Subversion Repositories HelenOS

Compare Revisions

No changes between revisions

Ignore whitespace Rev 4667 → Rev 4668

/branches/dd/contrib/conf/mips32-gx.sh
1,3 → 1,10
#!/bin/sh
 
gxemul $@ -E testmips -C R4000 -X image.boot
DISK_IMG=hdisk.img
 
# Create a disk image if it does not exist
if [ ! -f "$DISK_IMG" ]; then
tools/mkfat.py uspace/dist/data "$DISK_IMG"
fi
 
gxemul $@ -E testmips -C R4000 -X image.boot -d d0:"$DISK_IMG"
/branches/dd/contrib/conf/ia32-qe.sh
0,0 → 1,10
#!/bin/sh
 
DISK_IMG=hdisk.img
 
# Create a disk image if it does not exist
if [ ! -f "$DISK_IMG" ]; then
tools/mkfat.py uspace/dist/data "$DISK_IMG"
fi
 
qemu -m 32 -hda "$DISK_IMG" -cdrom image.iso -boot d
Property changes:
Added: svn:executable
+*
\ No newline at end of property
/branches/dd/kernel/doc/mm
5,10 → 5,10
 
1.1 Hierarchical 4-level per address space page tables
 
SPARTAN kernel deploys generic interface for 4-level page tables
for these architectures: amd64, ia32, mips32 and ppc32. In this
setting, page tables are hierarchical and are not shared by
address spaces (i.e. one set of page tables per address space).
SPARTAN kernel deploys generic interface for 4-level page tables for these
architectures: amd64, arm32, ia32, mips32 and ppc32. In this setting, page
tables are hierarchical and are not shared by address spaces (i.e. one set of
page tables per address space).
 
 
VADDR
/branches/dd/kernel/genarch/include/kbrd/scanc_mac.h
0,0 → 1,48
/*
* Copyright (c) 2009 Jiri Svoboda
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* - The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
 
/** @addtogroup genarch
* @{
*/
/**
* @file
* @brief Scan codes for Macintosh ADB keyboards.
*/
 
#ifndef KERN_SCANC_MAC_H_
#define KERN_SCANC_MAC_H_
 
#define SC_LSHIFT 0x38
#define SC_RSHIFT 0xfd /* Not used */
#define SC_CAPSLOCK 0xfe /* Not used */
#define SC_SCAN_ESCAPE 0xff /* Not used */
 
#endif
 
/** @}
*/
/branches/dd/kernel/genarch/include/drivers/via-cuda/cuda.h
38,14 → 38,80
#include <ddi/irq.h>
#include <arch/types.h>
#include <console/chardev.h>
#include <synch/spinlock.h>
 
typedef struct {
uint8_t b;
uint8_t pad0[0x1ff];
 
uint8_t a;
uint8_t pad1[0x1ff];
 
uint8_t dirb;
uint8_t pad2[0x1ff];
 
uint8_t dira;
uint8_t pad3[0x1ff];
 
uint8_t t1cl;
uint8_t pad4[0x1ff];
 
uint8_t t1ch;
uint8_t pad5[0x1ff];
 
uint8_t t1ll;
uint8_t pad6[0x1ff];
 
uint8_t t1lh;
uint8_t pad7[0x1ff];
 
uint8_t t2cl;
uint8_t pad8[0x1ff];
 
uint8_t t2ch;
uint8_t pad9[0x1ff];
 
uint8_t sr;
uint8_t pad10[0x1ff];
 
uint8_t acr;
uint8_t pad11[0x1ff];
 
uint8_t pcr;
uint8_t pad12[0x1ff];
 
uint8_t ifr;
uint8_t pad13[0x1ff];
 
uint8_t ier;
uint8_t pad14[0x1ff];
 
uint8_t anh;
uint8_t pad15[0x1ff];
} cuda_t;
 
enum {
CUDA_RCV_BUF_SIZE = 5
};
 
enum cuda_xfer_state {
cx_listen,
cx_receive,
cx_rcv_end,
cx_send_start,
cx_send
};
 
typedef struct {
irq_t irq;
cuda_t *cuda;
indev_t *kbrdin;
uint8_t rcv_buf[CUDA_RCV_BUF_SIZE];
uint8_t snd_buf[CUDA_RCV_BUF_SIZE];
size_t bidx;
size_t snd_bytes;
enum cuda_xfer_state xstate;
SPINLOCK_DECLARE(dev_lock);
} cuda_instance_t;
 
extern cuda_instance_t *cuda_init(cuda_t *, inr_t, cir_t, void *);
/branches/dd/kernel/genarch/Makefile.inc
110,6 → 110,12
genarch/src/kbrd/scanc_sun.c
endif
 
ifeq ($(CONFIG_MAC_KBD),y)
GENARCH_SOURCES += \
genarch/src/kbrd/kbrd.c \
genarch/src/kbrd/scanc_mac.c
endif
 
ifeq ($(CONFIG_SRLN),y)
GENARCH_SOURCES += \
genarch/src/srln/srln.c
/branches/dd/kernel/genarch/src/kbrd/kbrd.c
45,6 → 45,10
#include <genarch/kbrd/scanc_sun.h>
#endif
 
#ifdef CONFIG_MAC_KBD
#include <genarch/kbrd/scanc_mac.h>
#endif
 
#include <synch/spinlock.h>
#include <console/chardev.h>
#include <console/console.h>
/branches/dd/kernel/genarch/src/kbrd/scanc_mac.c
0,0 → 1,306
/*
* Copyright (c) 2009 Jiri Svoboda
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* - The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
 
/** @addtogroup genarch
* @{
*/
/**
* @file
* @brief Scan codes for Macintosh ADB keyboards.
*/
 
#include <genarch/kbrd/scanc.h>
#include <typedefs.h>
#include <string.h>
 
/** Primary meaning of scancodes. */
wchar_t sc_primary_map[SCANCODES] = {
[0x00] = 'a',
[0x01] = 's',
[0x02] = 'd',
[0x03] = 'f',
[0x04] = 'h',
[0x05] = 'g',
[0x06] = 'z',
[0x07] = 'x',
[0x08] = 'c',
[0x09] = 'v',
[0x0a] = U_SPECIAL,
[0x0b] = 'b',
[0x0c] = 'q',
[0x0d] = 'w',
[0x0e] = 'e',
[0x0f] = 'r',
[0x10] = 'y',
[0x11] = 't',
[0x12] = '1',
[0x13] = '2',
[0x14] = '3',
[0x15] = '4',
[0x16] = '6',
[0x17] = '5',
[0x18] = '=',
[0x19] = '9',
[0x1a] = '7',
[0x1b] = '-',
[0x1c] = '8',
[0x1d] = '0',
[0x1e] = ']',
[0x1f] = 'o',
[0x20] = 'u',
[0x21] = '[',
[0x22] = 'i',
[0x23] = 'p',
[0x24] = '\n', /* Enter */
[0x25] = 'l',
[0x26] = 'j',
[0x27] = '\'',
[0x28] = 'k',
[0x29] = ';',
[0x2a] = '\\',
[0x2b] = ',',
[0x2c] = '/',
[0x2d] = 'n',
[0x2e] = 'm',
[0x2f] = '.',
[0x30] = '\t', /* Tab */
[0x31] = ' ', /* Space */
[0x32] = '`',
[0x33] = '\b', /* Backspace */
[0x34] = U_SPECIAL,
[0x35] = U_ESCAPE,
[0x36] = U_SPECIAL,
[0x37] = U_SPECIAL,
[0x38] = U_SPECIAL,
[0x39] = U_SPECIAL,
[0x3a] = U_SPECIAL,
[0x3b] = U_LEFT_ARROW,
[0x3c] = U_RIGHT_ARROW,
[0x3d] = U_DOWN_ARROW,
[0x3e] = U_UP_ARROW,
[0x3f] = U_SPECIAL,
[0x40] = U_SPECIAL,
[0x41] = '.', /* Num Separator */
[0x42] = U_SPECIAL,
[0x43] = '*', /* Num Times */
[0x44] = U_SPECIAL,
[0x45] = '+', /* Num Plus */
[0x46] = U_SPECIAL,
[0x47] = U_SPECIAL,
[0x48] = U_SPECIAL,
[0x49] = U_SPECIAL,
[0x4a] = U_SPECIAL,
[0x4b] = '/', /* Num Divide */
[0x4c] = U_SPECIAL,
[0x4d] = U_SPECIAL,
[0x4e] = '-', /* Num Minus */
[0x4f] = U_SPECIAL,
[0x50] = U_SPECIAL,
[0x51] = U_SPECIAL,
[0x52] = '0', /* Num Zero */
[0x53] = '1', /* Num One */
[0x54] = '2', /* Num Two */
[0x55] = '3', /* Num Three */
[0x56] = '4', /* Num Four */
[0x57] = '5', /* Num Five */
[0x58] = '6', /* Num Six */
[0x59] = '7', /* Num Seven */
[0x5a] = U_SPECIAL,
[0x5b] = '8', /* Num Eight */
[0x5c] = '9', /* Num Nine */
[0x5d] = U_SPECIAL,
[0x5e] = U_SPECIAL,
[0x5f] = U_SPECIAL,
[0x60] = U_SPECIAL,
[0x61] = U_SPECIAL,
[0x62] = U_SPECIAL,
[0x63] = U_SPECIAL,
[0x64] = U_SPECIAL,
[0x65] = U_SPECIAL,
[0x66] = U_SPECIAL,
[0x67] = U_SPECIAL,
[0x68] = U_SPECIAL,
[0x69] = U_SPECIAL,
[0x6a] = U_SPECIAL,
[0x6b] = U_SPECIAL,
[0x6c] = U_SPECIAL,
[0x6d] = U_SPECIAL,
[0x6e] = U_SPECIAL,
[0x6f] = U_SPECIAL,
[0x70] = U_SPECIAL,
[0x71] = U_SPECIAL,
[0x72] = U_SPECIAL,
[0x73] = U_HOME_ARROW,
[0x74] = U_PAGE_UP,
[0x75] = U_DELETE,
[0x76] = U_SPECIAL,
[0x77] = U_SPECIAL,
[0x78] = U_SPECIAL,
[0x79] = U_PAGE_DOWN,
[0x7a] = U_SPECIAL,
[0x7b] = U_SPECIAL,
[0x7c] = U_SPECIAL,
[0x7d] = U_SPECIAL,
[0x7e] = U_SPECIAL,
[0x7f] = U_SPECIAL
};
 
/** Secondary meaning of scancodes. */
wchar_t sc_secondary_map[SCANCODES] = {
[0x00] = 'A',
[0x01] = 'S',
[0x02] = 'D',
[0x03] = 'F',
[0x04] = 'H',
[0x05] = 'G',
[0x06] = 'Z',
[0x07] = 'X',
[0x08] = 'C',
[0x09] = 'V',
[0x0a] = U_SPECIAL,
[0x0b] = 'B',
[0x0c] = 'Q',
[0x0d] = 'W',
[0x0e] = 'E',
[0x0f] = 'R',
[0x10] = 'Y',
[0x11] = 'T',
[0x12] = '!',
[0x13] = '@',
[0x14] = '#',
[0x15] = '$',
[0x16] = '^',
[0x17] = '%',
[0x18] = '+',
[0x19] = '(',
[0x1a] = '&',
[0x1b] = '_',
[0x1c] = '*',
[0x1d] = ')',
[0x1e] = '}',
[0x1f] = 'O',
[0x20] = 'U',
[0x21] = '{',
[0x22] = 'I',
[0x23] = 'P',
[0x24] = '\n', /* Enter */
[0x25] = 'L',
[0x26] = 'J',
[0x27] = '"',
[0x28] = 'K',
[0x29] = ':',
[0x2a] = '|',
[0x2b] = '<',
[0x2c] = '?',
[0x2d] = 'N',
[0x2e] = 'M',
[0x2f] = '>',
[0x30] = '\t', /* Tab */
[0x31] = ' ', /* Space */
[0x32] = '~',
[0x33] = '\b', /* Backspace */
[0x34] = U_SPECIAL,
[0x35] = U_SPECIAL,
[0x36] = U_SPECIAL,
[0x37] = U_SPECIAL,
[0x38] = U_SPECIAL,
[0x39] = U_SPECIAL,
[0x3a] = U_SPECIAL,
[0x3b] = U_SPECIAL,
[0x3c] = U_SPECIAL,
[0x3d] = U_SPECIAL,
[0x3e] = U_SPECIAL,
[0x3f] = U_SPECIAL,
[0x40] = U_SPECIAL,
[0x41] = '.', /* Num Separator */
[0x42] = U_SPECIAL,
[0x43] = '*', /* Num Times */
[0x44] = U_SPECIAL,
[0x45] = '+', /* Num Plus */
[0x46] = U_SPECIAL,
[0x47] = U_SPECIAL,
[0x48] = U_SPECIAL,
[0x49] = U_SPECIAL,
[0x4a] = U_SPECIAL,
[0x4b] = '/', /* Num Divide */
[0x4c] = U_SPECIAL,
[0x4d] = U_SPECIAL,
[0x4e] = '-', /* Num Minus */
[0x4f] = U_SPECIAL,
[0x50] = U_SPECIAL,
[0x51] = U_SPECIAL,
[0x52] = '0', /* Num Zero */
[0x53] = '1', /* Num One */
[0x54] = '2', /* Num Two */
[0x55] = '3', /* Num Three */
[0x56] = '4', /* Num Four */
[0x57] = '5', /* Num Five */
[0x58] = '6', /* Num Six */
[0x59] = '7', /* Num Seven */
[0x5a] = U_SPECIAL,
[0x5b] = '8', /* Num Eight */
[0x5c] = '9', /* Num Nine */
[0x5d] = U_SPECIAL,
[0x5e] = U_SPECIAL,
[0x5f] = U_SPECIAL,
[0x60] = U_SPECIAL,
[0x61] = U_SPECIAL,
[0x62] = U_SPECIAL,
[0x63] = U_SPECIAL,
[0x64] = U_SPECIAL,
[0x65] = U_SPECIAL,
[0x66] = U_SPECIAL,
[0x67] = U_SPECIAL,
[0x68] = U_SPECIAL,
[0x69] = U_SPECIAL,
[0x6a] = U_SPECIAL,
[0x6b] = U_SPECIAL,
[0x6c] = U_SPECIAL,
[0x6d] = U_SPECIAL,
[0x6e] = U_SPECIAL,
[0x6f] = U_SPECIAL,
[0x70] = U_SPECIAL,
[0x71] = U_SPECIAL,
[0x72] = U_SPECIAL,
[0x73] = U_SPECIAL,
[0x74] = U_SPECIAL,
[0x75] = U_SPECIAL,
[0x76] = U_SPECIAL,
[0x77] = U_SPECIAL,
[0x78] = U_SPECIAL,
[0x79] = U_SPECIAL,
[0x7a] = U_SPECIAL,
[0x7b] = U_SPECIAL,
[0x7c] = U_SPECIAL,
[0x7d] = U_SPECIAL,
[0x7e] = U_SPECIAL,
[0x7f] = U_SPECIAL
};
 
/** @}
*/
/branches/dd/kernel/genarch/src/mm/page_ht.c
192,6 → 192,8
t->k = !(flags & PAGE_USER);
t->c = (flags & PAGE_CACHEABLE) != 0;
t->p = !(flags & PAGE_NOT_PRESENT);
t->a = false;
t->d = false;
 
t->as = as;
t->page = ALIGN_DOWN(page, PAGE_SIZE);
/branches/dd/kernel/genarch/src/acpi/acpi.c
167,10 → 167,13
LOG("%p: ACPI Root System Description Pointer\n", acpi_rsdp);
 
acpi_rsdt = (struct acpi_rsdt *) (unative_t) acpi_rsdp->rsdt_address;
if (acpi_rsdp->revision) acpi_xsdt = (struct acpi_xsdt *) ((uintptr_t) acpi_rsdp->xsdt_address);
if (acpi_rsdp->revision)
acpi_xsdt = (struct acpi_xsdt *) ((uintptr_t) acpi_rsdp->xsdt_address);
 
if (acpi_rsdt) map_sdt((struct acpi_sdt_header *) acpi_rsdt);
if (acpi_xsdt) map_sdt((struct acpi_sdt_header *) acpi_xsdt);
if (acpi_rsdt)
map_sdt((struct acpi_sdt_header *) acpi_rsdt);
if (acpi_xsdt)
map_sdt((struct acpi_sdt_header *) acpi_xsdt);
 
if (acpi_rsdt && !acpi_sdt_check((uint8_t *) acpi_rsdt)) {
printf("RSDT: bad checksum\n");
181,8 → 184,10
return;
}
 
if (acpi_xsdt) configure_via_xsdt();
else if (acpi_rsdt) configure_via_rsdt();
if (acpi_xsdt)
configure_via_xsdt();
else if (acpi_rsdt)
configure_via_rsdt();
 
}
 
/branches/dd/kernel/genarch/src/drivers/via-cuda/cuda.c
1,5 → 1,6
/*
* Copyright (c) 2006 Martin Decky
* Copyright (c) 2009 Jiri Svoboda
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
38,16 → 39,53
#include <arch/asm.h>
#include <mm/slab.h>
#include <ddi/device.h>
#include <synch/spinlock.h>
 
static irq_ownership_t cuda_claim(irq_t *irq)
{
return IRQ_DECLINE;
}
static irq_ownership_t cuda_claim(irq_t *irq);
static void cuda_irq_handler(irq_t *irq);
 
static void cuda_irq_handler(irq_t *irq)
{
}
static void cuda_irq_listen(irq_t *irq);
static void cuda_irq_receive(irq_t *irq);
static void cuda_irq_rcv_end(irq_t *irq, void *buf, size_t *len);
static void cuda_irq_send_start(irq_t *irq);
static void cuda_irq_send(irq_t *irq);
 
static void cuda_packet_handle(cuda_instance_t *instance, uint8_t *buf, size_t len);
static void cuda_send_start(cuda_instance_t *instance);
static void cuda_autopoll_set(cuda_instance_t *instance, bool enable);
 
/** B register fields */
enum {
TREQ = 0x08,
TACK = 0x10,
TIP = 0x20
};
 
/** IER register fields */
enum {
IER_CLR = 0x00,
IER_SET = 0x80,
 
SR_INT = 0x04,
ALL_INT = 0x7f
};
 
/** ACR register fields */
enum {
SR_OUT = 0x10
};
 
/** Packet types */
enum {
PT_ADB = 0x00,
PT_CUDA = 0x01
};
 
/** CUDA packet types */
enum {
CPT_AUTOPOLL = 0x01
};
 
cuda_instance_t *cuda_init(cuda_t *dev, inr_t inr, cir_t cir, void *cir_arg)
{
cuda_instance_t *instance
55,7 → 93,15
if (instance) {
instance->cuda = dev;
instance->kbrdin = NULL;
instance->xstate = cx_listen;
instance->bidx = 0;
instance->snd_bytes = 0;
 
spinlock_initialize(&instance->dev_lock, "cuda_dev");
 
/* Disable all interrupts from CUDA. */
pio_write_8(&dev->ier, IER_CLR | ALL_INT);
 
irq_initialize(&instance->irq);
instance->irq.devno = device_assign_devno();
instance->irq.inr = inr;
64,15 → 110,251
instance->irq.instance = instance;
instance->irq.cir = cir;
instance->irq.cir_arg = cir_arg;
instance->irq.preack = true;
}
return instance;
}
 
#include <print.h>
void cuda_wire(cuda_instance_t *instance, indev_t *kbrdin)
{
cuda_t *dev = instance->cuda;
 
ASSERT(instance);
ASSERT(kbrdin);
 
instance->kbrdin = kbrdin;
irq_register(&instance->irq);
 
/* Enable SR interrupt. */
pio_write_8(&dev->ier, TIP | TREQ);
pio_write_8(&dev->ier, IER_SET | SR_INT);
 
/* Enable ADB autopolling. */
cuda_autopoll_set(instance, true);
}
 
static irq_ownership_t cuda_claim(irq_t *irq)
{
cuda_instance_t *instance = irq->instance;
cuda_t *dev = instance->cuda;
uint8_t ifr;
 
spinlock_lock(&instance->dev_lock);
ifr = pio_read_8(&dev->ifr);
spinlock_unlock(&instance->dev_lock);
 
if ((ifr & SR_INT) == 0)
return IRQ_DECLINE;
 
return IRQ_ACCEPT;
}
 
static void cuda_irq_handler(irq_t *irq)
{
cuda_instance_t *instance = irq->instance;
uint8_t rbuf[CUDA_RCV_BUF_SIZE];
size_t len;
bool handle;
 
handle = false;
len = 0;
 
spinlock_lock(&instance->dev_lock);
 
/* Lower IFR.SR_INT so that CUDA can generate next int by raising it. */
pio_write_8(&instance->cuda->ifr, SR_INT);
 
switch (instance->xstate) {
case cx_listen: cuda_irq_listen(irq); break;
case cx_receive: cuda_irq_receive(irq); break;
case cx_rcv_end: cuda_irq_rcv_end(irq, rbuf, &len);
handle = true; break;
case cx_send_start: cuda_irq_send_start(irq); break;
case cx_send: cuda_irq_send(irq); break;
}
 
spinlock_unlock(&instance->dev_lock);
 
/* Handle an incoming packet. */
if (handle)
cuda_packet_handle(instance, rbuf, len);
}
 
/** Interrupt in listen state.
*
* Start packet reception.
*/
static void cuda_irq_listen(irq_t *irq)
{
cuda_instance_t *instance = irq->instance;
cuda_t *dev = instance->cuda;
uint8_t b;
 
b = pio_read_8(&dev->b);
 
if ((b & TREQ) != 0) {
printf("cuda_irq_listen: no TREQ?!\n");
return;
}
 
pio_read_8(&dev->sr);
pio_write_8(&dev->b, pio_read_8(&dev->b) & ~TIP);
instance->xstate = cx_receive;
}
 
/** Interrupt in receive state.
*
* Receive next byte of packet.
*/
static void cuda_irq_receive(irq_t *irq)
{
cuda_instance_t *instance = irq->instance;
cuda_t *dev = instance->cuda;
uint8_t b, data;
 
data = pio_read_8(&dev->sr);
if (instance->bidx < CUDA_RCV_BUF_SIZE)
instance->rcv_buf[instance->bidx++] = data;
 
b = pio_read_8(&dev->b);
 
if ((b & TREQ) == 0) {
pio_write_8(&dev->b, b ^ TACK);
} else {
pio_write_8(&dev->b, b | TACK | TIP);
instance->xstate = cx_rcv_end;
}
}
 
/** Interrupt in rcv_end state.
*
* Terminate packet reception. Either go back to listen state or start
* receiving another packet if CUDA has one for us.
*/
static void cuda_irq_rcv_end(irq_t *irq, void *buf, size_t *len)
{
cuda_instance_t *instance = irq->instance;
cuda_t *dev = instance->cuda;
uint8_t data, b;
 
b = pio_read_8(&dev->b);
data = pio_read_8(&dev->sr);
 
if ((b & TREQ) == 0) {
instance->xstate = cx_receive;
pio_write_8(&dev->b, b & ~TIP);
} else {
instance->xstate = cx_listen;
cuda_send_start(instance);
}
 
memcpy(buf, instance->rcv_buf, instance->bidx);
*len = instance->bidx;
instance->bidx = 0;
}
 
/** Interrupt in send_start state.
*
* Process result of sending first byte (and send second on success).
*/
static void cuda_irq_send_start(irq_t *irq)
{
cuda_instance_t *instance = irq->instance;
cuda_t *dev = instance->cuda;
uint8_t b;
 
b = pio_read_8(&dev->b);
 
if ((b & TREQ) == 0) {
/* Collision */
pio_write_8(&dev->acr, pio_read_8(&dev->acr) & ~SR_OUT);
pio_read_8(&dev->sr);
pio_write_8(&dev->b, pio_read_8(&dev->b) | TIP | TACK);
instance->xstate = cx_listen;
return;
}
 
pio_write_8(&dev->sr, instance->snd_buf[1]);
pio_write_8(&dev->b, pio_read_8(&dev->b) ^ TACK);
instance->bidx = 2;
 
instance->xstate = cx_send;
}
 
/** Interrupt in send state.
*
* Send next byte or terminate transmission.
*/
static void cuda_irq_send(irq_t *irq)
{
cuda_instance_t *instance = irq->instance;
cuda_t *dev = instance->cuda;
 
if (instance->bidx < instance->snd_bytes) {
/* Send next byte. */
pio_write_8(&dev->sr, instance->snd_buf[instance->bidx++]);
pio_write_8(&dev->b, pio_read_8(&dev->b) ^ TACK);
return;
}
 
/* End transfer. */
instance->snd_bytes = 0;
instance->bidx = 0;
 
pio_write_8(&dev->acr, pio_read_8(&dev->acr) & ~SR_OUT);
pio_read_8(&dev->sr);
pio_write_8(&dev->b, pio_read_8(&dev->b) | TACK | TIP);
 
instance->xstate = cx_listen;
/* TODO: Match reply with request. */
}
 
static void cuda_packet_handle(cuda_instance_t *instance, uint8_t *data, size_t len)
{
if (data[0] != 0x00 || data[1] != 0x40 || (data[2] != 0x2c
&& data[2] != 0x8c))
return;
 
/* The packet contains one or two scancodes. */
if (data[3] != 0xff)
indev_push_character(instance->kbrdin, data[3]);
if (data[4] != 0xff)
indev_push_character(instance->kbrdin, data[4]);
}
 
static void cuda_autopoll_set(cuda_instance_t *instance, bool enable)
{
instance->snd_buf[0] = PT_CUDA;
instance->snd_buf[1] = CPT_AUTOPOLL;
instance->snd_buf[2] = enable ? 0x01 : 0x00;
instance->snd_bytes = 3;
instance->bidx = 0;
 
cuda_send_start(instance);
}
 
static void cuda_send_start(cuda_instance_t *instance)
{
cuda_t *dev = instance->cuda;
 
ASSERT(instance->xstate == cx_listen);
 
if (instance->snd_bytes == 0)
return;
 
/* Check for incoming data. */
if ((pio_read_8(&dev->b) & TREQ) == 0)
return;
 
pio_write_8(&dev->acr, pio_read_8(&dev->acr) | SR_OUT);
pio_write_8(&dev->sr, instance->snd_buf[0]);
pio_write_8(&dev->b, pio_read_8(&dev->b) & ~TIP);
 
instance->xstate = cx_send_start;
}
 
 
/** @}
*/
/branches/dd/kernel/generic/include/byteorder.h
26,7 → 26,7
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
 
/** @addtogroup generic
/** @addtogroup generic
* @{
*/
/** @file
35,48 → 35,47
#ifndef KERN_BYTEORDER_H_
#define KERN_BYTEORDER_H_
 
#include <arch/byteorder.h>
#include <arch/types.h>
 
#if !(defined(ARCH_IS_BIG_ENDIAN) ^ defined(ARCH_IS_LITTLE_ENDIAN))
#error The architecture must be either big-endian or little-endian.
#if !(defined(__BE__) ^ defined(__LE__))
#error The architecture must be either big-endian or little-endian.
#endif
 
#ifdef ARCH_IS_BIG_ENDIAN
#ifdef __BE__
 
#define uint16_t_le2host(n) uint16_t_byteorder_swap(n)
#define uint32_t_le2host(n) uint32_t_byteorder_swap(n)
#define uint64_t_le2host(n) uint64_t_byteorder_swap(n)
#define uint16_t_le2host(n) (uint16_t_byteorder_swap(n))
#define uint32_t_le2host(n) (uint32_t_byteorder_swap(n))
#define uint64_t_le2host(n) (uint64_t_byteorder_swap(n))
 
#define uint16_t_be2host(n) (n)
#define uint32_t_be2host(n) (n)
#define uint64_t_be2host(n) (n)
#define uint16_t_be2host(n) (n)
#define uint32_t_be2host(n) (n)
#define uint64_t_be2host(n) (n)
 
#define host2uint16_t_le(n) uint16_t_byteorder_swap(n)
#define host2uint32_t_le(n) uint32_t_byteorder_swap(n)
#define host2uint64_t_le(n) uint64_t_byteorder_swap(n)
#define host2uint16_t_le(n) (uint16_t_byteorder_swap(n))
#define host2uint32_t_le(n) (uint32_t_byteorder_swap(n))
#define host2uint64_t_le(n) (uint64_t_byteorder_swap(n))
 
#define host2uint16_t_be(n) (n)
#define host2uint32_t_be(n) (n)
#define host2uint64_t_be(n) (n)
#define host2uint16_t_be(n) (n)
#define host2uint32_t_be(n) (n)
#define host2uint64_t_be(n) (n)
 
#else
 
#define uint16_t_le2host(n) (n)
#define uint32_t_le2host(n) (n)
#define uint64_t_le2host(n) (n)
#define uint16_t_le2host(n) (n)
#define uint32_t_le2host(n) (n)
#define uint64_t_le2host(n) (n)
 
#define uint16_t_be2host(n) uint16_t_byteorder_swap(n)
#define uint32_t_be2host(n) uint32_t_byteorder_swap(n)
#define uint64_t_be2host(n) uint64_t_byteorder_swap(n)
#define uint16_t_be2host(n) (uint16_t_byteorder_swap(n))
#define uint32_t_be2host(n) (uint32_t_byteorder_swap(n))
#define uint64_t_be2host(n) (uint64_t_byteorder_swap(n))
 
#define host2uint16_t_le(n) (n)
#define host2uint32_t_le(n) (n)
#define host2uint64_t_le(n) (n)
#define host2uint16_t_le(n) (n)
#define host2uint32_t_le(n) (n)
#define host2uint64_t_le(n) (n)
 
#define host2uint16_t_be(n) uint16_t_byteorder_swap(n)
#define host2uint32_t_be(n) uint32_t_byteorder_swap(n)
#define host2uint64_t_be(n) uint64_t_byteorder_swap(n)
#define host2uint16_t_be(n) (uint16_t_byteorder_swap(n))
#define host2uint32_t_be(n) (uint32_t_byteorder_swap(n))
#define host2uint64_t_be(n) (uint64_t_byteorder_swap(n))
 
#endif
 
/branches/dd/kernel/generic/include/string.h
57,8 → 57,6
 
#define U_CURSOR 0x2588
 
#define U_BOM 0xfeff
 
/**< No size limit constant */
#define STR_NO_LIMIT ((size_t) -1)
 
/branches/dd/kernel/generic/include/context.h
45,7 → 45,7
(c)->sp = ((uintptr_t) (stack)) + (size) - SP_DELTA;
#endif /* context_set */
 
extern int context_save_arch(context_t *c);
extern int context_save_arch(context_t *c) __attribute__ ((returns_twice));
extern void context_restore_arch(context_t *c) __attribute__ ((noreturn));
 
/** Save register context.
76,10 → 76,6
* corresponding call to context_save(), the only
* difference being return value.
*
* Note that content of any local variable defined by
* the caller of context_save() is undefined after
* context_restore().
*
* @param c Context structure.
*/
static inline void context_restore(context_t *c)
/branches/dd/kernel/generic/src/main/uinit.c
79,6 → 79,14
uarg.uspace_thread_arg = NULL;
 
free((uspace_arg_t *) arg);
/*
* Disable interrupts so that the execution of userspace() is not
* disturbed by any interrupts as some of the userspace()
* implementations will switch to the userspace stack before switching
* the mode.
*/
(void) interrupts_disable();
userspace(&uarg);
}
 
/branches/dd/kernel/generic/src/printf/printf_core.c
302,9 → 302,6
if (str == NULL)
return printf_putstr(nullstr, ps);
if (*str == U_BOM)
str++;
/* Print leading spaces. */
size_t strw = wstr_length(str);
if (precision == 0)
/branches/dd/kernel/Makefile
44,12 → 44,12
## Common compiler flags
#
 
DEFS = -DKERNEL -DRELEASE=$(RELEASE) "-DNAME=$(NAME)"
DEFS = -DKERNEL -DRELEASE=$(RELEASE) "-DNAME=$(NAME)" -D__$(BITS)_BITS__ -D__$(ENDIANESS)__
 
GCC_CFLAGS = -I$(INCLUDES) -O$(OPTIMIZATION) -imacros ../config.h \
-fexec-charset=UTF-8 -fwide-exec-charset=UTF-32 -finput-charset=UTF-8 \
-fno-builtin -Wall -Wextra -Wno-unused-parameter -Wmissing-prototypes -Werror \
-nostdlib -nostdinc -pipe
-fexec-charset=UTF-8 -fwide-exec-charset=UTF-32$(ENDIANESS) \
-finput-charset=UTF-8 -fno-builtin -Wall -Wextra -Wno-unused-parameter \
-Wmissing-prototypes -Werror -nostdlib -nostdinc -pipe
 
ICC_CFLAGS = -I$(INCLUDES) -O$(OPTIMIZATION) -imacros ../config.h \
-fno-builtin -Wall -Wmissing-prototypes -Werror \
/branches/dd/kernel/arch/sparc64/include/byteorder.h
File deleted
/branches/dd/kernel/arch/sparc64/include/atomic.h
123,7 → 123,7
"ldx %0, %2\n"
"brz %2, 0b\n"
"nop\n"
"ba %xcc, 1b\n"
"ba %%xcc, 1b\n"
"nop\n"
"2:\n"
: "+m" (*((uint64_t *) x)), "+r" (tmp1), "+r" (tmp2) : "r" (0)
/branches/dd/kernel/arch/sparc64/include/context.h
39,7 → 39,7
#include <arch/types.h>
#include <align.h>
 
#define SP_DELTA STACK_WINDOW_SAVE_AREA_SIZE
#define SP_DELTA (STACK_WINDOW_SAVE_AREA_SIZE + STACK_ARG_SAVE_AREA_SIZE)
 
#ifdef context_set
#undef context_set
/branches/dd/kernel/arch/sparc64/Makefile.inc
40,7 → 40,8
 
LFLAGS += -no-check-sections -N
 
DEFS += -D__64_BITS__
BITS = 64
ENDIANESS = BE
 
ifeq ($(PROCESSOR),us)
DEFS += -DUS
/branches/dd/kernel/arch/sparc64/src/asm.S
277,7 → 277,7
*/
.global switch_to_userspace
switch_to_userspace:
save %o1, -STACK_WINDOW_SAVE_AREA_SIZE, %sp
save %o1, -(STACK_WINDOW_SAVE_AREA_SIZE + STACK_ARG_SAVE_AREA_SIZE), %sp
flushw
wrpr %g0, 0, %cleanwin ! avoid information leak
 
/branches/dd/kernel/arch/ia64/include/byteorder.h
File deleted
/branches/dd/kernel/arch/ia64/include/atomic.h
52,12 → 52,12
return v;
}
 
 
static inline uint64_t test_and_set(atomic_t *val) {
static inline uint64_t test_and_set(atomic_t *val)
{
uint64_t v;
asm volatile (
"movl %0 = 0x01;;\n"
"movl %0 = 0x1;;\n"
"xchg8 %0 = %1, %0;;\n"
: "=r" (v), "+m" (val->count)
);
65,6 → 65,13
return v;
}
 
static inline void atomic_lock_arch(atomic_t *val)
{
do {
while (val->count)
;
} while (test_and_set(val));
}
 
static inline void atomic_inc(atomic_t *val)
{
/branches/dd/kernel/arch/ia64/include/mm/tlb.h
92,6 → 92,7
extern void data_dirty_bit_fault(uint64_t vector, istate_t *istate);
extern void instruction_access_bit_fault(uint64_t vector, istate_t *istate);
extern void data_access_bit_fault(uint64_t vector, istate_t *istate);
extern void data_access_rights_fault(uint64_t vector, istate_t *istate);
extern void page_not_present(uint64_t vector, istate_t *istate);
 
#endif
/branches/dd/kernel/arch/ia64/Makefile.inc
41,7 → 41,8
LFLAGS += -EL
AFLAGS += -mconstant-gp
 
DEFS += -D__64_BITS__
BITS = 64
ENDIANESS = LE
 
ARCH_SOURCES = \
arch/$(KARCH)/src/start.S \
/branches/dd/kernel/arch/ia64/src/ivt.S
536,7 → 536,7
HEAVYWEIGHT_HANDLER 0x5000 page_not_present
HEAVYWEIGHT_HANDLER 0x5100
HEAVYWEIGHT_HANDLER 0x5200
HEAVYWEIGHT_HANDLER 0x5300
HEAVYWEIGHT_HANDLER 0x5300 data_access_rights_fault
HEAVYWEIGHT_HANDLER 0x5400 general_exception
HEAVYWEIGHT_HANDLER 0x5500 disabled_fp_register
HEAVYWEIGHT_HANDLER 0x5600
/branches/dd/kernel/arch/ia64/src/mm/tlb.c
710,6 → 710,37
page_table_unlock(AS, true);
}
 
/** Data access rights fault handler.
*
* @param vector Interruption vector.
* @param istate Structure with saved interruption state.
*/
void data_access_rights_fault(uint64_t vector, istate_t *istate)
{
region_register rr;
rid_t rid;
uintptr_t va;
pte_t *t;
 
va = istate->cr_ifa; /* faulting address */
rr.word = rr_read(VA2VRN(va));
rid = rr.map.rid;
 
/*
* Assume a write to a read-only page.
*/
page_table_lock(AS, true);
t = page_mapping_find(AS, va);
ASSERT(t && t->p);
ASSERT(!t->w);
if (as_page_fault(va, PF_ACCESS_WRITE, istate) == AS_PF_FAULT) {
fault_if_from_uspace(istate, "Page fault at %p.", va);
panic("%s: va=%p, rid=%d, iip=%p.", __func__, va, rid,
istate->cr_iip);
}
page_table_unlock(AS, true);
}
 
/** Page not present fault handler.
*
* @param vector Interruption vector.
/branches/dd/kernel/arch/arm32/include/byteorder.h
File deleted
/branches/dd/kernel/arch/arm32/Makefile.inc
39,7 → 39,8
 
GCC_CFLAGS += -fno-zero-initialized-in-bss
 
DEFS += -D__32_BITS__
BITS = 32
ENDIANESS = LE
 
ARCH_SOURCES = \
arch/$(KARCH)/src/start.S \
/branches/dd/kernel/arch/ppc32/include/byteorder.h
File deleted
/branches/dd/kernel/arch/ppc32/Makefile.inc
39,7 → 39,8
AFLAGS += -a32
LFLAGS += -no-check-sections -N
 
