;
#endif
 
#if MACHINE == simics
/* Simics device (serial line) */
if (frame == (KA2PA(SERIAL_ADDRESS) >> ZERO_PAGE_WIDTH))
return false;
#endif
 
#if (MACHINE == lgxemul) || (MACHINE == bgxemul)
/* gxemul devices */
if (overlaps(frame << ZERO_PAGE_WIDTH, ZERO_PAGE_SIZE,
0x10000000, MB2SIZE(256)))
return false;
#endif
return true;
}
 
 
/** Check whether frame is safe to write
*
* Returns true if given frame is safe for read/write test.
* Returns false if given frame should not be touched.
*
*/
static bool frame_safe(pfn_t frame)
{
/* Kernel structures */
if ((frame << ZERO_PAGE_WIDTH) < KA2PA(config.base))
return false;
/* Kernel */
if (overlaps(frame << ZERO_PAGE_WIDTH, ZERO_PAGE_SIZE,
KA2PA(config.base), config.kernel_size))
return false;
/* Kernel stack */
if (overlaps(frame << ZERO_PAGE_WIDTH, ZERO_PAGE_SIZE,
KA2PA(config.stack_base), config.stack_size))
return false;
/* Init tasks */
bool safe = true;
count_t i;
for (i = 0; i < init.cnt; i++)
if (overlaps(frame << ZERO_PAGE_WIDTH, ZERO_PAGE_SIZE,
KA2PA(init.tasks[i].addr), init.tasks[i].size)) {
safe = false;
break;
}
return safe;
}
 
static void frame_add_region(pfn_t start_frame, pfn_t end_frame)
{
if (end_frame > start_frame) {
/* Convert 1M frames to 16K frames */
pfn_t first = ADDR2PFN(start_frame << ZERO_PAGE_WIDTH);
pfn_t count = ADDR2PFN((end_frame - start_frame) << ZERO_PAGE_WIDTH);
/* Interrupt vector frame is blacklisted */
pfn_t conf_frame;
if (first == 0)
conf_frame = 1;
else
conf_frame = first;
zone_create(first, count, conf_frame, 0);
if (phys_regions_count < MAX_REGIONS) {
phys_regions[phys_regions_count].start = first;
phys_regions[phys_regions_count].count = count;
phys_regions_count++;
}
}
}
 
 
/** Create memory zones
*
* If ARC is known, read information from ARC, otherwise
* assume some defaults.
* - blacklist first FRAME because there is an exception vector
* Walk through available 256 KB chunks of physical
* memory and create zones.
*
* Note: It is assumed that the TLB is not yet being
* used in any way, thus there is no interference.
*
*/
void frame_arch_init(void)
{
if (!arc_frame_init()) {
zone_create(0, ADDR2PFN(CONFIG_MEMORY_SIZE), 1, 0);
/*
* Blacklist interrupt vector
*/
frame_mark_unavailable(0, 1);
ipl_t ipl = interrupts_disable();
/* Clear and initialize TLB */
cp0_pagemask_write(ZERO_PAGE_MASK);
cp0_entry_lo0_write(0);
cp0_entry_lo1_write(0);
cp0_entry_hi_write(0);
 
count_t i;
for (i = 0; i < TLB_ENTRY_COUNT; i++) {
cp0_index_write(i);
tlbwi();
}
pfn_t start_frame = 0;
pfn_t frame;
bool avail = true;
/* Walk through all 1 MB frames */
for (frame = 0; frame < ZERO_FRAMES; frame++) {
if (!frame_available(frame))
avail = false;
else {
if (frame_safe(frame)) {
entry_lo_t lo0;
entry_lo_t lo1;
entry_hi_t hi;
tlb_prepare_entry_lo(&lo0, false, true, true, false, frame << (ZERO_PAGE_WIDTH - 12));
tlb_prepare_entry_lo(&lo1, false, false, false, false, 0);
tlb_prepare_entry_hi(&hi, ZERO_PAGE_ASID, ZERO_PAGE_ADDR);
cp0_pagemask_write(ZERO_PAGE_MASK);
cp0_entry_lo0_write(lo0.value);
cp0_entry_lo1_write(lo1.value);
cp0_entry_hi_write(hi.value);
cp0_index_write(ZERO_PAGE_TLBI);
tlbwi();
ZERO_PAGE_VALUE = 0;
if (ZERO_PAGE_VALUE != 0)
avail = false;
else {
ZERO_PAGE_VALUE = 0xdeadbeef;
if (ZERO_PAGE_VALUE != 0xdeadbeef)
avail = false;
#if (MACHINE == lgxemul) || (MACHINE == bgxemul)
else {
ZERO_PAGE_VALUE_KSEG1(frame) = 0xaabbccdd;
if (ZERO_PAGE_VALUE_KSEG1(frame) != 0xaabbccdd)
avail = false;
}
#endif
}
}
}
if (!avail) {
frame_add_region(start_frame, frame);
start_frame = frame + 1;
avail = true;
}
}
frame_add_region(start_frame, frame);
/* Blacklist interrupt vector frame */
frame_mark_unavailable(0, 1);
/* Cleanup */
cp0_pagemask_write(ZERO_PAGE_MASK);
cp0_entry_lo0_write(0);
cp0_entry_lo1_write(0);
cp0_entry_hi_write(0);
cp0_index_write(ZERO_PAGE_TLBI);
tlbwi();
interrupts_restore(ipl);
}
 
 
void physmem_print(void)
{
printf("Base Size\n");
printf("---------- ----------\n");
count_t i;
for (i = 0; i < phys_regions_count; i++) {
printf("%#010x %10u\n",
PFN2ADDR(phys_regions[i].start), PFN2ADDR(phys_regions[i].count));
}
}
 
/** @}
*/
/branches/network/kernel/arch/mips32/src/mm/tlb.c
53,9 → 53,6
 
static pte_t *find_mapping_and_check(uintptr_t badvaddr, int access, istate_t *istate, int *pfrc);
 
static void prepare_entry_lo(entry_lo_t *lo, bool g, bool v, bool d, bool cacheable, uintptr_t pfn);
static void prepare_entry_hi(entry_hi_t *hi, asid_t asid, uintptr_t addr);
 
/** Initialize TLB
*
* Initialize TLB.
76,7 → 73,6
cp0_index_write(i);
tlbwi();
}
 
/*
* The kernel is going to make use of some wired
131,8 → 127,8
*/
pte->a = 1;
 
prepare_entry_hi(&hi, asid, badvaddr);
prepare_entry_lo(&lo, pte->g, pte->p, pte->d, pte->cacheable, pte->pfn);
tlb_prepare_entry_hi(&hi, asid, badvaddr);
tlb_prepare_entry_lo(&lo, pte->g, pte->p, pte->d, pte->cacheable, pte->pfn);
 
/*
* New entry is to be inserted into TLB
178,7 → 174,7
* Locate the faulting entry in TLB.
*/
hi.value = cp0_entry_hi_read();
prepare_entry_hi(&hi, hi.asid, badvaddr);
tlb_prepare_entry_hi(&hi, hi.asid, badvaddr);
cp0_entry_hi_write(hi.value);
tlbp();
index.value = cp0_index_read();
221,7 → 217,7
*/
pte->a = 1;
 
prepare_entry_lo(&lo, pte->g, pte->p, pte->d, pte->cacheable, pte->pfn);
tlb_prepare_entry_lo(&lo, pte->g, pte->p, pte->d, pte->cacheable, pte->pfn);
 
/*
* The entry is to be updated in TLB.
262,7 → 258,7
* Locate the faulting entry in TLB.
*/
hi.value = cp0_entry_hi_read();
prepare_entry_hi(&hi, hi.asid, badvaddr);
tlb_prepare_entry_hi(&hi, hi.asid, badvaddr);
cp0_entry_hi_write(hi.value);
tlbp();
index.value = cp0_index_read();
312,7 → 308,7
pte->a = 1;
pte->d = 1;
 
prepare_entry_lo(&lo, pte->g, pte->p, pte->w, pte->cacheable, pte->pfn);
tlb_prepare_entry_lo(&lo, pte->g, pte->p, pte->w, pte->cacheable, pte->pfn);
 
/*
* The entry is to be updated in TLB.
445,7 → 441,7
}
}
 
void prepare_entry_lo(entry_lo_t *lo, bool g, bool v, bool d, bool cacheable, uintptr_t pfn)
void tlb_prepare_entry_lo(entry_lo_t *lo, bool g, bool v, bool d, bool cacheable, uintptr_t pfn)
{
lo->value = 0;
lo->g = g;
455,7 → 451,7
lo->pfn = pfn;
}
 
void prepare_entry_hi(entry_hi_t *hi, asid_t asid, uintptr_t addr)
void tlb_prepare_entry_hi(entry_hi_t *hi, asid_t asid, uintptr_t addr)
{
hi->value = ALIGN_DOWN(addr, PAGE_SIZE * 2);
hi->asid = asid;
572,7 → 568,7
*/
void tlb_invalidate_pages(asid_t asid, uintptr_t page, count_t cnt)
{
int i;
unsigned int i;
ipl_t ipl;
entry_lo_t lo0, lo1;
entry_hi_t hi, hi_save;
583,9 → 579,9
hi_save.value = cp0_entry_hi_read();
ipl = interrupts_disable();
 
for (i = 0; i < cnt+1; i+=2) {
for (i = 0; i < cnt + 1; i += 2) {
hi.value = 0;
prepare_entry_hi(&hi, asid, page + i * PAGE_SIZE);
tlb_prepare_entry_hi(&hi, asid, page + i * PAGE_SIZE);
cp0_entry_hi_write(hi.value);
 
tlbp();
/branches/network/kernel/arch/mips32/src/mm/as.c
44,7 → 44,7
/** Architecture dependent address space init. */
void as_arch_init(void)
{
as_operations = &as_pt_operations;
as_operations = &as_pt_operations;
asid_fifo_init();
}
 
/branches/network/kernel/arch/mips32/src/drivers/arc.c
File deleted
/branches/network/kernel/arch/mips32/src/drivers/msim.c
39,12 → 39,9
#include <arch/cp0.h>
#include <console/console.h>
#include <sysinfo/sysinfo.h>
#include <ddi/ddi.h>
 
/** Address of devices. */
#define MSIM_VIDEORAM 0xB0000000
#define MSIM_KBD_ADDRESS 0xB0000000
#define MSIM_KBD_IRQ 2
 
static parea_t msim_parea;
static chardev_t console;
static irq_t msim_irq;
 
158,6 → 155,16
sysinfo_set_item_val("kbd.devno", NULL, devno);
sysinfo_set_item_val("kbd.inr", NULL, MSIM_KBD_IRQ);
sysinfo_set_item_val("kbd.address.virtual", NULL, MSIM_KBD_ADDRESS);
msim_parea.pbase = KA2PA(MSIM_VIDEORAM);
msim_parea.vbase = MSIM_VIDEORAM;
msim_parea.frames = 1;
msim_parea.cacheable = false;
ddi_parea_register(&msim_parea);
sysinfo_set_item_val("fb", NULL, true);
sysinfo_set_item_val("fb.kind", NULL, 3);
sysinfo_set_item_val("fb.address.physical", NULL, KA2PA(MSIM_VIDEORAM));
}
 
