Subversion Repositories HelenOS

Compare Revisions

Ignore whitespace Rev 4347 → Rev 4348

/branches/dynload/kernel/test/mm/slab2.c
36,18 → 36,18
#include <synch/condvar.h>
#include <synch/mutex.h>
 
#define ITEM_SIZE 256
#define ITEM_SIZE 256
 
/** Fill memory with 2 caches, when allocation fails,
* free one of the caches. We should have everything in magazines,
* now allocation should clean magazines and allow for full allocation.
*/
static void totalmemtest(bool quiet)
static void totalmemtest(void)
{
slab_cache_t *cache1;
slab_cache_t *cache2;
int i;
 
void *data1, *data2;
void *olddata1 = NULL, *olddata2 = NULL;
54,8 → 54,7
cache1 = slab_cache_create("cache1_tst", ITEM_SIZE, 0, NULL, NULL, 0);
cache2 = slab_cache_create("cache2_tst", ITEM_SIZE, 0, NULL, NULL, 0);
if (!quiet)
printf("Allocating...");
TPRINTF("Allocating...");
/* Use atomic alloc, so that we find end of memory */
do {
74,13 → 73,12
*((void **) data2) = olddata2;
olddata1 = data1;
olddata2 = data2;
} while (1);
} while (true);
if (!quiet) {
printf("done.\n");
printf("Deallocating cache2...");
}
TPRINTF("done.\n");
TPRINTF("Deallocating cache2...");
/* We do not have memory - now deallocate cache2 */
while (olddata2) {
data2 = *((void **) olddata2);
88,16 → 86,14
olddata2 = data2;
}
if (!quiet) {
printf("done.\n");
printf("Allocating to cache1...\n");
}
TPRINTF("done.\n");
TPRINTF("Allocating to cache1...\n");
for (i = 0; i < 30; i++) {
data1 = slab_alloc(cache1, FRAME_ATOMIC);
if (!data1) {
if (!quiet)
printf("Incorrect memory size - use another test.");
TPRINTF("Incorrect memory size - use another test.");
return;
}
memsetb(data1, ITEM_SIZE, 0);
104,7 → 100,7
*((void **) data1) = olddata1;
olddata1 = data1;
}
while (1) {
while (true) {
data1 = slab_alloc(cache1, FRAME_ATOMIC);
if (!data1)
break;
113,8 → 109,7
olddata1 = data1;
}
if (!quiet)
printf("Deallocating cache1...");
TPRINTF("Deallocating cache1...");
while (olddata1) {
data1 = *((void **) olddata1);
122,10 → 117,10
olddata1 = data1;
}
if (!quiet) {
printf("done.\n");
TPRINTF("done.\n");
if (!test_quiet)
slab_print_list();
}
slab_cache_destroy(cache1);
slab_cache_destroy(cache2);
135,9 → 130,8
static semaphore_t thr_sem;
static condvar_t thread_starter;
static mutex_t starter_mutex;
static bool sh_quiet;
 
#define THREADS 8
#define THREADS 8
 
static void slabtest(void *priv)
{
149,14 → 143,12
condvar_wait(&thread_starter,&starter_mutex);
mutex_unlock(&starter_mutex);
if (!sh_quiet)
printf("Starting thread #%" PRIu64 "...\n", THREAD->tid);
TPRINTF("Starting thread #%" PRIu64 "...\n", THREAD->tid);
 
/* Alloc all */
if (!sh_quiet)
printf("Thread #%" PRIu64 " allocating...\n", THREAD->tid);
TPRINTF("Thread #%" PRIu64 " allocating...\n", THREAD->tid);
while (1) {
while (true) {
/* Call with atomic to detect end of memory */
new = slab_alloc(thr_cache, FRAME_ATOMIC);
if (!new)
165,8 → 157,7
data = new;
}
if (!sh_quiet)
printf("Thread #%" PRIu64 " releasing...\n", THREAD->tid);
TPRINTF("Thread #%" PRIu64 " releasing...\n", THREAD->tid);
while (data) {
new = *((void **)data);
175,10 → 166,9
data = new;
}
if (!sh_quiet)
printf("Thread #%" PRIu64 " allocating...\n", THREAD->tid);
TPRINTF("Thread #%" PRIu64 " allocating...\n", THREAD->tid);
while (1) {
while (true) {
/* Call with atomic to detect end of memory */
new = slab_alloc(thr_cache, FRAME_ATOMIC);
if (!new)
187,8 → 177,7
data = new;
}
if (!sh_quiet)
printf("Thread #%" PRIu64 " releasing...\n", THREAD->tid);
TPRINTF("Thread #%" PRIu64 " releasing...\n", THREAD->tid);
while (data) {
new = *((void **)data);
197,14 → 186,15
data = new;
}
if (!sh_quiet)
printf("Thread #%" PRIu64 " finished\n", THREAD->tid);
TPRINTF("Thread #%" PRIu64 " finished\n", THREAD->tid);
slab_print_list();
if (!test_quiet)
slab_print_list();
semaphore_up(&thr_sem);
}
 
static void multitest(int size, bool quiet)
static void multitest(int size)
{
/* Start 8 threads that just allocate as much as possible,
* then release everything, then again allocate, then release
212,48 → 202,42
thread_t *t;
int i;
if (!quiet)
printf("Running stress test with size %d\n", size);
TPRINTF("Running stress test with size %d\n", size);
condvar_initialize(&thread_starter);
mutex_initialize(&starter_mutex, MUTEX_PASSIVE);
 
thr_cache = slab_cache_create("thread_cache", size, 0, NULL, NULL, 0);
semaphore_initialize(&thr_sem,0);
for (i = 0; i < THREADS; i++) {
if (!(t = thread_create(slabtest, NULL, TASK, 0, "slabtest", false))) {
if (!quiet)
printf("Could not create thread %d\n", i);
TPRINTF("Could not create thread %d\n", i);
} else
thread_ready(t);
}
thread_sleep(1);
condvar_broadcast(&thread_starter);
 
for (i = 0; i < THREADS; i++)
semaphore_down(&thr_sem);
slab_cache_destroy(thr_cache);
if (!quiet)
printf("Stress test complete.\n");
TPRINTF("Stress test complete.\n");
}
 
char * test_slab2(bool quiet)
char *test_slab2(void)
{
sh_quiet = quiet;
TPRINTF("Running reclaim single-thread test .. pass 1\n");
totalmemtest();
if (!quiet)
printf("Running reclaim single-thread test .. pass 1\n");
totalmemtest(quiet);
if (!quiet)
printf("Running reclaim single-thread test .. pass 2\n");
totalmemtest(quiet);
if (!quiet)
printf("Reclaim test OK.\n");
TPRINTF("Running reclaim single-thread test .. pass 2\n");
totalmemtest();
multitest(128, quiet);
multitest(2048, quiet);
multitest(8192, quiet);
TPRINTF("Reclaim test OK.\n");
multitest(128);
multitest(2048);
multitest(8192);
return NULL;
}