DEFS += -D__32_BITS__
BITS = 32
ENDIANESS = BE
 
ARCH_SOURCES = \
arch/$(KARCH)/src/context.S \
/branches/dd/kernel/arch/ppc32/src/ppc32.c
36,6 → 36,7
#include <arch.h>
#include <arch/boot/boot.h>
#include <genarch/drivers/via-cuda/cuda.h>
#include <genarch/kbrd/kbrd.h>
#include <arch/interrupt.h>
#include <genarch/fb/fb.h>
#include <genarch/fb/visuals.h>
117,31 → 118,6
/* Initialize IRQ routing */
irq_init(IRQ_COUNT, IRQ_COUNT);
if (bootinfo.macio.addr) {
/* Initialize PIC */
cir_t cir;
void *cir_arg;
pic_init(bootinfo.macio.addr, PAGE_SIZE, &cir, &cir_arg);
#ifdef CONFIG_VIA_CUDA
uintptr_t pa = bootinfo.macio.addr + 0x16000;
uintptr_t aligned_addr = ALIGN_DOWN(pa, PAGE_SIZE);
size_t offset = pa - aligned_addr;
size_t size = 2 * PAGE_SIZE;
cuda_t *cuda = (cuda_t *)
(hw_map(aligned_addr, offset + size) + offset);
/* Initialize I/O controller */
cuda_instance_t *cuda_instance =
cuda_init(cuda, IRQ_CUDA, cir, cir_arg);
if (cuda_instance) {
indev_t *sink = stdin_wire();
cuda_wire(cuda_instance, sink);
}
#endif
}
/* Merge all zones to 1 big zone */
zone_merge_all();
}
157,6 → 133,35
 
void arch_post_smp_init(void)
{
if (bootinfo.macio.addr) {
/* Initialize PIC */
cir_t cir;
void *cir_arg;
pic_init(bootinfo.macio.addr, PAGE_SIZE, &cir, &cir_arg);
 
#ifdef CONFIG_MAC_KBD
uintptr_t pa = bootinfo.macio.addr + 0x16000;
uintptr_t aligned_addr = ALIGN_DOWN(pa, PAGE_SIZE);
size_t offset = pa - aligned_addr;
size_t size = 2 * PAGE_SIZE;
cuda_t *cuda = (cuda_t *)
(hw_map(aligned_addr, offset + size) + offset);
/* Initialize I/O controller */
cuda_instance_t *cuda_instance =
cuda_init(cuda, IRQ_CUDA, cir, cir_arg);
if (cuda_instance) {
kbrd_instance_t *kbrd_instance = kbrd_init();
if (kbrd_instance) {
indev_t *sink = stdin_wire();
indev_t *kbrd = kbrd_wire(kbrd_instance, sink);
cuda_wire(cuda_instance, kbrd);
pic_enable_interrupt(IRQ_CUDA);
}
}
#endif
}
}
 
void calibrate_delay_loop(void)
/branches/dd/kernel/arch/amd64/include/byteorder.h
File deleted
/branches/dd/kernel/arch/amd64/Makefile.inc
41,7 → 41,8
ICC_CFLAGS += $(CMN1)
SUNCC_CFLAGS += -m64 -xmodel=kernel
 
DEFS += -D__64_BITS__
BITS = 64
ENDIANESS = LE
 
## Accepted CPUs
#
/branches/dd/kernel/arch/mips32/include/byteorder.h
File deleted
/branches/dd/kernel/arch/mips32/include/context_offset.h
86,7 → 86,7
#define EOFFSET_STATUS 0x58
#define EOFFSET_EPC 0x5c
#define EOFFSET_K1 0x60
#define REGISTER_SPACE 100
#define REGISTER_SPACE 104 /* respect stack alignment */
 
#ifdef __ASM__
 
/branches/dd/kernel/arch/mips32/include/elf.h
26,7 → 26,7
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
 
/** @addtogroup mips32
/** @addtogroup mips32
* @{
*/
/** @file
35,17 → 35,15
#ifndef KERN_mips32_ELF_H_
#define KERN_mips32_ELF_H_
 
#include <byteorder.h>
#define ELF_MACHINE EM_MIPS
 
#define ELF_MACHINE EM_MIPS
 
#ifdef ARCH_IS_BIG_ENDIAN
# define ELF_DATA_ENCODING ELFDATA2MSB
#ifdef __BE__
#define ELF_DATA_ENCODING ELFDATA2MSB
#else
# define ELF_DATA_ENCODING ELFDATA2LSB
#define ELF_DATA_ENCODING ELFDATA2LSB
#endif
 
#define ELF_CLASS ELFCLASS32
#define ELF_CLASS ELFCLASS32
 
#endif
 
/branches/dd/kernel/arch/mips32/Makefile.inc
36,7 → 36,7
 
GCC_CFLAGS += -mno-abicalls -G 0 -fno-zero-initialized-in-bss -mips3
 
DEFS += -D__32_BITS__
BITS = 32
 
## Accepted MACHINEs
#
43,15 → 43,18
 
ifeq ($(MACHINE),lgxemul)
BFD_NAME = elf32-tradlittlemips
ENDIANESS = LE
endif
ifeq ($(MACHINE),bgxemul)
BFD_NAME = elf32-tradbigmips
TOOLCHAIN_DIR = $(CROSS_PREFIX)/mips
TARGET = mips-linux-gnu
GCC_CFLAGS += -DBIG_ENDIAN
ENDIANESS = BE
GCC_CFLAGS += -D__BE__
endif
ifeq ($(MACHINE),msim)
BFD_NAME = elf32-tradlittlemips
ENDIANESS = LE
GCC_CFLAGS += -mhard-float
endif
 
/branches/dd/kernel/arch/ia32/include/byteorder.h
File deleted
/branches/dd/kernel/arch/ia32/Makefile.inc
35,7 → 35,8
TARGET = i686-pc-linux-gnu
TOOLCHAIN_DIR = $(CROSS_PREFIX)/i686
 
DEFS += -D__32_BITS__
BITS = 32
ENDIANESS = LE
 
CMN1 = -m32
GCC_CFLAGS += $(CMN1)
/branches/dd/uspace/app/bdsh/input.c
147,8 → 147,10
{
char line[INPUT_MAX];
 
fflush(stdout);
console_set_style(fphone(stdout), STYLE_EMPHASIS);
printf("%s", usr->prompt);
fflush(stdout);
console_set_style(fphone(stdout), STYLE_NORMAL);
 
read_line(line, INPUT_MAX);
/branches/dd/uspace/app/bdsh/cmds/modules/bdd/bdd.c
102,7 → 102,7
return CMD_FAILURE;
}
 
rc = block_cache_init(handle, BLOCK_SIZE, 2);
rc = block_cache_init(handle, BLOCK_SIZE, 2, CACHE_MODE_WB);
if (rc != EOK) {
printf("Error: could not init block cache.\n");
return CMD_FAILURE;
/branches/dd/uspace/app/bdsh/cmds/modules/ls/ls.c
50,48 → 50,9
 
static char *cmdname = "ls";
 
static inline off_t flen(const char *f)
{
int fd;
off_t size;
 
fd = open(f, O_RDONLY);
if (fd == -1)
return 0;
 
size = lseek(fd, 0, SEEK_END);
close(fd);
 
if (size < 0)
size = 0;
 
return size;
}
 
static unsigned int ls_scope(const char *path)
{
int fd;
DIR *dirp;
 
dirp = opendir(path);
if (dirp) {
closedir(dirp);
return LS_DIR;
}
 
fd = open(path, O_RDONLY);
if (fd > 0) {
close(fd);
return LS_FILE;
}
 
return LS_BOGUS;
}
 
static void ls_scan_dir(const char *d, DIR *dirp)
{
struct dirent *dp;
unsigned int scope;
char *buff;
 
if (! dirp)
108,20 → 69,7
/* Don't worry if inserting a double slash, this will be fixed by
* absolutize() later with subsequent calls to open() or readdir() */
snprintf(buff, PATH_MAX - 1, "%s/%s", d, dp->d_name);
scope = ls_scope(buff);
switch (scope) {
case LS_DIR:
ls_print_dir(dp->d_name);
break;
case LS_FILE:
ls_print_file(dp->d_name, buff);
break;
case LS_BOGUS:
/* Odd chance it was deleted from the time readdir() found
* it and the time that it was scoped */
printf("ls: skipping bogus node %s\n", dp->d_name);
break;
}
ls_print(dp->d_name, buff);
}
 
free(buff);
129,7 → 77,7
return;
}
 
/* ls_print_* currently does nothing more than print the entry.
/* ls_print currently does nothing more than print the entry.
* in the future, we will likely pass the absolute path, and
* some sort of ls_options structure that controls how each
* entry is printed and what is printed about it.
136,17 → 84,23
*
* Now we just print basic DOS style lists */
 
static void ls_print_dir(const char *d)
static void ls_print(const char *name, const char *pathname)
{
printf("%-40s\t<dir>\n", d);
struct stat s;
int rc;
 
return;
}
if (rc = stat(pathname, &s)) {
/* Odd chance it was deleted from the time readdir() found it */
printf("ls: skipping bogus node %s\n", pathname);
printf("rc=%d\n", rc);
return;
}
if (s.is_file)
printf("%-40s\t%llu\n", name, (long long) s.size);
else
printf("%-40s\n", name);
 
static void ls_print_file(const char *name, const char *pathname)
{
printf("%-40s\t%llu\n", name, (long long) flen(pathname));
 
return;
}
 
166,7 → 120,7
int cmd_ls(char **argv)
{
unsigned int argc;
unsigned int scope;
struct stat s;
char *buff;
DIR *dirp;
 
184,19 → 138,17
else
str_cpy(buff, PATH_MAX, argv[1]);
 
scope = ls_scope(buff);
 
switch (scope) {
case LS_BOGUS:
if (stat(buff, &s)) {
cli_error(CL_ENOENT, buff);
free(buff);
return CMD_FAILURE;
case LS_FILE:
ls_print_file(buff, buff);
break;
case LS_DIR:
}
 
if (s.is_file) {
ls_print(buff, buff);
} else {
dirp = opendir(buff);
if (! dirp) {
if (!dirp) {
/* May have been deleted between scoping it and opening it */
cli_error(CL_EFAIL, "Could not stat %s", buff);
free(buff);
204,7 → 156,6
}
ls_scan_dir(buff, dirp);
closedir(dirp);
break;
}
 
free(buff);
/branches/dd/uspace/app/bdsh/cmds/modules/ls/ls.h
9,8 → 9,7
 
static unsigned int ls_scope(const char *);
static void ls_scan_dir(const char *, DIR *);
static void ls_print_dir(const char *);
static void ls_print_file(const char *, const char *);
static void ls_print(const char *, const char *);
 
#endif /* LS_H */
 
/branches/dd/uspace/app/bdsh/util.c
53,14 → 53,6
* string */
unsigned int cli_set_prompt(cliuser_t *usr)
{
usr->prompt = (char *) realloc(usr->prompt, PATH_MAX);
if (NULL == usr->prompt) {
cli_error(CL_ENOMEM, "Can not allocate prompt");
cli_errno = CL_ENOMEM;
return 1;
}
memset(usr->prompt, 0, sizeof(usr->prompt));
 
usr->cwd = (char *) realloc(usr->cwd, PATH_MAX);
if (NULL == usr->cwd) {
cli_error(CL_ENOMEM, "Can not allocate cwd");
67,13 → 59,11
cli_errno = CL_ENOMEM;
return 1;
}
memset(usr->cwd, 0, sizeof(usr->cwd));
 
usr->cwd = getcwd(usr->cwd, PATH_MAX - 1);
 
if (NULL == usr->cwd)
if (!getcwd(usr->cwd, PATH_MAX))
snprintf(usr->cwd, PATH_MAX, "(unknown)");
 
if (usr->prompt)
free(usr->prompt);
asprintf(&usr->prompt, "%s # ", usr->cwd);
 
return 0;
/branches/dd/uspace/app/bdsh/exec.c
112,7 → 112,9
unsigned int try_exec(char *cmd, char **argv)
{
task_id_t tid;
task_exit_t texit;
char *tmp;
int retval;
 
tmp = str_dup(find_command(cmd));
free(found);
125,6 → 127,12
return 1;
}
task_wait(tid);
task_wait(tid, &texit, &retval);
if (texit != TASK_EXIT_NORMAL) {
printf("Command failed (unexpectedly terminated).\n");
} else if (retval != 0) {
printf("Command failed (return value %d).\n", retval);
}
 
return 0;
}
/branches/dd/uspace/app/init/init.c
41,11 → 41,13
#include <bool.h>
#include <errno.h>
#include <fcntl.h>
#include <sys/stat.h>
#include <task.h>
#include <malloc.h>
#include <macros.h>
#include <string.h>
#include <devmap.h>
#include <config.h>
#include "init.h"
 
static void info_print(void)
55,31 → 57,31
 
static bool mount_root(const char *fstype)
{
int rc = -1;
char *opts = "";
const char *root_dev = "initrd";
if (str_cmp(fstype, "tmpfs") == 0)
opts = "restore";
 
while (rc < 0) {
rc = mount(fstype, "/", root_dev, opts, IPC_FLAG_BLOCKING);
switch (rc) {
case EOK:
printf(NAME ": Root filesystem mounted, %s at %s\n",
fstype, root_dev);
break;
case EBUSY:
printf(NAME ": Root filesystem already mounted\n");
break;
case ELIMIT:
printf(NAME ": Unable to mount root filesystem\n");
return false;
case ENOENT:
printf(NAME ": Unknown filesystem type (%s)\n", fstype);
return false;
}
int rc = mount(fstype, "/", root_dev, opts, IPC_FLAG_BLOCKING);
switch (rc) {
case EOK:
printf(NAME ": Root filesystem mounted, %s at %s\n",
fstype, root_dev);
break;
case EBUSY:
printf(NAME ": Root filesystem already mounted\n");
return false;
case ELIMIT:
printf(NAME ": Unable to mount root filesystem\n");
return false;
case ENOENT:
printf(NAME ": Unknown filesystem type (%s)\n", fstype);
return false;
default:
printf(NAME ": Error mounting root filesystem (%d)\n", rc);
return false;
}
return true;
87,27 → 89,39
 
static bool mount_devfs(void)
{
int rc = -1;
char null[MAX_DEVICE_NAME];
int null_id = devmap_null_create();
while (rc < 0) {
rc = mount("devfs", "/dev", "null", "", IPC_FLAG_BLOCKING);
switch (rc) {
case EOK:
printf(NAME ": Device filesystem mounted\n");
break;
case EBUSY:
printf(NAME ": Device filesystem already mounted\n");
break;
case ELIMIT:
printf(NAME ": Unable to mount device filesystem\n");
return false;
case ENOENT:
printf(NAME ": Unknown filesystem type (devfs)\n");
return false;
}
if (null_id == -1) {
printf(NAME ": Unable to create null device\n");
return false;
}
snprintf(null, MAX_DEVICE_NAME, "null%d", null_id);
int rc = mount("devfs", "/dev", null, "", IPC_FLAG_BLOCKING);
switch (rc) {
case EOK:
printf(NAME ": Device filesystem mounted\n");
break;
case EBUSY:
printf(NAME ": Device filesystem already mounted\n");
devmap_null_destroy(null_id);
return false;
case ELIMIT:
printf(NAME ": Unable to mount device filesystem\n");
devmap_null_destroy(null_id);
return false;
case ENOENT:
printf(NAME ": Unknown filesystem type (devfs)\n");
devmap_null_destroy(null_id);
return false;
default:
printf(NAME ": Error mounting device filesystem (%d)\n", rc);
devmap_null_destroy(null_id);
return false;
}
return true;
}
 
114,7 → 128,11
static void spawn(char *fname)
{
char *argv[2];
struct stat s;
if (stat(fname, &s) == ENOENT)
return;
printf(NAME ": Spawning %s\n", fname);
argv[0] = fname;
124,10 → 142,45
printf(NAME ": Error spawning %s\n", fname);
}
 
static void srv_start(char *fname)
{
char *argv[2];
task_id_t id;
task_exit_t texit;
int rc, retval;
struct stat s;
if (stat(fname, &s) == ENOENT)
return;
printf(NAME ": Starting %s\n", fname);
argv[0] = fname;
argv[1] = NULL;
id = task_spawn(fname, argv);
if (!id) {
printf(NAME ": Error spawning %s\n", fname);
return;
}
 
rc = task_wait(id, &texit, &retval);
if (rc != EOK) {
printf(NAME ": Error waiting for %s\n", fname);
return;
}
 
if (texit != TASK_EXIT_NORMAL || retval != 0) {
printf(NAME ": Server %s failed to start (returned %d)\n",
fname, retval);
}
}
 
static void getvc(char *dev, char *app)
{
char *argv[4];
char vc[MAX_DEVICE_NAME];
int rc;
snprintf(vc, MAX_DEVICE_NAME, "/dev/%s", dev);
134,9 → 187,9
printf(NAME ": Spawning getvc on %s\n", vc);
dev_handle_t handle;
devmap_device_get_handle(dev, &handle, IPC_FLAG_BLOCKING);
rc = devmap_device_get_handle(dev, &handle, IPC_FLAG_BLOCKING);
if (handle >= 0) {
if (rc == EOK) {
argv[0] = "/app/getvc";
argv[1] = vc;
argv[2] = app;
144,10 → 197,25
if (!task_spawn("/app/getvc", argv))
printf(NAME ": Error spawning getvc on %s\n", vc);
} else
} else {
printf(NAME ": Error waiting on %s\n", vc);
}
}
 
void mount_data(void)
{
int rc;
 
printf("Trying to mount disk0 on /data... ");
fflush(stdout);
 
rc = mount("fat", "/data", "disk0", "wtcache", 0);
if (rc == EOK)
printf("OK\n");
else
printf("Failed\n");
}
 
int main(int argc, char *argv[])
{
info_print();
160,7 → 228,7
spawn("/srv/devfs");
if (!mount_devfs()) {
return(NAME ": Exiting\n");
printf(NAME ": Exiting\n");
return -2;
}
169,7 → 237,19
spawn("/srv/console");
spawn("/srv/fhc");
spawn("/srv/obio");
 
/*
* Start these synchronously so that mount_data() can be
* non-blocking.
*/
#ifdef CONFIG_START_BD
srv_start("/srv/ata_bd");
srv_start("/srv/gxe_bd");
#endif
#ifdef CONFIG_MOUNT_DATA
mount_data();
#endif
 
getvc("vc0", "/app/bdsh");
getvc("vc1", "/app/bdsh");
getvc("vc2", "/app/bdsh");
/branches/dd/uspace/app/init/Makefile
34,6 → 34,7
 
include $(LIBC_PREFIX)/Makefile.toolchain
 
CFLAGS += -I../../..
LIBS = $(LIBC_PREFIX)/libc.a
 
## Sources
/branches/dd/uspace/app/tester/devmap/devmap1.c
File deleted
/branches/dd/uspace/app/tester/devmap/devmap1.def
File deleted
/branches/dd/uspace/app/tester/console/console1.c
46,65 → 46,78
[COLOR_WHITE] = "white"
};
 
char * test_console1(bool quiet)
char *test_console1(void)
{
int i, j;
 
printf("Style test: ");
console_set_style(fphone(stdout), STYLE_NORMAL);
printf("normal ");
console_set_style(fphone(stdout), STYLE_EMPHASIS);
printf("emphasized");
console_set_style(fphone(stdout), STYLE_NORMAL);
printf(".\n");
 
printf("Foreground color test:\n");
for (j = 0; j < 2; j++) {
for (i = COLOR_BLACK; i <= COLOR_WHITE; i++) {
console_set_color(fphone(stdout), i, COLOR_WHITE,
j ? CATTR_BRIGHT : 0);
printf(" %s ", color_name[i]);
if (!test_quiet) {
printf("Style test: ");
fflush(stdout);
console_set_style(fphone(stdout), STYLE_NORMAL);
printf("normal ");
fflush(stdout);
console_set_style(fphone(stdout), STYLE_EMPHASIS);
printf("emphasized");
fflush(stdout);
console_set_style(fphone(stdout), STYLE_NORMAL);
printf(".\n");
unsigned int i;
unsigned int j;
printf("\nForeground color test:\n");
for (j = 0; j < 2; j++) {
for (i = COLOR_BLACK; i <= COLOR_WHITE; i++) {
fflush(stdout);
console_set_color(fphone(stdout), i, COLOR_WHITE,
j ? CATTR_BRIGHT : 0);
printf(" %s ", color_name[i]);
}
fflush(stdout);
console_set_color(fphone(stdout), COLOR_BLACK, COLOR_WHITE, 0);
putchar('\n');
}
printf("\nBackground color test:\n");
for (j = 0; j < 2; j++) {
for (i = COLOR_BLACK; i <= COLOR_WHITE; i++) {
fflush(stdout);
console_set_color(fphone(stdout), COLOR_WHITE, i,
j ? CATTR_BRIGHT : 0);
printf(" %s ", color_name[i]);
}
fflush(stdout);
console_set_color(fphone(stdout), COLOR_BLACK, COLOR_WHITE, 0);
putchar('\n');
}
printf("\nRGB colors test:\n");
for (i = 0; i < 255; i += 16) {
fflush(stdout);
console_set_rgb_color(fphone(stdout), 0xffffff, i << 16);
putchar('X');
}
fflush(stdout);
console_set_color(fphone(stdout), COLOR_BLACK, COLOR_WHITE, 0);
putchar('\n');
}
 
printf("Background color test:\n");
for (j = 0; j < 2; j++) {
for (i = COLOR_BLACK; i <= COLOR_WHITE; i++) {
console_set_color(fphone(stdout), COLOR_WHITE, i,
j ? CATTR_BRIGHT : 0);
printf(" %s ", color_name[i]);
for (i = 0; i < 255; i += 16) {
fflush(stdout);
console_set_rgb_color(fphone(stdout), 0xffffff, i << 8);
putchar('X');
}
fflush(stdout);
console_set_color(fphone(stdout), COLOR_BLACK, COLOR_WHITE, 0);
putchar('\n');
for (i = 0; i < 255; i += 16) {
fflush(stdout);
console_set_rgb_color(fphone(stdout), 0xffffff, i);
putchar('X');
}
fflush(stdout);
console_set_color(fphone(stdout), COLOR_BLACK, COLOR_WHITE, 0);
putchar('\n');
}
 
printf("Now let's test RGB colors:\n");
 
for (i = 0; i < 255; i += 16) {
console_set_rgb_color(fphone(stdout), 0xffffff, i << 16);
putchar('X');
}
console_set_color(fphone(stdout), COLOR_BLACK, COLOR_WHITE, 0);
putchar('\n');
 
for (i = 0; i < 255; i += 16) {
console_set_rgb_color(fphone(stdout), 0xffffff, i << 8);
putchar('X');
}
console_set_color(fphone(stdout), COLOR_BLACK, COLOR_WHITE, 0);
putchar('\n');
 
for (i = 0; i < 255; i += 16) {
console_set_rgb_color(fphone(stdout), 0xffffff, i);
putchar('X');
}
console_set_color(fphone(stdout), COLOR_BLACK, COLOR_WHITE, 0);
putchar('\n');
 
printf("[press a key]\n");
getchar();
 
return NULL;
}
/branches/dd/uspace/app/tester/stdio/stdio1.c
31,55 → 31,60
#include <errno.h>
#include "../tester.h"
 
#define BUF_SIZE 32
#define BUF_SIZE 32
 
static char buf[BUF_SIZE + 1];
 
char * test_stdio1(bool quiet)
char *test_stdio1(void)
{
FILE *f;
FILE *file;
char *file_name = "/readme";
size_t n;
int c;
 
printf("Open file '%s'\n", file_name);
TPRINTF("Open file \"%s\"...", file_name);
errno = 0;
f = fopen(file_name, "rt");
 
if (f == NULL) printf("errno = %d\n", errno);
 
if (f == NULL)
return "Failed opening file.";
 
n = fread(buf, 1, BUF_SIZE, f);
if (ferror(f)) {
fclose(f);
return "Failed reading file.";
}
 
printf("Read %d bytes.\n", n);
 
buf[n] = '\0';
printf("Read string '%s'.\n", buf);
 
printf("Seek to beginning.\n");
if (fseek(f, 0, SEEK_SET) != 0) {
fclose(f);
return "Failed seeking.";
}
 
printf("Read using fgetc().\n");
file = fopen(file_name, "rt");
if (file == NULL) {
TPRINTF("errno = %d\n", errno);
return "Failed opening file";
} else
TPRINTF("OK\n");
TPRINTF("Read file...");
size_t cnt = fread(buf, 1, BUF_SIZE, file);
if (ferror(file)) {
TPRINTF("errno = %d\n", errno);
fclose(file);
return "Failed reading file";
} else
TPRINTF("OK\n");
buf[cnt] = '\0';
TPRINTF("Read %u bytes, string \"%s\"\n", cnt, buf);
TPRINTF("Seek to beginning...");
if (fseek(file, 0, SEEK_SET) != 0) {
TPRINTF("errno = %d\n", errno);
fclose(file);
return "Failed seeking in file";
} else
TPRINTF("OK\n");
TPRINTF("Read using fgetc()...");
while (true) {
c = fgetc(f);
if (c == EOF) break;
 
printf("'%c'", c);
int c = fgetc(file);
if (c == EOF)
break;
TPRINTF(".");
}
 
printf("[EOF]\n");
printf("Closing.\n");
 
if (fclose(f) != 0)
return "Failed closing.";
 
TPRINTF("[EOF]\n");
TPRINTF("Close...");
if (fclose(file) != 0) {
TPRINTF("errno = %d\n", errno);
return "Failed closing file";
} else
TPRINTF("OK\n");
return NULL;
}
/branches/dd/uspace/app/tester/stdio/stdio2.c
31,39 → 31,53
#include <errno.h>
#include "../tester.h"
 
char * test_stdio2(bool quiet)
char *test_stdio2(void)
{
FILE *f;
FILE *file;
char *file_name = "/test";
size_t n;
int c;
 
printf("Open file '%s' for writing\n", file_name);
TPRINTF("Open file \"%s\" for writing...", file_name);
errno = 0;
f = fopen(file_name, "wt");
 
if (f == NULL)
return "Failed opening file.";
 
fprintf(f, "Integer: %d, string: '%s'\n", 42, "Hello!");
if (fclose(f) != 0)
return "Failed closing file.";
 
printf("Open file '%s' for reading\n", file_name);
 
f = fopen(file_name, "rt");
if (f == NULL)
return "Failed opening file.";
 
printf("File contains:\n");
file = fopen(file_name, "wt");
if (file == NULL) {
TPRINTF("errno = %d\n", errno);
return "Failed opening file";
} else
TPRINTF("OK\n");
TPRINTF("Write to file...");
fprintf(file, "integer: %u, string: \"%s\"", 42, "Hello!");
TPRINTF("OK\n");
TPRINTF("Close...");
if (fclose(file) != 0) {
TPRINTF("errno = %d\n", errno);
return "Failed closing file";
} else
TPRINTF("OK\n");
TPRINTF("Open file \"%s\" for reading...", file_name);
file = fopen(file_name, "rt");
if (file == NULL) {
TPRINTF("errno = %d\n", errno);
return "Failed opening file";
} else
TPRINTF("OK\n");
TPRINTF("File contains:\n");
while (true) {
c = fgetc(f);
if (c == EOF) break;
putchar(c);
int c = fgetc(file);
if (c == EOF)
break;
TPRINTF("%c", c);
}
 
if (fclose(f) != 0)
return "Failed closing file.";
 
TPRINTF("\nClose...");
if (fclose(file) != 0) {
TPRINTF("errno = %d\n", errno);
return "Failed closing file";
} else
TPRINTF("OK\n");
return NULL;
}
/branches/dd/uspace/app/tester/tester.c
27,10 → 27,10
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
 
/** @addtogroup tester User space Tester
* @brief User space testing infrastructure.
/** @addtogroup tester User space tester
* @brief User space testing infrastructure.
* @{
*/
*/
/**
* @file
*/
37,48 → 37,44
 
#include <unistd.h>
#include <stdio.h>
#include <string.h>
#include "tester.h"
 
int myservice = 0;
int phones[MAX_PHONES];
int connections[MAX_CONNECTIONS];
ipc_callid_t callids[MAX_CONNECTIONS];
bool test_quiet;
int test_argc;
char **test_argv;
 
test_t tests[] = {
#include "thread/thread1.def"
#include "print/print1.def"
#include "print/print2.def"
#include "print/print3.def"
#include "print/print4.def"
#include "console/console1.def"
#include "stdio/stdio1.def"
#include "stdio/stdio2.def"
#include "fault/fault1.def"
#include "fault/fault2.def"
#include "vfs/vfs1.def"
#include "ipc/ping_pong.def"
#include "ipc/register.def"
#include "ipc/connect.def"
#include "ipc/send_async.def"
#include "ipc/send_sync.def"
#include "ipc/answer.def"
#include "ipc/hangup.def"
#include "ipc/ping_pong.def"
#include "devmap/devmap1.def"
#include "loop/loop1.def"
#include "vfs/vfs1.def"
#include "console/console1.def"
#include "stdio/stdio1.def"
#include "stdio/stdio2.def"
{NULL, NULL, NULL}
#include "mm/malloc1.def"
{NULL, NULL, NULL, false}
};
 
static bool run_test(test_t *test)
{
printf("%s\t\t%s\n", test->name, test->desc);
/* Execute the test */
char * ret = test->entry(false);
char *ret = test->entry();
if (ret == NULL) {
printf("Test passed\n\n");
printf("\nTest passed\n");
return true;
}
 
printf("%s\n\n", ret);
printf("\n%s\n", ret);
return false;
}
 
87,11 → 83,12
test_t *test;
unsigned int i = 0;
unsigned int n = 0;
 
printf("\n*** Running all safe tests ***\n\n");
 
for (test = tests; test->name != NULL; test++) {
if (test->safe) {
printf("%s (%s)\n", test->name, test->desc);
if (run_test(test))
i++;
else
98,64 → 95,52
n++;
}
}
 
printf("\nSafe tests completed, %u tests run, %u passed.\n\n", i + n, i);
printf("\nCompleted, %u tests run, %u passed.\n", i + n, i);
}
 
static void list_tests(void)
{
size_t len = 0;
test_t *test;
char c = 'a';
for (test = tests; test->name != NULL; test++) {
if (str_length(test->name) > len)
len = str_length(test->name);
}
for (test = tests; test->name != NULL; test++, c++)
printf("%c\t%s\t\t%s%s\n", c, test->name, test->desc, (test->safe ? "" : " (unsafe)"));
for (test = tests; test->name != NULL; test++)
printf("%-*s %s%s\n", len, test->name, test->desc, (test->safe ? "" : " (unsafe)"));
printf("*\t\t\tRun all safe tests\n");
printf("%-*s Run all safe tests\n", len, "*");
}
 
int main(int argc, char **argv)
int main(int argc, char *argv[])
{
printf("Number of arguments: %d\n", argc);
if (argv) {
printf("Arguments:");
while (*argv) {
printf(" '%s'", *argv++);
}
printf("\n");
if (argc < 2) {
printf("Usage:\n\n");
printf("%s <test> [args ...]\n\n", argv[0]);
list_tests();
return 0;
}
 
while (1) {
char c;
test_t *test;
list_tests();
printf("> ");
fflush(stdout);
c = getchar();
printf("%c\n", c);
if ((c >= 'a') && (c <= 'z')) {
for (test = tests; test->name != NULL; test++, c--)
if (c == 'a')
break;
if (test->name == NULL)
printf("Unknown test\n\n");
else
run_test(test);
} else if (c == '*') {
run_safe_tests();
} else if (c < 0) {
/* got EOF */
break;
} else {
printf("Invalid test\n\n");
test_quiet = false;
test_argc = argc - 2;
test_argv = argv + 2;
if (str_cmp(argv[1], "*") == 0) {
run_safe_tests();
return 0;
}
test_t *test;
for (test = tests; test->name != NULL; test++) {
if (str_cmp(argv[1], test->name) == 0) {
return (run_test(test) ? 0 : -1);
}
}
 
return 0;
printf("Unknown test \"%s\"\n", argv[1]);
return -2;
}
 
/** @}
/branches/dd/uspace/app/tester/thread/thread1.c
27,7 → 27,8
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
 
#define THREADS 5
#define THREADS 20
#define DELAY 10
 
#include <atomic.h>
#include <thread.h>
42,40 → 43,38
static void threadtest(void *data)
{
thread_detach(thread_get_id());
 
while (atomic_get(&finish)) {
if (!sh_quiet)
printf("%llu ", thread_get_id());
while (atomic_get(&finish))
usleep(100000);
}
atomic_inc(&threads_finished);
}
 
char * test_thread1(bool quiet)
char *test_thread1(void)
{
unsigned int i, total = 0;
sh_quiet = quiet;
unsigned int i;
unsigned int total = 0;
atomic_set(&finish, 1);
atomic_set(&threads_finished, 0);
 
for (i = 0; i < THREADS; i++) {
TPRINTF("Creating threads");
for (i = 0; i < THREADS; i++) {
if (thread_create(threadtest, NULL, "threadtest", NULL) < 0) {
if (!quiet)
printf("Could not create thread %d\n", i);
TPRINTF("\nCould not create thread %u\n", i);
break;
}
TPRINTF(".");
total++;
}
if (!quiet)
printf("Running threads for 10 seconds...\n");
sleep(10);
TPRINTF("\nRunning threads for %u seconds...", DELAY);
sleep(DELAY);
TPRINTF("\n");
atomic_set(&finish, 0);
while (atomic_get(&threads_finished) < total) {
if (!quiet)
printf("Threads left: %d\n", total - atomic_get(&threads_finished));
TPRINTF("Threads left: %u\n", total - atomic_get(&threads_finished));
sleep(1);
}
/branches/dd/uspace/app/tester/loop/loop1.c
30,12 → 30,11
#include <stdlib.h>
#include "../tester.h"
 
char *test_loop1(bool quiet)
char *test_loop1(void)
{
printf("Looping...\n");
while (1);
printf("Survived endless loop?!!\n");
 
return NULL;
TPRINTF("Looping...");
while (true);
TPRINTF("\n");
return "Survived endless loop";
}
 
/branches/dd/uspace/app/tester/mm/malloc1.def
0,0 → 1,6
{
"malloc1",
"Memory allocator test",
&test_malloc1,
true
},
/branches/dd/uspace/app/tester/mm/malloc1.c
0,0 → 1,651
/*
* Copyright (c) 2009 Martin Decky
* Copyright (c) 2009 Tomas Bures
* Copyright (c) 2009 Lubomir Bulej
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* - The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
 
#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <malloc.h>
#include "../tester.h"
 
/*
* The test consists of several phases which differ in the size of blocks
* they allocate. The size of blocks is given as a range of minimum and
* maximum allowed size. Each of the phases is divided into 3 subphases which
* differ in the probability of free and alloc actions. Second subphase is
* started when malloc returns 'out of memory' or when MAX_ALLOC is reached.
* Third subphase is started after a given number of cycles. The third subphase
* as well as the whole phase ends when all memory blocks are released.
*/
 
/**
* sizeof_array
* @array array to determine the size of
*
* Returns the size of @array in array elements.
*/
#define sizeof_array(array) \
(sizeof(array) / sizeof((array)[0]))
 
#define MAX_ALLOC (16 * 1024 * 1024)
 
/*
* Subphase control structures: subphase termination conditions,
* probabilities of individual actions, subphase control structure.
*/
 
typedef struct {
unsigned int max_cycles;
unsigned int no_memory;
unsigned int no_allocated;
} sp_term_cond_s;
 
typedef struct {
unsigned int alloc;
unsigned int free;
} sp_action_prob_s;
 
typedef struct {
char *name;
sp_term_cond_s cond;
sp_action_prob_s prob;
} subphase_s;
 
 
/*
* Phase control structures: The minimum and maximum block size that
* can be allocated during the phase execution, phase control structure.
*/
 
typedef struct {
size_t min_block_size;
size_t max_block_size;
} ph_alloc_size_s;
 
typedef struct {
char *name;
ph_alloc_size_s alloc;
subphase_s *subphases;
} phase_s;
 
 
/*
* Subphases are defined separately here. This is for two reasons:
* 1) data are not duplicated, 2) we don't have to state beforehand
* how many subphases a phase contains.
*/
static subphase_s subphases_32B[] = {
{
.name = "Allocation",
.cond = {
.max_cycles = 200,
.no_memory = 1,
.no_allocated = 0,
},
.prob = {
.alloc = 90,
.free = 100
}
},
{
.name = "Alloc/Dealloc",
.cond = {
.max_cycles = 200,
.no_memory = 0,
.no_allocated = 0,
},
.prob = {
.alloc = 50,
.free = 100
}
},
{
.name = "Deallocation",
.cond = {
.max_cycles = 0,
.no_memory = 0,
.no_allocated = 1,
},
.prob = {
.alloc = 10,
.free = 100
}
}
};
 
static subphase_s subphases_128K[] = {
{
.name = "Allocation",
.cond = {
.max_cycles = 0,
.no_memory = 1,
.no_allocated = 0,
},
.prob = {
.alloc = 70,
.free = 100
}
},
{
.name = "Alloc/Dealloc",
.cond = {
.max_cycles = 30,
.no_memory = 0,
.no_allocated = 0,
},
.prob = {
.alloc = 50,
.free = 100
}
},
{
.name = "Deallocation",
.cond = {
.max_cycles = 0,
.no_memory = 0,
.no_allocated = 1,
},
.prob = {
.alloc = 30,
.free = 100
}
}
};
 
static subphase_s subphases_default[] = {
{
.name = "Allocation",
.cond = {
.max_cycles = 0,
.no_memory = 1,
.no_allocated = 0,
},
.prob = {
.alloc = 90,
.free = 100
}
},
{
.name = "Alloc/Dealloc",
.cond = {
.max_cycles = 200,
.no_memory = 0,
.no_allocated = 0,
},
.prob = {
.alloc = 50,
.free = 100
}
},
{
.name = "Deallocation",
.cond = {
.max_cycles = 0,
.no_memory = 0,
.no_allocated = 1,
},
.prob = {
.alloc = 10,
.free = 100
}
}
};
 
 
/*
* Phase definitions.
*/
static phase_s phases[] = {
{
.name = "32 B memory blocks",
.alloc = {
.min_block_size = 32,
.max_block_size = 32
},
.subphases = subphases_32B
},
{
.name = "128 KB memory blocks",
.alloc = {
.min_block_size = 128 * 1024,
.max_block_size = 128 * 1024
},
.subphases = subphases_128K
},
{
.name = "2500 B memory blocks",
.alloc = {
.min_block_size = 2500,
.max_block_size = 2500
},
.subphases = subphases_default
},
{
.name = "1 B .. 250000 B memory blocks",
.alloc = {
.min_block_size = 1,
.max_block_size = 250000
},
.subphases = subphases_default
}
};
 
 
/*
* Global error flag. The flag is set if an error
* is encountered (overlapping blocks, inconsistent
* block data, etc.)
*/
static bool error_flag = false;
 