/** @}
/branches/network/kernel/arch/mips32/src/console.c
34,18 → 34,15
 
#include <console/console.h>
#include <arch/console.h>
#include <arch/drivers/arc.h>
#include <arch/drivers/serial.h>
#include <arch/drivers/msim.h>
 
void console_init(devno_t devno)
{
if (!arc_console()) {
if (serial_init())
serial_console(devno);
else
msim_console(devno);
}
if (serial_init())
serial_console(devno);
else
msim_console(devno);
}
 
/** Acquire console back for kernel
/branches/network/kernel/arch/mips32/src/mips32.c
48,8 → 48,8
#include <sysinfo/sysinfo.h>
 
#include <arch/interrupt.h>
#include <arch/drivers/arc.h>
#include <console/chardev.h>
#include <arch/barrier.h>
#include <arch/debugger.h>
#include <genarch/fb/fb.h>
#include <genarch/fb/visuals.h>
96,18 → 96,21
/* Initialize dispatch table */
exception_init();
arc_init();
 
/* Copy the exception vectors to the right places */
memcpy(TLB_EXC, (char *) tlb_refill_entry, EXCEPTION_JUMP_SIZE);
smc_coherence_block(TLB_EXC, EXCEPTION_JUMP_SIZE);
memcpy(NORM_EXC, (char *) exception_entry, EXCEPTION_JUMP_SIZE);
smc_coherence_block(NORM_EXC, EXCEPTION_JUMP_SIZE);
memcpy(CACHE_EXC, (char *) cache_error_entry, EXCEPTION_JUMP_SIZE);
smc_coherence_block(CACHE_EXC, EXCEPTION_JUMP_SIZE);
/*
* Switch to BEV normal level so that exception vectors point to the kernel.
* Clear the error level.
* Switch to BEV normal level so that exception vectors point to the
* kernel. Clear the error level.
*/
cp0_status_write(cp0_status_read() & ~(cp0_status_bev_bootstrap_bit|cp0_status_erl_error_bit));
cp0_status_write(cp0_status_read() &
~(cp0_status_bev_bootstrap_bit | cp0_status_erl_error_bit));
 
/*
* Mask all interrupts
122,7 → 125,8
interrupt_init();
console_init(device_assign_devno());
#ifdef CONFIG_FB
fb_init(0x12000000, 640, 480, 1920, VISUAL_RGB_8_8_8); // gxemul framebuffer
/* GXemul framebuffer */
fb_init(0x12000000, 640, 480, 1920, VISUAL_RGB_8_8_8);
#endif
sysinfo_set_item_val("machine." STRING(MACHINE), NULL, 1);
}
143,13 → 147,14
{
/* EXL = 1, UM = 1, IE = 1 */
cp0_status_write(cp0_status_read() | (cp0_status_exl_exception_bit |
cp0_status_um_bit | cp0_status_ie_enabled_bit));
cp0_status_um_bit | cp0_status_ie_enabled_bit));
cp0_epc_write((uintptr_t) kernel_uarg->uspace_entry);
userspace_asm(((uintptr_t) kernel_uarg->uspace_stack + PAGE_SIZE),
(uintptr_t) kernel_uarg->uspace_uarg,
(uintptr_t) kernel_uarg->uspace_entry);
(uintptr_t) kernel_uarg->uspace_uarg,
(uintptr_t) kernel_uarg->uspace_entry);
while (1);
while (1)
;
}
 
/** Perform mips32 specific tasks needed before the new task is run. */
160,7 → 165,8
/** Perform mips32 specific tasks needed before the new thread is scheduled. */
void before_thread_runs_arch(void)
{
supervisor_sp = (uintptr_t) &THREAD->kstack[THREAD_STACK_SIZE-SP_DELTA];
supervisor_sp = (uintptr_t) &THREAD->kstack[THREAD_STACK_SIZE -
SP_DELTA];
}
 
void after_thread_ran_arch(void)
179,10 → 185,10
 
void arch_reboot(void)
{
if (!arc_reboot())
___halt();
___halt();
while (1);
while (1)
;
}
 
/** @}
/branches/network/kernel/arch/mips32/src/interrupt.c
38,7 → 38,6
#include <arch.h>
#include <arch/cp0.h>
#include <time/clock.h>
#include <arch/drivers/arc.h>
#include <ipc/sysipc.h>
#include <ddi/device.h>
 
/branches/network/kernel/arch/mips32/src/start.S
349,5 → 349,7
userspace_asm:
add $sp, $a0, 0
add $v0, $a1, 0
add $t9, $a2, 0 # Set up correct entry into PIC code
add $t9, $a2, 0 # Set up correct entry into PIC code
xor $a0, $a0, $a0 # $a0 is defined to hold pcb_ptr
# set it to 0
eret
/branches/network/kernel/arch/mips32/src/debugger.c
33,6 → 33,7
*/
 
#include <arch/debugger.h>
#include <arch/barrier.h>
#include <memstr.h>
#include <console/kconsole.h>
#include <console/cmd.h>
72,7 → 73,8
};
static cmd_info_t addbkpt_info = {
.name = "addbkpt",
.description = "addbkpt <&symbol> - new bkpoint. Break on J/Branch insts unsupported.",
.description = "addbkpt <&symbol> - new bkpoint. Break on J/Branch "
"insts unsupported.",
.func = cmd_add_breakpoint,
.argc = 1,
.argv = &add_argv
84,7 → 86,8
};
static cmd_info_t addbkpte_info = {
.name = "addbkpte",
.description = "addebkpte <&symbol> <&func> - new bkpoint. Call func(or Nothing if 0).",
.description = "addebkpte <&symbol> <&func> - new bkpoint. Call "
"func(or Nothing if 0).",
.func = cmd_add_breakpoint,
.argc = 2,
.argv = adde_argv
93,7 → 96,7
static struct {
uint32_t andmask;
uint32_t value;
}jmpinstr[] = {
} jmpinstr[] = {
{0xf3ff0000, 0x41000000}, /* BCzF */
{0xf3ff0000, 0x41020000}, /* BCzFL */
{0xf3ff0000, 0x41010000}, /* BCzT */
117,7 → 120,7
{0xfc000000, 0x08000000}, /* J */
{0xfc000000, 0x0c000000}, /* JAL */
{0xfc1f07ff, 0x00000009}, /* JALR */
{0,0} /* EndOfTable */
{0, 0} /* EndOfTable */
};
 
/** Test, if the given instruction is a jump or branch instruction
129,7 → 132,7
{
int i;
 
for (i=0;jmpinstr[i].andmask;i++) {
for (i = 0; jmpinstr[i].andmask; i++) {
if ((instr & jmpinstr[i].andmask) == jmpinstr[i].value)
return true;
}
152,14 → 155,16
spinlock_lock(&bkpoint_lock);
 
/* Check, that the breakpoints do not conflict */
for (i=0; i<BKPOINTS_MAX; i++) {
for (i = 0; i < BKPOINTS_MAX; i++) {
if (breakpoints[i].address == (uintptr_t)argv->intval) {
printf("Duplicate breakpoint %d.\n", i);
spinlock_unlock(&bkpoints_lock);
return 0;
} else if (breakpoints[i].address == (uintptr_t)argv->intval + sizeof(unative_t) || \
breakpoints[i].address == (uintptr_t)argv->intval - sizeof(unative_t)) {
printf("Adjacent breakpoints not supported, conflict with %d.\n", i);
} else if (breakpoints[i].address == (uintptr_t)argv->intval +
sizeof(unative_t) || breakpoints[i].address ==
(uintptr_t)argv->intval - sizeof(unative_t)) {
printf("Adjacent breakpoints not supported, conflict "
"with %d.\n", i);
spinlock_unlock(&bkpoints_lock);
return 0;
}
166,7 → 171,7
}
 
for (i=0; i<BKPOINTS_MAX; i++)
for (i = 0; i < BKPOINTS_MAX; i++)
if (!breakpoints[i].address) {
cur = &breakpoints[i];
break;
185,7 → 190,7
cur->flags = 0;
} else { /* We are add extended */
cur->flags = BKPOINT_FUNCCALL;
cur->bkfunc = (void (*)(void *, istate_t *)) argv[1].intval;
cur->bkfunc = (void (*)(void *, istate_t *)) argv[1].intval;
}
if (is_jump(cur->instruction))
cur->flags |= BKPOINT_ONESHOT;
193,6 → 198,7
 
/* Set breakpoint */
*((unative_t *)cur->address) = 0x0d;
smc_coherence(cur->address);
 
spinlock_unlock(&bkpoint_lock);
interrupts_restore(ipl);
200,8 → 206,6
return 1;
}
 
 
 
/** Remove breakpoint from table */
int cmd_del_breakpoint(cmd_arg_t *argv)
{
208,7 → 212,7
bpinfo_t *cur;
ipl_t ipl;
 
if (argv->intval < 0 || argv->intval > BKPOINTS_MAX) {
if (argv->intval > BKPOINTS_MAX) {
printf("Invalid breakpoint number.\n");
return 0;
}
229,7 → 233,9
return 0;
}
((uint32_t *)cur->address)[0] = cur->instruction;
smc_coherence(((uint32_t *)cur->address)[0]);
((uint32_t *)cur->address)[1] = cur->nextinstruction;
smc_coherence(((uint32_t *)cur->address)[1]);
 
cur->address = NULL;
 
252,11 → 258,11
symbol = get_symtab_entry(breakpoints[i].address);
printf("%-2u %-5d %#10zx %-6s %-7s %-8s %s\n", i,
breakpoints[i].counter, breakpoints[i].address,
((breakpoints[i].flags & BKPOINT_INPROG) ? "true" : "false"),
((breakpoints[i].flags & BKPOINT_ONESHOT) ? "true" : "false"),
((breakpoints[i].flags & BKPOINT_FUNCCALL) ? "true" : "false"),
symbol);
breakpoints[i].counter, breakpoints[i].address,
((breakpoints[i].flags & BKPOINT_INPROG) ? "true" :
"false"), ((breakpoints[i].flags & BKPOINT_ONESHOT)
? "true" : "false"), ((breakpoints[i].flags &
BKPOINT_FUNCCALL) ? "true" : "false"), symbol);
}
return 1;
}
266,7 → 272,7
{
int i;
 
for (i=0; i<BKPOINTS_MAX; i++)
for (i = 0; i < BKPOINTS_MAX; i++)
breakpoints[i].address = NULL;
cmd_initialize(&bkpts_info);
305,16 → 311,16
panic("Breakpoint in branch delay slot not supported.\n");
 
spinlock_lock(&bkpoint_lock);
for (i=0; i<BKPOINTS_MAX; i++) {
for (i = 0; i < BKPOINTS_MAX; i++) {
/* Normal breakpoint */
if (fireaddr == breakpoints[i].address \
&& !(breakpoints[i].flags & BKPOINT_REINST)) {
if (fireaddr == breakpoints[i].address &&
!(breakpoints[i].flags & BKPOINT_REINST)) {
cur = &breakpoints[i];
break;
}
/* Reinst only breakpoint */
if ((breakpoints[i].flags & BKPOINT_REINST) \
&& (fireaddr ==breakpoints[i].address+sizeof(unative_t))) {
if ((breakpoints[i].flags & BKPOINT_REINST) &&
(fireaddr == breakpoints[i].address + sizeof(unative_t))) {
cur = &breakpoints[i];
break;
}
323,8 → 329,10
if (cur->flags & BKPOINT_REINST) {
/* Set breakpoint on first instruction */
((uint32_t *)cur->address)[0] = 0x0d;
smc_coherence(((uint32_t *)cur->address)[0]);
/* Return back the second */
((uint32_t *)cur->address)[1] = cur->nextinstruction;
smc_coherence(((uint32_t *)cur->address)[1]);
cur->flags &= ~BKPOINT_REINST;
spinlock_unlock(&bkpoint_lock);
return;
333,11 → 341,12
printf("Warning: breakpoint recursion\n");
if (!(cur->flags & BKPOINT_FUNCCALL))
printf("***Breakpoint %d: %p in %s.\n", i,
fireaddr, get_symtab_entry(istate->epc));
printf("***Breakpoint %d: %p in %s.\n", i, fireaddr,
get_symtab_entry(istate->epc));
 