/*
* Memory accounting: the amount of allocated memory and the
* number and list of allocated blocks.
*/
static size_t mem_allocated;
static size_t mem_blocks_count;
 
static LIST_INITIALIZE(mem_blocks);
 
typedef struct {
/* Address of the start of the block */
void *addr;
/* Size of the memory block */
size_t size;
/* link to other blocks */
link_t link;
} mem_block_s;
 
typedef mem_block_s *mem_block_t;
 
 
/** init_mem
*
* Initializes the memory accounting structures.
*
*/
static void init_mem(void)
{
mem_allocated = 0;
mem_blocks_count = 0;
}
 
 
static bool overlap_match(link_t *entry, void *addr, size_t size)
{
mem_block_t mblk = list_get_instance(entry, mem_block_s, link);
/* Entry block control structure <mbeg, mend) */
uint8_t *mbeg = (uint8_t *) mblk;
uint8_t *mend = (uint8_t *) mblk + sizeof(mem_block_s);
/* Entry block memory <bbeg, bend) */
uint8_t *bbeg = (uint8_t *) mblk->addr;
uint8_t *bend = (uint8_t *) mblk->addr + mblk->size;
/* Data block <dbeg, dend) */
uint8_t *dbeg = (uint8_t *) addr;
uint8_t *dend = (uint8_t *) addr + size;
/* Check for overlaps */
if (((mbeg >= dbeg) && (mbeg < dend)) ||
((mend > dbeg) && (mend <= dend)) ||
((bbeg >= dbeg) && (bbeg < dend)) ||
((bend > dbeg) && (bend <= dend)))
return true;
return false;
}
 
 
/** test_overlap
*
* Test whether a block starting at @addr overlaps with another, previously
* allocated memory block or its control structure.
*
* @param addr Initial address of the block
* @param size Size of the block
*
* @return false if the block does not overlap.
*
*/
static int test_overlap(void *addr, size_t size)
{
link_t *entry;
bool fnd = false;
for (entry = mem_blocks.next; entry != &mem_blocks; entry = entry->next) {
if (overlap_match(entry, addr, size)) {
fnd = true;
break;
}
}
return fnd;
}
 
 
/** checked_malloc
*
* Allocate @size bytes of memory and check whether the chunk comes
* from the non-mapped memory region and whether the chunk overlaps
* with other, previously allocated, chunks.
*
* @param size Amount of memory to allocate
*
* @return NULL if the allocation failed. Sets the global error_flag to
* true if the allocation succeeded but is illegal.
*
*/
static void *checked_malloc(size_t size)
{
void *data;
/* Allocate the chunk of memory */
data = malloc(size);
if (data == NULL)
return NULL;
/* Check for overlaps with other chunks */
if (test_overlap(data, size)) {
TPRINTF("\nError: Allocated block overlaps with another "
"previously allocated block.\n");
error_flag = true;
}
return data;
}
 
 
/** alloc_block
*
* Allocate a block of memory of @size bytes and add record about it into
* the mem_blocks list. Return a pointer to the block holder structure or
* NULL if the allocation failed.
*
* If the allocation is illegal (e.g. the memory does not come from the
* right region or some of the allocated blocks overlap with others),
* set the global error_flag.
*
* @param size Size of the memory block
*
*/
static mem_block_t alloc_block(size_t size)
{
/* Check for allocation limit */
if (mem_allocated >= MAX_ALLOC)
return NULL;
/* Allocate the block holder */
mem_block_t block = (mem_block_t) checked_malloc(sizeof(mem_block_s));
if (block == NULL)
return NULL;
link_initialize(&block->link);
/* Allocate the block memory */
block->addr = checked_malloc(size);
if (block->addr == NULL) {
free(block);
return NULL;
}
block->size = size;
/* Register the allocated block */
list_append(&block->link, &mem_blocks);
mem_allocated += size + sizeof(mem_block_s);
mem_blocks_count++;
return block;
}
 
 
/** free_block
*
* Free the block of memory and the block control structure allocated by
* alloc_block. Set the global error_flag if an error occurs.
*
* @param block Block control structure
*
*/
static void free_block(mem_block_t block)
{
/* Unregister the block */
list_remove(&block->link);
mem_allocated -= block->size + sizeof(mem_block_s);
mem_blocks_count--;
/* Free the memory */
free(block->addr);
free(block);
}
 
 
/** expected_value
*
* Compute the expected value of a byte located at @pos in memory
* block described by @blk.
*
* @param blk Memory block control structure
* @param pos Position in the memory block data area
*
*/
static inline uint8_t expected_value(mem_block_t blk, uint8_t *pos)
{
return ((unsigned long) blk ^ (unsigned long) pos) & 0xff;
}
 
 
/** fill_block
*
* Fill the memory block controlled by @blk with data.
*
* @param blk Memory block control structure
*
*/
static void fill_block(mem_block_t blk)
{
uint8_t *pos;
uint8_t *end;
for (pos = blk->addr, end = pos + blk->size; pos < end; pos++)
*pos = expected_value(blk, pos);
}
 
 
/** check_block
*
* Check whether the block @blk contains the data it was filled with.
* Set global error_flag if an error occurs.
*
* @param blk Memory block control structure
*
*/
static void check_block(mem_block_t blk)
{
uint8_t *pos;
uint8_t *end;
for (pos = blk->addr, end = pos + blk->size; pos < end; pos++) {
if (*pos != expected_value (blk, pos)) {
TPRINTF("\nError: Corrupted content of a data block.\n");
error_flag = true;
return;
}
}
}
 
 
static link_t *list_get_nth(link_t *list, unsigned int i)
{
unsigned int cnt = 0;
link_t *entry;
for (entry = list->next; entry != list; entry = entry->next) {
if (cnt == i)
return entry;
cnt++;
}
return NULL;
}
 
 
/** get_random_block
*
* Select a random memory block from the list of allocated blocks.
*
* @return Block control structure or NULL if the list is empty.
*
*/
static mem_block_t get_random_block(void)
{
if (mem_blocks_count == 0)
return NULL;
unsigned int blkidx = rand() % mem_blocks_count;
link_t *entry = list_get_nth(&mem_blocks, blkidx);
if (entry == NULL) {
TPRINTF("\nError: Corrupted list of allocated memory blocks.\n");
error_flag = true;
}
return list_get_instance(entry, mem_block_s, link);
}
 
 
#define RETURN_IF_ERROR \
{ \
if (error_flag) \
return; \
}
 
 
static void do_subphase(phase_s *phase, subphase_s *subphase)
{
unsigned int cycles;
for (cycles = 0; /* always */; cycles++) {
if (subphase->cond.max_cycles &&
cycles >= subphase->cond.max_cycles) {
/*
* We have performed the required number of
* cycles. End the current subphase.
*/
break;
}
/*
* Decide whether we alloc or free memory in this step.
*/
unsigned int rnd = rand() % 100;
if (rnd < subphase->prob.alloc) {
/* Compute a random number lying in interval <min_block_size, max_block_size> */
int alloc = phase->alloc.min_block_size +
(rand() % (phase->alloc.max_block_size - phase->alloc.min_block_size + 1));
mem_block_t blk = alloc_block(alloc);
RETURN_IF_ERROR;
if (blk == NULL) {
TPRINTF("F(A)");
if (subphase->cond.no_memory) {
/* We filled the memory. Proceed to next subphase */
break;
}
} else {
TPRINTF("A");
fill_block(blk);
}
} else if (rnd < subphase->prob.free) {
mem_block_t blk = get_random_block();
if (blk == NULL) {
TPRINTF("F(R)");
if (subphase->cond.no_allocated) {
/* We free all the memory. Proceed to next subphase. */
break;
}
} else {
TPRINTF("R");
check_block(blk);
RETURN_IF_ERROR;
free_block(blk);
RETURN_IF_ERROR;
}
}
}
TPRINTF("\n.. finished.\n");
}
 
 
static void do_phase(phase_s *phase)
{
unsigned int subno;
for (subno = 0; subno < 3; subno++) {
subphase_s *subphase = & phase->subphases [subno];
TPRINTF(".. Sub-phase %u (%s)\n", subno + 1, subphase->name);
do_subphase(phase, subphase);
RETURN_IF_ERROR;
}
}
 
char *test_malloc1(void)
{
init_mem();
unsigned int phaseno;
for (phaseno = 0; phaseno < sizeof_array(phases); phaseno++) {
phase_s *phase = &phases[phaseno];
TPRINTF("Entering phase %u (%s)\n", phaseno + 1, phase->name);
do_phase(phase);
if (error_flag)
break;
TPRINTF("Phase finished.\n");
}
if (error_flag)
return "Test failed";
return NULL;
}
/branches/dd/uspace/app/tester/fault/fault1.c
29,7 → 29,7
 
#include "../tester.h"
 
char * test_fault1(bool quiet)
char *test_fault1(void)
{
((int *)(0))[1] = 0;
/branches/dd/uspace/app/tester/fault/fault2.c
29,7 → 29,7
 
#include "../tester.h"
 
char * test_fault2(bool quiet)
char *test_fault2(void)
{
volatile long long var;
volatile int var1;
/branches/dd/uspace/app/tester/ipc/send_sync.def
File deleted
/branches/dd/uspace/app/tester/ipc/answer.def
File deleted
/branches/dd/uspace/app/tester/ipc/send_async.def
File deleted
/branches/dd/uspace/app/tester/ipc/answer.c
File deleted
/branches/dd/uspace/app/tester/ipc/hangup.def
File deleted
/branches/dd/uspace/app/tester/ipc/send_async.c
File deleted
/branches/dd/uspace/app/tester/ipc/send_sync.c
File deleted
/branches/dd/uspace/app/tester/ipc/hangup.c
File deleted
/branches/dd/uspace/app/tester/ipc/ping_pong.c
37,20 → 37,23
#define DURATION_SECS 10
#define COUNT_GRANULARITY 100
 
char *test_ping_pong(bool quiet)
char *test_ping_pong(void)
{
printf("Pinging ns server for %d seconds...\n", DURATION_SECS);
TPRINTF("Pinging ns server for %d seconds...", DURATION_SECS);
struct timeval start;
if (gettimeofday(&start, NULL) != 0)
return "Failed getting the time.";
if (gettimeofday(&start, NULL) != 0) {
TPRINTF("\n");
return "Failed getting the time";
}
uint64_t count = 0;
while (true) {
struct timeval now;
if (gettimeofday(&now, NULL) != 0)
return "Failed getting the time.";
if (gettimeofday(&now, NULL) != 0) {
TPRINTF("\n");
return "Failed getting the time";
}
if (tv_sub(&now, &start) >= DURATION_SECS * 1000000L)
break;
59,14 → 62,16
for (i = 0; i < COUNT_GRANULARITY; i++) {
int retval = async_req_0_0(PHONE_NS, NS_PING);
if (retval != EOK)
return "Failed to send ping message.";
if (retval != EOK) {
TPRINTF("\n");
return "Failed to send ping message";
}
}
count += COUNT_GRANULARITY;
}
printf("Completed %lu round trips in %u seconds, %lu RT/s.\n",
TPRINTF("OK\nCompleted %llu round trips in %u seconds, %llu rt/s.\n",
count, DURATION_SECS, count / DURATION_SECS);
return NULL;
/branches/dd/uspace/app/tester/ipc/register.c
32,58 → 32,58
#include <errno.h>
#include "../tester.h"
 
#define MAX_CONNECTIONS 50
 
static int connections[MAX_CONNECTIONS];
 
static void client_connection(ipc_callid_t iid, ipc_call_t *icall)
{
ipc_callid_t callid;
ipc_call_t call;
ipcarg_t phonehash = icall->in_phone_hash;
int retval;
int i;
 
printf("Connected phone: %P, accepting\n", icall->in_phone_hash);
unsigned int i;
TPRINTF("Connected phone %#x accepting\n", icall->in_phone_hash);
ipc_answer_0(iid, EOK);
for (i = 0; i < 1024; i++)
for (i = 0; i < MAX_CONNECTIONS; i++) {
if (!connections[i]) {
connections[i] = phonehash;
connections[i] = icall->in_phone_hash;
break;
}
}
while (1) {
callid = async_get_call(&call);
while (true) {
ipc_call_t call;
ipc_callid_t callid = async_get_call(&call);
int retval;
switch (IPC_GET_METHOD(call)) {
case IPC_M_PHONE_HUNGUP:
printf("Phone (%P) hung up.\n", phonehash);
TPRINTF("Phone %#x hung up\n", icall->in_phone_hash);
retval = 0;
break;
case IPC_TEST_METHOD:
TPRINTF("Received well known message from %#x: %#x\n",
icall->in_phone_hash, callid);
ipc_answer_0(callid, EOK);
break;
default:
printf("Received message from %P: %X\n", phonehash,
callid);
for (i = 0; i < 1024; i++)
if (!callids[i]) {
callids[i] = callid;
break;
}
continue;
TPRINTF("Received unknown message from %#x: %#x\n",
icall->in_phone_hash, callid);
ipc_answer_0(callid, ENOENT);
break;
}
ipc_answer_0(callid, retval);
}
}
 
char * test_register(bool quiet)
char *test_register(void)
{
int i;
async_set_client_connection(client_connection);
 
for (i = IPC_TEST_START; i < IPC_TEST_START + 10; i++) {
ipcarg_t phonead;
int res = ipc_connect_to_me(PHONE_NS, i, 0, 0, &phonead);
if (!res)
break;
printf("Failed registering as %d..:%d\n", i, res);
}
printf("Registered as service: %d\n", i);
myservice = i;
ipcarg_t phonead;
int res = ipc_connect_to_me(PHONE_NS, IPC_TEST_SERVICE, 0, 0, &phonead);
if (res != 0)
return "Failed registering IPC service";
TPRINTF("Registered as service %u, accepting connections\n", IPC_TEST_SERVICE);
async_manager();
return NULL;
}
/branches/dd/uspace/app/tester/ipc/connect.c
28,32 → 28,46
 
#include <stdio.h>
#include <unistd.h>
#include <atomic.h>
#include "../tester.h"
 
char * test_connect(bool quiet)
static atomic_t finish;
 
static void callback(void *priv, int retval, ipc_call_t *data)
{
char c;
int svc;
int phid;
atomic_set(&finish, 1);
}
 
printf("Choose one service: 0:10000....9:10009 (q to skip)\n");
do {
c = getchar();
if ((c == 'Q') || (c == 'q'))
return TEST_SKIPPED;
} while (c < '0' || c > '9');
char *test_connect(void)
{
TPRINTF("Connecting to %u...", IPC_TEST_SERVICE);
int phone = ipc_connect_me_to(PHONE_NS, IPC_TEST_SERVICE, 0, 0);
if (phone > 0) {
TPRINTF("phoneid %d\n", phone);
} else {
TPRINTF("\n");
return "ipc_connect_me_to() failed";
}
svc = IPC_TEST_START + c - '0';
if (svc == myservice)
return "Currently cannot connect to myself, update test";
printf("Sending synchronous message...\n");
int retval = ipc_call_sync_0_0(phone, IPC_TEST_METHOD);
TPRINTF("Received response to synchronous message\n");
printf("Connecting to %d..", svc);
phid = ipc_connect_me_to(PHONE_NS, svc, 0, 0);
if (phid > 0) {
printf("phoneid: %d\n", phid);
phones[phid] = 1;
} else
return "Error";
TPRINTF("Sending asynchronous message...\n");
atomic_set(&finish, 0);
ipc_call_async_0(phone, IPC_TEST_METHOD, NULL, callback, 1);
while (atomic_get(&finish) != 1)
TPRINTF(".");
TPRINTF("Received response to asynchronous message\n");
TPRINTF("Hanging up...");
retval = ipc_hangup(phone);
if (retval == 0) {
TPRINTF("OK\n");
} else {
TPRINTF("\n");
return "ipc_hangup() failed";
}
return NULL;
}
/branches/dd/uspace/app/tester/print/print2.c
0,0 → 1,52
/*
* Copyright (c) 2005 Josef Cejka
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* - The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
 
#include <stdio.h>
#include <unistd.h>
#include "../tester.h"
 
char *test_print2(void)
{
TPRINTF("Testing printf(\"%%c %%3.2c %%-3.2c %%2.3c %%-2.3c\", 'a', 'b', 'c', 'd', 'e'):\n");
TPRINTF("Expected output: [a] [ b] [c ] [ d] [e ]\n");
TPRINTF("Real output: [%c] [%3.2c] [%-3.2c] [%2.3c] [%-2.3c]\n\n", 'a', 'b', 'c', 'd', 'e');
TPRINTF("Testing printf(\"%%d %%3.2d %%-3.2d %%2.3d %%-2.3d\", 1, 2, 3, 4, 5):\n");
TPRINTF("Expected output: [1] [ 02] [03 ] [004] [005]\n");
TPRINTF("Real output: [%d] [%3.2d] [%-3.2d] [%2.3d] [%-2.3d]\n\n", 1, 2, 3, 4, 5);
TPRINTF("Testing printf(\"%%d %%3.2d %%-3.2d %%2.3d %%-2.3d\", -1, -2, -3, -4, -5):\n");
TPRINTF("Expected output: [-1] [-02] [-03] [-004] [-005]\n");
TPRINTF("Real output: [%d] [%3.2d] [%-3.2d] [%2.3d] [%-2.3d]\n\n", -1, -2, -3, -4, -5);
TPRINTF("Testing printf(\"%%#x %%5.3#x %%-5.3#x %%3.5#x %%-3.5#x\", 17, 18, 19, 20, 21):\n");
TPRINTF("Expected output: [0x11] [0x012] [0x013] [0x00014] [0x00015]\n");
TPRINTF("Real output: [%#x] [%#5.3x] [%#-5.3x] [%#3.5x] [%#-3.5x]\n\n", 17, 18, 19, 20, 21);
return NULL;
}
/branches/dd/uspace/app/tester/print/print3.c
0,0 → 1,62
/*
* Copyright (c) 2005 Josef Cejka
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* - The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
 
#include <stdio.h>
#include <unistd.h>
#include <macros.h>
#include "../tester.h"
 
#define BUFFER_SIZE 32
 
char *test_print3(void)
{
char buffer[BUFFER_SIZE];
int retval;
TPRINTF("Testing snprintf(buffer, " STRING(BUFFER_SIZE) ", \"Short text without parameters.\"):\n");
TPRINTF("Expected result: retval=30 buffer=\"Short text without parameters.\"\n");
retval = snprintf(buffer, BUFFER_SIZE, "Short text without parameters.");
TPRINTF("Real result: retval=%d buffer=\"%s\"\n\n", retval, buffer);
TPRINTF("Testing snprintf(buffer, " STRING(BUFFER_SIZE) ", \"Very very very long text without parameters.\"):\n");
TPRINTF("Expected result: retval=44 buffer=\"Very very very long text withou\"\n");
retval = snprintf(buffer, BUFFER_SIZE, "Very very very long text without parameters.");
TPRINTF("Real result: retval=%d buffer=\"%s\"\n\n", retval, buffer);
TPRINTF("Testing snprintf(buffer, " STRING(BUFFER_SIZE) ", \"Short %%s.\", \"text\"):\n");
TPRINTF("Expected result: retval=11 buffer=\"Short text.\"\n");
retval = snprintf(buffer, BUFFER_SIZE, "Short %s.", "text");
TPRINTF("Real result: retval=%d buffer=\"%s\"\n\n", retval, buffer);
TPRINTF("Testing snprintf(buffer, " STRING(BUFFER_SIZE) ", \"Very long %%s. This text's length is more than %%d. We are interested in the result.\", \"text\", " STRING(BUFFER_SIZE) "):\n");
TPRINTF("Expected result: retval=84 buffer=\"Very long text. This text's len\"\n");
retval = snprintf(buffer, BUFFER_SIZE, "Very long %s. This text's length is more than %d. We are interested in the result.", "text", BUFFER_SIZE);
TPRINTF("Real result: retval=%d buffer=\"%s\"\n\n", retval, buffer);
return NULL;
}
/branches/dd/uspace/app/tester/print/print4.c
30,63 → 30,54
#include <unistd.h>
#include "../tester.h"
 
#define PRIx8 "x"
 
char *test_print4(bool quiet)
char *test_print4(void)
{
if (!quiet) {
printf("ASCII printable characters (32 - 127) using printf(\"%%c\") and printf(\"%%lc\"):\n");
TPRINTF("ASCII printable characters (32 - 127) using printf(\"%%c\") and printf(\"%%lc\"):\n");
uint8_t group;
for (group = 1; group < 4; group++) {
TPRINTF("%#x: ", group << 5);
uint8_t group;
for (group = 1; group < 4; group++) {
printf("%#" PRIx8 ": ", group << 5);
uint8_t index;
for (index = 0; index < 32; index++)
printf("%c", (char) ((group << 5) + index));
printf(" ");
for (index = 0; index < 32; index++)
printf("%lc", (wchar_t) ((group << 5) + index));
printf("\n");
}
uint8_t index;
for (index = 0; index < 32; index++)
TPRINTF("%c", (char) ((group << 5) + index));
printf("\nExtended ASCII characters (128 - 255) using printf(\"%%lc\"):\n");
TPRINTF(" ");
for (index = 0; index < 32; index++)
TPRINTF("%lc", (wchar_t) ((group << 5) + index));
for (group = 4; group < 8; group++) {
printf("%#" PRIx8 ": ", group << 5);
uint8_t index;
for (index = 0; index < 32; index++)
printf("%lc", (wchar_t) ((group << 5) + index));
printf("\n");
}
TPRINTF("\n");
}
TPRINTF("\nExtended ASCII characters (128 - 255) using printf(\"%%lc\"):\n");
for (group = 4; group < 8; group++) {
TPRINTF("%#x: ", group << 5);
printf("\nUTF-8 strings using printf(\"%%s\"):\n");
printf("English: %s\n", "Quick brown fox jumps over the lazy dog");
printf("Czech: %s\n", "Příliš žluťoučký kůň úpěl ďábelské ódy");
printf("Greek: %s\n", "Ὦ ξεῖν’, ἀγγέλλειν Λακεδαιμονίοις ὅτι τῇδε");
printf("Hebrew: %s\n", "משוואת ברנולי היא משוואה בהידרודינמיקה");
printf("Arabic: %s\n", "التوزيع الجغرافي للحمل العنقودي");
printf("Russian: %s\n", "Леннон познакомился с художницей-авангардисткой");
printf("Armenian: %s\n", "Սկսեց հրատարակվել Երուսաղեմի հայկական");
uint8_t index;
for (index = 0; index < 32; index++)
TPRINTF("%lc", (wchar_t) ((group << 5) + index));
printf("\nUTF-32 strings using printf(\"%%ls\"):\n");
printf("English: %ls\n", L"Quick brown fox jumps over the lazy dog");
printf("Czech: %ls\n", L"Příliš žluťoučký kůň úpěl ďábelské ódy");
printf("Greek: %ls\n", L"Ὦ ξεῖν’, ἀγγέλλειν Λακεδαιμονίοις ὅτι τῇδε");
printf("Hebrew: %ls\n", L"משוואת ברנולי היא משוואה בהידרודינמיקה");
printf("Arabic: %ls\n", L"التوزيع الجغرافي للحمل العنقودي");
printf("Russian: %ls\n", L"Леннон познакомился с художницей-авангардисткой");
printf("Armenian: %ls\n", L"Սկսեց հրատարակվել Երուսաղեմի հայկական");
 
printf("Test: [%d] '%lc'\n", L'\x0161', L'\x0161');
TPRINTF("\n");
}
 
printf("[Press a key]\n");
getchar();
TPRINTF("\nUTF-8 strings using printf(\"%%s\"):\n");
TPRINTF("English: %s\n", "Quick brown fox jumps over the lazy dog");
TPRINTF("Czech: %s\n", "Příliš žluťoučký kůň úpěl ďábelské ódy");
TPRINTF("Greek: %s\n", "Ὦ ξεῖν’, ἀγγέλλειν Λακεδαιμονίοις ὅτι τῇδε");
TPRINTF("Hebrew: %s\n", "משוואת ברנולי היא משוואה בהידרודינמיקה");
TPRINTF("Arabic: %s\n", "التوزيع الجغرافي للحمل العنقودي");
TPRINTF("Russian: %s\n", "Леннон познакомился с художницей-авангардисткой");
TPRINTF("Armenian: %s\n", "Սկսեց հրատարակվել Երուսաղեմի հայկական");
TPRINTF("\nUTF-32 strings using printf(\"%%ls\"):\n");
TPRINTF("English: %ls\n", L"Quick brown fox jumps over the lazy dog");
TPRINTF("Czech: %ls\n", L"Příliš žluťoučký kůň úpěl ďábelské ódy");
TPRINTF("Greek: %ls\n", L"Ὦ ξεῖν’, ἀγγέλλειν Λακεδαιμονίοις ὅτι τῇδε");
TPRINTF("Hebrew: %ls\n", L"משוואת ברנולי היא משוואה בהידרודינמיקה");
TPRINTF("Arabic: %ls\n", L"التوزيع الجغرافي للحمل العنقودي");
TPRINTF("Russian: %ls\n", L"Леннон познакомился с художницей-авангардисткой");
TPRINTF("Armenian: %ls\n", L"Սկսեց հրատարակվել Երուսաղեմի հայկական");
return NULL;
}
/branches/dd/uspace/app/tester/print/print1.def
1,6 → 1,6
{
"print1",
"Printf test",
"String printf test",
&test_print1,
true
},
/branches/dd/uspace/app/tester/print/print2.def
0,0 → 1,6
{
"print2",
"Numeric printf test",
&test_print2,
true
},
/branches/dd/uspace/app/tester/print/print3.def
0,0 → 1,6
{
"print3",
"Buffered printf test",
&test_print3,
true
},
/branches/dd/uspace/app/tester/print/print1.c
30,44 → 30,27
#include <unistd.h>
#include "../tester.h"
 
#define BUFFER_SIZE 32
 
char * test_print1(bool quiet)
char *test_print1(void)
{
if (!quiet) {
int retval;
unsigned int nat = 0x12345678u;
char buffer[BUFFER_SIZE];
printf(" text 10.8s %*.*s \n", 5, 3, "text");
printf(" very long text 10.8s %10.8s \n", "very long text");
printf(" text 8.10s %8.10s \n", "text");
printf(" very long text 8.10s %8.10s \n", "very long text");
printf(" char: c '%c', 3.2c '%3.2c', -3.2c '%-3.2c', 2.3c '%2.3c', -2.3c '%-2.3c' \n",'a', 'b', 'c', 'd', 'e' );
printf(" int: d '%d', 3.2d '%3.2d', -3.2d '%-3.2d', 2.3d '%2.3d', -2.3d '%-2.3d' \n",1, 1, 1, 1, 1 );
printf(" -int: d '%d', 3.2d '%3.2d', -3.2d '%-3.2d', 2.3d '%2.3d', -2.3d '%-2.3d' \n",-1, -1, -1, -1, -1 );
printf(" 0xint: x '%#x', 5.3x '%#5.3x', -5.3x '%#-5.3x', 3.5x '%#3.5x', -3.5x '%#-3.5x' \n",17, 17, 17, 17, 17 );
printf("'%#llx' 64bit, '%#x' 32bit, '%#hhx' 8bit, '%#hx' 16bit, unative_t '%#zx'. '%#llx' 64bit and '%s' string.\n", 0x1234567887654321ll, 0x12345678, 0x12, 0x1234, nat, 0x1234567887654321ull, "Lovely string" );
printf(" Print to NULL '%s'\n", NULL);
retval = snprintf(buffer, BUFFER_SIZE, "Short text without parameters.");
printf("Result is: '%s', retval = %d\n", buffer, retval);
retval = snprintf(buffer, BUFFER_SIZE, "Very very very long text without parameters.");
printf("Result is: '%s', retval = %d\n", buffer, retval);
printf("Print short text to %d char long buffer via snprintf.\n", BUFFER_SIZE);
retval = snprintf(buffer, BUFFER_SIZE, "Short %s", "text");
printf("Result is: '%s', retval = %d\n", buffer, retval);
printf("Print long text to %d char long buffer via snprintf.\n", BUFFER_SIZE);
retval = snprintf(buffer, BUFFER_SIZE, "Very long %s. This text`s length is more than %d. We are interested in the result.", "text" , BUFFER_SIZE);
printf("Result is: '%s', retval = %d\n", buffer, retval);
}
TPRINTF("Testing printf(\"%%*.*s\", 5, 3, \"text\"):\n");
TPRINTF("Expected output: \" tex\"\n");
TPRINTF("Real output: \"%*.*s\"\n\n", 5, 3, "text");
TPRINTF("Testing printf(\"%%10.8s\", \"very long text\"):\n");
TPRINTF("Expected output: \" very lon\"\n");
TPRINTF("Real output: \"%10.8s\"\n\n", "very long text");
TPRINTF("Testing printf(\"%%8.10s\", \"text\"):\n");
TPRINTF("Expected output: \"text\"\n");
TPRINTF("Real output: \"%8.10s\"\n\n", "text");
TPRINTF("Testing printf(\"%%8.10s\", \"very long text\"):\n");
TPRINTF("Expected output: \"very long \"\n");
TPRINTF("Real output: \"%8.10s\"\n\n", "very long text");
TPRINTF("Testing printf(\"%%s\", NULL):\n");
TPRINTF("Expected output: \"(NULL)\"\n");
TPRINTF("Real output: \"%s\"\n\n", NULL);
return NULL;
}
/branches/dd/uspace/app/tester/tester.h
39,43 → 39,45
#include <bool.h>
#include <ipc/ipc.h>
 
#define IPC_TEST_START 10000
#define MAX_PHONES 20
#define MAX_CONNECTIONS 50
#define TEST_SKIPPED "Test Skipped"
#define IPC_TEST_SERVICE 10240
#define IPC_TEST_METHOD 2000
 
extern int myservice;
extern int phones[MAX_PHONES];
extern int connections[MAX_CONNECTIONS];
extern ipc_callid_t callids[MAX_CONNECTIONS];
extern bool test_quiet;
extern int test_argc;
extern char **test_argv;
 
typedef char * (* test_entry_t)(bool);
#define TPRINTF(format, ...) \
{ \
if (!test_quiet) { \
fprintf(stderr, format, ##__VA_ARGS__); \
} \
}
 
typedef char *(*test_entry_t)(void);
 
typedef struct {
char * name;
char * desc;
char *name;
char *desc;
test_entry_t entry;
bool safe;
} test_t;
 
extern char * test_thread1(bool quiet);
extern char * test_print1(bool quiet);
extern char * test_print4(bool quiet);
extern char * test_fault1(bool quiet);
extern char * test_fault2(bool quiet);
extern char * test_register(bool quiet);
extern char * test_connect(bool quiet);
extern char * test_send_async(bool quiet);
extern char * test_send_sync(bool quiet);
extern char * test_answer(bool quiet);
extern char * test_hangup(bool quiet);
extern char * test_ping_pong(bool quiet);
extern char * test_devmap1(bool quiet);
extern char * test_loop1(bool quiet);
extern char * test_vfs1(bool quiet);
extern char * test_console1(bool quiet);
extern char * test_stdio1(bool quiet);
extern char * test_stdio2(bool quiet);
extern char *test_thread1(void);
extern char *test_print1(void);
extern char *test_print2(void);
extern char *test_print3(void);
extern char *test_print4(void);
extern char *test_console1(void);
extern char *test_stdio1(void);
extern char *test_stdio2(void);
extern char *test_fault1(void);
extern char *test_fault2(void);
extern char *test_vfs1(void);
extern char *test_ping_pong(void);
extern char *test_register(void);
extern char *test_connect(void);
extern char *test_loop1(void);
extern char *test_malloc1(void);
 
extern test_t tests[];
 
/branches/dd/uspace/app/tester/Makefile
45,22 → 45,20
SOURCES = tester.c \
thread/thread1.c \
print/print1.c \
print/print2.c \
print/print3.c \
print/print4.c \
console/console1.c \
stdio/stdio1.c \
stdio/stdio2.c \
fault/fault1.c \
fault/fault2.c \
vfs/vfs1.c \
ipc/ping_pong.c \
ipc/register.c \
ipc/connect.c \
ipc/send_async.c \
ipc/send_sync.c \
ipc/answer.c \
ipc/hangup.c \
ipc/ping_pong.c \
loop/loop1.c \
devmap/devmap1.c \
console/console1.c \
stdio/stdio1.c \
stdio/stdio2.c \
vfs/vfs1.c
mm/malloc1.c
 
OBJECTS := $(addsuffix .o,$(basename $(SOURCES)))
 
/branches/dd/uspace/app/tester/vfs/vfs1.c
34,109 → 34,118
#include <unistd.h>
#include <fcntl.h>
#include <dirent.h>
#include <devmap.h>
#include <sys/types.h>
#include <sys/stat.h>
#include "../tester.h"
 
char text[] = "O xein', angellein Lakedaimoniois hoti teide "
"keimetha tois keinon rhemasi peithomenoi.";
#define FS_TYPE "tmpfs"
#define MOUNT_POINT "/tmp"
#define OPTIONS ""
#define FLAGS 0
 
char *test_vfs1(bool quiet)
#define TEST_DIRECTORY MOUNT_POINT "/testdir"
#define TEST_FILE TEST_DIRECTORY "/testfile"
#define TEST_FILE2 TEST_DIRECTORY "/nextfile"
 
#define MAX_DEVICE_NAME 32
#define BUF_SIZE 16
 
static char text[] = "Lorem ipsum dolor sit amet, consectetur adipisicing elit";
 
static char *read_root(void)
{
int rc;
TPRINTF("Opening the root directory...");
DIR *dirp = opendir("/");
if (!dirp) {
TPRINTF("\n");
return "opendir() failed";
} else
TPRINTF("OK\n");
struct dirent *dp;
while ((dp = readdir(dirp)))
TPRINTF(" node \"%s\"\n", dp->d_name);
closedir(dirp);
return NULL;
}
 
rc = mount("tmpfs", "/", "nulldev0", "", 0);
char *test_vfs1(void)
{
if (mkdir(MOUNT_POINT, 0) != 0)
return "mkdir() failed";
TPRINTF("Created directory %s\n", MOUNT_POINT);
char null[MAX_DEVICE_NAME];
int null_id = devmap_null_create();
if (null_id == -1)
return "Unable to create null device";
snprintf(null, MAX_DEVICE_NAME, "null%d", null_id);
int rc = mount(FS_TYPE, MOUNT_POINT, null, OPTIONS, FLAGS);
switch (rc) {
case EOK:
if (!quiet)
printf("mounted tmpfs on /\n");
TPRINTF("Mounted /dev/%s as %s on %s\n", null, FS_TYPE, MOUNT_POINT);
break;
case EBUSY:
if (!quiet)
printf("(INFO) something is already mounted on /\n");
TPRINTF("(INFO) Filesystem already mounted on %s\n", MOUNT_POINT);
break;
default:
if (!quiet)
printf("(INFO) IPC returned errno %d\n", rc);
return "mount() failed.";
TPRINTF("(ERR) IPC returned errno %d (is tmpfs loaded?)\n", rc);
return "mount() failed";
}
 
if (mkdir("/mydir", 0) != 0)
return "mkdir() failed.\n";
if (!quiet)
printf("created directory /mydir\n");
int fd0 = open("/mydir/myfile", O_CREAT);
if (mkdir(TEST_DIRECTORY, 0) != 0)
return "mkdir() failed";
TPRINTF("Created directory %s\n", TEST_DIRECTORY);
int fd0 = open(TEST_FILE, O_CREAT);
if (fd0 < 0)
return "open() failed.\n";
if (!quiet)
printf("created file /mydir/myfile, fd=%d\n", fd0);
 
ssize_t cnt;
return "open() failed";
TPRINTF("Created file %s (fd=%d)\n", TEST_FILE, fd0);
size_t size = sizeof(text);
cnt = write(fd0, text, size);
ssize_t cnt = write(fd0, text, size);
if (cnt < 0)
return "write() failed.\n";
if (!quiet)
printf("written %d bytes, fd=%d\n", cnt, fd0);
return "write() failed";
TPRINTF("Written %d bytes\n", cnt);
if (lseek(fd0, 0, SEEK_SET) != 0)
return "lseek() failed.\n";
if (!quiet)
printf("sought to position 0, fd=%d\n", fd0);
 
char buf[10];
 
while ((cnt = read(fd0, buf, sizeof(buf)))) {
return "lseek() failed";
TPRINTF("Sought to position 0\n");
char buf[BUF_SIZE];
while ((cnt = read(fd0, buf, BUF_SIZE))) {
if (cnt < 0)
return "read() failed.\n";
if (!quiet)
printf("read %d bytes: \"%.*s\", fd=%d\n", cnt, cnt,
buf, fd0);
return "read() failed";
TPRINTF("Read %d bytes: \".*s\"\n", cnt, cnt, buf);
}
 
close(fd0);
 
DIR *dirp;
struct dirent *dp;
 
if (!quiet)
printf("scanning the root directory...\n");
 
dirp = opendir("/");
if (!dirp)
return "opendir() failed\n";
while ((dp = readdir(dirp)))
printf("discovered node %s in /\n", dp->d_name);
closedir(dirp);
 
if (rename("/mydir/myfile", "/mydir/yourfile"))
return "rename() failed.\n";
 
if (!quiet)
printf("renamed /mydir/myfile to /mydir/yourfile\n");
 
if (unlink("/mydir/yourfile"))
return "unlink() failed.\n";
if (!quiet)
printf("unlinked file /mydir/yourfile\n");
 
if (rmdir("/mydir"))
return "rmdir() failed.\n";
 
if (!quiet)
printf("removed directory /mydir\n");
char *rv = read_root();
if (rv != NULL)
return rv;
if (!quiet)
printf("scanning the root directory...\n");
 
dirp = opendir("/");
if (!dirp)
return "opendir() failed\n";
while ((dp = readdir(dirp)))
printf("discovered node %s in /\n", dp->d_name);
closedir(dirp);
 
if (rename(TEST_FILE, TEST_FILE2))
return "rename() failed";
TPRINTF("Renamed %s to %s\n", TEST_FILE, TEST_FILE2);
if (unlink(TEST_FILE2))
return "unlink() failed";
TPRINTF("Unlinked %s\n", TEST_FILE2);
if (rmdir(TEST_DIRECTORY))
return "rmdir() failed";
TPRINTF("Removed directory %s\n", TEST_DIRECTORY);
rv = read_root();
if (rv != NULL)
return rv;
return NULL;
}
 
/branches/dd/uspace/app/getvc/getvc.c
73,6 → 73,9
 
int main(int argc, char *argv[])
{
task_exit_t texit;
int retval;
 
if (argc < 3) {
usage();
return -1;
83,6 → 86,12
stdin = fopen(argv[1], "r");
stdout = fopen(argv[1], "w");
stderr = fopen(argv[1], "w");
 