/* Return first instruction back */
((uint32_t *)cur->address)[0] = cur->instruction;
smc_coherence(cur->address);
 
if (! (cur->flags & BKPOINT_ONESHOT)) {
/* Set Breakpoint on next instruction */
/branches/network/kernel/arch/mips32/src/exception.c
161,7 → 161,7
* Spurious interrupt.
*/
#ifdef CONFIG_DEBUG
printf("cpu%d: spurious interrupt (inum=%d)\n", CPU->id, i);
printf("cpu%u: spurious interrupt (inum=%d)\n", CPU->id, i);
#endif
}
}
/branches/network/kernel/arch/mips32/src/context.S
26,7 → 26,6
# THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
 
#include <arch/asm/regname.h>
#include <arch/context_offset.h>
.text
38,41 → 37,9
.global context_save_arch
.global context_restore_arch
 
.macro CONTEXT_STORE r
sw $s0,OFFSET_S0(\r)
sw $s1,OFFSET_S1(\r)
sw $s2,OFFSET_S2(\r)
sw $s3,OFFSET_S3(\r)
sw $s4,OFFSET_S4(\r)
sw $s5,OFFSET_S5(\r)
sw $s6,OFFSET_S6(\r)
sw $s7,OFFSET_S7(\r)
sw $s8,OFFSET_S8(\r)
sw $gp,OFFSET_GP(\r)
sw $ra,OFFSET_PC(\r)
sw $sp,OFFSET_SP(\r)
.endm
 
.macro CONTEXT_LOAD r
lw $s0,OFFSET_S0(\r)
lw $s1,OFFSET_S1(\r)
lw $s2,OFFSET_S2(\r)
lw $s3,OFFSET_S3(\r)
lw $s4,OFFSET_S4(\r)
lw $s5,OFFSET_S5(\r)
lw $s6,OFFSET_S6(\r)
lw $s7,OFFSET_S7(\r)
lw $s8,OFFSET_S8(\r)
lw $gp,OFFSET_GP(\r)
lw $ra,OFFSET_PC(\r)
lw $sp,OFFSET_SP(\r)
.endm
 
context_save_arch:
CONTEXT_STORE $a0
CONTEXT_SAVE_ARCH_CORE $a0
 
# context_save returns 1
j $31
79,7 → 46,7
li $2, 1
context_restore_arch:
CONTEXT_LOAD $a0
CONTEXT_RESTORE_ARCH_CORE $a0
 
# context_restore returns 0
j $31
/branches/network/kernel/arch/mips32/src/cpu/cpu.c
104,22 → 104,20
void cpu_print_report(cpu_t *m)
{
struct data_t *data;
int i;
unsigned int i;
 
if (m->arch.imp_num & 0x80) {
/* Count records */
for (i=0;imp_data80[i].vendor;i++)
;
for (i = 0; imp_data80[i].vendor; i++);
if ((m->arch.imp_num & 0x7f) >= i) {
printf("imp=%d\n",m->arch.imp_num);
printf("imp=%d\n", m->arch.imp_num);
return;
}
data = &imp_data80[m->arch.imp_num & 0x7f];
} else {
for (i=0;imp_data[i].vendor;i++)
;
for (i = 0; imp_data[i].vendor; i++);
if (m->arch.imp_num >= i) {
printf("imp=%d\n",m->arch.imp_num);
printf("imp=%d\n", m->arch.imp_num);
return;
}
data = &imp_data[m->arch.imp_num];
127,7 → 125,7
 
printf("cpu%d: %s %s (rev=%d.%d, imp=%d)\n",
m->id, data->vendor, data->model, m->arch.rev_num >> 4,
m->arch.rev_num & 0xf, m->arch.imp_num);
m->arch.rev_num & 0xf, m->arch.imp_num);
}
 
/** @}
/branches/network/kernel/arch/mips32/include/drivers/arc.h
File deleted
/branches/network/kernel/arch/mips32/include/drivers/serial.h
37,6 → 37,8
 
#include <console/chardev.h>
 
#define SERIAL_ADDRESS 0x98000000
 
#define SERIAL_MAX 4
#define SERIAL_COM1 0x3f8
#define SERIAL_COM1_IRQ 4
43,16 → 45,19
#define SERIAL_COM2 0x2f8
#define SERIAL_COM2_IRQ 3
 
#define P_WRITEB(where,what) (*((volatile char *) (0xB8000000+where))=what)
#define P_READB(where) (*((volatile char *)(0xB8000000+where)))
#define P_WRITEB(where, what) (*((volatile char *) (SERIAL_ADDRESS + where)) = what)
#define P_READB(where) (*((volatile char *) (SERIAL_ADDRESS + where)))
 
#define SERIAL_READ(x) P_READB(x)
#define SERIAL_WRITE(x,c) P_WRITEB(x,c)
#define SERIAL_READ(x) P_READB(x)
#define SERIAL_WRITE(x, c) P_WRITEB(x, c)
 
/* Interrupt enable register */
#define SERIAL_READ_IER(x) (P_READB((x) + 1))
#define SERIAL_WRITE_IER(x,c) (P_WRITEB((x)+1,c))
#define SERIAL_WRITE_IER(x,c) (P_WRITEB((x) + 1, c))
 
/* Interrupt identification register */
#define SERIAL_READ_IIR(x) (P_READB((x) + 2))
 
/* Line status register */
#define SERIAL_READ_LSR(x) (P_READB((x) + 5))
#define TRANSMIT_EMPTY_BIT 5
/branches/network/kernel/arch/mips32/include/drivers/msim.h
35,6 → 35,11
#ifndef KERN_mips32_MSIM_H_
#define KERN_mips32_MSIM_H_
 
/** Address of devices. */
#define MSIM_VIDEORAM 0x90000000
#define MSIM_KBD_ADDRESS 0x90000000
#define MSIM_KBD_IRQ 2
 
#include <console/chardev.h>
 
void msim_console(devno_t devno);
/branches/network/kernel/arch/mips32/include/mm/page.h
40,8 → 40,6
#define PAGE_WIDTH FRAME_WIDTH
#define PAGE_SIZE FRAME_SIZE
 
#define PAGE_COLOR_BITS 0 /* dummy */
 
#ifndef __ASM__
# define KA2PA(x) (((uintptr_t) (x)) - 0x80000000)
# define PA2KA(x) (((uintptr_t) (x)) + 0x80000000)
/branches/network/kernel/arch/mips32/include/mm/tlb.h
35,6 → 35,9
#ifndef KERN_mips32_TLB_H_
#define KERN_mips32_TLB_H_
 
#include <arch/types.h>
#include <typedefs.h>
#include <arch/mm/asid.h>
#include <arch/exception.h>
 
#ifdef TLBCNT
46,7 → 49,13
#define TLB_WIRED 1
#define TLB_KSTACK_WIRED_INDEX 0
 
#define TLB_PAGE_MASK_16K (0x3<<13)
#define TLB_PAGE_MASK_4K (0x000 << 13)
#define TLB_PAGE_MASK_16K (0x003 << 13)
#define TLB_PAGE_MASK_64K (0x00f << 13)
#define TLB_PAGE_MASK_256K (0x03f << 13)
#define TLB_PAGE_MASK_1M (0x0ff << 13)
#define TLB_PAGE_MASK_4M (0x3ff << 13)
#define TLB_PAGE_MASK_16M (0xfff << 13)
 
#define PAGE_UNCACHED 2
#define PAGE_CACHEABLE_EXC_WRITE 5
159,6 → 168,8
extern void tlb_invalid(istate_t *istate);
extern void tlb_refill(istate_t *istate);
extern void tlb_modified(istate_t *istate);
extern void tlb_prepare_entry_lo(entry_lo_t *lo, bool g, bool v, bool d, bool cacheable, uintptr_t pfn);
extern void tlb_prepare_entry_hi(entry_hi_t *hi, asid_t asid, uintptr_t addr);
 
#endif
 
/branches/network/kernel/arch/mips32/include/mm/as.h
38,7 → 38,7
#define KERNEL_ADDRESS_SPACE_SHADOWED_ARCH 0
 
#define KERNEL_ADDRESS_SPACE_START_ARCH (unsigned long) 0x80000000
#define KERNEL_ADDRESS_SPACE_END_ARCH (unsigned long) 0xffffffff
#define KERNEL_ADDRESS_SPACE_END_ARCH (unsigned long) 0x9fffffff
#define USER_ADDRESS_SPACE_START_ARCH (unsigned long) 0x00000000
#define USER_ADDRESS_SPACE_END_ARCH (unsigned long) 0x7fffffff
 
/branches/network/kernel/arch/mips32/include/atomic.h
58,13 → 58,13
asm volatile (
"1:\n"
" ll %0, %1\n"
" addiu %0, %0, %3\n" /* same as addi, but never traps on overflow */
" addu %0, %0, %3\n" /* same as addi, but never traps on overflow */
" move %2, %0\n"
" sc %0, %1\n"
" beq %0, %4, 1b\n" /* if the atomic operation failed, try again */
" nop\n"
: "=r" (tmp), "=m" (val->count), "=r" (v)
: "i" (i), "i" (0)
: "=&r" (tmp), "+m" (val->count), "=&r" (v)
: "r" (i), "i" (0)
);
 
return v;
/branches/network/kernel/arch/mips32/include/barrier.h
45,6 → 45,9
#define read_barrier() asm volatile ("" ::: "memory")
#define write_barrier() asm volatile ("" ::: "memory")
 
#define smc_coherence(a)
#define smc_coherence_block(a, l)
 
#endif
 
/** @}
/branches/network/kernel/arch/mips32/include/memstr.h
37,10 → 37,10
 
#define memcpy(dst, src, cnt) __builtin_memcpy((dst), (src), (cnt))
 
extern void memsetw(uintptr_t dst, size_t cnt, uint16_t x);
extern void memsetb(uintptr_t dst, size_t cnt, uint8_t x);
extern void memsetw(void *dst, size_t cnt, uint16_t x);
extern void memsetb(void *dst, size_t cnt, uint8_t x);
 
extern int memcmp(uintptr_t src, uintptr_t dst, int cnt);
extern int memcmp(const void *a, const void *b, size_t cnt);
 
#endif
 
/branches/network/kernel/arch/mips32/include/types.h
35,10 → 35,6
#ifndef KERN_mips32_TYPES_H_
#define KERN_mips32_TYPES_H_
 
#define NULL 0
#define false 0
#define true 1
 
typedef signed char int8_t;
typedef signed short int16_t;
typedef signed long int32_t;
61,14 → 57,29
typedef uint32_t unative_t;
typedef int32_t native_t;
 
typedef uint8_t bool;
typedef uint64_t thread_id_t;
typedef uint64_t task_id_t;
typedef uint32_t context_id_t;
#define PRIp "x" /**< Format for uintptr_t. */
#define PRIs "u" /**< Format for size_t. */
#define PRIc "u" /**< Format for count_t. */
#define PRIi "u" /**< Format for index_t. */
 
typedef int32_t inr_t;
typedef int32_t devno_t;
#define PRId8 "d" /**< Format for int8_t. */
#define PRId16 "d" /**< Format for int16_t. */
#define PRId32 "ld" /**< Format for int32_t. */
#define PRId64 "lld" /**< Format for int64_t. */
#define PRIdn "d" /**< Format for native_t. */
 
#define PRIu8 "u" /**< Format for uint8_t. */
#define PRIu16 "u" /**< Format for uint16_t. */
#define PRIu32 "u" /**< Format for uint32_t. */
#define PRIu64 "llu" /**< Format for uint64_t. */
#define PRIun "u" /**< Format for unative_t. */
 
#define PRIx8 "x" /**< Format for hexadecimal (u)int8_t. */
#define PRIx16 "x" /**< Format for hexadecimal (u)int16_t. */
#define PRIx32 "x" /**< Format for hexadecimal (u)uint32_t. */
#define PRIx64 "llx" /**< Format for hexadecimal (u)int64_t. */
#define PRIxn "x" /**< Format for hexadecimal (u)native_t. */
 
/** Page Table Entry. */
typedef struct {
unsigned g : 1; /**< Global bit. */
/branches/network/kernel/arch/mips32/include/byteorder.h
35,24 → 35,10
#ifndef KERN_mips32_BYTEORDER_H_
#define KERN_mips32_BYTEORDER_H_
 
#include <byteorder.h>
 
#ifdef BIG_ENDIAN
 
#define uint32_t_le2host(n) uint32_t_byteorder_swap(n)
#define uint64_t_le2host(n) uint64_t_byteorder_swap(n)
 
#define uint32_t_be2host(n) (n)
#define uint64_t_be2host(n) (n)
 
#define ARCH_IS_BIG_ENDIAN
#else
 
#define uint32_t_le2host(n) (n)
#define uint64_t_le2host(n) (n)
 
#define uint32_t_be2host(n) uint32_t_byteorder_swap(n)
#define uint64_t_be2host(n) uint64_t_byteorder_swap(n)
 
#define ARCH_IS_LITTLE_ENDIAN
#endif
 
#endif
/branches/network/kernel/arch/mips32/include/context_offset.h
42,6 → 42,24
#define OFFSET_S8 0x28
#define OFFSET_GP 0x2c
 
#ifdef KERNEL
# define OFFSET_IPL 0x30
#else
# define OFFSET_TLS 0x30
 
# define OFFSET_F20 0x34
# define OFFSET_F21 0x38
# define OFFSET_F22 0x3c
# define OFFSET_F23 0x40
# define OFFSET_F24 0x44
# define OFFSET_F25 0x48
# define OFFSET_F26 0x4c
# define OFFSET_F27 0x50
# define OFFSET_F28 0x54
# define OFFSET_F29 0x58
# define OFFSET_F30 0x5c
#endif /* KERNEL */
 
/* istate_t */
#define EOFFSET_AT 0x0
#define EOFFSET_V0 0x4
79,4 → 97,122
#define EOFFSET_K1 0x84
#define REGISTER_SPACE 136
 
#ifdef __ASM__
 
#include <arch/asm/regname.h>
 
# ctx: address of the structure with saved context
.macro CONTEXT_SAVE_ARCH_CORE ctx:req
sw $s0,OFFSET_S0(\ctx)
sw $s1,OFFSET_S1(\ctx)
sw $s2,OFFSET_S2(\ctx)
sw $s3,OFFSET_S3(\ctx)
sw $s4,OFFSET_S4(\ctx)
sw $s5,OFFSET_S5(\ctx)
sw $s6,OFFSET_S6(\ctx)
sw $s7,OFFSET_S7(\ctx)
sw $s8,OFFSET_S8(\ctx)
sw $gp,OFFSET_GP(\ctx)
 
#ifndef KERNEL
sw $k1,OFFSET_TLS(\ctx)
 
# ifdef CONFIG_MIPS_FPU
mfc1 $t0,$20
sw $t0, OFFSET_F20(\ctx)
 
mfc1 $t0,$21
sw $t0, OFFSET_F21(\ctx)
 
mfc1 $t0,$22
sw $t0, OFFSET_F22(\ctx)
 
mfc1 $t0,$23
sw $t0, OFFSET_F23(\ctx)
 
mfc1 $t0,$24
sw $t0, OFFSET_F24(\ctx)
 
mfc1 $t0,$25
sw $t0, OFFSET_F25(\ctx)
 
mfc1 $t0,$26
sw $t0, OFFSET_F26(\ctx)
 
mfc1 $t0,$27
sw $t0, OFFSET_F27(\ctx)
 
mfc1 $t0,$28
sw $t0, OFFSET_F28(\ctx)
 
mfc1 $t0,$29
sw $t0, OFFSET_F29(\ctx)
mfc1 $t0,$30
sw $t0, OFFSET_F30(\ctx)
# endif /* CONFIG_MIPS_FPU */
#endif /* KERNEL */
 
sw $ra,OFFSET_PC(\ctx)
sw $sp,OFFSET_SP(\ctx)
.endm
 
# ctx: address of the structure with saved context
.macro CONTEXT_RESTORE_ARCH_CORE ctx:req
lw $s0,OFFSET_S0(\ctx)
lw $s1,OFFSET_S1(\ctx)
lw $s2,OFFSET_S2(\ctx)
lw $s3,OFFSET_S3(\ctx)
lw $s4,OFFSET_S4(\ctx)
lw $s5,OFFSET_S5(\ctx)
lw $s6,OFFSET_S6(\ctx)
lw $s7,OFFSET_S7(\ctx)
lw $s8,OFFSET_S8(\ctx)
lw $gp,OFFSET_GP(\ctx)
#ifndef KERNEL
lw $k1,OFFSET_TLS(\ctx)
 
# ifdef CONFIG_MIPS_FPU
lw $t0, OFFSET_F20(\ctx)
mtc1 $t0,$20
 
lw $t0, OFFSET_F21(\ctx)
mtc1 $t0,$21
 
lw $t0, OFFSET_F22(\ctx)
mtc1 $t0,$22
 
lw $t0, OFFSET_F23(\ctx)
mtc1 $t0,$23
 
lw $t0, OFFSET_F24(\ctx)
mtc1 $t0,$24
 
lw $t0, OFFSET_F25(\ctx)
mtc1 $t0,$25
 
lw $t0, OFFSET_F26(\ctx)
mtc1 $t0,$26
 
lw $t0, OFFSET_F27(\ctx)
mtc1 $t0,$27
 
lw $t0, OFFSET_F28(\ctx)
mtc1 $t0,$28
 
lw $t0, OFFSET_F29(\ctx)
mtc1 $t0,$29
 
lw $t0, OFFSET_F30(\ctx)
mtc1 $t0,$30
# endif /* CONFIG_MIPS_FPU */
#endif /* KERNEL */
lw $ra,OFFSET_PC(\ctx)
lw $sp,OFFSET_SP(\ctx)
.endm
 
#endif
 
 
#endif
/branches/network/kernel/doc/BUGS_FOUND
File deleted
/branches/network/kernel/doc/AUTHORS
1,12 → 1,12
Jakub Jermar <jermar@helenos.eu>
Martin Decky <decky@helenos.eu>
Ondrej Palkovsky <palkovsky@helenos.eu>
Jakub Vana <vana@helenos.eu>
Josef Cejka <cejka@helenos.eu>
Michal Kebrt <michalek.k@seznam.cz>
Sergey Bondari <bondari@helenos.eu>
Pavel Jancik <alfik.009@seznam.cz>
Petr Stepan <stepan.petr@volny.cz>
Michal Konopa <mkonopa@seznam.cz>
Jakub Jermar
Martin Decky
Ondrej Palkovsky
Jiri Svoboda
Jakub Vana
Josef Cejka
Michal Kebrt
Sergey Bondari
Pavel Jancik
Petr Stepan
Michal Konopa
Vojtech Mencl
 
/branches/network/kernel/doc/arch/mips32
3,11 → 3,9
 
mips32 is the second port of SPARTAN kernel originally written by Jakub Jermar.
It was first developed to run on MIPS R4000 32-bit simulator.
Now it can run on real hardware as well.
It can be compiled and run either as little- or big-endian.
 
HARDWARE REQUIREMENTS
o SGI Indy R4600
o emulated MIPS 4K CPU
 
CPU
/branches/network/kernel/kernel.config
1,3 → 1,31
#
# Copyright (c) 2006 Ondrej Palkovsky
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
#
# - Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# - Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
# - The name of the author may not be used to endorse or promote products
# derived from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
# IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
# OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
# IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
# INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
# NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
# THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
 
## General configuration directives
 
# Architecture
53,16 → 81,10
@ "simics" Virtutech Simics simulator
@ "lgxemul" GXEmul Little Endian
@ "bgxemul" GXEmul Big Endian
@ "indy" SGI Indy
! [ARCH=mips32] MACHINE (choice)
 
# Machine type
@ "gxemul_testarm" GXEmul testarm
! [ARCH=arm32] MACHINE (choice)
 
 
# Framebuffer support
! [(ARCH=mips32&MACHINE=lgxemul)|(ARCH=mips32&MACHINE=bgxemul)|(ARCH=ia32)|(ARCH=amd64)|(ARCH=arm32&MACHINE=gxemul_testarm)] CONFIG_FB (y/n)
! [(ARCH=mips32&MACHINE=lgxemul)|(ARCH=mips32&MACHINE=bgxemul)|(ARCH=ia32)|(ARCH=amd64)|(ARCH=arm32)] CONFIG_FB (y/n)
 
# Framebuffer width
@ "640"
128,6 → 150,9
# General debuging and assert checking
! CONFIG_DEBUG (y/n)
 
# Extensive debugging output
! [CONFIG_DEBUG=y] CONFIG_EDEBUG (n/y)
 
# Deadlock detection support for spinlocks
! [CONFIG_DEBUG=y&CONFIG_SMP=y] CONFIG_DEBUG_SPINLOCK (y/n)
 
142,9 → 167,3
 
# Compile kernel tests
! CONFIG_TEST (y/n)
 
 
## Experimental features
 
# Enable experimental features
! CONFIG_EXPERIMENTAL (n/y)
/branches/network/kernel/genarch/include/mm/page_pt.h
116,9 → 116,7
#define PTE_WRITABLE(p) PTE_WRITABLE_ARCH((p))
#define PTE_EXECUTABLE(p) PTE_EXECUTABLE_ARCH((p))
 
#ifndef __OBJC__
extern as_operations_t as_pt_operations;
#endif
extern page_mapping_operations_t pt_mapping_operations;
 
extern void page_mapping_insert_pt(as_t *as, uintptr_t page, uintptr_t frame,
/branches/network/kernel/genarch/include/ofw/ofw_tree.h
30,6 → 30,7
#define KERN_OFW_TREE_H_
 
#include <arch/types.h>
#include <typedefs.h>
 
#define OFW_TREE_PROPERTY_MAX_NAMELEN 32
 
/branches/network/kernel/genarch/src/mm/as_pt.c
52,31 → 52,6
static void pt_lock(as_t *as, bool lock);
static void pt_unlock(as_t *as, bool unlock);
 