/*
* FIXME: fopen() should actually detect that we are opening a console
* and it should set line-buffering mode automatically.
*/
setvbuf(stdout, NULL, _IOLBF, BUFSIZ);
if ((stdin == NULL)
|| (stdout == NULL)
91,7 → 100,7
version_print(argv[1]);
task_id_t id = spawn(argv[2]);
task_wait(id);
task_wait(id, &texit, &retval);
return 0;
}
/branches/dd/uspace/app/tetris/scores.c
196,5 → 196,38
}
}
 
int loadscores(void)
{
FILE *f;
size_t cnt;
int rc;
 
f = fopen("/data/tetris.sco", "rb");
if (f == NULL)
return ENOENT;
 
cnt = fread(scores, sizeof(struct highscore), NUMSPOTS, f);
rc = fclose(f);
 
if (cnt != NUMSPOTS || rc != 0)
return EIO;
 
return EOK;
}
 
void savescores(void)
{
FILE *f;
size_t cnt;
int rc;
 
f = fopen("/data/tetris.sco", "wb");
cnt = fwrite(scores, sizeof(struct highscore), NUMSPOTS, f);
rc = fclose(f);
 
if (cnt != NUMSPOTS || rc != 0)
printf("Error saving score table\n");
}
 
/** @}
*/
/branches/dd/uspace/app/tetris/screen.c
62,6 → 62,8
static int curscore;
static int isset; /* true => terminal is in game mode */
 
static int use_color; /* true => use colors */
 
static const struct shape *lastshape;
 
 
77,11 → 79,14
 
static void start_standout(uint32_t color)
{
console_set_rgb_color(fphone(stdout), 0xf0f0f0, color);
fflush(stdout);
console_set_rgb_color(fphone(stdout), 0xf0f0f0,
use_color ? color : 0x000000);
}
 
static void resume_normal(void)
{
fflush(stdout);
console_set_rgb_color(fphone(stdout), 0, 0xf0f0f0);
}
 
114,6 → 119,7
 
void moveto(int r, int c)
{
fflush(stdout);
console_goto(fphone(stdout), c, r);
}
 
124,6 → 130,18
return console_get_size(fphone(stdout), &ws->ws_col, &ws->ws_row);
}
 
static int get_display_color_sup(void)
{
int rc;
int ccap;
 
rc = console_get_color_cap(fphone(stdout), &ccap);
if (rc != 0)
return 0;
 
return (ccap >= CONSOLE_CCAP_RGB);
}
 
/*
* Set up screen mode.
*/
138,6 → 156,8
Rows = ws.ws_row;
Cols = ws.ws_col;
}
 
use_color = get_display_color_sup();
if ((Rows < MINROWS) || (Cols < MINCOLS)) {
char smallscr[55];
/branches/dd/uspace/app/tetris/scores.h
64,6 → 64,8
extern void showscores(int);
extern void initscores(void);
extern void insertscore(int score, int level);
extern int loadscores(void);
extern void savescores(void);
 
/** @}
*/
/branches/dd/uspace/app/tetris/tetris.c
49,6 → 49,7
#include <sys/time.h>
#include <sys/types.h>
#include <err.h>
#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
206,6 → 207,7
printf("off");
break;
case 'h':
loadscores();
showscores(firstgame);
tetris_menu_draw(*level);
break;
297,7 → 299,9
key_write[4], key_write[5]);
scr_init();
initscores();
if (loadscores() != EOK)
initscores();
 
while (tetris_menu(&level)) {
fallrate = 1000000 / level;
415,7 → 419,9
}
scr_clear();
loadscores();
insertscore(score, level);
savescores();
score = 0;
}
/branches/dd/uspace/app/trace/trace.c
43,7 → 43,11
#include <task.h>
#include <mem.h>
#include <string.h>
#include <bool.h>
#include <loader/loader.h>
#include <io/console.h>
#include <io/keycode.h>
#include <fibril_sync.h>
 
#include <libc.h>
 
64,22 → 68,31
 
int next_thread_id;
 
ipc_call_t thread_ipc_req[THBUF_SIZE];
 
int phoneid;
int abort_trace;
bool abort_trace;
 
uintptr_t thash;
volatile int paused;
static bool paused;
static fibril_condvar_t state_cv;
static fibril_mutex_t state_lock;
 
static bool cev_valid;
static console_event_t cev;
 
void thread_trace_start(uintptr_t thread_hash);
 
static proto_t *proto_console;
static task_id_t task_id;
static loader_t *task_ldr;
static bool task_wait_for;
 
/** Combination of events/data to print. */
display_mask_t display_mask;
 
static int program_run_fibril(void *arg);
static int cev_fibril(void *arg);
 
static void program_run(void)
{
94,6 → 107,19
fibril_add_ready(fid);
}
 
static void cev_fibril_start(void)
{
fid_t fid;
 
fid = fibril_create(cev_fibril, NULL);
if (fid == 0) {
printf("Error creating fibril\n");
exit(1);
}
 
fibril_add_ready(fid);
}
 
static int program_run_fibril(void *arg)
{
int rc;
315,7 → 341,7
ipcp_call_sync(phoneidx, &question, &reply);
}
 
static void sc_ipc_call_sync_slow(sysarg_t *sc_args)
static void sc_ipc_call_sync_slow_b(unsigned thread_id, sysarg_t *sc_args)
{
ipc_call_t question, reply;
int rc;
322,15 → 348,27
 
memset(&question, 0, sizeof(question));
rc = udebug_mem_read(phoneid, &question.args, sc_args[1], sizeof(question.args));
printf("dmr->%d\n", rc);
if (rc < 0) return;
if (rc < 0) {
printf("Error: mem_read->%d\n", rc);
return;
}
 
thread_ipc_req[thread_id] = question;
}
 
static void sc_ipc_call_sync_slow_e(unsigned thread_id, sysarg_t *sc_args)
{
ipc_call_t question, reply;
int rc;
 
memset(&reply, 0, sizeof(reply));
rc = udebug_mem_read(phoneid, &reply.args, sc_args[2], sizeof(reply.args));
printf("dmr->%d\n", rc);
if (rc < 0) return;
if (rc < 0) {
printf("Error: mem_read->%d\n", rc);
return;
}
 
ipcp_call_sync(sc_args[0], &question, &reply);
ipcp_call_sync(sc_args[0], &thread_ipc_req[thread_id], &reply);
}
 
static void sc_ipc_wait(sysarg_t *sc_args, int sc_rc)
375,6 → 413,14
print_sc_args(sc_args, syscall_desc[sc_id].n_args);
}
 
switch (sc_id) {
case SYS_IPC_CALL_SYNC_SLOW:
sc_ipc_call_sync_slow_b(thread_id, sc_args);
break;
default:
break;
}
 
async_serialize_end();
}
 
415,7 → 461,7
sc_ipc_call_sync_fast(sc_args);
break;
case SYS_IPC_CALL_SYNC_SLOW:
sc_ipc_call_sync_slow(sc_args);
sc_ipc_call_sync_slow_e(thread_id, sc_args);
break;
case SYS_IPC_WAIT:
sc_ipc_wait(sc_args, sc_rc);
446,20 → 492,26
 
thread_hash = (uintptr_t)thread_hash_arg;
thread_id = next_thread_id++;
if (thread_id >= THBUF_SIZE) {
printf("Too many threads.\n");
return ELIMIT;
}
 
printf("Start tracing thread [%d] (hash 0x%lx).\n", thread_id, thread_hash);
 
while (!abort_trace) {
 
fibril_mutex_lock(&state_lock);
if (paused) {
printf("Press R to resume (and be patient).\n");
while (paused) {
usleep(1000000);
fibril_yield();
printf(".");
}
printf("Resumed\n");
printf("Thread [%d] paused. Press R to resume.\n",
thread_id);
 
while (paused)
fibril_condvar_wait(&state_cv, &state_lock);
 
printf("Thread [%d] resumed.\n", thread_id);
}
fibril_mutex_unlock(&state_lock);
 
/* Run thread until an event occurs */
rc = udebug_go(phoneid, thread_hash,
481,6 → 533,9
break;
case UDEBUG_EVENT_STOP:
printf("Stop event\n");
fibril_mutex_lock(&state_lock);
paused = true;
fibril_mutex_unlock(&state_lock);
break;
case UDEBUG_EVENT_THREAD_B:
event_thread_b(val0);
487,7 → 542,10
break;
case UDEBUG_EVENT_THREAD_E:
printf("Thread 0x%lx exited.\n", val0);
abort_trace = 1;
fibril_mutex_lock(&state_lock);
abort_trace = true;
fibril_condvar_broadcast(&state_cv);
fibril_mutex_unlock(&state_lock);
break;
default:
printf("Unknown event type %d.\n", ev_type);
540,6 → 598,33
if (rc != EOK)
goto error;
 
/* Send default files */
fdi_node_t *files[4];
fdi_node_t stdin_node;
fdi_node_t stdout_node;
fdi_node_t stderr_node;
if ((stdin != NULL) && (fnode(stdin, &stdin_node) == EOK))
files[0] = &stdin_node;
else
files[0] = NULL;
if ((stdout != NULL) && (fnode(stdout, &stdout_node) == EOK))
files[1] = &stdout_node;
else
files[1] = NULL;
if ((stderr != NULL) && (fnode(stderr, &stderr_node) == EOK))
files[2] = &stderr_node;
else
files[2] = NULL;
files[3] = NULL;
rc = loader_set_files(ldr, files);
if (rc != EOK)
goto error;
 
/* Load the program. */
rc = loader_load_program(ldr);
if (rc != EOK)
555,11 → 640,32
return NULL;
}
 
static int cev_fibril(void *arg)
{
(void) arg;
 
while (true) {
fibril_mutex_lock(&state_lock);
while (cev_valid)
fibril_condvar_wait(&state_cv, &state_lock);
fibril_mutex_unlock(&state_lock);
 
if (!console_get_event(fphone(stdin), &cev))
return -1;
 
fibril_mutex_lock(&state_lock);
cev_valid = true;
fibril_condvar_broadcast(&state_cv);
fibril_mutex_unlock(&state_lock);
}
}
 
static void trace_task(task_id_t task_id)
{
console_event_t ev;
bool done;
int i;
int rc;
int c;
 
ipcp_init();
 
575,29 → 681,55
return;
}
 
abort_trace = 0;
abort_trace = false;
 
for (i = 0; i < n_threads; i++) {
thread_trace_start(thread_hash_buf[i]);
}
 
while(1) {
c = getchar();
if (c == 'q') break;
if (c == 'p') {
done = false;
 
while (!done) {
fibril_mutex_lock(&state_lock);
while (!cev_valid && !abort_trace)
fibril_condvar_wait(&state_cv, &state_lock);
fibril_mutex_unlock(&state_lock);
 
ev = cev;
 
fibril_mutex_lock(&state_lock);
cev_valid = false;
fibril_condvar_broadcast(&state_cv);
fibril_mutex_unlock(&state_lock);
 
if (abort_trace)
break;
 
if (ev.type != KEY_PRESS)
continue;
 
switch (ev.key) {
case KC_Q:
done = true;
break;
case KC_P:
printf("Pause...\n");
paused = 1;
rc = udebug_stop(phoneid, thash);
printf("stop -> %d\n", rc);
}
if (c == 'r') {
paused = 0;
if (rc != EOK)
printf("Error: stop -> %d\n", rc);
break;
case KC_R:
fibril_mutex_lock(&state_lock);
paused = false;
fibril_condvar_broadcast(&state_cv);
fibril_mutex_unlock(&state_lock);
printf("Resume...\n");
break;
}
}
 
printf("\nTerminate debugging session...\n");
abort_trace = 1;
abort_trace = true;
udebug_end(phoneid);
ipc_hangup(phoneid);
 
629,37 → 761,53
};
 
next_thread_id = 1;
paused = 0;
paused = false;
cev_valid = false;
 
fibril_mutex_initialize(&state_lock);
fibril_condvar_initialize(&state_cv);
 
proto_init();
 
p = proto_new("vfs");
o = oper_new("open", 2, arg_def, V_INT_ERRNO, 0, resp_def);
proto_add_oper(p, VFS_IN_OPEN, o);
o = oper_new("open_node", 4, arg_def, V_INT_ERRNO, 0, resp_def);
proto_add_oper(p, VFS_IN_OPEN_NODE, o);
o = oper_new("read", 1, arg_def, V_ERRNO, 1, resp_def);
proto_add_oper(p, VFS_READ, o);
proto_add_oper(p, VFS_IN_READ, o);
o = oper_new("write", 1, arg_def, V_ERRNO, 1, resp_def);
proto_add_oper(p, VFS_WRITE, o);
proto_add_oper(p, VFS_IN_WRITE, o);
o = oper_new("seek", 3, arg_def, V_ERRNO, 0, resp_def);
proto_add_oper(p, VFS_IN_SEEK, o);
o = oper_new("truncate", 5, arg_def, V_ERRNO, 0, resp_def);
proto_add_oper(p, VFS_TRUNCATE, o);
proto_add_oper(p, VFS_IN_TRUNCATE, o);
o = oper_new("fstat", 1, arg_def, V_ERRNO, 0, resp_def);
proto_add_oper(p, VFS_IN_FSTAT, o);
o = oper_new("close", 1, arg_def, V_ERRNO, 0, resp_def);
proto_add_oper(p, VFS_IN_CLOSE, o);
o = oper_new("mount", 2, arg_def, V_ERRNO, 0, resp_def);
proto_add_oper(p, VFS_MOUNT, o);
proto_add_oper(p, VFS_IN_MOUNT, o);
/* o = oper_new("unmount", 0, arg_def);
proto_add_oper(p, VFS_UNMOUNT, o);*/
o = oper_new("open", 2, arg_def, V_INT_ERRNO, 0, resp_def);
proto_add_oper(p, VFS_OPEN, o);
o = oper_new("close", 1, arg_def, V_ERRNO, 0, resp_def);
proto_add_oper(p, VFS_CLOSE, o);
o = oper_new("seek", 3, arg_def, V_ERRNO, 0, resp_def);
proto_add_oper(p, VFS_SEEK, o);
proto_add_oper(p, VFS_IN_UNMOUNT, o);*/
o = oper_new("sync", 1, arg_def, V_ERRNO, 0, resp_def);
proto_add_oper(p, VFS_IN_SYNC, o);
o = oper_new("mkdir", 1, arg_def, V_ERRNO, 0, resp_def);
proto_add_oper(p, VFS_MKDIR, o);
proto_add_oper(p, VFS_IN_MKDIR, o);
o = oper_new("unlink", 0, arg_def, V_ERRNO, 0, resp_def);
proto_add_oper(p, VFS_UNLINK, o);
proto_add_oper(p, VFS_IN_UNLINK, o);
o = oper_new("rename", 0, arg_def, V_ERRNO, 0, resp_def);
proto_add_oper(p, VFS_RENAME, o);
proto_add_oper(p, VFS_IN_RENAME, o);
o = oper_new("stat", 0, arg_def, V_ERRNO, 0, resp_def);
proto_add_oper(p, VFS_IN_STAT, o);
 
proto_register(SERVICE_VFS, p);
 
p = proto_new("console");
 
o = oper_new("write", 1, arg_def, V_ERRNO, 1, resp_def);
proto_add_oper(p, VFS_IN_WRITE, o);
 
resp_def[0] = V_INTEGER; resp_def[1] = V_INTEGER;
resp_def[2] = V_INTEGER; resp_def[3] = V_CHAR;
o = oper_new("getkey", 0, arg_def, V_ERRNO, 4, resp_def);
752,6 → 900,7
--argc; ++argv;
task_id = strtol(*argv, &err_p, 10);
task_ldr = NULL;
task_wait_for = false;
if (*err_p) {
printf("Task ID syntax error\n");
print_syntax();
789,6 → 938,7
while (*cp) printf("'%s'\n", *cp++);
}
task_ldr = preload_task(*argv, argv, &task_id);
task_wait_for = true;
 
return 0;
}
796,6 → 946,8
int main(int argc, char *argv[])
{
int rc;
task_exit_t texit;
int retval;
 
printf("System Call / IPC Tracer\n");
printf("Controls: Q - Quit, P - Pause, R - Resume\n");
815,12 → 967,29
 
printf("Connected to task %lld.\n", task_id);
 
if (task_ldr != NULL) {
if (task_ldr != NULL)
program_run();
}
 
cev_fibril_start();
trace_task(task_id);
 
if (task_wait_for) {
printf("Waiting for task to exit.\n");
 
rc = task_wait(task_id, &texit, &retval);
if (rc != EOK) {
printf("Failed waiting for task.\n");
return -1;
}
 
if (texit == TASK_EXIT_NORMAL) {
printf("Task exited normally, return value %d.\n",
retval);
} else {
printf("Task exited unexpectedly.\n");
}
}
 
return 0;
}
 
/branches/dd/uspace/lib/libfs/libfs.c
43,6 → 43,7
#include <assert.h>
#include <dirent.h>
#include <mem.h>
#include <sys/stat.h>
 
/** Register file system server.
*
69,7 → 70,7
* out-of-order, when it knows that the operation succeeded or failed.
*/
ipc_call_t answer;
aid_t req = async_send_0(vfs_phone, VFS_REGISTER, &answer);
aid_t req = async_send_0(vfs_phone, VFS_IN_REGISTER, &answer);
 
/*
* Send our VFS info structure to VFS.
104,7 → 105,7
}
/*
* Pick up the answer for the request to the VFS_REQUEST call.
* Pick up the answer for the request to the VFS_IN_REQUEST call.
*/
async_wait_for(req, NULL);
reg->fs_handle = (int) IPC_GET_ARG1(answer);
186,7 → 187,7
}
ipc_call_t answer;
aid_t msg = async_send_1(mountee_phone, VFS_MOUNTED, mr_dev_handle,
aid_t msg = async_send_1(mountee_phone, VFS_OUT_MOUNTED, mr_dev_handle,
&answer);
ipc_forward_fast(callid, mountee_phone, 0, 0, 0, IPC_FF_ROUTE_FROM_ME);
async_wait_for(msg, &rc);
213,8 → 214,8
* file system implementation
* @param fs_handle File system handle of the file system where to perform
* the lookup.
* @param rid Request ID of the VFS_LOOKUP request.
* @param request VFS_LOOKUP request data itself.
* @param rid Request ID of the VFS_OUT_LOOKUP request.
* @param request VFS_OUT_LOOKUP request data itself.
*
*/
void libfs_lookup(libfs_ops_t *ops, fs_handle_t fs_handle, ipc_callid_t rid,
237,7 → 238,7
fs_node_t *tmp = NULL;
 
if (cur->mp_data.mp_active) {
ipc_forward_slow(rid, cur->mp_data.phone, VFS_LOOKUP,
ipc_forward_slow(rid, cur->mp_data.phone, VFS_OUT_LOOKUP,
next, last, cur->mp_data.dev_handle, lflag, index,
IPC_FF_ROUTE_FROM_ME);
ops->node_put(cur);
272,9 → 273,9
else
next--;
ipc_forward_slow(rid, tmp->mp_data.phone, VFS_LOOKUP,
next, last, tmp->mp_data.dev_handle, lflag, index,
IPC_FF_ROUTE_FROM_ME);
ipc_forward_slow(rid, tmp->mp_data.phone,
VFS_OUT_LOOKUP, next, last, tmp->mp_data.dev_handle,
lflag, index, IPC_FF_ROUTE_FROM_ME);
ops->node_put(cur);
ops->node_put(tmp);
if (par)
428,12 → 429,42
ops->node_put(tmp);
}
 
void libfs_stat(libfs_ops_t *ops, fs_handle_t fs_handle, ipc_callid_t rid,
ipc_call_t *request)
{
dev_handle_t dev_handle = (dev_handle_t) IPC_GET_ARG1(*request);
fs_index_t index = (fs_index_t) IPC_GET_ARG2(*request);
fs_node_t *fn = ops->node_get(dev_handle, index);
 
ipc_callid_t callid;
size_t size;
if (!ipc_data_read_receive(&callid, &size) ||
size != sizeof(struct stat)) {
ipc_answer_0(callid, EINVAL);
ipc_answer_0(rid, EINVAL);
return;
}
 
struct stat stat;
memset(&stat, 0, sizeof(struct stat));
stat.fs_handle = fs_handle;
stat.dev_handle = dev_handle;
stat.index = index;
stat.lnkcnt = ops->lnkcnt_get(fn);
stat.is_file = ops->is_file(fn);
stat.size = ops->size_get(fn);
 
ipc_data_read_finalize(callid, &stat, sizeof(struct stat));
ipc_answer_0(rid, EOK);
}
 
/** Open VFS triplet.
*
* @param ops libfs operations structure with function pointers to
* file system implementation
* @param rid Request ID of the VFS_OPEN_NODE request.
* @param request VFS_OPEN_NODE request data itself.
* @param rid Request ID of the VFS_OUT_OPEN_NODE request.
* @param request VFS_OUT_OPEN_NODE request data itself.
*
*/
void libfs_open_node(libfs_ops_t *ops, fs_handle_t fs_handle, ipc_callid_t rid,
/branches/dd/uspace/lib/libfs/libfs.h
84,6 → 84,7
 
extern void libfs_mount(libfs_ops_t *, fs_handle_t, ipc_callid_t, ipc_call_t *);
extern void libfs_lookup(libfs_ops_t *, fs_handle_t, ipc_callid_t, ipc_call_t *);
extern void libfs_stat(libfs_ops_t *, fs_handle_t, ipc_callid_t, ipc_call_t *);
extern void libfs_open_node(libfs_ops_t *, fs_handle_t, ipc_callid_t,
ipc_call_t *);
 
/branches/dd/uspace/lib/libblock/libblock.c
46,13 → 46,13
#include <ipc/ipc.h>
#include <as.h>
#include <assert.h>
#include <futex.h>
#include <fibril_sync.h>
#include <adt/list.h>
#include <adt/hash_table.h>
#include <mem.h>
 
/** Lock protecting the device connection list */
static futex_t dcl_lock = FUTEX_INITIALIZER;
static FIBRIL_MUTEX_INITIALIZE(dcl_lock);
/** Device connection list head. */
static LIST_INITIALIZE(dcl_head);
 
60,11 → 60,13
#define CACHE_BUCKETS (1 << CACHE_BUCKETS_LOG2)
 
typedef struct {
futex_t lock;
fibril_mutex_t lock;
size_t block_size; /**< Block size. */
unsigned block_count; /**< Total number of blocks. */
unsigned blocks_cached; /**< Number of cached blocks. */
hash_table_t block_hash;
link_t free_head;
enum cache_mode mode;
} cache_t;
 
typedef struct {
71,6 → 73,7
link_t link;
dev_handle_t dev_handle;
int dev_phone;
fibril_mutex_t com_area_lock;
void *com_area;
size_t com_size;
void *bb_buf;
79,19 → 82,22
cache_t *cache;
} devcon_t;
 
static int read_block(devcon_t *devcon, bn_t boff, size_t block_size);
static int write_block(devcon_t *devcon, bn_t boff, size_t block_size);
 
static devcon_t *devcon_search(dev_handle_t dev_handle)
{
link_t *cur;
 
futex_down(&dcl_lock);
fibril_mutex_lock(&dcl_lock);
for (cur = dcl_head.next; cur != &dcl_head; cur = cur->next) {
devcon_t *devcon = list_get_instance(cur, devcon_t, link);
if (devcon->dev_handle == dev_handle) {
futex_up(&dcl_lock);
fibril_mutex_unlock(&dcl_lock);
return devcon;
}
}
futex_up(&dcl_lock);
fibril_mutex_unlock(&dcl_lock);
return NULL;
}
 
108,6 → 114,7
link_initialize(&devcon->link);
devcon->dev_handle = dev_handle;
devcon->dev_phone = dev_phone;
fibril_mutex_initialize(&devcon->com_area_lock);
devcon->com_area = com_area;
devcon->com_size = com_size;
devcon->bb_buf = NULL;
115,25 → 122,25
devcon->bb_size = 0;
devcon->cache = NULL;
 
futex_down(&dcl_lock);
fibril_mutex_lock(&dcl_lock);
for (cur = dcl_head.next; cur != &dcl_head; cur = cur->next) {
devcon_t *d = list_get_instance(cur, devcon_t, link);
if (d->dev_handle == dev_handle) {
futex_up(&dcl_lock);
fibril_mutex_unlock(&dcl_lock);
free(devcon);
return EEXIST;
}
}
list_append(&devcon->link, &dcl_head);
futex_up(&dcl_lock);
fibril_mutex_unlock(&dcl_lock);
return EOK;
}
 
static void devcon_remove(devcon_t *devcon)
{
futex_down(&dcl_lock);
fibril_mutex_lock(&dcl_lock);
list_remove(&devcon->link);
futex_up(&dcl_lock);
fibril_mutex_unlock(&dcl_lock);
}
 
int block_init(dev_handle_t dev_handle, size_t com_size)
207,14 → 214,16
if (!bb_buf)
return ENOMEM;
off_t bufpos = 0;
size_t buflen = 0;
rc = block_read(dev_handle, &bufpos, &buflen, &off,
bb_buf, size, size);
fibril_mutex_lock(&devcon->com_area_lock);
rc = read_block(devcon, 0, size);
if (rc != EOK) {
fibril_mutex_unlock(&devcon->com_area_lock);
free(bb_buf);
return rc;
}
memcpy(bb_buf, devcon->com_area, size);
fibril_mutex_unlock(&devcon->com_area_lock);
 
devcon->bb_buf = bb_buf;
devcon->bb_off = off;
devcon->bb_size = size;
250,7 → 259,8
.remove_callback = cache_remove_callback
};
 
int block_cache_init(dev_handle_t dev_handle, size_t size, unsigned blocks)
int block_cache_init(dev_handle_t dev_handle, size_t size, unsigned blocks,
enum cache_mode mode)
{
devcon_t *devcon = devcon_search(dev_handle);
cache_t *cache;
262,10 → 272,12
if (!cache)
return ENOMEM;
futex_initialize(&cache->lock, 1);
fibril_mutex_initialize(&cache->lock);
list_initialize(&cache->free_head);
cache->block_size = size;
cache->block_count = blocks;
cache->blocks_cached = 0;
cache->mode = mode;
 
if (!hash_table_create(&cache->block_hash, CACHE_BUCKETS, 1,
&cache_ops)) {
277,17 → 289,23
return EOK;
}
 
#define CACHE_LO_WATERMARK 10
#define CACHE_HI_WATERMARK 20
static bool cache_can_grow(cache_t *cache)
{
if (cache->blocks_cached < CACHE_LO_WATERMARK)
return true;
if (!list_empty(&cache->free_head))
return false;
return true;
}
 
static void block_initialize(block_t *b)
{
futex_initialize(&b->lock, 1);
fibril_mutex_initialize(&b->lock);
b->refcnt = 1;
b->dirty = false;
rwlock_initialize(&b->contents_lock);
fibril_rwlock_initialize(&b->contents_lock);
link_initialize(&b->free_link);
link_initialize(&b->hash_link);
}
309,6 → 327,7
block_t *b;
link_t *l;
unsigned long key = boff;
bn_t oboff;
devcon = devcon_search(dev_handle);
 
316,7 → 335,7
assert(devcon->cache);
cache = devcon->cache;
futex_down(&cache->lock);
fibril_mutex_lock(&cache->lock);
l = hash_table_find(&cache->block_hash, &key);
if (l) {
/*
323,19 → 342,16
* We found the block in the cache.
*/
b = hash_table_get_instance(l, block_t, hash_link);
futex_down(&b->lock);
fibril_mutex_lock(&b->lock);
if (b->refcnt++ == 0)
list_remove(&b->free_link);
futex_up(&b->lock);
futex_up(&cache->lock);
fibril_mutex_unlock(&b->lock);
fibril_mutex_unlock(&cache->lock);
} else {
/*
* The block was not found in the cache.
*/
int rc;
off_t bufpos = 0;
size_t buflen = 0;
off_t pos = boff * cache->block_size;
bool sync = false;
 
if (cache_can_grow(cache)) {
352,6 → 368,7
free(b);
goto recycle;
}
cache->blocks_cached++;
} else {
/*
* Try to recycle a block from the free list.
361,8 → 378,9
assert(!list_empty(&cache->free_head));
l = cache->free_head.next;
list_remove(l);
b = hash_table_get_instance(l, block_t, hash_link);
b = list_get_instance(l, block_t, free_link);
sync = b->dirty;
oboff = b->boff;
temp_key = b->boff;
hash_table_remove(&cache->block_hash, &temp_key, 1);
}
378,8 → 396,8
* kill concurent operations on the cache while doing I/O on the
* block.
*/
futex_down(&b->lock);
futex_up(&cache->lock);
fibril_mutex_lock(&b->lock);
fibril_mutex_unlock(&cache->lock);
 
if (sync) {
/*
386,7 → 404,11
* The block is dirty and needs to be written back to
* the device before we can read in the new contents.
*/
abort(); /* TODO: block_write() */
fibril_mutex_lock(&devcon->com_area_lock);
memcpy(devcon->com_area, b->data, b->size);
rc = write_block(devcon, oboff, cache->block_size);
assert(rc == EOK);
fibril_mutex_unlock(&devcon->com_area_lock);
}
if (!(flags & BLOCK_FLAGS_NOREAD)) {
/*
393,12 → 415,14
* The block contains old or no data. We need to read
* the new contents from the device.
*/
rc = block_read(dev_handle, &bufpos, &buflen, &pos,
b->data, cache->block_size, cache->block_size);
fibril_mutex_lock(&devcon->com_area_lock);
rc = read_block(devcon, b->boff, cache->block_size);
assert(rc == EOK);
memcpy(b->data, devcon->com_area, cache->block_size);
fibril_mutex_unlock(&devcon->com_area_lock);
}
 
futex_up(&b->lock);
fibril_mutex_unlock(&b->lock);
}
return b;
}
413,25 → 437,62
{
devcon_t *devcon = devcon_search(block->dev_handle);
cache_t *cache;
int rc;
 
assert(devcon);
assert(devcon->cache);
 
cache = devcon->cache;
futex_down(&cache->lock);
futex_down(&block->lock);
fibril_mutex_lock(&cache->lock);
fibril_mutex_lock(&block->lock);
if (!--block->refcnt) {
/*
* Last reference to the block was dropped, put the block on the
* free list.
* Last reference to the block was dropped. Either free the
* block or put it on the free list.
*/
if (cache->blocks_cached > CACHE_HI_WATERMARK) {
/*
* Currently there are too many cached blocks.
*/
if (block->dirty) {
fibril_mutex_lock(&devcon->com_area_lock);
memcpy(devcon->com_area, block->data,
block->size);
rc = write_block(devcon, block->boff,
block->size);
assert(rc == EOK);
fibril_mutex_unlock(&devcon->com_area_lock);
}
/*
* Take the block out of the cache and free it.
*/
unsigned long key = block->boff;
hash_table_remove(&cache->block_hash, &key, 1);
free(block);
free(block->data);
cache->blocks_cached--;
fibril_mutex_unlock(&cache->lock);
return;
}
/*
* Put the block on the free list.
*/
list_append(&block->free_link, &cache->free_head);
if (cache->mode != CACHE_MODE_WB && block->dirty) {
fibril_mutex_lock(&devcon->com_area_lock);
memcpy(devcon->com_area, block->data, block->size);
rc = write_block(devcon, block->boff, block->size);
assert(rc == EOK);
fibril_mutex_unlock(&devcon->com_area_lock);
 
block->dirty = false;
}
}
futex_up(&block->lock);
futex_up(&cache->lock);
fibril_mutex_unlock(&block->lock);
fibril_mutex_unlock(&cache->lock);
}
 
/** Read data from a block device.
/** Read sequential data from a block device.
*
* @param dev_handle Device handle of the block device.
* @param bufpos Pointer to the first unread valid offset within the
445,9 → 506,8
*
* @return EOK on success or a negative return code on failure.
*/
int
block_read(dev_handle_t dev_handle, off_t *bufpos, size_t *buflen, off_t *pos,
void *dst, size_t size, size_t block_size)
int block_seqread(dev_handle_t dev_handle, off_t *bufpos, size_t *buflen,
off_t *pos, void *dst, size_t size, size_t block_size)
{
off_t offset = 0;
size_t left = size;
454,6 → 514,7
devcon_t *devcon = devcon_search(dev_handle);
assert(devcon);
fibril_mutex_lock(&devcon->com_area_lock);
while (left > 0) {
size_t rd;
474,21 → 535,70
left -= rd;
}
if (*bufpos == *buflen) {
if (*bufpos == (off_t) *buflen) {
/* Refill the communication buffer with a new block. */
ipcarg_t retval;
int rc = async_req_2_1(devcon->dev_phone, BD_READ_BLOCK,
*pos / block_size, block_size, &retval);
if ((rc != EOK) || (retval != EOK))
return (rc != EOK ? rc : retval);
int rc;
 
rc = read_block(devcon, *pos / block_size, block_size);
if (rc != EOK) {
fibril_mutex_unlock(&devcon->com_area_lock);
return rc;
}
*bufpos = 0;
*buflen = block_size;
}
}
fibril_mutex_unlock(&devcon->com_area_lock);
return EOK;
}
 
/** Read block from block device.
*
* @param devcon Device connection.
* @param boff Block index.
* @param block_size Block size.
* @param src Buffer for storing the data.
*
* @return EOK on success or negative error code on failure.
*/
static int read_block(devcon_t *devcon, bn_t boff, size_t block_size)
{
ipcarg_t retval;
int rc;
 
assert(devcon);
rc = async_req_2_1(devcon->dev_phone, BD_READ_BLOCK, boff, block_size,
&retval);
if ((rc != EOK) || (retval != EOK))
return (rc != EOK ? rc : (int) retval);
 
return EOK;
}
 
/** Write block to block device.
*
* @param devcon Device connection.
* @param boff Block index.
* @param block_size Block size.
* @param src Buffer containing the data to write.
*
* @return EOK on success or negative error code on failure.
*/
static int write_block(devcon_t *devcon, bn_t boff, size_t block_size)
{
ipcarg_t retval;
int rc;
 
assert(devcon);
rc = async_req_2_1(devcon->dev_phone, BD_WRITE_BLOCK, boff, block_size,
&retval);
if ((rc != EOK) || (retval != EOK))
return (rc != EOK ? rc : (int) retval);
 
return EOK;
}
 
/** @}
*/
/branches/dd/uspace/lib/libblock/libblock.h
39,8 → 39,7
 
#include <stdint.h>
#include "../../srv/vfs/vfs.h"
#include <futex.h>
#include <rwlock.h>
#include <fibril_sync.h>
#include <adt/hash_table.h>
#include <adt/list.h>
 
63,14 → 62,14
typedef unsigned bn_t; /**< Block number type. */
 
typedef struct block {
/** Futex protecting the reference count. */
futex_t lock;
/** Mutex protecting the reference count. */
fibril_mutex_t lock;
/** Number of references to the block_t structure. */
unsigned refcnt;
/** If true, the block needs to be written back to the block device. */
bool dirty;
/** Readers / Writer lock protecting the contents of the block. */
rwlock_t contents_lock;
fibril_rwlock_t contents_lock;
/** Handle of the device where the block resides. */
dev_handle_t dev_handle;
/** Block offset on the block device. Counted in 'size'-byte blocks. */
85,6 → 84,14
void *data;
} block_t;
 
/** Caching mode */
enum cache_mode {
/** Write-Through */
CACHE_MODE_WT,
/** Write-Back */
CACHE_MODE_WB
};
 
extern int block_init(dev_handle_t, size_t);
extern void block_fini(dev_handle_t);
 
91,13 → 98,13
extern int block_bb_read(dev_handle_t, off_t, size_t);
extern void *block_bb_get(dev_handle_t);
 
extern int block_cache_init(dev_handle_t, size_t, unsigned);
extern int block_cache_init(dev_handle_t, size_t, unsigned, enum cache_mode);
 
extern block_t *block_get(dev_handle_t, bn_t, int flags);
extern block_t *block_get(dev_handle_t, bn_t, int);
extern void block_put(block_t *);
 
extern int block_read(dev_handle_t, off_t *, size_t *, off_t *, void *, size_t,
size_t);
extern int block_seqread(dev_handle_t, off_t *, size_t *, off_t *, void *,
size_t, size_t);
 
#endif
 
/branches/dd/uspace/lib/softfloat/include/sftypes.h
26,7 → 26,7
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
 
/** @addtogroup softfloat
/** @addtogroup softfloat
* @{
*/
/** @file
41,40 → 41,40
typedef union {
float f;
uint32_t binary;
 
struct {
#if defined(ARCH_IS_BIG_ENDIAN)
uint32_t sign:1;
uint32_t exp:8;
uint32_t fraction:23;
#elif defined(ARCH_IS_LITTLE_ENDIAN)
uint32_t fraction:23;
uint32_t exp:8;
uint32_t sign:1;
#else
#error "Unknown endians."
struct {
#if defined(__BE__)
uint32_t sign : 1;
uint32_t exp : 8;
uint32_t fraction : 23;
#elif defined(__LE__)
uint32_t fraction : 23;
uint32_t exp : 8;
uint32_t sign : 1;
#else
#error Unknown endianess
#endif
} parts __attribute__ ((packed));
} float32;
} float32;
 
typedef union {
double d;
uint64_t binary;
struct {
#if defined(ARCH_IS_BIG_ENDIAN)
uint64_t sign:1;
uint64_t exp:11;
uint64_t fraction:52;
#elif defined(ARCH_IS_LITTLE_ENDIAN)
uint64_t fraction:52;
uint64_t exp:11;
uint64_t sign:1;
#else
#error "Unknown endians."
struct {
#if defined(__BE__)
uint64_t sign : 1;
uint64_t exp : 11;
uint64_t fraction : 52;
#elif defined(__LE__)
uint64_t fraction : 52;
uint64_t exp : 11;
uint64_t sign : 1;
#else
#error Unknown endianess
#endif
} parts __attribute__ ((packed));
} float64;
} parts __attribute__ ((packed));
} float64;
 
#define FLOAT32_MAX 0x7f800000
#define FLOAT32_MIN 0xff800000
109,7 → 109,5
 
#endif
 
 
/** @}
/** @}
*/
 
/branches/dd/uspace/lib/softfloat/Makefile
36,7 → 36,7
 
include $(LIBC_PREFIX)/Makefile.toolchain
 
CFLAGS +=-Iinclude -Iarch/$(UARCH)/include/
CFLAGS += -Iinclude -Iarch/$(UARCH)/include/
 
## Sources
#
/branches/dd/uspace/lib/libc/malloc/malloc.c
File deleted
/branches/dd/uspace/lib/libc/include/byteorder.h
35,48 → 35,47
#ifndef LIBC_BYTEORDER_H_
#define LIBC_BYTEORDER_H_
 
#include <libarch/byteorder.h>
#include <stdint.h>
 
#if !(defined(ARCH_IS_BIG_ENDIAN) ^ defined(ARCH_IS_LITTLE_ENDIAN))
#error The architecture must be either big-endian or little-endian.
#if !(defined(__BE__) ^ defined(__LE__))
#error The architecture must be either big-endian or little-endian.
#endif
 
#ifdef ARCH_IS_BIG_ENDIAN
#ifdef __BE__
 
#define uint16_t_le2host(n) uint16_t_byteorder_swap(n)
#define uint32_t_le2host(n) uint32_t_byteorder_swap(n)
#define uint64_t_le2host(n) uint64_t_byteorder_swap(n)
#define uint16_t_le2host(n) (uint16_t_byteorder_swap(n))
#define uint32_t_le2host(n) (uint32_t_byteorder_swap(n))
#define uint64_t_le2host(n) (uint64_t_byteorder_swap(n))
 
#define uint16_t_be2host(n) (n)
#define uint32_t_be2host(n) (n)
#define uint64_t_be2host(n) (n)
#define uint16_t_be2host(n) (n)
#define uint32_t_be2host(n) (n)
#define uint64_t_be2host(n) (n)
 
#define host2uint16_t_le(n) uint16_t_byteorder_swap(n)
#define host2uint32_t_le(n) uint32_t_byteorder_swap(n)
#define host2uint64_t_le(n) uint64_t_byteorder_swap(n)
#define host2uint16_t_le(n) (uint16_t_byteorder_swap(n))
#define host2uint32_t_le(n) (uint32_t_byteorder_swap(n))
#define host2uint64_t_le(n) (uint64_t_byteorder_swap(n))
 
#define host2uint16_t_be(n) (n)
#define host2uint32_t_be(n) (n)
#define host2uint64_t_be(n) (n)
#define host2uint16_t_be(n) (n)
#define host2uint32_t_be(n) (n)
#define host2uint64_t_be(n) (n)
 
#else
 
#define uint16_t_le2host(n) (n)
#define uint32_t_le2host(n) (n)
#define uint64_t_le2host(n) (n)
#define uint16_t_le2host(n) (n)
#define uint32_t_le2host(n) (n)
#define uint64_t_le2host(n) (n)
 
#define uint16_t_be2host(n) uint16_t_byteorder_swap(n)
#define uint32_t_be2host(n) uint32_t_byteorder_swap(n)
#define uint64_t_be2host(n) uint64_t_byteorder_swap(n)
#define uint16_t_be2host(n) (uint16_t_byteorder_swap(n))
#define uint32_t_be2host(n) (uint32_t_byteorder_swap(n))
#define uint64_t_be2host(n) (uint64_t_byteorder_swap(n))
 
#define host2uint16_t_le(n) (n)
#define host2uint32_t_le(n) (n)
#define host2uint64_t_le(n) (n)
#define host2uint16_t_le(n) (n)
#define host2uint32_t_le(n) (n)
#define host2uint64_t_le(n) (n)
 
#define host2uint16_t_be(n) uint16_t_byteorder_swap(n)
#define host2uint32_t_be(n) uint32_t_byteorder_swap(n)
#define host2uint64_t_be(n) uint64_t_byteorder_swap(n)
#define host2uint16_t_be(n) (uint16_t_byteorder_swap(n))
#define host2uint32_t_be(n) (uint32_t_byteorder_swap(n))
#define host2uint64_t_be(n) (uint64_t_byteorder_swap(n))
 
#endif
 
/branches/dd/uspace/lib/libc/include/getopt.h
58,7 → 58,7
};
 
/* HelenOS Port - These need to be exposed for legacy getopt() */
extern char *optarg;
extern const char *optarg;
extern int optind, opterr, optopt;
extern int optreset;
 
/branches/dd/uspace/lib/libc/include/string.h
40,7 → 40,6
#include <bool.h>
 
#define U_SPECIAL '?'
#define U_BOM 0xfeff
 
/** No size limit constant */
#define STR_NO_LIMIT ((size_t) -1)
/branches/dd/uspace/lib/libc/include/malloc.h
1,537 → 1,51
/*
Default header file for malloc-2.8.x, written by Doug Lea
and released to the public domain, as explained at
http://creativecommons.org/licenses/publicdomain.
last update: Mon Aug 15 08:55:52 2005 Doug Lea (dl at gee)
* Copyright (c) 2009 Martin Decky
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* - The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
 
This header is for ANSI C/C++ only. You can set any of
the following #defines before including:
 
* If USE_DL_PREFIX is defined, it is assumed that malloc.c
was also compiled with this option, so all routines
have names starting with "dl".
 