#ifdef __OBJC__
@implementation as_t
 
+ (pte_t *) page_table_create: (int) flags
{
return ptl0_create(flags);
}
 
+ (void) page_table_destroy: (pte_t *) page_table
{
ptl0_destroy(page_table);
}
 
- (void) page_table_lock: (bool) _lock
{
pt_lock(self, _lock);
}
 
- (void) page_table_unlock: (bool) unlock
{
pt_unlock(self, unlock);
}
 
@end
#else
as_operations_t as_pt_operations = {
.page_table_create = ptl0_create,
.page_table_destroy = ptl0_destroy,
83,7 → 58,6
.page_table_lock = pt_lock,
.page_table_unlock = pt_unlock
};
#endif
 
/** Create PTL0.
*
103,7 → 77,7
table_size = FRAME_SIZE << PTL0_SIZE;
 
if (flags & FLAG_AS_KERNEL) {
memsetb((uintptr_t) dst_ptl0, table_size, 0);
memsetb(dst_ptl0, table_size, 0);
} else {
uintptr_t src, dst;
118,7 → 92,7
src = (uintptr_t) &src_ptl0[PTL0_INDEX(KERNEL_ADDRESS_SPACE_START)];
dst = (uintptr_t) &dst_ptl0[PTL0_INDEX(KERNEL_ADDRESS_SPACE_START)];
 
memsetb((uintptr_t) dst_ptl0, table_size, 0);
memsetb(dst_ptl0, table_size, 0);
memcpy((void *) dst, (void *) src, table_size - (src - (uintptr_t) src_ptl0));
mutex_unlock(&AS_KERNEL->lock);
interrupts_restore(ipl);
/branches/network/kernel/genarch/src/mm/as_ht.c
72,7 → 72,7
{
if (flags & FLAG_AS_KERNEL) {
hash_table_create(&page_ht, PAGE_HT_ENTRIES, 2, &ht_operations);
mutex_initialize(&page_ht_lock);
mutex_initialize(&page_ht_lock, MUTEX_PASSIVE);
}
return NULL;
}
/branches/network/kernel/genarch/src/mm/page_pt.c
76,7 → 76,7
 
if (GET_PTL1_FLAGS(ptl0, PTL0_INDEX(page)) & PAGE_NOT_PRESENT) {
newpt = (pte_t *)frame_alloc(PTL1_SIZE, FRAME_KA);
memsetb((uintptr_t)newpt, FRAME_SIZE << PTL1_SIZE, 0);
memsetb(newpt, FRAME_SIZE << PTL1_SIZE, 0);
SET_PTL1_ADDRESS(ptl0, PTL0_INDEX(page), KA2PA(newpt));
SET_PTL1_FLAGS(ptl0, PTL0_INDEX(page), PAGE_PRESENT | PAGE_USER | PAGE_EXEC | PAGE_CACHEABLE | PAGE_WRITE);
}
85,7 → 85,7
 
if (GET_PTL2_FLAGS(ptl1, PTL1_INDEX(page)) & PAGE_NOT_PRESENT) {
newpt = (pte_t *)frame_alloc(PTL2_SIZE, FRAME_KA);
memsetb((uintptr_t)newpt, FRAME_SIZE << PTL2_SIZE, 0);
memsetb(newpt, FRAME_SIZE << PTL2_SIZE, 0);
SET_PTL2_ADDRESS(ptl1, PTL1_INDEX(page), KA2PA(newpt));
SET_PTL2_FLAGS(ptl1, PTL1_INDEX(page), PAGE_PRESENT | PAGE_USER | PAGE_EXEC | PAGE_CACHEABLE | PAGE_WRITE);
}
94,7 → 94,7
 
if (GET_PTL3_FLAGS(ptl2, PTL2_INDEX(page)) & PAGE_NOT_PRESENT) {
newpt = (pte_t *)frame_alloc(PTL3_SIZE, FRAME_KA);
memsetb((uintptr_t)newpt, FRAME_SIZE << PTL3_SIZE, 0);
memsetb(newpt, FRAME_SIZE << PTL3_SIZE, 0);
SET_PTL3_ADDRESS(ptl2, PTL2_INDEX(page), KA2PA(newpt));
SET_PTL3_FLAGS(ptl2, PTL2_INDEX(page), PAGE_PRESENT | PAGE_USER | PAGE_EXEC | PAGE_CACHEABLE | PAGE_WRITE);
}
146,7 → 146,7
ptl3 = (pte_t *) PA2KA(GET_PTL3_ADDRESS(ptl2, PTL2_INDEX(page)));
 
/* Destroy the mapping. Setting to PAGE_NOT_PRESENT is not sufficient. */
memsetb((uintptr_t) &ptl3[PTL3_INDEX(page)], sizeof(pte_t), 0);
memsetb(&ptl3[PTL3_INDEX(page)], sizeof(pte_t), 0);
 
/*
* Second, free all empty tables along the way from PTL3 down to PTL0.
166,11 → 166,11
*/
frame_free(KA2PA((uintptr_t) ptl3));
if (PTL2_ENTRIES)
memsetb((uintptr_t) &ptl2[PTL2_INDEX(page)], sizeof(pte_t), 0);
memsetb(&ptl2[PTL2_INDEX(page)], sizeof(pte_t), 0);
else if (PTL1_ENTRIES)
memsetb((uintptr_t) &ptl1[PTL1_INDEX(page)], sizeof(pte_t), 0);
memsetb(&ptl1[PTL1_INDEX(page)], sizeof(pte_t), 0);
else
memsetb((uintptr_t) &ptl0[PTL0_INDEX(page)], sizeof(pte_t), 0);
memsetb(&ptl0[PTL0_INDEX(page)], sizeof(pte_t), 0);
} else {
/*
* PTL3 is not empty.
195,9 → 195,9
*/
frame_free(KA2PA((uintptr_t) ptl2));
if (PTL1_ENTRIES)
memsetb((uintptr_t) &ptl1[PTL1_INDEX(page)], sizeof(pte_t), 0);
memsetb(&ptl1[PTL1_INDEX(page)], sizeof(pte_t), 0);
else
memsetb((uintptr_t) &ptl0[PTL0_INDEX(page)], sizeof(pte_t), 0);
memsetb(&ptl0[PTL0_INDEX(page)], sizeof(pte_t), 0);
}
else {
/*
223,7 → 223,7
* Release the frame and remove PTL1 pointer from preceding table.
*/
frame_free(KA2PA((uintptr_t) ptl1));
memsetb((uintptr_t) &ptl0[PTL0_INDEX(page)], sizeof(pte_t), 0);
memsetb(&ptl0[PTL0_INDEX(page)], sizeof(pte_t), 0);
}
}
 
/branches/network/kernel/genarch/src/acpi/madt.c
126,7 → 126,7
 
int madt_irq_to_pin(unsigned int irq)
{
ASSERT(irq < sizeof(isa_irq_map)/sizeof(int));
ASSERT(irq < sizeof(isa_irq_map) / sizeof(int));
return isa_irq_map[irq];
}
 
184,15 → 184,15
case MADT_IO_SAPIC:
case MADT_L_SAPIC:
case MADT_PLATFORM_INTR_SRC:
printf("MADT: skipping %s entry (type=%zd)\n", entry[h->type], h->type);
printf("MADT: skipping %s entry (type=%" PRIu8 ")\n", entry[h->type], h->type);
break;
default:
if (h->type >= MADT_RESERVED_SKIP_BEGIN && h->type <= MADT_RESERVED_SKIP_END) {
printf("MADT: skipping reserved entry (type=%zd)\n", h->type);
printf("MADT: skipping reserved entry (type=%" PRIu8 ")\n", h->type);
}
if (h->type >= MADT_RESERVED_OEM_BEGIN) {
printf("MADT: skipping OEM entry (type=%zd)\n", h->type);
printf("MADT: skipping OEM entry (type=%" PRIu8 ")\n", h->type);
}
break;
}
233,8 → 233,8
 
void madt_intr_src_ovrd_entry(struct madt_intr_src_ovrd *override, uint32_t index)
{
ASSERT(override->source < sizeof(isa_irq_map)/sizeof(int));
printf("MADT: ignoring %s entry: bus=%zd, source=%zd, global_int=%zd, flags=%#hx\n",
ASSERT(override->source < sizeof(isa_irq_map) / sizeof(int));
printf("MADT: ignoring %s entry: bus=%" PRIu8 ", source=%" PRIu8 ", global_int=%" PRIu32 ", flags=%#" PRIx16 "\n",
entry[override->header.type], override->bus, override->source,
override->global_int, override->flags);
}
/branches/network/kernel/genarch/src/acpi/acpi.c
105,7 → 105,7
if (!acpi_sdt_check((uint8_t *) h))
goto next;
*signature_map[j].sdt_ptr = h;
printf("%#zp: ACPI %s\n", *signature_map[j].sdt_ptr, signature_map[j].description);
printf("%p: ACPI %s\n", *signature_map[j].sdt_ptr, signature_map[j].description);
}
}
next:
126,7 → 126,7
if (!acpi_sdt_check((uint8_t *) h))
goto next;
*signature_map[j].sdt_ptr = h;
printf("%#zp: ACPI %s\n", *signature_map[j].sdt_ptr, signature_map[j].description);
printf("%p: ACPI %s\n", *signature_map[j].sdt_ptr, signature_map[j].description);
}
}
next:
160,7 → 160,7
return;
 
rsdp_found:
printf("%#zp: ACPI Root System Description Pointer\n", acpi_rsdp);
printf("%p: ACPI Root System Description Pointer\n", acpi_rsdp);
 
acpi_rsdt = (struct acpi_rsdt *) (unative_t) acpi_rsdp->rsdt_address;
if (acpi_rsdp->revision) acpi_xsdt = (struct acpi_xsdt *) ((uintptr_t) acpi_rsdp->xsdt_address);
169,11 → 169,11
if (acpi_xsdt) map_sdt((struct acpi_sdt_header *) acpi_xsdt);
 
if (acpi_rsdt && !acpi_sdt_check((uint8_t *) acpi_rsdt)) {
printf("RSDT: %s\n", "bad checksum");
printf("RSDT: bad checksum\n");
return;
}
if (acpi_xsdt && !acpi_sdt_check((uint8_t *) acpi_xsdt)) {
printf("XSDT: %s\n", "bad checksum");
printf("XSDT: bad checksum\n");
return;
}
 