* If HAVE_USR_INCLUDE_MALLOC_H is defined, it is assumed that this
file will be #included AFTER <malloc.h>. This is needed only if
your system defines a struct mallinfo that is incompatible with the
standard one declared here. Otherwise, you can include this file
INSTEAD of your system system <malloc.h>. At least on ANSI, all
declarations should be compatible with system versions
 
* If MSPACES is defined, declarations for mspace versions are included.
*/
 
#ifndef MALLOC_280_H
#define MALLOC_280_H
 
#ifdef __cplusplus
extern "C" {
#endif
 
#include <stddef.h> /* for size_t */
 
#if !ONLY_MSPACES
 
#ifndef USE_DL_PREFIX
#define dlcalloc calloc
#define dlfree free
#define dlmalloc malloc
#define dlmemalign memalign
#define dlrealloc realloc
#define dlvalloc valloc
#define dlpvalloc pvalloc
#define dlmallinfo mallinfo
#define dlmallopt mallopt
#define dlmalloc_trim malloc_trim
#define dlmalloc_stats malloc_stats
#define dlmalloc_usable_size malloc_usable_size
#define dlmalloc_footprint malloc_footprint
#define dlmalloc_max_footprint malloc_max_footprint
#define dlindependent_calloc independent_calloc
#define dlindependent_comalloc independent_comalloc
#endif /* USE_DL_PREFIX */
 
 
/*
malloc(size_t n)
Returns a pointer to a newly allocated chunk of at least n bytes, or
null if no space is available, in which case errno is set to ENOMEM
on ANSI C systems.
 
If n is zero, malloc returns a minimum-sized chunk. (The minimum
size is 16 bytes on most 32bit systems, and 32 bytes on 64bit
systems.) Note that size_t is an unsigned type, so calls with
arguments that would be negative if signed are interpreted as
requests for huge amounts of space, which will often fail. The
maximum supported value of n differs across systems, but is in all
cases less than the maximum representable value of a size_t.
*/
void* dlmalloc(size_t);
 
/*
free(void* p)
Releases the chunk of memory pointed to by p, that had been previously
allocated using malloc or a related routine such as realloc.
It has no effect if p is null. If p was not malloced or already
freed, free(p) will by default cuase the current program to abort.
*/
void dlfree(void*);
 
/*
calloc(size_t n_elements, size_t element_size);
Returns a pointer to n_elements * element_size bytes, with all locations
set to zero.
*/
void* dlcalloc(size_t, size_t);
 
/*
realloc(void* p, size_t n)
Returns a pointer to a chunk of size n that contains the same data
as does chunk p up to the minimum of (n, p's size) bytes, or null
if no space is available.
 
The returned pointer may or may not be the same as p. The algorithm
prefers extending p in most cases when possible, otherwise it
employs the equivalent of a malloc-copy-free sequence.
 
If p is null, realloc is equivalent to malloc.
 
If space is not available, realloc returns null, errno is set (if on
ANSI) and p is NOT freed.
 
if n is for fewer bytes than already held by p, the newly unused
space is lopped off and freed if possible. realloc with a size
argument of zero (re)allocates a minimum-sized chunk.
 
The old unix realloc convention of allowing the last-free'd chunk
to be used as an argument to realloc is not supported.
*/
 
void* dlrealloc(void*, size_t);
 
/*
memalign(size_t alignment, size_t n);
Returns a pointer to a newly allocated chunk of n bytes, aligned
in accord with the alignment argument.
 
The alignment argument should be a power of two. If the argument is
not a power of two, the nearest greater power is used.
8-byte alignment is guaranteed by normal malloc calls, so don't
bother calling memalign with an argument of 8 or less.
 
Overreliance on memalign is a sure way to fragment space.
*/
void* dlmemalign(size_t, size_t);
 
/*
valloc(size_t n);
Equivalent to memalign(pagesize, n), where pagesize is the page
size of the system. If the pagesize is unknown, 4096 is used.
*/
void* dlvalloc(size_t);
 
/*
mallopt(int parameter_number, int parameter_value)
Sets tunable parameters The format is to provide a
(parameter-number, parameter-value) pair. mallopt then sets the
corresponding parameter to the argument value if it can (i.e., so
long as the value is meaningful), and returns 1 if successful else
0. SVID/XPG/ANSI defines four standard param numbers for mallopt,
normally defined in malloc.h. None of these are use in this malloc,
so setting them has no effect. But this malloc also supports other
options in mallopt:
 
Symbol param # default allowed param values
M_TRIM_THRESHOLD -1 2*1024*1024 any (-1U disables trimming)
M_GRANULARITY -2 page size any power of 2 >= page size
M_MMAP_THRESHOLD -3 256*1024 any (or 0 if no MMAP support)
*/
int dlmallopt(int, int);
 
#define M_TRIM_THRESHOLD (-1)
#define M_GRANULARITY (-2)
#define M_MMAP_THRESHOLD (-3)
 
 
/*
malloc_footprint();
Returns the number of bytes obtained from the system. The total
number of bytes allocated by malloc, realloc etc., is less than this
value. Unlike mallinfo, this function returns only a precomputed
result, so can be called frequently to monitor memory consumption.
Even if locks are otherwise defined, this function does not use them,
so results might not be up to date.
*/
size_t dlmalloc_footprint(void);
size_t dlmalloc_max_footprint(void);
 
#if !NO_MALLINFO
/*
mallinfo()
Returns (by copy) a struct containing various summary statistics:
 
arena: current total non-mmapped bytes allocated from system
ordblks: the number of free chunks
smblks: always zero.
hblks: current number of mmapped regions
hblkhd: total bytes held in mmapped regions
usmblks: the maximum total allocated space. This will be greater
than current total if trimming has occurred.
fsmblks: always zero
uordblks: current total allocated space (normal or mmapped)
fordblks: total free space
keepcost: the maximum number of bytes that could ideally be released
back to system via malloc_trim. ("ideally" means that
it ignores page restrictions etc.)
 
Because these fields are ints, but internal bookkeeping may
be kept as longs, the reported values may wrap around zero and
thus be inaccurate.
*/
#ifndef HAVE_USR_INCLUDE_MALLOC_H
#ifndef _MALLOC_H
#ifndef MALLINFO_FIELD_TYPE
#define MALLINFO_FIELD_TYPE size_t
#endif /* MALLINFO_FIELD_TYPE */
struct mallinfo {
MALLINFO_FIELD_TYPE arena; /* non-mmapped space allocated from system */
MALLINFO_FIELD_TYPE ordblks; /* number of free chunks */
MALLINFO_FIELD_TYPE smblks; /* always 0 */
MALLINFO_FIELD_TYPE hblks; /* always 0 */
MALLINFO_FIELD_TYPE hblkhd; /* space in mmapped regions */
MALLINFO_FIELD_TYPE usmblks; /* maximum total allocated space */
MALLINFO_FIELD_TYPE fsmblks; /* always 0 */
MALLINFO_FIELD_TYPE uordblks; /* total allocated space */
MALLINFO_FIELD_TYPE fordblks; /* total free space */
MALLINFO_FIELD_TYPE keepcost; /* releasable (via malloc_trim) space */
};
#endif /* _MALLOC_H */
#endif /* HAVE_USR_INCLUDE_MALLOC_H */
 
struct mallinfo dlmallinfo(void);
#endif /* NO_MALLINFO */
 
/*
independent_calloc(size_t n_elements, size_t element_size, void* chunks[]);
 
independent_calloc is similar to calloc, but instead of returning a
single cleared space, it returns an array of pointers to n_elements
independent elements that can hold contents of size elem_size, each
of which starts out cleared, and can be independently freed,
realloc'ed etc. The elements are guaranteed to be adjacently
allocated (this is not guaranteed to occur with multiple callocs or
mallocs), which may also improve cache locality in some
applications.
 
The "chunks" argument is optional (i.e., may be null, which is
probably the most typical usage). If it is null, the returned array
is itself dynamically allocated and should also be freed when it is
no longer needed. Otherwise, the chunks array must be of at least
n_elements in length. It is filled in with the pointers to the
chunks.
 
In either case, independent_calloc returns this pointer array, or
null if the allocation failed. If n_elements is zero and "chunks"
is null, it returns a chunk representing an array with zero elements
(which should be freed if not wanted).
 
Each element must be individually freed when it is no longer
needed. If you'd like to instead be able to free all at once, you
should instead use regular calloc and assign pointers into this
space to represent elements. (In this case though, you cannot
independently free elements.)
 
independent_calloc simplifies and speeds up implementations of many
kinds of pools. It may also be useful when constructing large data
structures that initially have a fixed number of fixed-sized nodes,
but the number is not known at compile time, and some of the nodes
may later need to be freed. For example:
 
struct Node { int item; struct Node* next; };
 
struct Node* build_list() {
struct Node** pool;
int n = read_number_of_nodes_needed();
if (n <= 0) return 0;
pool = (struct Node**)(independent_calloc(n, sizeof(struct Node), 0);
if (pool == 0) die();
// organize into a linked list...
struct Node* first = pool[0];
for (i = 0; i < n-1; ++i)
pool[i]->next = pool[i+1];
free(pool); // Can now free the array (or not, if it is needed later)
return first;
}
*/
void** dlindependent_calloc(size_t, size_t, void**);
 
/*
independent_comalloc(size_t n_elements, size_t sizes[], void* chunks[]);
 
independent_comalloc allocates, all at once, a set of n_elements
chunks with sizes indicated in the "sizes" array. It returns
an array of pointers to these elements, each of which can be
independently freed, realloc'ed etc. The elements are guaranteed to
be adjacently allocated (this is not guaranteed to occur with
multiple callocs or mallocs), which may also improve cache locality
in some applications.
 
The "chunks" argument is optional (i.e., may be null). If it is null
the returned array is itself dynamically allocated and should also
be freed when it is no longer needed. Otherwise, the chunks array
must be of at least n_elements in length. It is filled in with the
pointers to the chunks.
 
In either case, independent_comalloc returns this pointer array, or
null if the allocation failed. If n_elements is zero and chunks is
null, it returns a chunk representing an array with zero elements
(which should be freed if not wanted).
 
Each element must be individually freed when it is no longer
needed. If you'd like to instead be able to free all at once, you
should instead use a single regular malloc, and assign pointers at
particular offsets in the aggregate space. (In this case though, you
cannot independently free elements.)
 
independent_comallac differs from independent_calloc in that each
element may have a different size, and also that it does not
automatically clear elements.
 
independent_comalloc can be used to speed up allocation in cases
where several structs or objects must always be allocated at the
same time. For example:
 
struct Head { ... }
struct Foot { ... }
 
void send_message(char* msg) {
int msglen = strlen(msg);
size_t sizes[3] = { sizeof(struct Head), msglen, sizeof(struct Foot) };
void* chunks[3];
if (independent_comalloc(3, sizes, chunks) == 0)
die();
struct Head* head = (struct Head*)(chunks[0]);
char* body = (char*)(chunks[1]);
struct Foot* foot = (struct Foot*)(chunks[2]);
// ...
}
 
In general though, independent_comalloc is worth using only for
larger values of n_elements. For small values, you probably won't
detect enough difference from series of malloc calls to bother.
 
Overuse of independent_comalloc can increase overall memory usage,
since it cannot reuse existing noncontiguous small chunks that
might be available for some of the elements.
*/
void** dlindependent_comalloc(size_t, size_t*, void**);
 
 
/*
pvalloc(size_t n);
Equivalent to valloc(minimum-page-that-holds(n)), that is,
round up n to nearest pagesize.
/** @addtogroup libc
* @{
*/
void* dlpvalloc(size_t);
/** @file
*/
 
/*
malloc_trim(size_t pad);
#ifndef LIBC_MALLOC_H_
#define LIBC_MALLOC_H_
 
If possible, gives memory back to the system (via negative arguments
to sbrk) if there is unused memory at the `high' end of the malloc
pool or in unused MMAP segments. You can call this after freeing
large blocks of memory to potentially reduce the system-level memory
requirements of a program. However, it cannot guarantee to reduce
memory. Under some allocation patterns, some large free blocks of
memory will be locked between two used chunks, so they cannot be
given back to the system.
#include <sys/types.h>
 
The `pad' argument to malloc_trim represents the amount of free
trailing space to leave untrimmed. If this argument is zero, only
the minimum amount of memory to maintain internal data structures
will be left. Non-zero arguments can be supplied to maintain enough
trailing space to service future expected allocations without having
to re-obtain memory from the system.
extern void __heap_init(void);
extern uintptr_t get_max_heap_addr(void);
 
Malloc_trim returns 1 if it actually released any memory, else 0.
*/
int dlmalloc_trim(size_t);
extern void *malloc(const size_t size);
extern void *memalign(const size_t align, const size_t size);
extern void *realloc(const void *addr, const size_t size);
extern void free(const void *addr);
 
/*
malloc_usable_size(void* p);
 
Returns the number of bytes you can actually use in
an allocated chunk, which may be more than you requested (although
often not) due to alignment and minimum size constraints.
You can use this many bytes without worrying about
overwriting other allocated objects. This is not a particularly great
programming practice. malloc_usable_size can be more useful in
debugging and assertions, for example:
 
p = malloc(n);
assert(malloc_usable_size(p) >= 256);
*/
size_t dlmalloc_usable_size(void*);
 
/*
malloc_stats();
Prints on stderr the amount of space obtained from the system (both
via sbrk and mmap), the maximum amount (which may be more than
current if malloc_trim and/or munmap got called), and the current
number of bytes allocated via malloc (or realloc, etc) but not yet
freed. Note that this is the number of bytes allocated, not the
number requested. It will be larger than the number requested
because of alignment and bookkeeping overhead. Because it includes
alignment wastage as being in use, this figure may be greater than
zero even when no user-level chunks are allocated.
 
The reported current and maximum system memory can be inaccurate if
a program makes other calls to system memory allocation functions
(normally sbrk) outside of malloc.
 
malloc_stats prints only the most commonly interesting statistics.
More information can be obtained by calling mallinfo.
*/
void dlmalloc_stats(void);
 
#endif /* !ONLY_MSPACES */
 
#if MSPACES
 
/*
mspace is an opaque type representing an independent
region of space that supports mspace_malloc, etc.
*/
typedef void* mspace;
 
/*
create_mspace creates and returns a new independent space with the
given initial capacity, or, if 0, the default granularity size. It
returns null if there is no system memory available to create the
space. If argument locked is non-zero, the space uses a separate
lock to control access. The capacity of the space will grow
dynamically as needed to service mspace_malloc requests. You can
control the sizes of incremental increases of this space by
compiling with a different DEFAULT_GRANULARITY or dynamically
setting with mallopt(M_GRANULARITY, value).
*/
mspace create_mspace(size_t capacity, int locked);
 
/*
destroy_mspace destroys the given space, and attempts to return all
of its memory back to the system, returning the total number of
bytes freed. After destruction, the results of access to all memory
used by the space become undefined.
*/
size_t destroy_mspace(mspace msp);
 
/*
create_mspace_with_base uses the memory supplied as the initial base
of a new mspace. Part (less than 128*sizeof(size_t) bytes) of this
space is used for bookkeeping, so the capacity must be at least this
large. (Otherwise 0 is returned.) When this initial space is
exhausted, additional memory will be obtained from the system.
Destroying this space will deallocate all additionally allocated
space (if possible) but not the initial base.
*/
mspace create_mspace_with_base(void* base, size_t capacity, int locked);
 
/*
mspace_malloc behaves as malloc, but operates within
the given space.
*/
void* mspace_malloc(mspace msp, size_t bytes);
 
/*
mspace_free behaves as free, but operates within
the given space.
 
If compiled with FOOTERS==1, mspace_free is not actually needed.
free may be called instead of mspace_free because freed chunks from
any space are handled by their originating spaces.
*/
void mspace_free(mspace msp, void* mem);
 
/*
mspace_realloc behaves as realloc, but operates within
the given space.
 
If compiled with FOOTERS==1, mspace_realloc is not actually
needed. realloc may be called instead of mspace_realloc because
realloced chunks from any space are handled by their originating
spaces.
*/
void* mspace_realloc(mspace msp, void* mem, size_t newsize);
 
/*
mspace_calloc behaves as calloc, but operates within
the given space.
*/
void* mspace_calloc(mspace msp, size_t n_elements, size_t elem_size);
 
/*
mspace_memalign behaves as memalign, but operates within
the given space.
*/
void* mspace_memalign(mspace msp, size_t alignment, size_t bytes);
 
/*
mspace_independent_calloc behaves as independent_calloc, but
operates within the given space.
*/
void** mspace_independent_calloc(mspace msp, size_t n_elements,
size_t elem_size, void* chunks[]);
 
/*
mspace_independent_comalloc behaves as independent_comalloc, but
operates within the given space.
*/
void** mspace_independent_comalloc(mspace msp, size_t n_elements,
size_t sizes[], void* chunks[]);
 
/*
mspace_footprint() returns the number of bytes obtained from the
system for this space.
*/
size_t mspace_footprint(mspace msp);
 
 
#if !NO_MALLINFO
/*
mspace_mallinfo behaves as mallinfo, but reports properties of
the given space.
*/
struct mallinfo mspace_mallinfo(mspace msp);
#endif /* NO_MALLINFO */
 
/*
mspace_malloc_stats behaves as malloc_stats, but reports
properties of the given space.
*/
void mspace_malloc_stats(mspace msp);
 
/*
mspace_trim behaves as malloc_trim, but
operates within the given space.
*/
int mspace_trim(mspace msp, size_t pad);
 
/*
An alias for mallopt.
*/
int mspace_mallopt(int, int);
 
#endif /* MSPACES */
 
#ifdef __cplusplus
}; /* end of extern "C" */
#endif
 
#endif /* MALLOC_280_H */
 
 
/** @}
/** @}
*/
/branches/dd/uspace/lib/libc/include/vfs/vfs.h
55,8 → 55,8
extern int mount(const char *, const char *, const char *, const char *,
unsigned int);
 
extern void stdio_init(int filc, fdi_node_t *filv[]);
extern void stdio_done(void);
extern void __stdio_init(int filc, fdi_node_t *filv[]);
extern void __stdio_done(void);
 
extern int open_node(fdi_node_t *, int);
extern int fd_phone(int);
/branches/dd/uspace/lib/libc/include/async.h
43,15 → 43,10
 
typedef ipc_callid_t aid_t;
typedef void (*async_client_conn_t)(ipc_callid_t callid, ipc_call_t *call);
typedef void (*async_pending_t)(void);
 
extern atomic_t async_futex;
 
static inline void async_manager(void)
{
fibril_switch(FIBRIL_TO_MANAGER);
}
 
extern int __async_init(void);
extern ipc_callid_t async_get_call_timeout(ipc_call_t *call, suseconds_t usecs);
 
static inline ipc_callid_t async_get_call(ipc_call_t *data)
59,6 → 54,11
return async_get_call_timeout(data, 0);
}
 
static inline void async_manager(void)
{
fibril_switch(FIBRIL_TO_MANAGER);
}
 
/*
* User-friendly wrappers for async_send_fast() and async_send_slow(). The
* macros are in the form async_send_m(), where m denotes the number of payload
95,11 → 95,9
extern void async_usleep(suseconds_t timeout);
extern void async_create_manager(void);
extern void async_destroy_manager(void);
extern int _async_init(void);
 
extern void async_set_client_connection(async_client_conn_t conn);
extern void async_set_interrupt_received(async_client_conn_t conn);
extern void async_set_pending(async_pending_t pend);
 
/* Wrappers for simple communication */
#define async_msg_0(phone, method) \
/branches/dd/uspace/lib/libc/include/stdlib.h
38,10 → 38,10
#include <unistd.h>
#include <malloc.h>
 
#define abort() _exit(1)
#define exit(status) _exit((status))
#define abort() _exit(1)
#define exit(status) _exit((status))
 
#define RAND_MAX 714025
#define RAND_MAX 714025
 
extern long int random(void);
extern void srandom(unsigned int seed);
50,6 → 50,7
{
return random();
}
 
static inline void srand(unsigned int seed)
{
srandom(seed);
/branches/dd/uspace/lib/libc/include/stdio.h
37,17 → 37,21
 
#include <sys/types.h>
#include <stdarg.h>
#include <string.h>
#include <adt/list.h>
 
#define EOF (-1)
 
/** Default size for stream I/O buffers */
#define BUFSIZ 4096
 
#define DEBUG(fmt, ...) \
{ \
char buf[256]; \
int n = snprintf(buf, sizeof(buf), fmt, ##__VA_ARGS__); \
if (n > 0) \
(void) __SYSCALL3(SYS_KLOG, 1, (sysarg_t) buf, str_size(buf)); \
}
{ \
char _buf[256]; \
int _n = snprintf(_buf, sizeof(_buf), fmt, ##__VA_ARGS__); \
if (_n > 0) \
(void) __SYSCALL3(SYS_KLOG, 1, (sysarg_t) _buf, str_size(_buf)); \
}
 
#ifndef SEEK_SET
#define SEEK_SET 0
55,6 → 59,15
#define SEEK_END 2
#endif
 
enum _buffer_type {
/** No buffering */
_IONBF,
/** Line buffering */
_IOLBF,
/** Full buffering */
_IOFBF
};
 
typedef struct {
/** Linked list pointer. */
link_t link;
73,6 → 86,15
/** Phone to the file provider */
int phone;
 
/** Buffering type */
enum _buffer_type btype;
/** Buffer */
uint8_t *buf;
/** Buffer size */
size_t buf_size;
/** Buffer I/O pointer */
uint8_t *buf_head;
} FILE;
 
extern FILE *stdin;
121,6 → 143,8
extern int ferror(FILE *);
extern void clearerr(FILE *);
 
extern void setvbuf(FILE *, void *, int, size_t);
 
/* Misc file functions */
extern int rename(const char *, const char *);
 
/branches/dd/uspace/lib/libc/include/bitops.h
26,7 → 26,7
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
 
/** @addtogroup generic
/** @addtogroup generic
* @{
*/
/** @file
42,10 → 42,10
*
* If number is zero, it returns 0
*/
static inline int fnzb32(uint32_t arg)
static inline unsigned int fnzb32(uint32_t arg)
{
int n = 0;
 
unsigned int n = 0;
if (arg >> 16) {
arg >>= 16;
n += 16;
74,19 → 74,22
return n;
}
 
static inline int fnzb64(uint64_t arg)
static inline unsigned int fnzb64(uint64_t arg)
{
int n = 0;
 
unsigned int n = 0;
if (arg >> 32) {
arg >>= 32;
n += 32;
}
return n + fnzb32((uint32_t) arg);
return (n + fnzb32((uint32_t) arg));
}
 
#define fnzb(x) fnzb32(x)
static inline unsigned int fnzb(size_t arg)
{
return fnzb64(arg);
}
 
#endif
 
/branches/dd/uspace/lib/libc/include/task.h
39,11 → 39,18
 
typedef uint64_t task_id_t;
 
typedef enum {
TASK_EXIT_NORMAL,
TASK_EXIT_UNEXPECTED
} task_exit_t;
 
extern task_id_t task_get_id(void);
extern int task_set_name(const char *name);
extern task_id_t task_spawn(const char *path, char *const argv[]);
extern int task_wait(task_id_t id);
extern int task_wait(task_id_t id, task_exit_t *texit, int *retval);
extern int task_retval(int val);
 
 
#endif
 
/** @}
/branches/dd/uspace/lib/libc/include/unistd.h
65,7 → 65,6
extern int chdir(const char *);
 
extern void _exit(int status) __attribute__ ((noreturn));
extern void *sbrk(ssize_t incr);
extern int usleep(unsigned long usec);
extern unsigned int sleep(unsigned int seconds);
 
/branches/dd/uspace/lib/libc/include/fibril.h
75,7 → 75,7
/** Fibril-local variable specifier */
#define fibril_local __thread
 
extern int context_save(context_t *c);
extern int context_save(context_t *c) __attribute__ ((returns_twice));
extern void context_restore(context_t *c) __attribute__ ((noreturn));
 
extern fid_t fibril_create(int (*func)(void *), void *arg);
/branches/dd/uspace/lib/libc/include/devmap.h
47,6 → 47,9
extern int devmap_device_get_handle(const char *, dev_handle_t *, unsigned int);
extern int devmap_device_connect(dev_handle_t, unsigned int);
 
extern int devmap_null_create(void);
extern void devmap_null_destroy(int);
 
extern ipcarg_t devmap_device_get_count(void);
extern ipcarg_t devmap_device_get_devices(ipcarg_t, dev_desc_t *);
 
/branches/dd/uspace/lib/libc/include/mem.h
39,9 → 39,9
 
#define bzero(ptr, len) memset((ptr), 0, (len))
 
extern void * memset(void *, int, size_t);
extern void * memcpy(void *, const void *, size_t);
extern void * memmove(void *, const void *, size_t);
extern void *memset(void *, int, size_t);
extern void *memcpy(void *, const void *, size_t);
extern void *memmove(void *, const void *, size_t);
 
extern int bcmp(const char *, const char *, size_t);
 
/branches/dd/uspace/lib/libc/include/io/console.h
43,6 → 43,13
KEY_RELEASE
} console_ev_type_t;
 
enum {
CONSOLE_CCAP_NONE = 0,
CONSOLE_CCAP_STYLE,
CONSOLE_CCAP_INDEXED,
CONSOLE_CCAP_RGB
};
 
/** Console event structure. */
typedef struct {
/** Press or release event. */
68,6 → 75,7
extern void console_set_rgb_color(int phone, int fg_color, int bg_color);
 
extern void console_cursor_visibility(int phone, bool show);
extern int console_get_color_cap(int phone, int *ccap);
extern void console_kcon_enable(int phone);
 
extern bool console_get_event(int phone, console_event_t *event);
/branches/dd/uspace/lib/libc/include/adt/gcdlcm.h
0,0 → 1,73
/*
* Copyright (c) 2009 Martin Decky
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* - The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
 
/** @addtogroup libc
* @{
*/
/** @file
*/
 
#ifndef LIBC_GCDLCM_H_
#define LIBC_GCDLCM_H_
 
#include <sys/types.h>
 
#define DECLARE_GCD(type, name) \
static inline type name(type a, type b) \
{ \
if (a == 0) \
return b; \
\
while (b != 0) { \
if (a > b) \
a -= b; \
else \
b -= a; \
} \
\
return a; \
}
 
#define DECLARE_LCM(type, name, gcd) \
static inline type name(type a, type b) \
{ \
return (a * b) / gcd(a, b); \
}
 
DECLARE_GCD(uint32_t, gcd32);
DECLARE_GCD(uint64_t, gcd64);
DECLARE_GCD(size_t, gcd);
 
DECLARE_LCM(uint32_t, lcm32, gcd32);
DECLARE_LCM(uint64_t, lcm64, gcd64);
DECLARE_LCM(size_t, lcm, gcd);
 
#endif
 
/** @}
*/
/branches/dd/uspace/lib/libc/include/macros.h
35,6 → 35,9
#ifndef LIBC_MACROS_H_
#define LIBC_MACROS_H_
 
#define min(a, b) ((a) < (b) ? (a) : (b))
#define max(a, b) ((a) > (b) ? (a) : (b))
 
#define SIZE2KB(size) ((size) >> 10)
#define SIZE2MB(size) ((size) >> 20)
 
/branches/dd/uspace/lib/libc/include/ipc/devmap.h
28,7 → 28,7
 
/** @addtogroup devmap
* @{
*/
*/
 
#ifndef DEVMAP_DEVMAP_H_
#define DEVMAP_DEVMAP_H_
48,6 → 48,8
DEVMAP_DEVICE_UNREGISTER,
DEVMAP_DEVICE_GET_NAME,
DEVMAP_DEVICE_GET_HANDLE,
DEVMAP_DEVICE_NULL_CREATE,
DEVMAP_DEVICE_NULL_DESTROY,
DEVMAP_DEVICE_GET_COUNT,
DEVMAP_DEVICE_GET_DEVICES
} devmap_request_t;
/branches/dd/uspace/lib/libc/include/ipc/vfs.h
57,36 → 57,40
} vfs_info_t;
 
typedef enum {
VFS_OPEN_NODE = IPC_FIRST_USER_METHOD,
VFS_READ,
VFS_WRITE,
VFS_TRUNCATE,
VFS_MOUNT,
VFS_UNMOUNT,
VFS_DEVICE,
VFS_SYNC,
VFS_CLOSE,
VFS_LAST_CMN /* keep this the last member of this enum */
} vfs_request_cmn_t;
VFS_IN_OPEN = IPC_FIRST_USER_METHOD,
VFS_IN_OPEN_NODE,
VFS_IN_READ,
VFS_IN_WRITE,
VFS_IN_SEEK,
VFS_IN_TRUNCATE,
VFS_IN_FSTAT,
VFS_IN_CLOSE,
VFS_IN_MOUNT,
VFS_IN_UNMOUNT,
VFS_IN_SYNC,
VFS_IN_REGISTER,
VFS_IN_MKDIR,
VFS_IN_UNLINK,
VFS_IN_RENAME,
VFS_IN_STAT
} vfs_in_request_t;
 
typedef enum {
VFS_LOOKUP = VFS_LAST_CMN,
VFS_MOUNTED,
VFS_DESTROY,
VFS_LAST_CLNT /* keep this the last member of this enum */
} vfs_request_clnt_t;
VFS_OUT_OPEN_NODE = IPC_FIRST_USER_METHOD,
VFS_OUT_READ,
VFS_OUT_WRITE,
VFS_OUT_TRUNCATE,
VFS_OUT_CLOSE,
VFS_OUT_MOUNT,
VFS_OUT_MOUNTED,
VFS_OUT_UNMOUNT,
VFS_OUT_SYNC,
VFS_OUT_STAT,
VFS_OUT_LOOKUP,
VFS_OUT_DESTROY,
VFS_OUT_LAST
} vfs_out_request_t;
 
typedef enum {
VFS_REGISTER = VFS_LAST_CMN,
VFS_OPEN,
VFS_SEEK,
VFS_MKDIR,
VFS_UNLINK,
VFS_RENAME,
VFS_NODE,
VFS_LAST_SRV /* keep this the last member of this enum */
} vfs_request_srv_t;
 
/*
* Lookup flags.
*/
/branches/dd/uspace/lib/libc/include/ipc/ns.h
39,7 → 39,9
 
typedef enum {
NS_PING = IPC_FIRST_USER_METHOD,
NS_TASK_WAIT
NS_TASK_WAIT,
NS_ID_INTRO,
NS_RETVAL
} ns_request_t;
 
#endif
/branches/dd/uspace/lib/libc/include/ipc/console.h
39,7 → 39,8
#include <ipc/vfs.h>
 
typedef enum {
CONSOLE_GET_SIZE = VFS_LAST_SRV,
CONSOLE_GET_SIZE = VFS_OUT_LAST,
CONSOLE_GET_COLOR_CAP,
CONSOLE_GET_EVENT,
CONSOLE_GOTO,
CONSOLE_CLEAR,
/branches/dd/uspace/lib/libc/include/ipc/fb.h
41,6 → 41,7
FB_PUTCHAR = IPC_FIRST_USER_METHOD,
FB_CLEAR,
FB_GET_CSIZE,
FB_GET_COLOR_CAP,
FB_CURSOR_VISIBILITY,
FB_CURSOR_GOTO,
FB_SCROLL,
71,6 → 72,13
FB_SCREEN_RECLAIM
} fb_request_t;
 
enum {
FB_CCAP_NONE = 0,
FB_CCAP_STYLE,
FB_CCAP_INDEXED,
FB_CCAP_RGB
};
 
#endif
 
/** @}
/branches/dd/uspace/lib/libc/include/errno.h
35,12 → 35,13
#ifndef LIBC_ERRNO_H_
#define LIBC_ERRNO_H_
 
/* TODO: support threads/fibrils */
#include <kernel/errno.h>
#include <fibril.h>
 
extern int _errno;
 
#define errno _errno
 
#include <kernel/errno.h>
 
#define EMFILE (-17)
#define ENAMETOOLONG (-256)
#define EISDIR (-257)
/branches/dd/uspace/lib/libc/include/sys/stat.h
36,7 → 36,26
#define LIBC_SYS_STAT_H_
 
#include <sys/types.h>
#include <bool.h>
#include <ipc/vfs.h>
#include <ipc/devmap.h>
 
struct stat {
fs_handle_t fs_handle;
dev_handle_t dev_handle;
fs_index_t index;
unsigned lnkcnt;
bool is_file;
off_t size;
union {
struct {
dev_handle_t device;
} devfs_stat;
};
};
 
extern int fstat(int, struct stat *);
extern int stat(const char *, struct stat *);
extern int mkdir(const char *, mode_t);
 
#endif
/branches/dd/uspace/lib/libc/Makefile.toolchain
27,9 → 27,10
#
 
CFLAGS = -I$(LIBC_PREFIX)/include -O3 -imacros $(LIBC_PREFIX)/../../../config.h \
-fexec-charset=UTF-8 -fwide-exec-charset=UTF-32 -finput-charset=UTF-8 \
-fno-builtin -Wall -Wextra -Wno-unused-parameter -Wmissing-prototypes \
-Werror-implicit-function-declaration -nostdlib -nostdinc -pipe -g
-fexec-charset=UTF-8 -fwide-exec-charset=UTF-32$(ENDIANESS) \
-finput-charset=UTF-8 -fno-builtin -Wall -Wextra -Wno-unused-parameter \
-Wmissing-prototypes -Werror-implicit-function-declaration -nostdlib \
-nostdinc -pipe -g -D__$(ENDIANESS)__
LFLAGS = -M -N $(SOFTINT_PREFIX)/libsoftint.a
AFLAGS =
 
/branches/dd/uspace/lib/libc/generic/task.c
148,10 → 148,23
return 0;
}
 
int task_wait(task_id_t id)
int task_wait(task_id_t id, task_exit_t *texit, int *retval)
{
return (int) async_req_2_0(PHONE_NS, NS_TASK_WAIT, LOWER32(id), UPPER32(id));
ipcarg_t te, rv;
int rc;
 
rc = (int) async_req_2_2(PHONE_NS, NS_TASK_WAIT, LOWER32(id),
UPPER32(id), &te, &rv);
*texit = te;
*retval = rv;
 
return rc;
}
 
int task_retval(int val)
{
return (int) async_req_1_0(PHONE_NS, NS_RETVAL, val);
}
 