/branches/network/kernel/genarch/src/ofw/ebus.c
57,7 → 57,7
ranges = prop->size / sizeof(ofw_ebus_range_t);
range = prop->value;
int i;
unsigned int i;
for (i = 0; i < ranges; i++) {
if (reg->space != range[i].child_space)
102,7 → 102,7
uint32_t addr = reg->addr & intr_mask->addr_mask;
uint32_t intr = interrupt & intr_mask->intr_mask;
int i;
unsigned int i;
for (i = 0; i < count; i++) {
if ((intr_map[i].space == space) && (intr_map[i].addr == addr)
&& (intr_map[i].intr == intr))
/branches/network/kernel/genarch/src/ofw/fhc.c
55,7 → 55,7
ranges = prop->size / sizeof(ofw_fhc_range_t);
range = prop->value;
int i;
unsigned int i;
for (i = 0; i < ranges; i++) {
if (overlaps(reg->addr, reg->size, range[i].child_base, range[i].size)) {
97,7 → 97,7
ranges = prop->size / sizeof(ofw_central_range_t);
range = prop->value;
int i;
unsigned int i;
for (i = 0; i < ranges; i++) {
if (overlaps(reg->addr, reg->size, range[i].child_base, range[i].size)) {
/branches/network/kernel/genarch/src/ofw/ofw_tree.c
61,7 → 61,7
*/
ofw_tree_property_t *ofw_tree_getprop(const ofw_tree_node_t *node, const char *name)
{
int i;
unsigned int i;
for (i = 0; i < node->properties; i++) {
if (strcmp(node->property[i].name, name) == 0)
/branches/network/kernel/genarch/src/ofw/pci.c
65,7 → 65,7
ranges = prop->size / sizeof(ofw_pci_range_t);
range = prop->value;
int i;
unsigned int i;
for (i = 0; i < ranges; i++) {
if ((reg->space & PCI_SPACE_MASK) != (range[i].space & PCI_SPACE_MASK))
100,7 → 100,7
assigned_addresses = prop->size / sizeof(ofw_pci_reg_t);
assigned_address = prop->value;
int i;
unsigned int i;
for (i = 0; i < assigned_addresses; i++) {
if ((assigned_address[i].space & PCI_REG_MASK) == (reg->space & PCI_REG_MASK)) {
/branches/network/kernel/genarch/src/ofw/sbus.c
61,7 → 61,7
ranges = prop->size / sizeof(ofw_sbus_range_t);
range = prop->value;
int i;
unsigned int i;
for (i = 0; i < ranges; i++) {
if (overlaps(reg->addr, reg->size, range[i].child_base,
/branches/network/kernel/Makefile
43,11 → 43,11
-DKERNEL
 
GCC_CFLAGS = -I$(INCLUDES) -O$(OPTIMIZATION) \
-fno-builtin -fomit-frame-pointer -Wall -Wmissing-prototypes -Werror \
-fno-builtin -Wall -Wextra -Wno-unused-parameter -Wmissing-prototypes -Werror \
-nostdlib -nostdinc
 
ICC_CFLAGS = -I$(INCLUDES) -O$(OPTIMIZATION) \
-fno-builtin -fomit-frame-pointer -Wall -Wmissing-prototypes -Werror \
-fno-builtin -Wall -Wmissing-prototypes -Werror \
-nostdlib -nostdinc \
-wd170
 
90,6 → 90,10
DEFS += -DCONFIG_DEBUG
endif
 
ifeq ($(CONFIG_EDEBUG),y)
DEFS += -DCONFIG_EDEBUG
endif
 
ifeq ($(CONFIG_DEBUG_SPINLOCK),y)
DEFS += -DCONFIG_DEBUG_SPINLOCK
endif
217,7 → 221,6
generic/src/console/chardev.c \
generic/src/console/console.c \
generic/src/console/kconsole.c \
generic/src/console/klog.c \
generic/src/console/cmd.c \
generic/src/cpu/cpu.c \
generic/src/ddi/ddi.c \
229,10 → 232,12
generic/src/main/uinit.c \
generic/src/main/version.c \
generic/src/main/shutdown.c \
generic/src/proc/program.c \
generic/src/proc/scheduler.c \
generic/src/proc/thread.c \
generic/src/proc/task.c \
generic/src/proc/the.c \
generic/src/proc/tasklet.c \
generic/src/syscall/syscall.c \
generic/src/syscall/copy.c \
generic/src/mm/buddy.c \
266,6 → 271,7
generic/src/synch/rwlock.c \
generic/src/synch/mutex.c \
generic/src/synch/semaphore.c \
generic/src/synch/smc.c \
generic/src/synch/waitq.c \
generic/src/synch/futex.c \
generic/src/smp/ipi.c \
311,16 → 317,6
test/sysinfo/sysinfo1.c
endif
 
## Experimental features
#
 
ifeq ($(CONFIG_EXPERIMENTAL),y)
GENERIC_SOURCES += generic/src/lib/objc_ext.c \
generic/src/lib/objc.c
EXTRA_OBJECTS = $(LIBDIR)/libobjc.a
EXTRA_FLAGS += -x objective-c
endif
 
GENERIC_OBJECTS := $(addsuffix .o,$(basename $(GENERIC_SOURCES)))
ARCH_OBJECTS := $(addsuffix .o,$(basename $(ARCH_SOURCES)))
GENARCH_OBJECTS := $(addsuffix .o,$(basename $(GENARCH_SOURCES)))
389,5 → 385,15
%.o: %.s
$(AS) $(AFLAGS) $< -o $@
 
#
# The FPU tests are the only objects for which we allow the compiler to generate
# FPU instructions.
#
test/fpu/%.o: test/fpu/%.c
$(CC) $(DEFS) $(CFLAGS) $(EXTRA_FLAGS) -c $< -o $@
 
#
# Ordinary objects.
#
%.o: %.c
$(CC) $(DEFS) $(CFLAGS) $(EXTRA_FLAGS) -c $< -o $@
$(CC) $(DEFS) $(CFLAGS) $(EXTRA_FLAGS) $(FPU_NO_CFLAGS) -c $< -o $@
/branches/network/kernel/test/mm/slab2.c
68,8 → 68,8
slab_free(cache2, data2);
break;
}
memsetb((uintptr_t) data1, ITEM_SIZE, 0);
memsetb((uintptr_t) data2, ITEM_SIZE, 0);
memsetb(data1, ITEM_SIZE, 0);
memsetb(data2, ITEM_SIZE, 0);
*((void **) data1) = olddata1;
*((void **) data2) = olddata2;
olddata1 = data1;
100,7 → 100,7
printf("Incorrect memory size - use another test.");
return;
}
memsetb((uintptr_t) data1, ITEM_SIZE, 0);
memsetb(data1, ITEM_SIZE, 0);
*((void **) data1) = olddata1;
olddata1 = data1;
}
108,7 → 108,7
data1 = slab_alloc(cache1, FRAME_ATOMIC);
if (!data1)
break;
memsetb((uintptr_t) data1, ITEM_SIZE, 0);
memsetb(data1, ITEM_SIZE, 0);
*((void **) data1) = olddata1;
olddata1 = data1;
}
150,11 → 150,11
mutex_unlock(&starter_mutex);
if (!sh_quiet)
printf("Starting thread #%llu...\n",THREAD->tid);
printf("Starting thread #%" PRIu64 "...\n", THREAD->tid);
 
/* Alloc all */
if (!sh_quiet)
printf("Thread #%llu allocating...\n", THREAD->tid);
printf("Thread #%" PRIu64 " allocating...\n", THREAD->tid);
while (1) {
/* Call with atomic to detect end of memory */
166,7 → 166,7
}
if (!sh_quiet)
printf("Thread #%llu releasing...\n", THREAD->tid);
printf("Thread #%" PRIu64 " releasing...\n", THREAD->tid);
while (data) {
new = *((void **)data);
176,7 → 176,7
}
if (!sh_quiet)
printf("Thread #%llu allocating...\n", THREAD->tid);
printf("Thread #%" PRIu64 " allocating...\n", THREAD->tid);
while (1) {
/* Call with atomic to detect end of memory */
188,7 → 188,7
}
if (!sh_quiet)
printf("Thread #%llu releasing...\n", THREAD->tid);
printf("Thread #%" PRIu64 " releasing...\n", THREAD->tid);
while (data) {
new = *((void **)data);
198,7 → 198,7
}
if (!sh_quiet)
printf("Thread #%llu finished\n", THREAD->tid);
printf("Thread #%" PRIu64 " finished\n", THREAD->tid);
slab_print_list();
semaphore_up(&thr_sem);
216,7 → 216,7
printf("Running stress test with size %d\n", size);
condvar_initialize(&thread_starter);
mutex_initialize(&starter_mutex);
mutex_initialize(&starter_mutex, MUTEX_PASSIVE);
 
thr_cache = slab_cache_create("thread_cache", size, 0, NULL, NULL, 0);
semaphore_initialize(&thr_sem,0);
/branches/network/kernel/test/mm/slab1.c
53,7 → 53,7
for (i = 0; i < count; i++) {
data[i] = slab_alloc(cache, 0);
memsetb((uintptr_t) data[i], size, 0);
memsetb(data[i], size, 0);
}
if (!quiet) {
71,7 → 71,7
for (i = 0; i < count; i++) {
data[i] = slab_alloc(cache, 0);
memsetb((uintptr_t) data[i], size, 0);
memsetb(data[i], size, 0);
}
if (!quiet) {
89,7 → 89,7
for (i = count / 2; i < count; i++) {
data[i] = slab_alloc(cache, 0);
memsetb((uintptr_t) data[i], size, 0);
memsetb(data[i], size, 0);
}
if (!quiet) {
137,7 → 137,7
thread_detach(THREAD);
if (!sh_quiet)
printf("Starting thread #%llu...\n", THREAD->tid);
printf("Starting thread #%" PRIu64 "...\n", THREAD->tid);
for (j = 0; j < 10; j++) {
for (i = 0; i < THR_MEM_COUNT; i++)
151,7 → 151,7
}
if (!sh_quiet)
printf("Thread #%llu finished\n", THREAD->tid);
printf("Thread #%" PRIu64 " finished\n", THREAD->tid);
semaphore_up(&thr_sem);
}
/branches/network/kernel/test/mm/falloc2.c
55,10 → 55,10
uint8_t val = THREAD->tid % THREADS;
index_t k;
uintptr_t * frames = (uintptr_t *) malloc(MAX_FRAMES * sizeof(uintptr_t), FRAME_ATOMIC);
void **frames = (void **) malloc(MAX_FRAMES * sizeof(void *), FRAME_ATOMIC);
if (frames == NULL) {
if (!sh_quiet)
printf("Thread #%llu (cpu%d): Unable to allocate frames\n", THREAD->tid, CPU->id);
printf("Thread #%" PRIu64 " (cpu%u): Unable to allocate frames\n", THREAD->tid, CPU->id);
atomic_inc(&thread_fail);
atomic_dec(&thread_count);
return;
69,11 → 69,11
for (run = 0; run < THREAD_RUNS; run++) {
for (order = 0; order <= MAX_ORDER; order++) {
if (!sh_quiet)
printf("Thread #%llu (cpu%d): Allocating %d frames blocks ... \n", THREAD->tid, CPU->id, 1 << order);
printf("Thread #%" PRIu64 " (cpu%u): Allocating %d frames blocks ... \n", THREAD->tid, CPU->id, 1 << order);
allocated = 0;
for (i = 0; i < (MAX_FRAMES >> order); i++) {
frames[allocated] = (uintptr_t)frame_alloc(order, FRAME_ATOMIC | FRAME_KA);
frames[allocated] = frame_alloc(order, FRAME_ATOMIC | FRAME_KA);
if (frames[allocated]) {
memsetb(frames[allocated], FRAME_SIZE << order, val);
allocated++;
82,16 → 82,16
}
if (!sh_quiet)
printf("Thread #%llu (cpu%d): %d blocks allocated.\n", THREAD->tid, CPU->id, allocated);
printf("Thread #%" PRIu64 " (cpu%u): %d blocks allocated.\n", THREAD->tid, CPU->id, allocated);
if (!sh_quiet)
printf("Thread #%llu (cpu%d): Deallocating ... \n", THREAD->tid, CPU->id);
printf("Thread #%" PRIu64 " (cpu%u): Deallocating ... \n", THREAD->tid, CPU->id);
for (i = 0; i < allocated; i++) {
for (k = 0; k <= ((FRAME_SIZE << order) - 1); k++) {
for (k = 0; k <= (((index_t) FRAME_SIZE << order) - 1); k++) {
if (((uint8_t *) frames[i])[k] != val) {
if (!sh_quiet)
printf("Thread #%llu (cpu%d): Unexpected data (%d) in block %p offset %#zx\n", THREAD->tid, CPU->id, ((char *) frames[i])[k], frames[i], k);
printf("Thread #%" PRIu64 " (cpu%u): Unexpected data (%c) in block %p offset %#" PRIi "\n", THREAD->tid, CPU->id, ((char *) frames[i])[k], frames[i], k);
atomic_inc(&thread_fail);
goto cleanup;
}
100,7 → 100,7
}
if (!sh_quiet)
printf("Thread #%llu (cpu%d): Finished run.\n", THREAD->tid, CPU->id);
printf("Thread #%" PRIu64 " (cpu%u): Finished run.\n", THREAD->tid, CPU->id);
}
}
 