/** @}
*/
/branches/dd/uspace/lib/libc/generic/getopt.c
47,7 → 47,7
int optind = 1; /* index into parent argv vector */
int optopt = '?'; /* character checked for validity */
int optreset; /* reset getopt */
char *optarg; /* argument associated with option */
const char *optarg; /* argument associated with option */
 
 
#define IGNORE_FIRST (*options == '-' || *options == '+')
162,7 → 162,7
char **nargv;
const char *options;
{
char *oli; /* option letter list index */
const char *oli; /* option letter list index */
int optchar;
 
assert(nargv != NULL);
275,7 → 275,7
} else { /* takes (optional) argument */
optarg = NULL;
if (*place) /* no white space */
optarg = *place;
optarg = place;
/* XXX: disable test for :: if PC? (GNU doesn't) */
else if (oli[1] != ':') { /* arg not optional */
if (++optind >= nargc) { /* no arg */
353,7 → 353,8
 
retval = getopt_internal(nargc, (char **)nargv, options);
if (retval == -2) {
char *current_argv, *has_equal;
char *current_argv;
const char *has_equal;
size_t current_argv_len;
int i, ambiguous, match;
 
/branches/dd/uspace/lib/libc/generic/as.c
38,23 → 38,23
#include <align.h>
#include <sys/types.h>
#include <bitops.h>
#include <malloc.h>
 
/**
* Either 4*256M on 32-bit architecures or 16*256M on 64-bit architectures.
*/
#define MAX_HEAP_SIZE (sizeof(uintptr_t)<<28)
/** Last position allocated by as_get_mappable_page */
static uintptr_t last_allocated = 0;
 
/** Create address space area.
*
* @param address Virtual address where to place new address space area.
* @param size Size of the area.
* @param flags Flags describing type of the area.
* @param size Size of the area.
* @param flags Flags describing type of the area.
*
* @return address on success, (void *) -1 otherwise.
*
*/
void *as_area_create(void *address, size_t size, int flags)
{
return (void *) __SYSCALL3(SYS_AS_AREA_CREATE, (sysarg_t ) address,
return (void *) __SYSCALL3(SYS_AS_AREA_CREATE, (sysarg_t) address,
(sysarg_t) size, (sysarg_t) flags);
}
 
61,15 → 61,16
/** Resize address space area.
*
* @param address Virtual address pointing into already existing address space
* area.
* @param size New requested size of the area.
* @param flags Currently unused.
* area.
* @param size New requested size of the area.
* @param flags Currently unused.
*
* @return Zero on success or a code from @ref errno.h on failure.
* @return zero on success or a code from @ref errno.h on failure.
*
*/
int as_area_resize(void *address, size_t size, int flags)
{
return __SYSCALL3(SYS_AS_AREA_RESIZE, (sysarg_t ) address,
return __SYSCALL3(SYS_AS_AREA_RESIZE, (sysarg_t) address,
(sysarg_t) size, (sysarg_t) flags);
}
 
76,22 → 77,24
/** Destroy address space area.
*
* @param address Virtual address pointing into the address space area being
* destroyed.
* destroyed.
*
* @return Zero on success or a code from @ref errno.h on failure.
* @return zero on success or a code from @ref errno.h on failure.
*
*/
int as_area_destroy(void *address)
{
return __SYSCALL1(SYS_AS_AREA_DESTROY, (sysarg_t ) address);
return __SYSCALL1(SYS_AS_AREA_DESTROY, (sysarg_t) address);
}
 
/** Change address-space area flags.
*
* @param address Virtual address pointing into the address space area being
* modified.
* @param flags New flags describing type of the area.
* modified.
* @param flags New flags describing type of the area.
*
* @return Zero on success or a code from @ref errno.h on failure.
* @return zero on success or a code from @ref errno.h on failure.
*
*/
int as_area_change_flags(void *address, int flags)
{
99,101 → 102,29
(sysarg_t) flags);
}
 
static size_t heapsize = 0;
static size_t maxheapsize = (size_t) (-1);
 
static void *last_allocated = 0;
 
/* Start of heap linker symbol */
extern char _heap;
 
/** Sbrk emulation
*
* @param incr New area that should be allocated or negative,
if it should be shrinked
* @return Pointer to newly allocated area
*/
void *sbrk(ssize_t incr)
{
int rc;
void *res;
/* Check for invalid values */
if ((incr < 0) && (((size_t) -incr) > heapsize))
return NULL;
/* Check for too large value */
if ((incr > 0) && (incr + heapsize < heapsize))
return NULL;
/* Check for too small values */
if ((incr < 0) && (incr + heapsize > heapsize))
return NULL;
/* Check for user limit */
if ((maxheapsize != (size_t) (-1)) && (heapsize + incr) > maxheapsize)
return NULL;
rc = as_area_resize(&_heap, heapsize + incr, 0);
if (rc != 0)
return NULL;
/* Compute start of new area */
res = (void *) &_heap + heapsize;
 
heapsize += incr;
 
return res;
}
 
/** Set maximum heap size and return pointer just after the heap */
void *set_maxheapsize(size_t mhs)
{
maxheapsize = mhs;
/* Return pointer to area not managed by sbrk */
return ((void *) &_heap + maxheapsize);
}
 
/** Return pointer to some unmapped area, where fits new as_area
*
* @param sz Requested size of the allocation.
* @param size Requested size of the allocation.
*
* @return Pointer to the beginning
* @return pointer to the beginning
*
* TODO: make some first_fit/... algorithm, we are now just incrementing
* the pointer to last area
*/
void *as_get_mappable_page(size_t sz)
void *as_get_mappable_page(size_t size)
{
void *res;
uint64_t asz;
int i;
if (size == 0)
return NULL;
if (!sz)
return NULL;
 
asz = 1 << (fnzb64(sz - 1) + 1);
 
/* Set heapsize to some meaningful value */
if (maxheapsize == (size_t) -1)
set_maxheapsize(MAX_HEAP_SIZE);
size_t sz = 1 << (fnzb(size - 1) + 1);
if (last_allocated == 0)
last_allocated = get_max_heap_addr();
/*
* Make sure we allocate from naturally aligned address.
*/
i = 0;
if (!last_allocated) {
last_allocated = (void *) ALIGN_UP((void *) &_heap +
maxheapsize, asz);
} else {
last_allocated = (void *) ALIGN_UP(((uintptr_t)
last_allocated) + (int) (i > 0), asz);
}
 
res = last_allocated;
last_allocated += ALIGN_UP(sz, PAGE_SIZE);
 
return res;
uintptr_t res = ALIGN_UP(last_allocated, sz);
last_allocated = res + ALIGN_UP(size, PAGE_SIZE);
return ((void *) res);
}
 
/** @}
/branches/dd/uspace/lib/libc/generic/malloc.c
0,0 → 1,475
/*
* Copyright (c) 2009 Martin Decky
* Copyright (c) 2009 Petr Tuma
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* - The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
 
/** @addtogroup libc
* @{
*/
/** @file
*/
 
#include <malloc.h>
#include <bool.h>
#include <as.h>
#include <align.h>
#include <macros.h>
#include <assert.h>
#include <errno.h>
#include <bitops.h>
#include <mem.h>
#include <adt/gcdlcm.h>
 
/* Magic used in heap headers. */
#define HEAP_BLOCK_HEAD_MAGIC 0xBEEF0101
 
/* Magic used in heap footers. */
#define HEAP_BLOCK_FOOT_MAGIC 0xBEEF0202
 
/** Allocation alignment (this also covers the alignment of fields
in the heap header and footer) */
#define BASE_ALIGN 16
 
/**
* Either 4 * 256M on 32-bit architecures or 16 * 256M on 64-bit architectures
*/
#define MAX_HEAP_SIZE (sizeof(uintptr_t) << 28)
 
/**
*
*/
#define STRUCT_OVERHEAD (sizeof(heap_block_head_t) + sizeof(heap_block_foot_t))
 
/**
* Calculate real size of a heap block (with header and footer)
*/
#define GROSS_SIZE(size) ((size) + STRUCT_OVERHEAD)
 
/**
* Calculate net size of a heap block (without header and footer)
*/
#define NET_SIZE(size) ((size) - STRUCT_OVERHEAD)
 
 
/** Header of a heap block
*
*/
typedef struct {
/* Size of the block (including header and footer) */
size_t size;
/* Indication of a free block */
bool free;
/* A magic value to detect overwrite of heap header */
uint32_t magic;
} heap_block_head_t;
 
/** Footer of a heap block
*
*/
typedef struct {
/* Size of the block (including header and footer) */
size_t size;
/* A magic value to detect overwrite of heap footer */
uint32_t magic;
} heap_block_foot_t;
 
/** Linker heap symbol */
extern char _heap;
 
/** Address of heap start */
static void *heap_start = 0;
 
/** Address of heap end */
static void *heap_end = 0;
 
/** Maximum heap size */
static size_t max_heap_size = (size_t) -1;
 
/** Current number of pages of heap area */
static size_t heap_pages = 0;
 
/** Initialize a heap block
*
* Fills in the structures related to a heap block.
*
* @param addr Address of the block.
* @param size Size of the block including the header and the footer.
* @param free Indication of a free block.
*
*/
static void block_init(void *addr, size_t size, bool free)
{
/* Calculate the position of the header and the footer */
heap_block_head_t *head = (heap_block_head_t *) addr;
heap_block_foot_t *foot =
(heap_block_foot_t *) (addr + size - sizeof(heap_block_foot_t));
head->size = size;
head->free = free;
head->magic = HEAP_BLOCK_HEAD_MAGIC;
foot->size = size;
foot->magic = HEAP_BLOCK_FOOT_MAGIC;
}
 
/** Check a heap block
*
* Verifies that the structures related to a heap block still contain
* the magic constants. This helps detect heap corruption early on.
*
* @param addr Address of the block.
*
*/
static void block_check(void *addr)
{
heap_block_head_t *head = (heap_block_head_t *) addr;
assert(head->magic == HEAP_BLOCK_HEAD_MAGIC);
heap_block_foot_t *foot =
(heap_block_foot_t *) (addr + head->size - sizeof(heap_block_foot_t));
assert(foot->magic == HEAP_BLOCK_FOOT_MAGIC);
assert(head->size == foot->size);
}
 
static bool grow_heap(size_t size)
{
if (size == 0)
return false;
size_t heap_size = (size_t) (heap_end - heap_start);
if ((max_heap_size != (size_t) -1) && (heap_size + size > max_heap_size))
return false;
size_t pages = (size - 1) / PAGE_SIZE + 1;
if (as_area_resize((void *) &_heap, (heap_pages + pages) * PAGE_SIZE, 0)
== EOK) {
void *end = (void *) ALIGN_DOWN(((uintptr_t) &_heap) +
(heap_pages + pages) * PAGE_SIZE, BASE_ALIGN);
block_init(heap_end, end - heap_end, true);
heap_pages += pages;
heap_end = end;
return true;
}
return false;
}
 
static void shrink_heap(void)
{
// TODO
}
 
/** Initialize the heap allocator
*
* Finds how much physical memory we have and creates
* the heap management structures that mark the whole
* physical memory as a single free block.
*
*/
void __heap_init(void)
{
if (as_area_create((void *) &_heap, PAGE_SIZE,
AS_AREA_WRITE | AS_AREA_READ)) {
heap_pages = 1;
heap_start = (void *) ALIGN_UP((uintptr_t) &_heap, BASE_ALIGN);
heap_end =
(void *) ALIGN_DOWN(((uintptr_t) &_heap) + PAGE_SIZE, BASE_ALIGN);
/* Make the entire area one large block. */
block_init(heap_start, heap_end - heap_start, true);
}
}
 
uintptr_t get_max_heap_addr(void)
{
if (max_heap_size == (size_t) -1)
max_heap_size =
max((size_t) (heap_end - heap_start), MAX_HEAP_SIZE);
return ((uintptr_t) heap_start + max_heap_size);
}
 
static void split_mark(heap_block_head_t *cur, const size_t size)
{
assert(cur->size >= size);
/* See if we should split the block. */
size_t split_limit = GROSS_SIZE(size);
if (cur->size > split_limit) {
/* Block big enough -> split. */
void *next = ((void *) cur) + size;
block_init(next, cur->size - size, true);
block_init(cur, size, false);
} else {
/* Block too small -> use as is. */
cur->free = false;
}
}
 
/** Allocate a memory block
*
* @param size The size of the block to allocate.
* @param align Memory address alignment.
*
* @return the address of the block or NULL when not enough memory.
*
*/
static void *malloc_internal(const size_t size, const size_t align)
{
if (align == 0)
return NULL;
size_t falign = lcm(align, BASE_ALIGN);
size_t real_size = GROSS_SIZE(ALIGN_UP(size, falign));
bool grown = false;
void *result;
loop:
result = NULL;
heap_block_head_t *cur = (heap_block_head_t *) heap_start;
while ((result == NULL) && ((void *) cur < heap_end)) {
block_check(cur);
/* Try to find a block that is free and large enough. */
if ((cur->free) && (cur->size >= real_size)) {
/* We have found a suitable block.
Check for alignment properties. */
void *addr = ((void *) cur) + sizeof(heap_block_head_t);
void *aligned = (void *) ALIGN_UP(addr, falign);
if (addr == aligned) {
/* Exact block start including alignment. */
split_mark(cur, real_size);
result = addr;
} else {
/* Block start has to be aligned */
size_t excess = (size_t) (aligned - addr);
if (cur->size >= real_size + excess) {
/* The current block is large enough to fit
data in including alignment */
if ((void *) cur > heap_start) {
/* There is a block before the current block.
This previous block can be enlarged to compensate
for the alignment excess */
heap_block_foot_t *prev_foot =
((void *) cur) - sizeof(heap_block_foot_t);
heap_block_head_t *prev_head =
(heap_block_head_t *) (((void *) cur) - prev_foot->size);
block_check(prev_head);
size_t reduced_size = cur->size - excess;
heap_block_head_t *next_head = ((void *) cur) + excess;
if ((!prev_head->free) && (excess >= STRUCT_OVERHEAD)) {
/* The previous block is not free and there is enough
space to fill in a new free block between the previous
and current block */
block_init(cur, excess, true);
} else {
/* The previous block is free (thus there is no need to
induce additional fragmentation to the heap) or the
excess is small, thus just enlarge the previous block */
block_init(prev_head, prev_head->size + excess, prev_head->free);
}
block_init(next_head, reduced_size, true);
split_mark(next_head, real_size);
result = aligned;
cur = next_head;
} else {
/* The current block is the first block on the heap.
We have to make sure that the alignment excess
is large enough to fit a new free block just
before the current block */
while (excess < STRUCT_OVERHEAD) {
aligned += falign;
excess += falign;
}
/* Check for current block size again */
if (cur->size >= real_size + excess) {
size_t reduced_size = cur->size - excess;
cur = (heap_block_head_t *) (heap_start + excess);
block_init(heap_start, excess, true);
block_init(cur, reduced_size, true);
split_mark(cur, real_size);
result = aligned;
}
}
}
}
}
/* Advance to the next block. */
cur = (heap_block_head_t *) (((void *) cur) + cur->size);
}
if ((result == NULL) && (!grown)) {
if (grow_heap(real_size)) {
grown = true;
goto loop;
}
}
return result;
}
 
void *malloc(const size_t size)
{
return malloc_internal(size, BASE_ALIGN);
}
 
void *memalign(const size_t align, const size_t size)
{
if (align == 0)
return NULL;
size_t palign =
1 << (fnzb(max(sizeof(void *), align) - 1) + 1);
return malloc_internal(size, palign);
}
 
void *realloc(const void *addr, const size_t size)
{
if (addr == NULL)
return malloc(size);
/* Calculate the position of the header. */
heap_block_head_t *head =
(heap_block_head_t *) (addr - sizeof(heap_block_head_t));
assert((void *) head >= heap_start);
assert((void *) head < heap_end);
block_check(head);
assert(!head->free);
void *ptr = NULL;
size_t real_size = GROSS_SIZE(ALIGN_UP(size, BASE_ALIGN));
size_t orig_size = head->size;
if (orig_size > real_size) {
/* Shrink */
if (orig_size - real_size >= STRUCT_OVERHEAD) {
/* Split the original block to a full block
and a tailing free block */
block_init((void *) head, real_size, false);
block_init((void *) head + real_size,
orig_size - real_size, true);
shrink_heap();
}
ptr = ((void *) head) + sizeof(heap_block_head_t);
} else {
/* Look at the next block. If it is free and the size is
sufficient then merge the two. */
heap_block_head_t *next_head =
(heap_block_head_t *) (((void *) head) + head->size);
if (((void *) next_head < heap_end) &&
(head->size + next_head->size >= real_size) &&
(next_head->free)) {
block_check(next_head);
block_init(head, head->size + next_head->size, false);
split_mark(head, ALIGN_UP(size, BASE_ALIGN));
ptr = ((void *) head) + sizeof(heap_block_head_t);
} else {
ptr = malloc(size);
if (ptr != NULL) {
memcpy(ptr, addr, NET_SIZE(orig_size));
free(addr);
}
}
}
return ptr;
}
 
/** Free a memory block
*
* @param addr The address of the block.
*/
void free(const void *addr)
{
/* Calculate the position of the header. */
heap_block_head_t *head
= (heap_block_head_t *) (addr - sizeof(heap_block_head_t));
assert((void *) head >= heap_start);
assert((void *) head < heap_end);
block_check(head);
assert(!head->free);
/* Mark the block itself as free. */
head->free = true;
/* Look at the next block. If it is free, merge the two. */
heap_block_head_t *next_head
= (heap_block_head_t *) (((void *) head) + head->size);
if ((void *) next_head < heap_end) {
block_check(next_head);
if (next_head->free)
block_init(head, head->size + next_head->size, true);
}
/* Look at the previous block. If it is free, merge the two. */
if ((void *) head > heap_start) {
heap_block_foot_t *prev_foot =
(heap_block_foot_t *) (((void *) head) - sizeof(heap_block_foot_t));
heap_block_head_t *prev_head =
(heap_block_head_t *) (((void *) head) - prev_foot->size);
block_check(prev_head);
if (prev_head->free)
block_init(prev_head, prev_head->size + head->size, true);
}
shrink_heap();
}
 
/** @}
*/
/branches/dd/uspace/lib/libc/generic/libc.c
52,11 → 52,8
#include <as.h>
#include <loader/pcb.h>
 
extern char _heap;
extern int main(int argc, char *argv[]);
 
int _errno;
 
void _exit(int status)
{
thread_exit(status);
64,9 → 61,10
 
void __main(void *pcb_ptr)
{
(void) as_area_create(&_heap, 1, AS_AREA_WRITE | AS_AREA_READ);
_async_init();
int retval;
 
__heap_init();
__async_init();
fibril_t *fibril = fibril_setup();
__tcb_set(fibril->tcb);
79,15 → 77,17
if (__pcb == NULL) {
argc = 0;
argv = NULL;
stdio_init(0, NULL);
__stdio_init(0, NULL);
} else {
argc = __pcb->argc;
argv = __pcb->argv;
stdio_init(__pcb->filc, __pcb->filv);
__stdio_init(__pcb->filc, __pcb->filv);
}
main(argc, argv);
stdio_done();
retval = main(argc, argv);
 
__stdio_done();
(void) task_retval(retval);
}
 
void __exit(void)
/branches/dd/uspace/lib/libc/generic/devmap.c
193,7 → 193,7
if (retval != EOK) {
if (handle != NULL)
*handle = -1;
*handle = (dev_handle_t) -1;
return retval;
}
218,6 → 218,31
return phone;
}
 
int devmap_null_create(void)
{
int phone = devmap_get_phone(DEVMAP_CLIENT, IPC_FLAG_BLOCKING);
if (phone < 0)
return -1;
ipcarg_t null_id;
int retval = async_req_0_1(phone, DEVMAP_DEVICE_NULL_CREATE, &null_id);
if (retval != EOK)
return -1;
return (int) null_id;
}
 
void devmap_null_destroy(int null_id)
{
int phone = devmap_get_phone(DEVMAP_CLIENT, IPC_FLAG_BLOCKING);
if (phone < 0)
return;
async_req_1_0(phone, DEVMAP_DEVICE_NULL_DESTROY, (ipcarg_t) null_id);
}
 
ipcarg_t devmap_device_get_count(void)
{
int phone = devmap_get_phone(DEVMAP_CLIENT, IPC_FLAG_BLOCKING);
/branches/dd/uspace/lib/libc/generic/async.c
178,7 → 178,6
 
static void default_client_connection(ipc_callid_t callid, ipc_call_t *call);
static void default_interrupt_received(ipc_callid_t callid, ipc_call_t *call);
static void default_pending(void);
 
/**
* Pointer to a fibril function that will be used to handle connections.
191,12 → 190,6
*/
static async_client_conn_t interrupt_received = default_interrupt_received;
 
/**
* Pointer to a fibril function that will be used to handle pending
* operations.
*/
static async_pending_t pending = default_pending;
 
static hash_table_t conn_hash_table;
static LIST_INITIALIZE(timeout_list);
 
381,42 → 374,6
return true;
}
 
/** Pending fibril.
*
* After each call the pending operations are executed in a separate
* fibril. The function pending() is c.
*
* @param arg Unused.
*
* @return Always zero.
*
*/
static int pending_fibril(void *arg)
{
pending();
return 0;
}
 
/** Process pending actions.
*
* A new fibril is created which would process the pending operations.
*
* @return False if an error occured.
* True if the execution was passed to the pending fibril.
*
*/
static bool process_pending(void)
{
futex_down(&async_futex);
fid_t fid = fibril_create(pending_fibril, NULL);
fibril_add_ready(fid);
futex_up(&async_futex);
return true;
}
 
/** Return new incoming message for the current (fibril-local) connection.
*
* @param call Storage where the incoming call data will be stored.
513,15 → 470,6
{
}
 
/** Default fibril function that gets called to handle pending operations.
*
* This function is defined as a weak symbol - to be redefined in user code.
*
*/
static void default_pending(void)
{
}
 
/** Wrapper for client connection fibril.
*
* When a new connection arrives, a fibril with this implementing function is
660,7 → 608,7
return;
out:
process_pending();
;
}
 
/** Fire all timeouts that expired. */
790,7 → 738,7
*
* @return Zero on success or an error code.
*/
int _async_init(void)
int __async_init(void)
{
if (!hash_table_create(&conn_hash_table, CONN_HASH_TABLE_CHAINS, 1,
&conn_hash_table_ops)) {
1049,16 → 997,6
interrupt_received = intr;
}
 
/** Setter for pending function pointer.
*
* @param pend Function that will implement a new pending
* operations fibril.
*/
void async_set_pending(async_pending_t pend)
{
pending = pend;
}
 
/** Pseudo-synchronous message sending - fast version.
*
* Send message asynchronously and return only after the reply arrives.
/branches/dd/uspace/lib/libc/generic/vfs/vfs.c
38,8 → 38,8
#include <unistd.h>
#include <dirent.h>
#include <fcntl.h>
#include <stdio.h>
#include <sys/stat.h>
#include <stdio.h>
#include <sys/types.h>
#include <ipc/ipc.h>
#include <ipc/services.h>
137,7 → 137,7
async_serialize_start();
vfs_connect();
req = async_send_2(vfs_phone, VFS_MOUNT, dev_handle, flags, NULL);
req = async_send_2(vfs_phone, VFS_IN_MOUNT, dev_handle, flags, NULL);
rc = ipc_data_write_start(vfs_phone, (void *) mpa, mpa_size);
if (rc != EOK) {
async_wait_for(req, NULL);
198,7 → 198,7
async_serialize_start();
vfs_connect();
req = async_send_3(vfs_phone, VFS_OPEN, lflag, oflag, 0, &answer);
req = async_send_3(vfs_phone, VFS_IN_OPEN, lflag, oflag, 0, &answer);
rc = ipc_data_write_start(vfs_phone, pa, pa_size);
if (rc != EOK) {
async_wait_for(req, NULL);
230,7 → 230,7
vfs_connect();
ipc_call_t answer;
aid_t req = async_send_4(vfs_phone, VFS_OPEN_NODE, node->fs_handle,
aid_t req = async_send_4(vfs_phone, VFS_IN_OPEN_NODE, node->fs_handle,
node->dev_handle, node->index, oflag, &answer);
ipcarg_t rc;
252,7 → 252,7
async_serialize_start();
vfs_connect();
rc = async_req_1_0(vfs_phone, VFS_CLOSE, fildes);
rc = async_req_1_0(vfs_phone, VFS_IN_CLOSE, fildes);
async_serialize_end();
futex_up(&vfs_phone_futex);
270,7 → 270,7
async_serialize_start();
vfs_connect();
req = async_send_1(vfs_phone, VFS_READ, fildes, &answer);
req = async_send_1(vfs_phone, VFS_IN_READ, fildes, &answer);
rc = ipc_data_read_start(vfs_phone, (void *)buf, nbyte);
if (rc != EOK) {
async_wait_for(req, NULL);
297,7 → 297,7
async_serialize_start();
vfs_connect();
req = async_send_1(vfs_phone, VFS_WRITE, fildes, &answer);
req = async_send_1(vfs_phone, VFS_IN_WRITE, fildes, &answer);
rc = ipc_data_write_start(vfs_phone, (void *)buf, nbyte);
if (rc != EOK) {
async_wait_for(req, NULL);
314,95 → 314,116
return -1;
}
 
int fd_phone(int fildes)
int fsync(int fildes)
{
futex_down(&vfs_phone_futex);
async_serialize_start();
vfs_connect();
ipcarg_t device;
ipcarg_t rc = async_req_1_1(vfs_phone, VFS_DEVICE, fildes, &device);
ipcarg_t rc = async_req_1_0(vfs_phone, VFS_IN_SYNC, fildes);
async_serialize_end();
futex_up(&vfs_phone_futex);
if (rc != EOK)
return -1;
return devmap_device_connect((dev_handle_t) device, 0);
return (int) rc;
}
 
int fd_node(int fildes, fdi_node_t *node)
off_t lseek(int fildes, off_t offset, int whence)
{
ipcarg_t rc;
 
futex_down(&vfs_phone_futex);
async_serialize_start();
vfs_connect();
ipcarg_t fs_handle;
ipcarg_t dev_handle;
ipcarg_t index;
ipcarg_t rc = async_req_1_3(vfs_phone, VFS_NODE, fildes, &fs_handle,
&dev_handle, &index);
ipcarg_t newoffs;
rc = async_req_3_1(vfs_phone, VFS_IN_SEEK, fildes, offset, whence,
&newoffs);
 
async_serialize_end();
futex_up(&vfs_phone_futex);
 
if (rc != EOK)
return (off_t) -1;
if (rc == EOK) {
node->fs_handle = (fs_handle_t) fs_handle;
node->dev_handle = (dev_handle_t) dev_handle;
node->index = (fs_index_t) index;
}
return rc;
return (off_t) newoffs;
}
 
int fsync(int fildes)
int ftruncate(int fildes, off_t length)
{
ipcarg_t rc;
futex_down(&vfs_phone_futex);
async_serialize_start();
vfs_connect();
ipcarg_t rc = async_req_1_0(vfs_phone, VFS_SYNC, fildes);
rc = async_req_2_0(vfs_phone, VFS_IN_TRUNCATE, fildes, length);
async_serialize_end();
futex_up(&vfs_phone_futex);
return (int) rc;
}
 
off_t lseek(int fildes, off_t offset, int whence)
int fstat(int fildes, struct stat *stat)
{
ipcarg_t rc;
ipc_call_t answer;
aid_t req;
 
futex_down(&vfs_phone_futex);
async_serialize_start();
vfs_connect();
ipcarg_t newoffs;
rc = async_req_3_1(vfs_phone, VFS_SEEK, fildes, offset, whence,
&newoffs);
 
req = async_send_1(vfs_phone, VFS_IN_FSTAT, fildes, NULL);
rc = ipc_data_read_start(vfs_phone, (void *)stat, sizeof(struct stat));
if (rc != EOK) {
async_wait_for(req, NULL);
async_serialize_end();
futex_up(&vfs_phone_futex);
return (ssize_t) rc;
}
async_wait_for(req, &rc);
async_serialize_end();
futex_up(&vfs_phone_futex);
 
if (rc != EOK)
return (off_t) -1;
return (off_t) newoffs;
return rc;
}
 
int ftruncate(int fildes, off_t length)
int stat(const char *path, struct stat *stat)
{
ipcarg_t rc;
aid_t req;
size_t pa_size;
char *pa = absolutize(path, &pa_size);
if (!pa)
return ENOMEM;
futex_down(&vfs_phone_futex);
async_serialize_start();
vfs_connect();
rc = async_req_2_0(vfs_phone, VFS_TRUNCATE, fildes, length);
req = async_send_0(vfs_phone, VFS_IN_STAT, NULL);
rc = ipc_data_write_start(vfs_phone, pa, pa_size);
if (rc != EOK) {
async_wait_for(req, NULL);
async_serialize_end();
futex_up(&vfs_phone_futex);
free(pa);
return (int) rc;
}
rc = ipc_data_read_start(vfs_phone, stat, sizeof(struct stat));
if (rc != EOK) {
async_wait_for(req, NULL);
async_serialize_end();
futex_up(&vfs_phone_futex);
free(pa);
return (int) rc;
}
async_wait_for(req, &rc);
async_serialize_end();
futex_up(&vfs_phone_futex);
return (int) rc;
free(pa);
return rc;
}
 
DIR *opendir(const char *dirname)
452,7 → 473,7
async_serialize_start();
vfs_connect();
req = async_send_1(vfs_phone, VFS_MKDIR, mode, NULL);
req = async_send_1(vfs_phone, VFS_IN_MKDIR, mode, NULL);
rc = ipc_data_write_start(vfs_phone, pa, pa_size);
if (rc != EOK) {
async_wait_for(req, NULL);
482,7 → 503,7
async_serialize_start();
vfs_connect();
req = async_send_0(vfs_phone, VFS_UNLINK, NULL);
req = async_send_0(vfs_phone, VFS_IN_UNLINK, NULL);
rc = ipc_data_write_start(vfs_phone, pa, pa_size);
if (rc != EOK) {
async_wait_for(req, NULL);
529,7 → 550,7
async_serialize_start();
vfs_connect();
req = async_send_0(vfs_phone, VFS_RENAME, NULL);
req = async_send_0(vfs_phone, VFS_IN_RENAME, NULL);
rc = ipc_data_write_start(vfs_phone, olda, olda_size);
if (rc != EOK) {
async_wait_for(req, NULL);
598,5 → 619,34
return buf;
}
 
int fd_phone(int fildes)
{
struct stat stat;
int rc;
 
rc = fstat(fildes, &stat);
 
if (!stat.devfs_stat.device)
return -1;
return devmap_device_connect(stat.devfs_stat.device, 0);
}
 
int fd_node(int fildes, fdi_node_t *node)
{
struct stat stat;
int rc;
 
rc = fstat(fildes, &stat);
if (rc == EOK) {
node->fs_handle = stat.fs_handle;
node->dev_handle = stat.dev_handle;
node->index = stat.index;
}
return rc;
}
 
/** @}
*/
/branches/dd/uspace/lib/libc/generic/errno.c
0,0 → 1,41
/*
* Copyright (c) 2009 Martin Decky
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* - The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
 
/** @addtogroup libc
* @{
*/
/** @file
*/
 
#include <errno.h>
#include <fibril.h>
 
int _errno;
 
/** @}
*/
/branches/dd/uspace/lib/libc/generic/io/console.c
69,6 → 69,17
async_msg_1(phone, CONSOLE_CURSOR_VISIBILITY, show != false);
}
 
int console_get_color_cap(int phone, int *ccap)
{
ipcarg_t ccap_tmp;
int rc;
 
rc = async_req_0_1(phone, CONSOLE_GET_COLOR_CAP, &ccap_tmp);
*ccap = ccap_tmp;
 
return rc;
}
 
void console_kcon_enable(int phone)
{
async_msg_0(phone, CONSOLE_KCON_ENABLE);
/branches/dd/uspace/lib/libc/generic/io/io.c
35,6 → 35,7
#include <stdio.h>
#include <unistd.h>
#include <fcntl.h>
#include <assert.h>
#include <string.h>
#include <errno.h>
#include <bool.h>
44,12 → 45,18
#include <ipc/devmap.h>
#include <adt/list.h>
 
static void _fflushbuf(FILE *stream);
 
static FILE stdin_null = {
.fd = -1,
.error = true,
.eof = true,
.klog = false,
.phone = -1
.phone = -1,
.btype = _IONBF,
.buf = NULL,
.buf_size = 0,
.buf_head = NULL
};
 
static FILE stdout_klog = {
57,7 → 64,11
.error = false,
.eof = false,
.klog = true,
.phone = -1
.phone = -1,
.btype = _IOLBF,
.buf = NULL,
.buf_size = BUFSIZ,
.buf_head = NULL
};
 
static FILE stderr_klog = {
65,7 → 76,11
.error = false,
.eof = false,
.klog = true,
.phone = -1
.phone = -1,
.btype = _IONBF,
.buf = NULL,
.buf_size = 0,
.buf_head = NULL
};
 
FILE *stdin = NULL;
74,7 → 89,7
 
static LIST_INITIALIZE(files);
 
void stdio_init(int filc, fdi_node_t *filv[])
void __stdio_init(int filc, fdi_node_t *filv[])
{
if (filc > 0) {
stdin = fopen_node(filv[0], "r");
98,7 → 113,7
}
}
 
void stdio_done(void)
void __stdio_done(void)
{
link_t *link = files.next;
156,6 → 171,47
return true;
}
 
/** Set stream buffer. */
void setvbuf(FILE *stream, void *buf, int mode, size_t size)
{
stream->btype = mode;
stream->buf = buf;
stream->buf_size = size;
stream->buf_head = stream->buf;
}
 
static void _setvbuf(FILE *stream)
{
/* FIXME: Use more complex rules for setting buffering options. */
switch (stream->fd) {
case 1:
setvbuf(stream, NULL, _IOLBF, BUFSIZ);
break;
case 0:
case 2:
setvbuf(stream, NULL, _IONBF, 0);
break;
default:
setvbuf(stream, NULL, _IOFBF, BUFSIZ);
}
}
 
/** Allocate stream buffer. */
static int _fallocbuf(FILE *stream)
{
assert(stream->buf == NULL);
stream->buf = malloc(stream->buf_size);
if (stream->buf == NULL) {
errno = ENOMEM;
return -1;
}
stream->buf_head = stream->buf;
return 0;
}
 
/** Open a stream.
*
* @param path Path of the file to open.
186,6 → 242,7
stream->eof = false;
stream->klog = false;
stream->phone = -1;
_setvbuf(stream);
list_append(&stream->link, &files);
206,6 → 263,7
stream->eof = false;
stream->klog = false;
stream->phone = -1;
_setvbuf(stream);
list_append(&stream->link, &files);
236,6 → 294,7
stream->eof = false;
stream->klog = false;
stream->phone = -1;
_setvbuf(stream);
list_append(&stream->link, &files);
284,6 → 343,9
size_t left = size * nmemb;
size_t done = 0;
/* Make sure no data is pending write. */
_fflushbuf(stream);
while ((left > 0) && (!stream->error) && (!stream->eof)) {
ssize_t rd = read(stream->fd, buf + done, left);
300,15 → 362,7
return (done / size);
}
 
/** Write to a stream.
*
* @param buf Source buffer.
* @param size Size of each record.
* @param nmemb Number of records to write.
* @param stream Pointer to the stream.
*
*/
size_t fwrite(const void *buf, size_t size, size_t nmemb, FILE *stream)
static size_t _fwrite(const void *buf, size_t size, size_t nmemb, FILE *stream)
{
size_t left = size * nmemb;
size_t done = 0;
332,6 → 386,93
return (done / size);
}
 
/** Drain stream buffer, do not sync stream. */
static void _fflushbuf(FILE *stream)
{
size_t bytes_used;
if ((!stream->buf) || (stream->btype == _IONBF) || (stream->error))
return;
bytes_used = stream->buf_head - stream->buf;
if (bytes_used == 0)
return;
(void) _fwrite(stream->buf, 1, bytes_used, stream);
stream->buf_head = stream->buf;
}
 
/** Write to a stream.
*
* @param buf Source buffer.
* @param size Size of each record.
* @param nmemb Number of records to write.
* @param stream Pointer to the stream.
*
*/
size_t fwrite(const void *buf, size_t size, size_t nmemb, FILE *stream)
{
uint8_t *data;
size_t bytes_left;
size_t now;
size_t buf_free;
size_t total_written;
size_t i;
uint8_t b;
bool need_flush;
/* If not buffered stream, write out directly. */
if (stream->btype == _IONBF) {
now = _fwrite(buf, size, nmemb, stream);
fflush(stream);
return now;
}
/* Perform lazy allocation of stream buffer. */
if (stream->buf == NULL) {
if (_fallocbuf(stream) != 0)
return 0; /* Errno set by _fallocbuf(). */
}
data = (uint8_t *) buf;
bytes_left = size * nmemb;
total_written = 0;
need_flush = false;
while ((!stream->error) && (bytes_left > 0)) {
buf_free = stream->buf_size - (stream->buf_head - stream->buf);
if (bytes_left > buf_free)
now = buf_free;
else
now = bytes_left;
for (i = 0; i < now; i++) {
b = data[i];
stream->buf_head[i] = b;
if ((b == '\n') && (stream->btype == _IOLBF))
need_flush = true;
}
buf += now;
stream->buf_head += now;
buf_free -= now;
bytes_left -= now;
total_written += now;
if (buf_free == 0) {
/* Only need to drain buffer. */
_fflushbuf(stream);
need_flush = false;
}
}
if (need_flush)
fflush(stream);
return (total_written / size);
}
 
int fputc(wchar_t c, FILE *stream)
{
char buf[STR_BOUNDS(1)];
367,13 → 508,13
int fgetc(FILE *stream)
{
char c;
 
/* This could be made faster by only flushing when needed. */
if (stdout)
fflush(stdout);
if (stderr)
fflush(stderr);
 
if (fread(&c, sizeof(char), 1, stream) < sizeof(char))
return EOF;
405,6 → 546,8
 
int fflush(FILE *stream)
{
_fflushbuf(stream);
if (stream->klog) {
klog_update();
return EOK;
/branches/dd/uspace/lib/libc/generic/io/printf_core.c
301,9 → 301,6
if (str == NULL)
return printf_putstr(nullstr, ps);
if (*str == U_BOM)
str++;
/* Print leading spaces. */
size_t strw = wstr_length(str);
if (precision == 0)
/branches/dd/uspace/lib/libc/generic/mman.c
37,17 → 37,18
#include <as.h>
#include <unistd.h>
 
void *mmap(void *start, size_t length, int prot, int flags, int fd,
void *mmap(void *start, size_t length, int prot, int flags, int fd,
off_t offset)
{
if (!start)
start = as_get_mappable_page(length);
// if (! ((flags & MAP_SHARED) ^ (flags & MAP_PRIVATE)))
// if (!((flags & MAP_SHARED) ^ (flags & MAP_PRIVATE)))
// return MAP_FAILED;
if (! (flags & MAP_ANONYMOUS))
if (!(flags & MAP_ANONYMOUS))
return MAP_FAILED;
 
return as_area_create(start, length, prot);
}
 
/branches/dd/uspace/lib/libc/Makefile
32,6 → 32,7
LIBC_PREFIX = $(shell pwd)
SOFTINT_PREFIX = ../softint
 
 
## Setup toolchain
#
 
48,6 → 49,7
generic/cap.c \
generic/devmap.c \
generic/event.c \
generic/errno.c \
generic/mem.c \
generic/string.c \
generic/fibril.c \
67,7 → 69,7
generic/io/vsnprintf.c \
generic/io/printf_core.c \
generic/io/console.c \
malloc/malloc.c \
generic/malloc.c \
generic/sysinfo.c \
generic/ipc.c \
generic/async.c \
104,7 → 106,7
 
clean:
-rm -f include/kernel include/arch include/libarch libc.a arch/$(UARCH)/_link.ld Makefile.depend
find generic/ arch/$(UARCH)/ malloc -name '*.o' -follow -exec rm \{\} \;
find generic/ arch/$(UARCH)/ -name '*.o' -follow -exec rm \{\} \;
 
depend: kerninc
-makedepend -f - -- $(DEPEND_DEFS) $(CFLAGS) -- $(ARCH_SOURCES) $(GENERIC_SOURCES) > Makefile.depend 2> /dev/null
/branches/dd/uspace/lib/libc/arch/sparc64/include/byteorder.h
File deleted
/branches/dd/uspace/lib/libc/arch/sparc64/include/stack.h
45,6 → 45,11
*/
#define STACK_WINDOW_SAVE_AREA_SIZE (16 * STACK_ITEM_SIZE)
 
/*
* Six extended words for first six arguments.
*/
#define STACK_ARG_SAVE_AREA_SIZE (6 * STACK_ITEM_SIZE)
 
/**
* By convention, the actual top of the stack is %sp + STACK_BIAS.
*/
/branches/dd/uspace/lib/libc/arch/sparc64/include/fibril.h
39,7 → 39,7
#include <sys/types.h>
#include <align.h>
 
#define SP_DELTA STACK_WINDOW_SAVE_AREA_SIZE
#define SP_DELTA (STACK_WINDOW_SAVE_AREA_SIZE + STACK_ARG_SAVE_AREA_SIZE)
 
#ifdef context_set
#undef context_set
/branches/dd/uspace/lib/libc/arch/sparc64/Makefile.inc
38,5 → 38,7
CFLAGS += -mcpu=ultrasparc -m64
LFLAGS += -no-check-sections -N
 
ENDIANESS = BE
 
BFD_NAME = elf64-sparc
BFD_ARCH = sparc
/branches/dd/uspace/lib/libc/arch/ia64/include/byteorder.h
File deleted
/branches/dd/uspace/lib/libc/arch/ia64/Makefile.inc
31,9 → 31,6
 
TARGET = ia64-pc-linux-gnu
TOOLCHAIN_DIR = $(CROSS_PREFIX)/ia64/bin
CFLAGS += -fno-unwind-tables -DMALLOC_ALIGNMENT_16
LFLAGS += -N $(SOFTINT_PREFIX)/libsoftint.a
AFLAGS +=
 
ARCH_SOURCES += arch/$(UARCH)/src/syscall.S \
arch/$(UARCH)/src/fibril.S \
40,5 → 37,10
arch/$(UARCH)/src/tls.c \
arch/$(UARCH)/src/ddi.c
 
CFLAGS += -fno-unwind-tables
LFLAGS += -N $(SOFTINT_PREFIX)/libsoftint.a
 
ENDIANESS = LE
 
BFD_NAME = elf64-ia64-little
BFD_ARCH = ia64-elf64
/branches/dd/uspace/lib/libc/arch/arm32/include/byteorder.h
File deleted
/branches/dd/uspace/lib/libc/arch/arm32/Makefile.inc
32,9 → 32,6
 
TARGET = arm-linux-gnu
TOOLCHAIN_DIR = $(CROSS_PREFIX)/arm/bin
CFLAGS += -ffixed-r9 -mtp=soft
LFLAGS += -N $(SOFTINT_PREFIX)/libsoftint.a
AFLAGS +=
 
ARCH_SOURCES += arch/$(UARCH)/src/syscall.c \
arch/$(UARCH)/src/fibril.S \
41,5 → 38,10
arch/$(UARCH)/src/tls.c \
arch/$(UARCH)/src/eabi.S
 
CFLAGS += -ffixed-r9 -mtp=soft
LFLAGS += -N $(SOFTINT_PREFIX)/libsoftint.a
 
ENDIANESS = LE
 
BFD_NAME = elf32-littlearm
BFD_ARCH = arm
/branches/dd/uspace/lib/libc/arch/mips32eb/include/byteorder.h
File deleted
/branches/dd/uspace/lib/libc/arch/mips32eb/Makefile.inc
31,13 → 31,15
 
TARGET = mips-linux-gnu
TOOLCHAIN_DIR = $(CROSS_PREFIX)/mips/bin
CFLAGS += -mips3
 
ARCH_SOURCES += arch/$(UARCH)/src/syscall.c \
arch/$(UARCH)/src/fibril.S \
arch/$(UARCH)/src/tls.c
 
CFLAGS += -mips3
LFLAGS += -N
 
ENDIANESS = BE
 
BFD_ARCH = mips
BFD_NAME = elf32-tradbigmips
/branches/dd/uspace/lib/libc/arch/ppc32/include/byteorder.h
File deleted
/branches/dd/uspace/lib/libc/arch/ppc32/Makefile.inc
40,5 → 40,7
AFLAGS += -a32
LFLAGS += -N
 
ENDIANESS = BE
 
BFD_NAME = elf32-powerpc
BFD_ARCH = powerpc:common
/branches/dd/uspace/lib/libc/arch/amd64/include/byteorder.h
File deleted
/branches/dd/uspace/lib/libc/arch/amd64/Makefile.inc
38,5 → 38,7
 
LFLAGS += -N
 
ENDIANESS = LE
 
BFD_NAME = elf64-x86-64
BFD_ARCH = i386:x86-64
/branches/dd/uspace/lib/libc/arch/mips32/include/byteorder.h
File deleted
/branches/dd/uspace/lib/libc/arch/mips32/Makefile.inc
31,11 → 31,14
 
TARGET = mipsel-linux-gnu
TOOLCHAIN_DIR = $(CROSS_PREFIX)/mipsel/bin
CFLAGS += -mips3
 
ARCH_SOURCES += arch/$(UARCH)/src/syscall.c \
arch/$(UARCH)/src/fibril.S \
arch/$(UARCH)/src/tls.c
 
CFLAGS += -mips3
 
ENDIANESS = LE
 
BFD_ARCH = mips
BFD_NAME = elf32-tradlittlemips
/branches/dd/uspace/lib/libc/arch/ia32/include/byteorder.h
File deleted
/branches/dd/uspace/lib/libc/arch/ia32/Makefile.inc
39,5 → 39,7
 
LFLAGS += -N
 
ENDIANESS = LE
 
BFD_NAME = elf32-i386
BFD_ARCH = i386
/branches/dd/uspace/srv/kbd/ctl/pc.c
207,6 → 207,9
map = scanmap_e0;
map_length = sizeof(scanmap_e0) / sizeof(int);
break;
default:
map = NULL;
map_length = 0;
}
 
ds = ds_s;
218,7 → 221,7
type = KEY_PRESS;
}
 
if (scancode < 0 || scancode >= map_length)
if ((scancode < 0) || ((size_t) scancode >= map_length))
return;
 
key = map[scancode];
/branches/dd/uspace/srv/kbd/port/i8042.c
135,8 → 135,8
(void) pio_read_8(&i8042->data);
/* Enable kbd */
i8042_kbd.cmds[0].addr = &((i8042_t *) i8042_kernel)->status;
i8042_kbd.cmds[3].addr = &((i8042_t *) i8042_kernel)->data;
i8042_kbd.cmds[0].addr = (void *) &((i8042_t *) i8042_kernel)->status;
i8042_kbd.cmds[3].addr = (void *) &((i8042_t *) i8042_kernel)->data;
ipc_register_irq(sysinfo_value("kbd.inr"), device_assign_devno(), 0, &i8042_kbd);
 
int newcontrol = i8042_KBD_IE | i8042_KBD_TRANSLATE;
/branches/dd/uspace/srv/kbd/genarch/gsp.c
244,7 → 244,7
key[0] = t->old_state;
key[1] = t->input;
 
hash_table_insert(&p->trans, &key, &t->link);
hash_table_insert(&p->trans, key, &t->link);
}
 
/** Allocate transition structure. */
276,7 → 276,8
gsp_trans_t *t;
 
t = hash_table_get_instance(item, gsp_trans_t, link);
return (key[0] == t->old_state && key[1] == t->input);
return ((key[0] == (unsigned long) t->old_state)
&& (key[1] == (unsigned long) t->input));
}
 
static void trans_op_remove_callback(link_t *item)
/branches/dd/uspace/srv/kbd/layout/us_qwerty.c
27,7 → 27,7
*/
 
/** @addtogroup kbd
* @brief US QWERTY leyout.
* @brief US QWERTY layout.
* @{
*/
 
/branches/dd/uspace/srv/kbd/layout/cz.c
27,7 → 27,7
*/
 
/** @addtogroup kbd
* @brief US QWERTY leyout.
* @brief Czech QWERTZ layout.
* @{
*/
 
399,6 → 399,8
case ms_carka:
return parse_ms_carka(ev);
}
return 0;
}
 
/**
/branches/dd/uspace/srv/ns/ns.c
108,13 → 108,6
task_id_t id;
ipcarg_t retval;
if (callid & IPC_CALLID_NOTIFICATION) {
id = (task_id_t)
MERGE_LOUP32(IPC_GET_ARG2(call), IPC_GET_ARG3(call));
wait_notification((wait_type_t) IPC_GET_ARG1(call), id);
continue;
}
switch (IPC_GET_METHOD(call)) {
case IPC_M_SHARE_IN:
switch (IPC_GET_ARG3(call)) {
133,7 → 126,7
}
continue;
case IPC_M_PHONE_HUNGUP:
retval = EOK;
retval = ns_task_disconnect(&call);
break;
case IPC_M_CONNECT_TO_ME:
/*
170,6 → 163,12
MERGE_LOUP32(IPC_GET_ARG1(call), IPC_GET_ARG2(call));
wait_for_task(id, &call, callid);
continue;
case NS_ID_INTRO:
retval = ns_task_id_intro(&call);
break;
case NS_RETVAL:
retval = ns_task_retval(&call);
break;
default:
retval = ENOENT;
break;
/branches/dd/uspace/srv/ns/task.c
1,5 → 1,6
/*
* Copyright (c) 2009 Martin Decky
* Copyright (c) 2009 Jiri Svoboda
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
41,20 → 42,13
#include "ns.h"
 
#define TASK_HASH_TABLE_CHAINS 256
#define P2I_HASH_TABLE_CHAINS 256
 
static int get_id_by_phone(ipcarg_t phone_hash, task_id_t *id);
 
/* TODO:
*
* The current implementation of waiting on a task is not perfect. If somebody
* wants to wait on a task which has already finished before the NS asked
* the kernel to receive notifications, it would block indefinitively.
*
* A solution to this is to fail immediately on a task for which no creation
* notification was received yet. However, there is a danger of a race condition
* in this solution -- the caller has to make sure that it is not trying to wait
* before the NS has a change to receive the task creation notification. This
* can be assured by waiting for this event in task_spawn().
*
* Finally, as there is currently no convention that each task has to be waited
* As there is currently no convention that each task has to be waited
* for, the NS can leak memory because of the zombie tasks.
*
*/
62,8 → 56,10
/** Task hash table item. */
typedef struct {
link_t link;
task_id_t id; /**< Task ID. */
bool destroyed;
task_id_t id; /**< Task ID. */
bool finished; /**< Task is done. */
bool have_rval; /**< Task returned a value. */
int retval; /**< The return value. */
} hashed_task_t;
 
/** Compute hash index into task hash table.
83,7 → 79,7
/** Compare a key with hashed item.
*
* @param key Array of keys.
* @param keys Must be lesser or equal to 2.
* @param keys Must be less than or equal to 2.
* @param item Pointer to a hash table item.
*
* @return Non-zero if the key matches the item, zero otherwise.
125,6 → 121,65
/** Task hash table structure. */
static hash_table_t task_hash_table;
 
typedef struct {
link_t link;
ipcarg_t phash; /**< Task ID. */
task_id_t id; /**< Task ID. */
} p2i_entry_t;
 
/** Compute hash index into task hash table.
*
* @param key Array of keys.
* @return Hash index corresponding to key[0].
*
*/
static hash_index_t p2i_hash(unsigned long *key)
{
assert(key);
return (*key % TASK_HASH_TABLE_CHAINS);
}
 
/** Compare a key with hashed item.
*
* @param key Array of keys.
* @param keys Must be less than or equal to 1.
* @param item Pointer to a hash table item.
*
* @return Non-zero if the key matches the item, zero otherwise.
*
*/
static int p2i_compare(unsigned long key[], hash_count_t keys, link_t *item)
{
assert(key);
assert(keys == 1);
assert(item);
 
p2i_entry_t *e = hash_table_get_instance(item, p2i_entry_t, link);
 
return (key[0] == e->phash);
}
 
/** Perform actions after removal of item from the hash table.
*
* @param item Item that was removed from the hash table.
*
*/
static void p2i_remove(link_t *item)
{
assert(item);
free(hash_table_get_instance(item, p2i_entry_t, link));
}
 
/** Operations for task hash table. */
static hash_table_operations_t p2i_ops = {
.hash = p2i_hash,
.compare = p2i_compare,
.remove_callback = p2i_remove
};
 
/** Map phone hash to task ID */
static hash_table_t phone_to_id;
 
/** Pending task wait structure. */
typedef struct {
link_t link;
141,10 → 196,13
printf(NAME ": No memory available for tasks\n");
return ENOMEM;
}
 
if (!hash_table_create(&phone_to_id, P2I_HASH_TABLE_CHAINS,
1, &p2i_ops)) {
printf(NAME ": No memory available for tasks\n");
return ENOMEM;
}
if (event_subscribe(EVENT_WAIT, 0) != EOK)
printf(NAME ": Error registering wait notifications\n");
list_initialize(&pending_wait);
return EOK;
154,6 → 212,7
void process_pending_wait(void)
{
link_t *cur;
task_exit_t texit;
loop:
for (cur = pending_wait.next; cur != &pending_wait; cur = cur->next) {
169,12 → 228,16
continue;
hashed_task_t *ht = hash_table_get_instance(link, hashed_task_t, link);
if (!ht->destroyed)
if (!ht->finished)
continue;
if (!(pr->callid & IPC_CALLID_NOTIFICATION))
ipc_answer_0(pr->callid, EOK);
if (!(pr->callid & IPC_CALLID_NOTIFICATION)) {
texit = ht->have_rval ? TASK_EXIT_NORMAL :
TASK_EXIT_UNEXPECTED;
ipc_answer_2(pr->callid, EOK, texit,
ht->retval);
}
 
hash_table_remove(&task_hash_table, keys, 2);
list_remove(cur);
free(pr);
182,66 → 245,27
}
}
 
static void fail_pending_wait(task_id_t id, int rc)
void wait_for_task(task_id_t id, ipc_call_t *call, ipc_callid_t callid)
{
link_t *cur;
loop:
for (cur = pending_wait.next; cur != &pending_wait; cur = cur->next) {
pending_wait_t *pr = list_get_instance(cur, pending_wait_t, link);
if (pr->id == id) {
if (!(pr->callid & IPC_CALLID_NOTIFICATION))
ipc_answer_0(pr->callid, rc);
list_remove(cur);
free(pr);
goto loop;
}
}
}
ipcarg_t retval;
task_exit_t texit;
 
void wait_notification(wait_type_t et, task_id_t id)
{
unsigned long keys[2] = {
LOWER32(id),
UPPER32(id)
};
link_t *link = hash_table_find(&task_hash_table, keys);
if (link == NULL) {
hashed_task_t *ht =
(hashed_task_t *) malloc(sizeof(hashed_task_t));
if (ht == NULL) {
fail_pending_wait(id, ENOMEM);
return;
}
link_initialize(&ht->link);
ht->id = id;
ht->destroyed = (et == TASK_CREATE) ? false : true;
hash_table_insert(&task_hash_table, keys, &ht->link);
} else {
hashed_task_t *ht =
hash_table_get_instance(link, hashed_task_t, link);
ht->destroyed = (et == TASK_CREATE) ? false : true;
}
}
 
void wait_for_task(task_id_t id, ipc_call_t *call, ipc_callid_t callid)
{
ipcarg_t retval;
unsigned long keys[2] = {
LOWER32(id),
UPPER32(id)
};
link_t *link = hash_table_find(&task_hash_table, keys);
hashed_task_t *ht = (link != NULL) ?
hash_table_get_instance(link, hashed_task_t, link) : NULL;
if ((ht == NULL) || (!ht->destroyed)) {
 
if (ht == NULL) {
/* No such task exists. */
retval = ENOENT;
goto out;
}
 
if (!ht->finished) {
/* Add to pending list */
pending_wait_t *pr =
(pending_wait_t *) malloc(sizeof(pending_wait_t));
260,10 → 284,131
retval = EOK;
out:
if (!(callid & IPC_CALLID_NOTIFICATION))
ipc_answer_0(callid, retval);
if (!(callid & IPC_CALLID_NOTIFICATION)) {
texit = ht->have_rval ? TASK_EXIT_NORMAL : TASK_EXIT_UNEXPECTED;
ipc_answer_2(callid, retval, texit, ht->retval);
}
}
 
int ns_task_id_intro(ipc_call_t *call)
{
task_id_t id;
unsigned long keys[2];
link_t *link;
p2i_entry_t *e;
hashed_task_t *ht;
 
id = MERGE_LOUP32(IPC_GET_ARG1(*call), IPC_GET_ARG2(*call));
 
keys[0] = call->in_phone_hash;
 
link = hash_table_find(&phone_to_id, keys);
if (link != NULL)
return EEXISTS;
 
e = (p2i_entry_t *) malloc(sizeof(p2i_entry_t));
if (e == NULL)
return ENOMEM;
 
ht = (hashed_task_t *) malloc(sizeof(hashed_task_t));
if (ht == NULL)
return ENOMEM;
 
/* Insert to phone-to-id map. */
 
link_initialize(&e->link);
e->phash = call->in_phone_hash;
e->id = id;
hash_table_insert(&phone_to_id, keys, &e->link);
 
/* Insert to main table. */
 
keys[0] = LOWER32(id);
keys[1] = UPPER32(id);
 
link_initialize(&ht->link);
ht->id = id;
ht->finished = false;
ht->have_rval = false;
ht->retval = -1;
hash_table_insert(&task_hash_table, keys, &ht->link);
 
return EOK;
}
 
int ns_task_retval(ipc_call_t *call)
{
task_id_t id;
unsigned long keys[2];
int rc;
 
rc = get_id_by_phone(call->in_phone_hash, &id);
if (rc != EOK)
return rc;
 
keys[0] = LOWER32(id);
keys[1] = UPPER32(id);
link_t *link = hash_table_find(&task_hash_table, keys);
hashed_task_t *ht = (link != NULL) ?
hash_table_get_instance(link, hashed_task_t, link) : NULL;
if ((ht == NULL) || ht->finished)
return EINVAL;
 
ht->finished = true;
ht->have_rval = true;
ht->retval = IPC_GET_ARG1(*call);
 
return EOK;
}
 
int ns_task_disconnect(ipc_call_t *call)
{
unsigned long keys[2];
task_id_t id;
int rc;
 
rc = get_id_by_phone(call->in_phone_hash, &id);
if (rc != EOK)
return rc;
 
/* Delete from phone-to-id map. */
keys[0] = call->in_phone_hash;
hash_table_remove(&phone_to_id, keys, 1);
 
/* Mark task as finished. */
keys[0] = LOWER32(id);
keys[1] = UPPER32(id);
 
link_t *link = hash_table_find(&task_hash_table, keys);
hashed_task_t *ht =
hash_table_get_instance(link, hashed_task_t, link);
if (ht == NULL)
return EOK;
 
ht->finished = true;
 
return EOK;
}
 
static int get_id_by_phone(ipcarg_t phone_hash, task_id_t *id)
{
unsigned long keys[1];
link_t *link;
p2i_entry_t *e;
 
keys[0] = phone_hash;
link = hash_table_find(&phone_to_id, keys);
if (link == NULL)
return ENOENT;
 
e = hash_table_get_instance(link, p2i_entry_t, link);
*id = e->id;
 
return EOK;
}
 
/**
* @}
*/
/branches/dd/uspace/srv/ns/task.h
42,6 → 42,11
extern void wait_notification(wait_type_t et, task_id_t id);
extern void wait_for_task(task_id_t id, ipc_call_t *call, ipc_callid_t callid);
 
extern int ns_task_id_intro(ipc_call_t *call);
extern int ns_task_disconnect(ipc_call_t *call);
extern int ns_task_retval(ipc_call_t *call);
 
 
#endif
 
/**
/branches/dd/uspace/srv/console/screenbuffer.h
135,6 → 135,8
return (a1.a.r.fg_color == a2.a.r.fg_color)
&& (a1.a.r.bg_color == a2.a.r.bg_color);
}
return 0;
}
 
 
/branches/dd/uspace/srv/console/console.c
51,6 → 51,7
#include <sysinfo.h>
#include <event.h>
#include <devmap.h>
#include <fibril_sync.h>
 
#include "console.h"
#include "gcons.h"
68,6 → 69,7
int phone; /**< Framebuffer phone */
ipcarg_t cols; /**< Framebuffer columns */
ipcarg_t rows; /**< Framebuffer rows */
int color_cap; /**< Color capabilities (FB_CCAP_xxx) */
} fb_info;
 
typedef struct {
97,64 → 99,9
size_t cnt; /**< Width of the span. */
} fb_pending;
 
/** Pending input structure. */
typedef struct {
link_t link;
console_t *cons; /**< Console waiting for input */
ipc_callid_t rid; /**< Call ID waiting for input */
ipc_callid_t callid; /**< Call ID waiting for IPC_DATA_READ */
size_t pos; /**< Position of the last stored data */
size_t size; /**< Size of ther buffer */
char *data; /**< Already stored data */
} pending_input_t;
static FIBRIL_MUTEX_INITIALIZE(input_mutex);
static FIBRIL_CONDVAR_INITIALIZE(input_cv);
 
LIST_INITIALIZE(pending_input);
 
/** Process pending input requests */
static void process_pending_input(void)
{
async_serialize_start();
link_t *cur;
loop:
for (cur = pending_input.next; cur != &pending_input; cur = cur->next) {
pending_input_t *pr = list_get_instance(cur, pending_input_t, link);
console_event_t ev;
if (keybuffer_pop(&pr->cons->keybuffer, &ev)) {
if (pr->data != NULL) {
if (ev.type == KEY_PRESS) {
pr->data[pr->pos] = ev.c;
pr->pos++;
}
} else {
ipc_answer_4(pr->rid, EOK, ev.type, ev.key, ev.mods, ev.c);
list_remove(cur);
free(pr);
goto loop;
}
}
if ((pr->data != NULL) && (pr->pos == pr->size)) {
(void) ipc_data_read_finalize(pr->callid, pr->data, pr->size);
ipc_answer_1(pr->rid, EOK, pr->size);
free(pr->data);
list_remove(cur);
free(pr);
goto loop;
}
}
async_serialize_end();
}
 
static void curs_visibility(bool visible)
{
async_msg_1(fb_info.phone, FB_CURSOR_VISIBILITY, visible);
226,6 → 173,19
}
}
 
int ccap_fb_to_con(int ccap_fb, int *ccap_con)
{
switch (ccap_fb) {
case FB_CCAP_NONE: *ccap_con = CONSOLE_CCAP_NONE; break;
case FB_CCAP_STYLE: *ccap_con = CONSOLE_CCAP_STYLE; break;
case FB_CCAP_INDEXED: *ccap_con = CONSOLE_CCAP_INDEXED; break;
case FB_CCAP_RGB: *ccap_con = CONSOLE_CCAP_RGB; break;
default: return EINVAL;
}
 
return EOK;
}
 
/** Send an area of screenbuffer to the FB driver. */
static void fb_update_area(console_t *cons, ipcarg_t x0, ipcarg_t y0, ipcarg_t width, ipcarg_t height)
{
287,9 → 247,12
/** Process a character from the client (TTY emulation). */
static void write_char(console_t *cons, wchar_t ch)
{
bool flush_cursor = false;
 
switch (ch) {
case '\n':
fb_pending_flush();
flush_cursor = true;
cons->scr.position_y++;
cons->scr.position_x = 0;
break;
315,8 → 278,10
cons->scr.position_x++;
}
if (cons->scr.position_x >= cons->scr.size_x)
if (cons->scr.position_x >= cons->scr.size_x) {
flush_cursor = true;
cons->scr.position_y++;
}
if (cons->scr.position_y >= cons->scr.size_y) {
fb_pending_flush();
327,7 → 292,9
if (cons == active_console)
async_msg_1(fb_info.phone, FB_SCROLL, 1);
}
 
if (cons == active_console && flush_cursor)
curs_goto(cons->scr.position_x, cons->scr.position_y);
cons->scr.position_x = cons->scr.position_x % cons->scr.size_x;
}
 
446,7 → 413,10
break;
}
fibril_mutex_lock(&input_mutex);
keybuffer_push(&active_console->keybuffer, &ev);
fibril_condvar_broadcast(&input_cv);
fibril_mutex_unlock(&input_mutex);
break;
default:
retval = ENOENT;
482,9 → 452,6
write_char(cons, ch);
}
if (cons == active_console)
curs_goto(cons->scr.position_x, cons->scr.position_y);
async_serialize_end();
gcons_notify_char(cons->index);
510,10 → 477,10
return;
}
async_serialize_start();
size_t pos = 0;
console_event_t ev;
fibril_mutex_lock(&input_mutex);
recheck:
while ((keybuffer_pop(&cons->keybuffer, &ev)) && (pos < size)) {
if (ev.type == KEY_PRESS) {
buf[pos] = ev.c;
526,50 → 493,25
ipc_answer_1(rid, EOK, size);
free(buf);
} else {
pending_input_t *pr = (pending_input_t *) malloc(sizeof(pending_input_t));
if (!pr) {
ipc_answer_0(callid, ENOMEM);
ipc_answer_0(rid, ENOMEM);
free(buf);
async_serialize_end();
return;
}
pr->cons = cons;
pr->rid = rid;
pr->callid = callid;
pr->pos = pos;
pr->size = size;
pr->data = buf;
list_append(&pr->link, &pending_input);
fibril_condvar_wait(&input_cv, &input_mutex);
goto recheck;
}
async_serialize_end();
fibril_mutex_unlock(&input_mutex);
}
 
static void cons_get_event(console_t *cons, ipc_callid_t rid, ipc_call_t *request)
{
async_serialize_start();
console_event_t ev;
 
fibril_mutex_lock(&input_mutex);
recheck:
if (keybuffer_pop(&cons->keybuffer, &ev)) {
ipc_answer_4(rid, EOK, ev.type, ev.key, ev.mods, ev.c);
} else {
pending_input_t *pr = (pending_input_t *) malloc(sizeof(pending_input_t));
if (!pr) {
ipc_answer_0(rid, ENOMEM);
async_serialize_end();
return;
}
pr->cons = cons;
pr->rid = rid;
pr->callid = 0;
pr->data = NULL;
list_append(&pr->link, &pending_input);
fibril_condvar_wait(&input_cv, &input_mutex);
goto recheck;
}
async_serialize_end();
fibril_mutex_unlock(&input_mutex);
}
 
/** Default thread for new connections */
598,6 → 540,9
ipcarg_t arg1;
ipcarg_t arg2;
ipcarg_t arg3;
 
int cons_ccap;
int rc;
async_serialize_start();
if (cons->refcount == 0)
623,17 → 568,17
if (cons->refcount == 0)
gcons_notify_disconnect(cons->index);
return;
case VFS_READ:
case VFS_OUT_READ:
async_serialize_end();
cons_read(cons, callid, &call);
async_serialize_start();
continue;
case VFS_WRITE:
case VFS_OUT_WRITE:
async_serialize_end();
cons_write(cons, callid, &call);
async_serialize_start();
continue;
case VFS_SYNC:
case VFS_OUT_SYNC:
fb_pending_flush();
if (cons == active_console) {
async_req_0_0(fb_info.phone, FB_FLUSH);
660,6 → 605,14
arg1 = fb_info.cols;
arg2 = fb_info.rows;
break;
case CONSOLE_GET_COLOR_CAP:
rc = ccap_fb_to_con(fb_info.color_cap, &cons_ccap);
if (rc != EOK) {
ipc_answer_0(callid, rc);
continue;
}
arg1 = cons_ccap;
break;
case CONSOLE_SET_STYLE:
fb_pending_flush();
arg1 = IPC_GET_ARG1(call);
711,13 → 664,12
 
static bool console_init(void)
{
async_serialize_start();
ipcarg_t color_cap;
 
/* Connect to keyboard driver */
kbd_phone = ipc_connect_me_to_blocking(PHONE_NS, SERVICE_KEYBOARD, 0, 0);
if (kbd_phone < 0) {
printf(NAME ": Failed to connect to keyboard service\n");
async_serialize_end();
return false;
}
724,18 → 676,15
ipcarg_t phonehash;
if (ipc_connect_to_me(kbd_phone, SERVICE_CONSOLE, 0, 0, &phonehash) != 0) {
printf(NAME ": Failed to create callback from keyboard service\n");
async_serialize_end();
return false;
}
async_set_pending(process_pending_input);
async_new_connection(phonehash, 0, NULL, keyboard_events);
 
/* Connect to framebuffer driver */
fb_info.phone = ipc_connect_me_to_blocking(PHONE_NS, SERVICE_VIDEO, 0, 0);
if (fb_info.phone < 0) {
printf(NAME ": Failed to connect to video service\n");
async_serialize_end();
return -1;
}
743,7 → 692,6
int rc = devmap_driver_register(NAME, client_connection);
if (rc < 0) {
printf(NAME ": Unable to register driver (%d)\n", rc);
async_serialize_end();
return false;
}
753,6 → 701,8
/* Synchronize, the gcons could put something in queue */
async_req_0_0(fb_info.phone, FB_FLUSH);
async_req_0_2(fb_info.phone, FB_GET_CSIZE, &fb_info.cols, &fb_info.rows);
async_req_0_1(fb_info.phone, FB_GET_COLOR_CAP, &color_cap);
fb_info.color_cap = color_cap;
/* Set up shared memory buffer. */
size_t ib_size = sizeof(keyfield_t) * fb_info.cols * fb_info.rows;
779,7 → 729,6
if (screenbuffer_init(&consoles[i].scr,
fb_info.cols, fb_info.rows) == NULL) {
printf(NAME ": Unable to allocate screen buffer %u\n", i);
async_serialize_end();
return false;
}
screenbuffer_clear(&consoles[i].scr);
793,7 → 742,6
if (devmap_device_register(vc, &consoles[i].dev_handle) != EOK) {
devmap_hangup_phone(DEVMAP_DRIVER);
printf(NAME ": Unable to register device %s\n", vc);
async_serialize_end();
return false;
}
}
803,11 → 751,13
__SYSCALL0(SYS_DEBUG_DISABLE_CONSOLE);
/* Initialize the screen */
async_serialize_start();
gcons_redraw_console();
set_rgb_color(DEFAULT_FOREGROUND, DEFAULT_BACKGROUND);
screen_clear();
curs_goto(0, 0);
curs_visibility(active_console->scr.is_cursor_visible);
async_serialize_end();
/* Receive kernel notifications */
if (event_subscribe(EVENT_KCONSOLE, 0) != EOK)
815,7 → 765,6
async_set_interrupt_received(interrupt_received);
async_serialize_end();
return true;
}
 
/branches/dd/uspace/srv/bd/file_bd/file_bd.c
44,11 → 44,12
#include <ipc/bd.h>
#include <async.h>
#include <as.h>
#include <futex.h>
#include <fibril_sync.h>
#include <devmap.h>
#include <sys/types.h>
#include <errno.h>
#include <bool.h>
#include <task.h>
 
#define NAME "file_bd"
 
56,12 → 57,12
static FILE *img;
 
static dev_handle_t dev_handle;
static atomic_t dev_futex = FUTEX_INITIALIZER;
static fibril_mutex_t dev_lock;
 
static int file_bd_init(const char *fname);
static void file_bd_connection(ipc_callid_t iid, ipc_call_t *icall);
static int file_bd_read(off_t blk_idx, off_t size, void *buf);
static int file_bd_write(off_t blk_idx, off_t size, void *buf);
static int file_bd_read(off_t blk_idx, size_t size, void *buf);
static int file_bd_write(off_t blk_idx, size_t size, void *buf);
 
int main(int argc, char **argv)
{
86,6 → 87,7
}
 
printf(NAME ": Accepting connections\n");
task_retval(0);
async_manager();
 
/* Not reached */
106,6 → 108,8
if (img == NULL)
return EINVAL;
 
fibril_mutex_initialize(&dev_lock);
 
return EOK;
}
 
118,7 → 122,7
int flags;
int retval;
off_t idx;
off_t size;
size_t size;
 
/* Answer the IPC_M_CONNECT_ME_TO call. */
ipc_answer_0(iid, EOK);
165,27 → 169,21
}
}
 
static int file_bd_read(off_t blk_idx, off_t size, void *buf)
static int file_bd_read(off_t blk_idx, size_t size, void *buf)
{
size_t n_rd;
 
printf("file_bd_read\n");
futex_down(&dev_futex);
fibril_mutex_lock(&dev_lock);
 
printf("seek\n");
fseek(img, blk_idx * size, SEEK_SET);
printf("read\n");
n_rd = fread(buf, 1, size, img);
printf("done\n");
 
printf("done\n");
 
if (ferror(img)) {
futex_up(&dev_futex);
fibril_mutex_unlock(&dev_lock);
return EIO; /* Read error */
}
 
futex_up(&dev_futex);
fibril_mutex_unlock(&dev_lock);
 
if (n_rd < size)
return EINVAL; /* Read beyond end of disk */
193,21 → 191,21
return EOK;
}
 
static int file_bd_write(off_t blk_idx, off_t size, void *buf)
static int file_bd_write(off_t blk_idx, size_t size, void *buf)
{
size_t n_wr;
 
futex_down(&dev_futex);
fibril_mutex_lock(&dev_lock);
 
fseek(img, blk_idx * size, SEEK_SET);
n_wr = fread(buf, 1, size, img);
 
if (ferror(img) || n_wr < size) {
futex_up(&dev_futex);
fibril_mutex_unlock(&dev_lock);
return EIO; /* Write error */
}
 
futex_up(&dev_futex);
fibril_mutex_unlock(&dev_lock);
 
return EOK;
}
/branches/dd/uspace/srv/bd/rd/rd.c
50,7 → 50,7
#include <async.h>
#include <align.h>
#include <async.h>
#include <futex.h>
#include <fibril_sync.h>
#include <stdio.h>
#include <devmap.h>
#include <ipc/bd.h>
63,12 → 63,12
static size_t rd_size;
 
/**
* This futex protects the ramdisk's data.
* This rwlock protects the ramdisk's data.
* If we were to serve multiple requests (read + write or several writes)
* concurrently (i.e. from two or more threads), each read and write needs to be
* protected by this futex.
* protected by this rwlock.
*/
atomic_t rd_futex = FUTEX_INITIALIZER;
fibril_rwlock_t rd_lock;
 
/** Handle one connection to ramdisk.
*
139,9 → 139,9
retval = ELIMIT;
break;
}
futex_down(&rd_futex);
fibril_rwlock_read_lock(&rd_lock);
memcpy(fs_va, rd_addr + offset * block_size, block_size);
futex_up(&rd_futex);
fibril_rwlock_read_unlock(&rd_lock);
retval = EOK;
break;
case BD_WRITE_BLOCK:
161,9 → 161,9
retval = ELIMIT;
break;
}
futex_up(&rd_futex);
fibril_rwlock_write_lock(&rd_lock);
memcpy(rd_addr + offset * block_size, fs_va, block_size);
futex_down(&rd_futex);
fibril_rwlock_write_unlock(&rd_lock);
retval = EOK;
break;
default:
216,6 → 216,8
printf(NAME ": Unable to register device\n");
return false;
}
 
fibril_rwlock_initialize(&rd_lock);
return true;
}
/branches/dd/uspace/srv/bd/gxe_bd/gxe_bd.c
42,10 → 42,11
#include <ipc/bd.h>
#include <async.h>
#include <as.h>
#include <futex.h>
#include <fibril_sync.h>
#include <devmap.h>
#include <sys/types.h>
#include <errno.h>
#include <task.h>
 
#define NAME "gxe_bd"
 
91,11 → 92,11
 
static dev_handle_t dev_handle[MAX_DISKS];
 
static atomic_t dev_futex = FUTEX_INITIALIZER;
static fibril_mutex_t dev_lock[MAX_DISKS];
 
static int gxe_bd_init(void);
static void gxe_bd_connection(ipc_callid_t iid, ipc_call_t *icall);
static int gx_bd_rdwr(int disk_id, ipcarg_t method, off_t offset, off_t size,
static int gx_bd_rdwr(int disk_id, ipcarg_t method, off_t offset, size_t size,
void *buf);
static int gxe_bd_read_block(int disk_id, uint64_t offset, size_t size,
void *buf);
110,6 → 111,7
return -1;
 
printf(NAME ": Accepting connections\n");
task_retval(0);
async_manager();
 
/* Not reached */
145,6 → 147,7
name);
return rc;
}
fibril_mutex_initialize(&dev_lock[i]);
}
 
return EOK;
160,7 → 163,7
int flags;
int retval;
off_t idx;
off_t size;
size_t size;
int disk_id, i;
 