108,7 → 108,7
free(frames);
if (!sh_quiet)
printf("Thread #%llu (cpu%d): Exiting\n", THREAD->tid, CPU->id);
printf("Thread #%" PRIu64 " (cpu%u): Exiting\n", THREAD->tid, CPU->id);
atomic_dec(&thread_count);
}
 
124,7 → 124,7
thread_t * thrd = thread_create(falloc, NULL, TASK, 0, "falloc", false);
if (!thrd) {
if (!quiet)
printf("Could not create thread %d\n", i);
printf("Could not create thread %u\n", i);
break;
}
thread_ready(thrd);
132,7 → 132,7
while (atomic_get(&thread_count) > 0) {
if (!quiet)
printf("Threads left: %d\n", atomic_get(&thread_count));
printf("Threads left: %ld\n", atomic_get(&thread_count));
thread_sleep(1);
}
/branches/network/kernel/test/avltree/avltree1.c
48,7 → 48,8
 
static int test_tree_balance(avltree_node_t *node);
static avltree_node_t *test_tree_parents(avltree_node_t *node);
static void print_tree_structure_flat (avltree_node_t *node, int level);
static void print_tree_structure_flat (avltree_node_t *node, int level)
__attribute__ ((used));
static avltree_node_t *alloc_avltree_node(void);
 
static avltree_node_t *test_tree_parents(avltree_node_t *node)
61,14 → 62,15
if (node->lft) {
tmp = test_tree_parents(node->lft);
if (tmp != node) {
printf("Bad parent pointer key: %d, address: %p\n",
tmp->key, node->lft);
printf("Bad parent pointer key: %" PRIu64
", address: %p\n", tmp->key, node->lft);
}
}
if (node->rgt) {
tmp = test_tree_parents(node->rgt);
if (tmp != node) {
printf("Bad parent pointer key: %d, address: %p\n",
printf("Bad parent pointer key: %" PRIu64
", address: %p\n",
tmp->key,node->rgt);
}
}
94,7 → 96,8
* Prints the structure of the node, which is level levels from the top of the
* tree.
*/
static void print_tree_structure_flat(avltree_node_t *node, int level)
static void
print_tree_structure_flat(avltree_node_t *node, int level)
{
/*
* You can set the maximum level as high as you like.
109,7 → 112,7
if (node == NULL)
return;
 
printf("%d[%d]", node->key, node->balance);
printf("%" PRIu64 "[%" PRIu8 "]", node->key, node->balance);
if (node->lft != NULL || node->rgt != NULL) {
printf("(");
 
130,6 → 133,7
for (i = 0; i < NODE_COUNT - 1; i++) {
avltree_nodes[i].par = &avltree_nodes[i + 1];
}
avltree_nodes[i].par = NULL;
/*
* Node keys which will be used for insertion. Up to NODE_COUNT size of
169,7 → 173,6
for (i = 21; i < NODE_COUNT; i++)
avltree_nodes[i].key = i * 3;
avltree_nodes[i].par = NULL;
first_free_node = &avltree_nodes[0];
}
 
191,7 → 194,7
avltree_create(tree);
if (!quiet)
printf("Inserting %d nodes...", node_count);
printf("Inserting %" PRIc " nodes...", node_count);
 
for (i = 0; i < node_count; i++) {
newnode = alloc_avltree_node();
246,7 → 249,7
 
static void test_tree_delmin(avltree_t *tree, count_t node_count, bool quiet)
{
int i = 0;
unsigned int i = 0;
if (!quiet)
printf("Deleting minimum nodes...");
/branches/network/kernel/test/synch/rwlock3.c
45,14 → 45,14
thread_detach(THREAD);
if (!sh_quiet)
printf("cpu%d, tid %llu: trying to lock rwlock for reading....\n", CPU->id, THREAD->tid);
printf("cpu%u, tid %" PRIu64 ": trying to lock rwlock for reading....\n", CPU->id, THREAD->tid);
rwlock_read_lock(&rwlock);
rwlock_read_unlock(&rwlock);
if (!sh_quiet) {
printf("cpu%d, tid %llu: success\n", CPU->id, THREAD->tid);
printf("cpu%d, tid %llu: trying to lock rwlock for writing....\n", CPU->id, THREAD->tid);
printf("cpu%u, tid %" PRIu64 ": success\n", CPU->id, THREAD->tid);
printf("cpu%u, tid %" PRIu64 ": trying to lock rwlock for writing....\n", CPU->id, THREAD->tid);
}
 
rwlock_write_lock(&rwlock);
59,7 → 59,7
rwlock_write_unlock(&rwlock);
if (!sh_quiet)
printf("cpu%d, tid %llu: success\n", CPU->id, THREAD->tid);
printf("cpu%u, tid %" PRIu64 ": success\n", CPU->id, THREAD->tid);
atomic_dec(&thread_count);
}
88,7 → 88,7
while (atomic_get(&thread_count) > 0) {
if (!quiet)
printf("Threads left: %d\n", atomic_get(&thread_count));
printf("Threads left: %ld\n", atomic_get(&thread_count));
thread_sleep(1);
}
/branches/network/kernel/test/synch/rwlock4.c
74,18 → 74,18
to = random(40000);
if (!sh_quiet)
printf("cpu%d, tid %llu w+ (%d)\n", CPU->id, THREAD->tid, to);
printf("cpu%u, tid %" PRIu64 " w+ (%d)\n", CPU->id, THREAD->tid, to);
rc = rwlock_write_lock_timeout(&rwlock, to);
if (SYNCH_FAILED(rc)) {
if (!sh_quiet)
printf("cpu%d, tid %llu w!\n", CPU->id, THREAD->tid);
printf("cpu%u, tid %" PRIu64 " w!\n", CPU->id, THREAD->tid);
atomic_dec(&thread_count);
return;
}
if (!sh_quiet)
printf("cpu%d, tid %llu w=\n", CPU->id, THREAD->tid);
printf("cpu%u, tid %" PRIu64 " w=\n", CPU->id, THREAD->tid);
 
if (rwlock.readers_in) {
if (!sh_quiet)
106,7 → 106,7
rwlock_write_unlock(&rwlock);
if (!sh_quiet)
printf("cpu%d, tid %llu w-\n", CPU->id, THREAD->tid);
printf("cpu%u, tid %" PRIu64 " w-\n", CPU->id, THREAD->tid);
atomic_dec(&thread_count);
}
 
119,24 → 119,24
to = random(2000);
if (!sh_quiet)
printf("cpu%d, tid %llu r+ (%d)\n", CPU->id, THREAD->tid, to);
printf("cpu%u, tid %" PRIu64 " r+ (%d)\n", CPU->id, THREAD->tid, to);
rc = rwlock_read_lock_timeout(&rwlock, to);
if (SYNCH_FAILED(rc)) {
if (!sh_quiet)
printf("cpu%d, tid %llu r!\n", CPU->id, THREAD->tid);
printf("cpu%u, tid %" PRIu64 " r!\n", CPU->id, THREAD->tid);
atomic_dec(&thread_count);
return;
}
if (!sh_quiet)
printf("cpu%d, tid %llu r=\n", CPU->id, THREAD->tid);
printf("cpu%u, tid %" PRIu64 " r=\n", CPU->id, THREAD->tid);
thread_usleep(30000);
rwlock_read_unlock(&rwlock);
if (!sh_quiet)
printf("cpu%d, tid %llu r-\n", CPU->id, THREAD->tid);
printf("cpu%u, tid %" PRIu64 " r-\n", CPU->id, THREAD->tid);
atomic_dec(&thread_count);
}
 
159,8 → 159,8
context_save(&ctx);
if (!quiet) {
printf("sp=%#x, readers_in=%d\n", ctx.sp, rwlock.readers_in);
printf("Creating %d readers\n", rd);
printf("sp=%#x, readers_in=%" PRIc "\n", ctx.sp, rwlock.readers_in);
printf("Creating %" PRIu32 " readers\n", rd);
}
for (i = 0; i < rd; i++) {
168,11 → 168,11
if (thrd)
thread_ready(thrd);
else if (!quiet)
printf("Could not create reader %d\n", i);
printf("Could not create reader %" PRIu32 "\n", i);
}
 
if (!quiet)
printf("Creating %d writers\n", wr);
printf("Creating %" PRIu32 " writers\n", wr);
for (i = 0; i < wr; i++) {
thrd = thread_create(writer, NULL, TASK, 0, "writer", false);
179,7 → 179,7
if (thrd)
thread_ready(thrd);
else if (!quiet)
printf("Could not create writer %d\n", i);
printf("Could not create writer %" PRIu32 "\n", i);
}
thread_usleep(20000);
187,7 → 187,7
while (atomic_get(&thread_count) > 0) {
if (!quiet)
printf("Threads left: %d\n", atomic_get(&thread_count));
printf("Threads left: %ld\n", atomic_get(&thread_count));
thread_sleep(1);
}
/branches/network/kernel/test/synch/semaphore2.c
67,18 → 67,18
waitq_sleep(&can_start);
to = random(20000);
printf("cpu%d, tid %llu down+ (%d)\n", CPU->id, THREAD->tid, to);
printf("cpu%u, tid %" PRIu64 " down+ (%d)\n", CPU->id, THREAD->tid, to);
rc = semaphore_down_timeout(&sem, to);
if (SYNCH_FAILED(rc)) {
printf("cpu%d, tid %llu down!\n", CPU->id, THREAD->tid);
printf("cpu%u, tid %" PRIu64 " down!\n", CPU->id, THREAD->tid);
return;
}
printf("cpu%d, tid %llu down=\n", CPU->id, THREAD->tid);
printf("cpu%u, tid %" PRIu64 " down=\n", CPU->id, THREAD->tid);
thread_usleep(random(30000));
semaphore_up(&sem);
printf("cpu%d, tid %llu up\n", CPU->id, THREAD->tid);
printf("cpu%u, tid %" PRIu64 " up\n", CPU->id, THREAD->tid);
}
 
char * test_semaphore2(bool quiet)
91,7 → 91,7
thread_t *thrd;
k = random(7) + 1;
printf("Creating %d consumers\n", k);
printf("Creating %" PRIu32 " consumers\n", k);
for (i = 0; i < k; i++) {
thrd = thread_create(consumer, NULL, TASK, 0, "consumer", false);
if (thrd)
/branches/network/kernel/test/synch/rwlock5.c
69,7 → 69,7
char * test_rwlock5(bool quiet)
{
int i, j, k;
count_t readers, writers;
long readers, writers;
waitq_initialize(&can_start);
rwlock_initialize(&rwlock);
108,7 → 108,7
waitq_wakeup(&can_start, WAKEUP_ALL);
while ((items_read.count != readers) || (items_written.count != writers)) {
printf("%zd readers remaining, %zd writers remaining, readers_in=%zd\n", readers - items_read.count, writers - items_written.count, rwlock.readers_in);
printf("%d readers remaining, %d writers remaining, readers_in=%d\n", readers - items_read.count, writers - items_written.count, rwlock.readers_in);
thread_usleep(100000);
}
}
/branches/network/kernel/test/test.h
36,12 → 36,13
#define KERN_TEST_H_
 
#include <arch/types.h>
#include <typedefs.h>
 
typedef char * (* test_entry_t)(bool);
typedef char *(*test_entry_t)(bool);
 
typedef struct {
char * name;
char * desc;
char *name;
char *desc;
test_entry_t entry;
bool safe;
} test_t;
/branches/network/kernel/test/thread/thread1.c
48,7 → 48,7
 
while (atomic_get(&finish)) {
if (!sh_quiet)
printf("%llu ", THREAD->tid);
printf("%" PRIu64 " ", THREAD->tid);
thread_usleep(100000);
}
atomic_inc(&threads_finished);
78,7 → 78,7
thread_sleep(10);
atomic_set(&finish, 0);
while (atomic_get(&threads_finished) < total) {
while (atomic_get(&threads_finished) < ((long) total)) {
if (!quiet)
printf("Threads left: %d\n", total - atomic_get(&threads_finished));
thread_sleep(1);
/branches/network/kernel/test/fpu/mips2.c
72,7 → 72,7
if (arg != after_arg) {
if (!sh_quiet)
printf("General reg tid%llu: arg(%d) != %d\n", THREAD->tid, arg, after_arg);
printf("General reg tid%" PRIu64 ": arg(%d) != %d\n", THREAD->tid, arg, after_arg);
atomic_inc(&threads_fault);
break;
}
104,7 → 104,7
if (arg != after_arg) {
if (!sh_quiet)
printf("General reg tid%llu: arg(%d) != %d\n", THREAD->tid, arg, after_arg);
printf("General reg tid%" PRIu64 ": arg(%d) != %d\n", THREAD->tid, arg, after_arg);
atomic_inc(&threads_fault);
break;
}
123,7 → 123,7
atomic_set(&threads_fault, 0);
if (!quiet)
printf("Creating %d threads... ", 2 * THREADS);
printf("Creating %u threads... ", 2 * THREADS);
 
for (i = 0; i < THREADS; i++) {
thread_t *t;
130,7 → 130,7
if (!(t = thread_create(testit1, (void *) ((unative_t) 2 * i), TASK, 0, "testit1", false))) {
if (!quiet)
printf("could not create thread %d\n", 2 * i);
printf("could not create thread %u\n", 2 * i);
break;
}
thread_ready(t);
138,7 → 138,7
if (!(t = thread_create(testit2, (void *) ((unative_t) 2 * i + 1), TASK, 0, "testit2", false))) {
if (!quiet)
printf("could not create thread %d\n", 2 * i + 1);
printf("could not create thread %u\n", 2 * i + 1);
break;
}
thread_ready(t);
151,7 → 151,7
thread_sleep(1);
waitq_wakeup(&can_start, WAKEUP_ALL);
while (atomic_get(&threads_ok) != total) {
while (atomic_get(&threads_ok) != (long) total) {
if (!quiet)
printf("Threads left: %d\n", total - atomic_get(&threads_ok));
thread_sleep(1);
/branches/network/kernel/test/fpu/fpu1.c
126,7 → 126,7
 
if ((int) (100000000 * e) != E_10e8) {
if (!sh_quiet)
printf("tid%llu: e*10e8=%zd should be %zd\n", THREAD->tid, (unative_t) (100000000 * e), (unative_t) E_10e8);
printf("tid%" PRIu64 ": e*10e8=%zd should be %" PRIun "\n", THREAD->tid, (unative_t) (100000000 * e), (unative_t) E_10e8);
atomic_inc(&threads_fault);
break;
}
161,7 → 161,7
#ifdef KERN_ia64_ARCH_H_
if ((int) (1000000 * pi) != PI_10e8) {
if (!sh_quiet)
printf("tid%llu: pi*10e8=%zd should be %zd\n", THREAD->tid, (unative_t) (1000000 * pi), (unative_t) (PI_10e8 / 100));
printf("tid%" PRIu64 ": pi*10e8=%zd should be %" PRIun "\n", THREAD->tid, (unative_t) (1000000 * pi), (unative_t) (PI_10e8 / 100));
atomic_inc(&threads_fault);
break;
}
168,7 → 168,7
#else
if ((int) (100000000 * pi) != PI_10e8) {
if (!sh_quiet)
printf("tid%llu: pi*10e8=%zd should be %zd\n", THREAD->tid, (unative_t) (100000000 * pi), (unative_t) PI_10e8);
printf("tid%" PRIu64 ": pi*10e8=%zd should be %" PRIun "\n", THREAD->tid, (unative_t) (100000000 * pi), (unative_t) PI_10e8);
atomic_inc(&threads_fault);
break;
}
187,7 → 187,7
atomic_set(&threads_fault, 0);
if (!quiet)
printf("Creating %d threads... ", 2 * THREADS);
printf("Creating %u threads... ", 2 * THREADS);
 
for (i = 0; i < THREADS; i++) {
thread_t *t;
194,7 → 194,7
if (!(t = thread_create(e, NULL, TASK, 0, "e", false))) {
if (!quiet)
printf("could not create thread %d\n", 2 * i);
printf("could not create thread %u\n", 2 * i);
break;
}
thread_ready(t);
202,7 → 202,7
if (!(t = thread_create(pi, NULL, TASK, 0, "pi", false))) {
if (!quiet)
printf("could not create thread %d\n", 2 * i + 1);
printf("could not create thread %u\n", 2 * i + 1);
break;
}
thread_ready(t);
215,7 → 215,7
thread_sleep(1);
waitq_wakeup(&can_start, WAKEUP_ALL);
while (atomic_get(&threads_ok) != total) {
while (atomic_get(&threads_ok) != (long) total) {
if (!quiet)
printf("Threads left: %d\n", total - atomic_get(&threads_ok));
thread_sleep(1);
/branches/network/kernel/test/fpu/sse1.c
72,7 → 72,7
if (arg != after_arg) {
if (!sh_quiet)
printf("tid%llu: arg(%d) != %d\n", THREAD->tid, arg, after_arg);
printf("tid%" PRIu64 ": arg(%d) != %d\n", THREAD->tid, arg, after_arg);
atomic_inc(&threads_fault);
break;
}
104,7 → 104,7
if (arg != after_arg) {
if (!sh_quiet)
printf("tid%llu: arg(%d) != %d\n", THREAD->tid, arg, after_arg);
printf("tid%" PRIu64 ": arg(%d) != %d\n", THREAD->tid, arg, after_arg);
atomic_inc(&threads_fault);
break;
}
123,7 → 123,7
atomic_set(&threads_fault, 0);
if (!quiet)
printf("Creating %d threads... ", 2 * THREADS);
printf("Creating %u threads... ", 2 * THREADS);
 
for (i = 0; i < THREADS; i++) {
thread_t *t;
130,7 → 130,7
if (!(t = thread_create(testit1, (void *) ((unative_t) 2 * i), TASK, 0, "testit1", false))) {
if (!quiet)
printf("could not create thread %d\n", 2 * i);
printf("could not create thread %u\n", 2 * i);
break;
}
thread_ready(t);
138,7 → 138,7
if (!(t = thread_create(testit2, (void *) ((unative_t) 2 * i + 1), TASK, 0, "testit2", false))) {
if (!quiet)
printf("could not create thread %d\n", 2 * i + 1);
printf("could not create thread %u\n", 2 * i + 1);
break;
}
thread_ready(t);
151,7 → 151,7
thread_sleep(1);
waitq_wakeup(&can_start, WAKEUP_ALL);
while (atomic_get(&threads_ok) != total) {
while (atomic_get(&threads_ok) != (long) total) {
if (!quiet)
printf("Threads left: %d\n", total - atomic_get(&threads_ok));
thread_sleep(1);
/branches/network/kernel/test/print/print1.c
44,12 → 44,12
printf(" text 8.10s %8.10s \n", "text");
printf(" very long text 8.10s %8.10s \n", "very long text");
printf(" char: c '%c', 3.2c '%3.2c', -3.2c '%-3.2c', 2.3c '%2.3c', -2.3c '%-2.3c' \n",'a', 'b', 'c', 'd', 'e' );
printf(" int: d '%d', 3.2d '%3.2d', -3.2d '%-3.2d', 2.3d '%2.3d', -2.3d '%-2.3d' \n",1, 1, 1, 1, 1 );
printf(" -int: d '%d', 3.2d '%3.2d', -3.2d '%-3.2d', 2.3d '%2.3d', -2.3d '%-2.3d' \n",-1, -1, -1, -1, -1 );
printf(" 0xint: x '%#x', 5.3x '%#5.3x', -5.3x '%#-5.3x', 3.5x '%#3.5x', -3.5x '%#-3.5x' \n",17, 17, 17, 17, 17 );
printf(" char: c '%c', 3.2c '%3.2c', -3.2c '%-3.2c', 2.3c '%2.3c', -2.3c '%-2.3c' \n", 'a', 'b', 'c', 'd', 'e');
printf(" int: d '%d', 3.2d '%3.2d', -3.2d '%-3.2d', 2.3d '%2.3d', -2.3d '%-2.3d' \n", 1, 1, 1, 1, 1);
printf(" -int: d '%d', 3.2d '%3.2d', -3.2d '%-3.2d', 2.3d '%2.3d', -2.3d '%-2.3d' \n", -1, -1, -1, -1, -1);
printf(" 0xint: x '%#x', 5.3x '%#5.3x', -5.3x '%#-5.3x', 3.5x '%#3.5x', -3.5x '%#-3.5x' \n", 17, 17, 17, 17, 17);
printf("'%#llx' 64bit, '%#x' 32bit, '%#hhx' 8bit, '%#hx' 16bit, unative_t '%#zx'. '%#llx' 64bit and '%s' string.\n", 0x1234567887654321ll, 0x12345678, 0x12, 0x1234, nat, 0x1234567887654321ull, "Lovely string" );
printf("'%#llx' 64bit, '%#x' 32bit, '%#hhx' 8bit, '%#hx' 16bit, unative_t '%#" PRIxn "'. '%#llx' 64bit and '%s' string.\n", 0x1234567887654321ll, 0x12345678, 0x12, 0x1234, nat, 0x1234567887654321ull, "Lovely string" );
printf(" Print to NULL '%s'\n", NULL);
/branches/network/kernel/test/test.c
58,7 → 58,11
#include <print/print1.def>
#include <thread/thread1.def>
#include <sysinfo/sysinfo1.def>
{NULL, NULL, NULL}
{
.name = NULL,
.desc = NULL,
.entry = NULL
}
};
 
/** @}