/* Get the device handle. */
220,7 → 223,7
}
}
 
static int gx_bd_rdwr(int disk_id, ipcarg_t method, off_t offset, off_t size,
static int gx_bd_rdwr(int disk_id, ipcarg_t method, off_t offset, size_t size,
void *buf)
{
int rc;
256,7 → 259,7
size_t i;
uint32_t w;
 
futex_down(&dev_futex);
fibril_mutex_lock(&dev_lock[disk_id]);
pio_write_32(&dev->offset_lo, (uint32_t) offset);
pio_write_32(&dev->offset_hi, offset >> 32);
pio_write_32(&dev->disk_id, disk_id);
264,6 → 267,7
 
status = pio_read_32(&dev->status);
if (status == STATUS_FAILURE) {
fibril_mutex_unlock(&dev_lock[disk_id]);
return EIO;
}
 
271,7 → 275,7
((uint8_t *) buf)[i] = w = pio_read_8(&dev->buffer[i]);
}
 
futex_up(&dev_futex);
fibril_mutex_unlock(&dev_lock[disk_id]);
return EOK;
}
 
285,7 → 289,7
pio_write_8(&dev->buffer[i], ((const uint8_t *) buf)[i]);
}
 
futex_down(&dev_futex);
fibril_mutex_lock(&dev_lock[disk_id]);
pio_write_32(&dev->offset_lo, (uint32_t) offset);
pio_write_32(&dev->offset_hi, offset >> 32);
pio_write_32(&dev->disk_id, disk_id);
293,10 → 297,11
 
status = pio_read_32(&dev->status);
if (status == STATUS_FAILURE) {
fibril_mutex_unlock(&dev_lock[disk_id]);
return EIO;
}
 
futex_up(&dev_futex);
fibril_mutex_unlock(&dev_lock[disk_id]);
return EOK;
}
 
/branches/dd/uspace/srv/bd/ata_bd/ata_bd.h
36,6 → 36,7
#define __ATA_BD_H__
 
#include <sys/types.h>
#include <fibril_sync.h>
 
enum {
CTL_READ_START = 0,
50,22 → 51,32
MAX_DISKS = 2
};
 
/** ATA Command Register Block. */
typedef union {
/* Read */
/* Read/Write */
struct {
uint8_t data_port;
uint8_t error;
uint16_t data_port;
uint8_t sector_count;
uint8_t sector_number;
uint8_t cylinder_low;
uint8_t cylinder_high;
uint8_t drive_head;
uint8_t pad_rw0;
};
 
/* Read Only */
struct {
uint8_t pad_ro0;
uint8_t error;
uint8_t pad_ro1[5];
uint8_t status;
};
 
/* Write */
/* Write Only */
struct {
uint8_t pad0[7];
uint8_t pad_wo0;
uint8_t features;
uint8_t pad_wo1[5];
uint8_t command;
};
} ata_cmd_t;
129,6 → 140,9
unsigned cylinders;
unsigned sectors;
uint64_t blocks;
 
fibril_mutex_t lock;
dev_handle_t dev_handle;
} disk_t;
 
#endif
/branches/dd/uspace/srv/bd/ata_bd/ata_bd.c
37,6 → 37,9
* This driver currently works only with CHS addressing and uses PIO.
* Currently based on the (now obsolete) ANSI X3.221-1994 (ATA-1) standard.
* At this point only reading is possible, not writing.
*
* The driver services a single controller which can have up to two disks
* attached.
*/
 
#include <stdio.h>
46,11 → 49,12
#include <ipc/bd.h>
#include <async.h>
#include <as.h>
#include <futex.h>
#include <fibril_sync.h>
#include <devmap.h>
#include <sys/types.h>
#include <errno.h>
#include <bool.h>
#include <task.h>
 
#include "ata_bd.h"
 
64,15 → 68,12
static ata_cmd_t *cmd;
static ata_ctl_t *ctl;
 
static dev_handle_t dev_handle[MAX_DISKS];
 
static atomic_t dev_futex = FUTEX_INITIALIZER;
 
/** Per-disk state. */
static disk_t disk[MAX_DISKS];
 
static int ata_bd_init(void);
static void ata_bd_connection(ipc_callid_t iid, ipc_call_t *icall);
static int ata_bd_rdwr(int disk_id, ipcarg_t method, off_t offset, off_t size,
static int ata_bd_rdwr(int disk_id, ipcarg_t method, off_t offset, size_t size,
void *buf);
static int ata_bd_read_block(int disk_id, uint64_t blk_idx, size_t blk_cnt,
void *buf);
89,14 → 90,15
 
printf(NAME ": ATA disk driver\n");
 
printf("cmd_physical = 0x%x\n", cmd_physical);
printf("ctl_physical = 0x%x\n", ctl_physical);
printf("I/O address 0x%x\n", cmd_physical);
 
if (ata_bd_init() != EOK)
return -1;
 
/* Put drives to reset, disable interrupts. */
printf("Reset drives...\n");
printf("Reset drives... ");
fflush(stdout);
 
pio_write_8(&ctl->device_control, DCR_SRST);
/* FIXME: Find out how to do this properly. */
async_usleep(100);
107,8 → 109,6
} while ((status & SR_BSY) != 0);
printf("Done\n");
 
printf("Status = 0x%x\n", pio_read_8(&cmd->status));
 
(void) drive_identify(0, &disk[0]);
(void) drive_identify(1, &disk[1]);
 
120,7 → 120,7
continue;
 
snprintf(name, 16, "disk%d", i);
rc = devmap_device_register(name, &dev_handle[i]);
rc = devmap_device_register(name, &disk[i].dev_handle);
if (rc != EOK) {
devmap_hangup_phone(DEVMAP_DRIVER);
printf(NAME ": Unable to register device %s.\n",
136,6 → 136,7
}
 
printf(NAME ": Accepting connections\n");
task_retval(0);
async_manager();
 
/* Not reached */
146,15 → 147,16
{
uint16_t data;
uint8_t status;
int i;
size_t i;
 
printf("Identify drive %d\n", disk_id);
printf("Identify drive %d... ", disk_id);
fflush(stdout);
 
pio_write_8(&cmd->drive_head, ((disk_id != 0) ? DHR_DRV : 0));
async_usleep(100);
pio_write_8(&cmd->command, CMD_IDENTIFY_DRIVE);
 
status = pio_read_8(&cmd->status);
printf("Status = 0x%x\n", status);
 
d->present = false;
 
181,8 → 183,6
}
}
 
printf("\n\nStatus = 0x%x\n", pio_read_8(&cmd->status));
 
d->blocks = d->cylinders * d->heads * d->sectors;
 
printf("Geometry: %u cylinders, %u heads, %u sectors\n",
189,6 → 189,7
d->cylinders, d->heads, d->sectors);
 
d->present = true;
fibril_mutex_initialize(&d->lock);
 
return EOK;
}
234,7 → 235,7
int flags;
int retval;
off_t idx;
off_t size;
size_t size;
int disk_id, i;
 
/* Get the device handle. */
243,7 → 244,7
/* Determine which disk device is the client connecting to. */
disk_id = -1;
for (i = 0; i < MAX_DISKS; i++)
if (dev_handle[i] == dh)
if (disk[i].dev_handle == dh)
disk_id = i;
 
if (disk_id < 0 || disk[disk_id].present == false) {
294,14 → 295,14
}
}
 
static int ata_bd_rdwr(int disk_id, ipcarg_t method, off_t blk_idx, off_t size,
static int ata_bd_rdwr(int disk_id, ipcarg_t method, off_t blk_idx, size_t size,
void *buf)
{
int rc;
off_t now;
size_t now;
 
while (size > 0) {
now = size < block_size ? size : (off_t) block_size;
now = size < block_size ? size : block_size;
if (now != block_size)
return EINVAL;
 
355,7 → 356,7
((disk_id != 0) ? DHR_DRV : 0) |
(h & 0x0f);
 
futex_down(&dev_futex);
fibril_mutex_lock(&d->lock);
 
/* Program a Read Sectors operation. */
 
377,7 → 378,7
((uint16_t *) buf)[i] = data;
}
 
futex_up(&dev_futex);
fibril_mutex_unlock(&d->lock);
return EOK;
}
 
409,7 → 410,7
((disk_id != 0) ? DHR_DRV : 0) |
(h & 0x0f);
 
futex_down(&dev_futex);
fibril_mutex_lock(&d->lock);
 
/* Program a Read Sectors operation. */
 
430,7 → 431,7
pio_write_16(&cmd->data_port, ((uint16_t *) buf)[i]);
}
 
futex_up(&dev_futex);
fibril_mutex_unlock(&d->lock);
return EOK;
}
 
/branches/dd/uspace/srv/loader/main.c
52,6 → 52,8
#include <ipc/ipc.h>
#include <ipc/services.h>
#include <ipc/loader.h>
#include <ipc/ns.h>
#include <macros.h>
#include <loader/pcb.h>
#include <errno.h>
#include <async.h>
79,7 → 81,7
/** Number of preset files */
static int filc = 0;
/** Preset files vector */
static char **filv = NULL;
static fdi_node_t **filv = NULL;
/** Buffer holding all preset files */
static fdi_node_t *fil_buf = NULL;
 
437,16 → 439,24
int main(int argc, char *argv[])
{
ipcarg_t phonead;
task_id_t id;
int rc;
 
connected = false;
 
/* Introduce this task to the NS (give it our task ID). */
id = task_get_id();
rc = async_req_2_0(PHONE_NS, NS_ID_INTRO, LOWER32(id), UPPER32(id));
if (rc != EOK)
return -1;
 
/* Set a handler of incomming connections. */
async_set_client_connection(ldr_connection);
/* Register at naming service. */
if (ipc_connect_to_me(PHONE_NS, SERVICE_LOAD, 0, 0, &phonead) != 0)
return -1;
return -2;
 
async_manager();
/* Never reached */
/branches/dd/uspace/srv/loader/elf_load.c
74,7 → 74,7
static int load_segment(elf_ld_t *elf, elf_segment_header_t *entry);
 
/** Read until the buffer is read in its entirety. */
static int my_read(int fd, char *buf, size_t len)
static int my_read(int fd, void *buf, size_t len)
{
int cnt = 0;
do {
331,21 → 331,26
int flags = 0;
uintptr_t bias;
uintptr_t base;
void *seg_ptr;
uintptr_t seg_addr;
size_t mem_sz;
int rc;
 
DPRINTF("Load segment at addr 0x%x, size 0x%x\n", entry->p_vaddr,
entry->p_memsz);
bias = elf->bias;
 
seg_addr = entry->p_vaddr + bias;
seg_ptr = (void *) seg_addr;
 
DPRINTF("Load segment at addr 0x%x, size 0x%x\n", seg_addr,
entry->p_memsz);
 
if (entry->p_align > 1) {
if ((entry->p_offset % entry->p_align) !=
(entry->p_vaddr % entry->p_align)) {
(seg_addr % entry->p_align)) {
DPRINTF("Align check 1 failed offset%%align=%d, "
"vaddr%%align=%d\n",
entry->p_offset % entry->p_align,
entry->p_vaddr % entry->p_align
seg_addr % entry->p_align
);
return EE_INVALID;
}
364,7 → 369,7
base = ALIGN_DOWN(entry->p_vaddr, PAGE_SIZE);
mem_sz = entry->p_memsz + (entry->p_vaddr - base);
 
DPRINTF("Map to p_vaddr=0x%x-0x%x.\n", entry->p_vaddr + bias,
DPRINTF("Map to seg_addr=0x%x-0x%x.\n", seg_addr,
entry->p_vaddr + bias + ALIGN_UP(entry->p_memsz, PAGE_SIZE));
 
/*
379,7 → 384,7
}
 
DPRINTF("as_area_create(0x%lx, 0x%x, %d) -> 0x%lx\n",
entry->p_vaddr+bias, entry->p_memsz, flags, (uintptr_t)a);
base + bias, mem_sz, flags, (uintptr_t)a);
 
/*
* Load segment data
399,7 → 404,7
uint8_t *dp;
 
left = entry->p_filesz;
dp = (uint8_t *)(entry->p_vaddr + bias);
dp = seg_ptr;
 
while (left > 0) {
now = 16384;
416,7 → 421,7
dp += now;
}
 
rc = as_area_change_flags((uint8_t *)entry->p_vaddr + bias, flags);
rc = as_area_change_flags(seg_ptr, flags);
if (rc != 0) {
DPRINTF("Failed to set memory area flags.\n");
return EE_MEMORY;
424,7 → 429,7
 
if (flags & AS_AREA_EXEC) {
/* Enforce SMC coherence for the segment */
if (smc_coherence(entry->p_vaddr + bias, entry->p_filesz))
if (smc_coherence(seg_ptr, entry->p_filesz))
return EE_MEMORY;
}
 
/branches/dd/uspace/srv/loader/arch/ia32/ia32.s
46,4 → 46,4
# Save a tiny bit of stack space
pop %ebp
 
jmp %eax
jmp *%eax
/branches/dd/uspace/srv/fb/serial_console.c
388,6 → 388,10
case FB_GET_CSIZE:
ipc_answer_2(callid, EOK, scr_width, scr_height);
continue;
case FB_GET_COLOR_CAP:
ipc_answer_1(callid, EOK, color ? FB_CCAP_INDEXED :
FB_CCAP_STYLE);
continue;
case FB_CLEAR:
serial_clrscr();
retval = 0;
/branches/dd/uspace/srv/fb/fb.c
56,6 → 56,7
#include <async.h>
#include <fibril.h>
#include <bool.h>
#include <stdio.h>
 
#include "font-8x16.h"
#include "fb.h"
450,7 → 451,8
for (row = 0; row < vport->rows; row++) {
x = vport->x;
for (col = 0; col < vport->cols; col++) {
if ((row + lines >= 0) && (row + lines < vport->rows)) {
if (((int) row + lines >= 0) &&
((int) row + lines < (int) vport->rows)) {
xbp = &vport->backbuf[BB_POS(vport, col, row + lines)];
bbp = &vport->backbuf[BB_POS(vport, col, row)];
1066,10 → 1068,11
if (IPC_GET_ARG1(*call) == shm_id) {
void *dest = as_get_mappable_page(IPC_GET_ARG2(*call));
shm_size = IPC_GET_ARG2(*call);
if (!ipc_answer_1(callid, EOK, (sysarg_t) dest))
shm = dest;
else
if (ipc_answer_1(callid, EOK, (sysarg_t) dest)) {
shm_id = 0;
return false;
}
shm = dest;
if (shm[0] != 'P')
return false;
1644,6 → 1647,9
case FB_GET_CSIZE:
ipc_answer_2(callid, EOK, vport->cols, vport->rows);
continue;
case FB_GET_COLOR_CAP:
ipc_answer_1(callid, EOK, FB_CCAP_RGB);
continue;
case FB_SCROLL:
scroll = IPC_GET_ARG1(call);
if ((scroll > (int) vport->rows) || (scroll < (-(int) vport->rows))) {
/branches/dd/uspace/srv/fb/ppm.c
89,7 → 89,7
{
unsigned int width, height;
unsigned int maxcolor;
int i;
unsigned int i;
unsigned int color;
unsigned int coef;
/branches/dd/uspace/srv/fb/ega.c
87,7 → 87,7
 
static void clrscr(void)
{
int i;
unsigned i;
for (i = 0; i < scr_width * scr_height; i++) {
scr_addr[i * 2] = ' ';
129,7 → 129,8
 
static void scroll(int rows)
{
int i;
unsigned i;
 
if (rows > 0) {
memmove(scr_addr, ((char *) scr_addr) + rows * scr_width * 2,
scr_width * scr_height * 2 - rows * scr_width * 2);
318,6 → 319,9
case FB_GET_CSIZE:
ipc_answer_2(callid, EOK, scr_width, scr_height);
continue;
case FB_GET_COLOR_CAP:
ipc_answer_1(callid, EOK, FB_CCAP_INDEXED);
continue;
case FB_CLEAR:
clrscr();
retval = 0;
345,7 → 349,7
break;
case FB_SCROLL:
i = IPC_GET_ARG1(call);
if (i > scr_height || i < -((int) scr_height)) {
if (i > (int) scr_height || i < -((int) scr_height)) {
retval = EINVAL;
break;
}
/branches/dd/uspace/srv/fs/devfs/devfs.c
65,37 → 65,39
ipc_callid_t callid = async_get_call(&call);
switch (IPC_GET_METHOD(call)) {
case VFS_MOUNTED:
case IPC_M_PHONE_HUNGUP:
return;
case VFS_OUT_MOUNTED:
devfs_mounted(callid, &call);
break;
case VFS_MOUNT:
case VFS_OUT_MOUNT:
devfs_mount(callid, &call);
break;
case VFS_LOOKUP:
case VFS_OUT_LOOKUP:
devfs_lookup(callid, &call);
break;
case VFS_OPEN_NODE:
case VFS_OUT_OPEN_NODE:
devfs_open_node(callid, &call);
break;
case VFS_DEVICE:
devfs_device(callid, &call);
case VFS_OUT_STAT:
devfs_stat(callid, &call);
break;
case VFS_READ:
case VFS_OUT_READ:
devfs_read(callid, &call);
break;
case VFS_WRITE:
case VFS_OUT_WRITE:
devfs_write(callid, &call);
break;
case VFS_TRUNCATE:
case VFS_OUT_TRUNCATE:
devfs_truncate(callid, &call);
break;
case VFS_CLOSE:
case VFS_OUT_CLOSE:
devfs_close(callid, &call);
break;
case VFS_SYNC:
case VFS_OUT_SYNC:
devfs_sync(callid, &call);
break;
case VFS_DESTROY:
case VFS_OUT_DESTROY:
devfs_destroy(callid, &call);
break;
default:
/branches/dd/uspace/srv/fs/devfs/devfs_ops.c
41,7 → 41,9
#include <malloc.h>
#include <string.h>
#include <libfs.h>
#include <fibril_sync.h>
#include <adt/hash_table.h>
#include <sys/stat.h>
#include "devfs.h"
#include "devfs_ops.h"
 
58,6 → 60,9
/** Hash table of opened devices */
static hash_table_t devices;
 
/** Hash table mutex */
static FIBRIL_MUTEX_INITIALIZE(devices_mutex);
 
#define DEVICES_KEYS 1
#define DEVICES_KEY_HANDLE 0
#define DEVICES_BUCKETS 256
159,12 → 164,12
if (first >= last) {
/* Root entry */
if (lflag & L_DIRECTORY)
if (!(lflag & L_FILE))
ipc_answer_5(rid, EOK, devfs_reg.fs_handle, dev_handle, 0, 0, 0);
else
ipc_answer_0(rid, ENOENT);
} else {
if (lflag & L_FILE) {
if (!(lflag & L_DIRECTORY)) {
size_t len;
if (last >= first)
len = last - first + 1;
195,10 → 200,12
[DEVICES_KEY_HANDLE] = (unsigned long) handle
};
fibril_mutex_lock(&devices_mutex);
link_t *lnk = hash_table_find(&devices, key);
if (lnk == NULL) {
int phone = devmap_device_connect(handle, 0);
if (phone < 0) {
fibril_mutex_unlock(&devices_mutex);
free(name);
ipc_answer_0(rid, ENOENT);
return;
206,6 → 213,7
device_t *dev = (device_t *) malloc(sizeof(device_t));
if (dev == NULL) {
fibril_mutex_unlock(&devices_mutex);
free(name);
ipc_answer_0(rid, ENOMEM);
return;
220,6 → 228,7
device_t *dev = hash_table_get_instance(lnk, device_t, link);
dev->refcount++;
}
fibril_mutex_unlock(&devices_mutex);
}
free(name);
238,10 → 247,12
[DEVICES_KEY_HANDLE] = (unsigned long) handle
};
fibril_mutex_lock(&devices_mutex);
link_t *lnk = hash_table_find(&devices, key);
if (lnk == NULL) {
int phone = devmap_device_connect(handle, 0);
if (phone < 0) {
fibril_mutex_unlock(&devices_mutex);
ipc_answer_0(rid, ENOENT);
return;
}
248,6 → 259,7
device_t *dev = (device_t *) malloc(sizeof(device_t));
if (dev == NULL) {
fibril_mutex_unlock(&devices_mutex);
ipc_answer_0(rid, ENOMEM);
return;
}
261,28 → 273,49
device_t *dev = hash_table_get_instance(lnk, device_t, link);
dev->refcount++;
}
fibril_mutex_unlock(&devices_mutex);
ipc_answer_3(rid, EOK, 0, 1, L_FILE);
}
 
void devfs_device(ipc_callid_t rid, ipc_call_t *request)
void devfs_stat(ipc_callid_t rid, ipc_call_t *request)
{
dev_handle_t dev_handle = (dev_handle_t) IPC_GET_ARG1(*request);
fs_index_t index = (fs_index_t) IPC_GET_ARG2(*request);
ipc_callid_t callid;
size_t size;
if (!ipc_data_read_receive(&callid, &size) ||
size != sizeof(struct stat)) {
ipc_answer_0(callid, EINVAL);
ipc_answer_0(rid, EINVAL);
return;
}
 
struct stat stat;
memset(&stat, 0, sizeof(struct stat));
 
stat.fs_handle = devfs_reg.fs_handle;
stat.dev_handle = dev_handle;
stat.index = index;
stat.lnkcnt = 1;
stat.is_file = (index != 0);
stat.size = 0;
if (index != 0) {
unsigned long key[] = {
[DEVICES_KEY_HANDLE] = (unsigned long) index
};
fibril_mutex_lock(&devices_mutex);
link_t *lnk = hash_table_find(&devices, key);
if (lnk == NULL) {
ipc_answer_0(rid, ENOENT);
return;
}
ipc_answer_1(rid, EOK, (ipcarg_t) index);
} else
ipc_answer_0(rid, ENOTSUP);
if (lnk != NULL)
stat.devfs_stat.device = (dev_handle_t)index;
fibril_mutex_unlock(&devices_mutex);
}
 
ipc_data_read_finalize(callid, &stat, sizeof(struct stat));
ipc_answer_0(rid, EOK);
}
 
void devfs_read(ipc_callid_t rid, ipc_call_t *request)
295,8 → 328,10
[DEVICES_KEY_HANDLE] = (unsigned long) index
};
fibril_mutex_lock(&devices_mutex);
link_t *lnk = hash_table_find(&devices, key);
if (lnk == NULL) {
fibril_mutex_unlock(&devices_mutex);
ipc_answer_0(rid, ENOENT);
return;
}
305,6 → 340,7
ipc_callid_t callid;
if (!ipc_data_read_receive(&callid, NULL)) {
fibril_mutex_unlock(&devices_mutex);
ipc_answer_0(callid, EINVAL);
ipc_answer_0(rid, EINVAL);
return;
318,6 → 354,7
/* Forward the IPC_M_DATA_READ request to the driver */
ipc_forward_fast(callid, dev->phone, 0, 0, 0, IPC_FF_ROUTE_FROM_ME);
fibril_mutex_unlock(&devices_mutex);
/* Wait for reply from the driver. */
ipcarg_t rc;
369,8 → 406,10
[DEVICES_KEY_HANDLE] = (unsigned long) index
};
fibril_mutex_lock(&devices_mutex);
link_t *lnk = hash_table_find(&devices, key);
if (lnk == NULL) {
fibril_mutex_unlock(&devices_mutex);
ipc_answer_0(rid, ENOENT);
return;
}
379,6 → 418,7
ipc_callid_t callid;
if (!ipc_data_write_receive(&callid, NULL)) {
fibril_mutex_unlock(&devices_mutex);
ipc_answer_0(callid, EINVAL);
ipc_answer_0(rid, EINVAL);
return;
393,6 → 433,8
/* Forward the IPC_M_DATA_WRITE request to the driver */
ipc_forward_fast(callid, dev->phone, 0, 0, 0, IPC_FF_ROUTE_FROM_ME);
fibril_mutex_unlock(&devices_mutex);
/* Wait for reply from the driver. */
ipcarg_t rc;
async_wait_for(msg, &rc);
420,8 → 462,10
[DEVICES_KEY_HANDLE] = (unsigned long) index
};
fibril_mutex_lock(&devices_mutex);
link_t *lnk = hash_table_find(&devices, key);
if (lnk == NULL) {
fibril_mutex_unlock(&devices_mutex);
ipc_answer_0(rid, ENOENT);
return;
}
434,6 → 478,8
hash_table_remove(&devices, key, DEVICES_KEYS);
}
fibril_mutex_unlock(&devices_mutex);
ipc_answer_0(rid, EOK);
} else
ipc_answer_0(rid, ENOTSUP);
448,8 → 494,10
[DEVICES_KEY_HANDLE] = (unsigned long) index
};
fibril_mutex_lock(&devices_mutex);
link_t *lnk = hash_table_find(&devices, key);
if (lnk == NULL) {
fibril_mutex_unlock(&devices_mutex);
ipc_answer_0(rid, ENOENT);
return;
}
461,6 → 509,8
aid_t msg = async_send_2(dev->phone, IPC_GET_METHOD(*request),
IPC_GET_ARG1(*request), IPC_GET_ARG2(*request), &answer);
fibril_mutex_unlock(&devices_mutex);
/* Wait for reply from the driver */
ipcarg_t rc;
async_wait_for(msg, &rc);
/branches/dd/uspace/srv/fs/devfs/devfs_ops.h
42,7 → 42,7
extern void devfs_mount(ipc_callid_t, ipc_call_t *);
extern void devfs_lookup(ipc_callid_t, ipc_call_t *);
extern void devfs_open_node(ipc_callid_t, ipc_call_t *);
extern void devfs_device(ipc_callid_t, ipc_call_t *);
extern void devfs_stat(ipc_callid_t, ipc_call_t *);
extern void devfs_sync(ipc_callid_t, ipc_call_t *);
extern void devfs_read(ipc_callid_t, ipc_call_t *);
extern void devfs_write(ipc_callid_t, ipc_call_t *);
/branches/dd/uspace/srv/fs/tmpfs/tmpfs.h
86,10 → 86,10
extern void tmpfs_read(ipc_callid_t, ipc_call_t *);
extern void tmpfs_write(ipc_callid_t, ipc_call_t *);
extern void tmpfs_truncate(ipc_callid_t, ipc_call_t *);
extern void tmpfs_stat(ipc_callid_t, ipc_call_t *);
extern void tmpfs_close(ipc_callid_t, ipc_call_t *);
extern void tmpfs_destroy(ipc_callid_t, ipc_call_t *);
extern void tmpfs_open_node(ipc_callid_t, ipc_call_t *);
extern void tmpfs_device(ipc_callid_t, ipc_call_t *);
extern void tmpfs_sync(ipc_callid_t, ipc_call_t *);
 
extern bool tmpfs_restore(dev_handle_t);
/branches/dd/uspace/srv/fs/tmpfs/tmpfs_dump.c
67,8 → 67,8
tmpfs_node_t *nodep;
uint32_t size;
if (block_read(dev, bufpos, buflen, pos, &entry, sizeof(entry),
TMPFS_BLOCK_SIZE) != EOK)
if (block_seqread(dev, bufpos, buflen, pos, &entry,
sizeof(entry), TMPFS_BLOCK_SIZE) != EOK)
return false;
entry.len = uint32_t_le2host(entry.len);
87,7 → 87,7
return false;
}
if (block_read(dev, bufpos, buflen, pos, fname,
if (block_seqread(dev, bufpos, buflen, pos, fname,
entry.len, TMPFS_BLOCK_SIZE) != EOK) {
ops->destroy(fn);
free(fname);
103,7 → 103,7
}
free(fname);
if (block_read(dev, bufpos, buflen, pos, &size,
if (block_seqread(dev, bufpos, buflen, pos, &size,
sizeof(size), TMPFS_BLOCK_SIZE) != EOK)
return false;
115,7 → 115,7
return false;
nodep->size = size;
if (block_read(dev, bufpos, buflen, pos, nodep->data,
if (block_seqread(dev, bufpos, buflen, pos, nodep->data,
size, TMPFS_BLOCK_SIZE) != EOK)
return false;
131,7 → 131,7
return false;
}
if (block_read(dev, bufpos, buflen, pos, fname,
if (block_seqread(dev, bufpos, buflen, pos, fname,
entry.len, TMPFS_BLOCK_SIZE) != EOK) {
ops->destroy(fn);
free(fname);
174,7 → 174,7
off_t pos = 0;
char tag[6];
if (block_read(dev, &bufpos, &buflen, &pos, tag, 5,
if (block_seqread(dev, &bufpos, &buflen, &pos, tag, 5,
TMPFS_BLOCK_SIZE) != EOK)
goto error;
/branches/dd/uspace/srv/fs/tmpfs/tmpfs.c
96,37 → 96,39
callid = async_get_call(&call);
switch (IPC_GET_METHOD(call)) {
case VFS_MOUNTED:
case IPC_M_PHONE_HUNGUP:
return;
case VFS_OUT_MOUNTED:
tmpfs_mounted(callid, &call);
break;
case VFS_MOUNT:
case VFS_OUT_MOUNT:
tmpfs_mount(callid, &call);
break;
case VFS_LOOKUP:
case VFS_OUT_LOOKUP:
tmpfs_lookup(callid, &call);
break;
case VFS_READ:
case VFS_OUT_READ:
tmpfs_read(callid, &call);
break;
case VFS_WRITE:
case VFS_OUT_WRITE:
tmpfs_write(callid, &call);
break;
case VFS_TRUNCATE:
case VFS_OUT_TRUNCATE:
tmpfs_truncate(callid, &call);
break;
case VFS_CLOSE:
case VFS_OUT_CLOSE:
tmpfs_close(callid, &call);
break;
case VFS_DESTROY:
case VFS_OUT_DESTROY:
tmpfs_destroy(callid, &call);
break;
case VFS_OPEN_NODE:
case VFS_OUT_OPEN_NODE:
tmpfs_open_node(callid, &call);
break;
case VFS_DEVICE:
tmpfs_device(callid, &call);
case VFS_OUT_STAT:
tmpfs_stat(callid, &call);
break;
case VFS_SYNC:
case VFS_OUT_SYNC:
tmpfs_sync(callid, &call);
break;
default:
150,7 → 152,7
printf(NAME ": Unable to connect to VFS\n");
return -1;
}
 
int rc = fs_register(vfs_phone, &tmpfs_reg, &tmpfs_vfs_info,
tmpfs_connection);
if (rc != EOK) {
/branches/dd/uspace/srv/fs/tmpfs/tmpfs_ops.c
628,9 → 628,9
libfs_open_node(&tmpfs_libfs_ops, tmpfs_reg.fs_handle, rid, request);
}
 
void tmpfs_device(ipc_callid_t rid, ipc_call_t *request)
void tmpfs_stat(ipc_callid_t rid, ipc_call_t *request)
{
ipc_answer_0(rid, ENOTSUP);
libfs_stat(&tmpfs_libfs_ops, tmpfs_reg.fs_handle, rid, request);
}
 
void tmpfs_sync(ipc_callid_t rid, ipc_call_t *request)
/branches/dd/uspace/srv/fs/fat/fat_idx.c
42,7 → 42,7
#include <adt/hash_table.h>
#include <adt/list.h>
#include <assert.h>
#include <futex.h>
#include <fibril_sync.h>
 
/** Each instance of this type describes one interval of freed VFS indices. */
typedef struct {
68,8 → 68,8
link_t freed_head;
} unused_t;
 
/** Futex protecting the list of unused structures. */
static futex_t unused_futex = FUTEX_INITIALIZER;
/** Mutex protecting the list of unused structures. */
static FIBRIL_MUTEX_INITIALIZE(unused_lock);
 
/** List of unused structures. */
static LIST_INITIALIZE(unused_head);
89,7 → 89,7
link_t *l;
 
if (lock)
futex_down(&unused_futex);
fibril_mutex_lock(&unused_lock);
for (l = unused_head.next; l != &unused_head; l = l->next) {
u = list_get_instance(l, unused_t, link);
if (u->dev_handle == dev_handle)
96,12 → 96,12
return u;
}
if (lock)
futex_up(&unused_futex);
fibril_mutex_unlock(&unused_lock);
return NULL;
}
 
/** Futex protecting the up_hash and ui_hash. */
static futex_t used_futex = FUTEX_INITIALIZER;
/** Mutex protecting the up_hash and ui_hash. */
static FIBRIL_MUTEX_INITIALIZE(used_lock);
 
/**
* Global hash table of all used fat_idx_t structures.
231,7 → 231,7
*/
*index = u->next++;
--u->remaining;
futex_up(&unused_futex);
fibril_mutex_unlock(&unused_lock);
return true;
}
} else {
244,7 → 244,7
list_remove(&f->link);
free(f);
}
futex_up(&unused_futex);
fibril_mutex_unlock(&unused_lock);
return true;
}
/*
252,7 → 252,7
* theoretically still possible (e.g. too many open unlinked nodes or
* too many zero-sized nodes).
*/
futex_up(&unused_futex);
fibril_mutex_unlock(&unused_lock);
return false;
}
 
302,7 → 302,7
if (lnk->prev != &u->freed_head)
try_coalesce_intervals(lnk->prev, lnk,
lnk);
futex_up(&unused_futex);
fibril_mutex_unlock(&unused_lock);
return;
}
if (f->last == index - 1) {
310,7 → 310,7
if (lnk->next != &u->freed_head)
try_coalesce_intervals(lnk, lnk->next,
lnk);
futex_up(&unused_futex);
fibril_mutex_unlock(&unused_lock);
return;
}
if (index > f->first) {
321,7 → 321,7
n->first = index;
n->last = index;
list_insert_before(&n->link, lnk);
futex_up(&unused_futex);
fibril_mutex_unlock(&unused_lock);
return;
}
 
335,7 → 335,7
n->last = index;
list_append(&n->link, &u->freed_head);
}
futex_up(&unused_futex);
fibril_mutex_unlock(&unused_lock);
}
 
static fat_idx_t *fat_idx_create(dev_handle_t dev_handle)
352,7 → 352,7
link_initialize(&fidx->uph_link);
link_initialize(&fidx->uih_link);
futex_initialize(&fidx->lock, 1);
fibril_mutex_initialize(&fidx->lock);
fidx->dev_handle = dev_handle;
fidx->pfc = FAT_CLST_RES0; /* no parent yet */
fidx->pdi = 0;
365,10 → 365,10
{
fat_idx_t *fidx;
 
futex_down(&used_futex);
fibril_mutex_lock(&used_lock);
fidx = fat_idx_create(dev_handle);
if (!fidx) {
futex_up(&used_futex);
fibril_mutex_unlock(&used_lock);
return NULL;
}
378,8 → 378,8
};
hash_table_insert(&ui_hash, ikey, &fidx->uih_link);
futex_down(&fidx->lock);
futex_up(&used_futex);
fibril_mutex_lock(&fidx->lock);
fibril_mutex_unlock(&used_lock);
 
return fidx;
}
395,7 → 395,7
[UPH_PDI_KEY] = pdi,
};
 
futex_down(&used_futex);
fibril_mutex_lock(&used_lock);
l = hash_table_find(&up_hash, pkey);
if (l) {
fidx = hash_table_get_instance(l, fat_idx_t, uph_link);
402,7 → 402,7
} else {
fidx = fat_idx_create(dev_handle);
if (!fidx) {
futex_up(&used_futex);
fibril_mutex_unlock(&used_lock);
return NULL;
}
417,8 → 417,8
hash_table_insert(&up_hash, pkey, &fidx->uph_link);
hash_table_insert(&ui_hash, ikey, &fidx->uih_link);
}
futex_down(&fidx->lock);
futex_up(&used_futex);
fibril_mutex_lock(&fidx->lock);
fibril_mutex_unlock(&used_lock);
 
return fidx;
}
431,9 → 431,9
[UPH_PDI_KEY] = idx->pdi,
};
 
futex_down(&used_futex);
fibril_mutex_lock(&used_lock);
hash_table_insert(&up_hash, pkey, &idx->uph_link);
futex_up(&used_futex);
fibril_mutex_unlock(&used_lock);
}
 
void fat_idx_hashout(fat_idx_t *idx)
444,9 → 444,9
[UPH_PDI_KEY] = idx->pdi,
};
 
futex_down(&used_futex);
fibril_mutex_lock(&used_lock);
hash_table_remove(&up_hash, pkey, 3);
futex_up(&used_futex);
fibril_mutex_unlock(&used_lock);
}
 
fat_idx_t *
459,13 → 459,13
[UIH_INDEX_KEY] = index,
};
 
futex_down(&used_futex);
fibril_mutex_lock(&used_lock);
l = hash_table_find(&ui_hash, ikey);
if (l) {
fidx = hash_table_get_instance(l, fat_idx_t, uih_link);
futex_down(&fidx->lock);
fibril_mutex_lock(&fidx->lock);
}
futex_up(&used_futex);
fibril_mutex_unlock(&used_lock);
 
return fidx;
}
483,7 → 483,7
 
assert(idx->pfc == FAT_CLST_RES0);
 
futex_down(&used_futex);
fibril_mutex_lock(&used_lock);
/*
* Since we can only free unlinked nodes, the index structure is not
* present in the position hash (uph). We therefore hash it out from
490,7 → 490,7
* the index hash only.
*/
hash_table_remove(&ui_hash, ikey, 2);
futex_up(&used_futex);
fibril_mutex_unlock(&used_lock);
/* Release the VFS index. */
fat_index_free(idx->dev_handle, idx->index);
/* Deallocate the structure. */
524,12 → 524,12
if (!u)
return ENOMEM;
unused_initialize(u, dev_handle);
futex_down(&unused_futex);
fibril_mutex_lock(&unused_lock);
if (!unused_find(dev_handle, false))
list_append(&u->link, &unused_head);
else
rc = EEXIST;
futex_up(&unused_futex);
fibril_mutex_unlock(&unused_lock);
return rc;
}
 
540,7 → 540,7
u = unused_find(dev_handle, true);
assert(u);
list_remove(&u->link);
futex_up(&unused_futex);
fibril_mutex_unlock(&unused_lock);
 
while (!list_empty(&u->freed_head)) {
freed_t *f;
/branches/dd/uspace/srv/fs/fat/fat.h
35,6 → 35,7
 
#include "fat_fat.h"
#include <ipc/ipc.h>
#include <fibril_sync.h>
#include <libfs.h>
#include <atomic.h>
#include <sys/types.h>
160,7 → 161,7
/** Used indices (index) hash table link. */
link_t uih_link;
 
futex_t lock;
fibril_mutex_t lock;
dev_handle_t dev_handle;
fs_index_t index;
/**
181,7 → 182,7
/** Back pointer to the FS node. */
fs_node_t *bp;
futex_t lock;
fibril_mutex_t lock;
fat_node_type_t type;
fat_idx_t *idx;
/**
206,10 → 207,11
extern void fat_read(ipc_callid_t, ipc_call_t *);
extern void fat_write(ipc_callid_t, ipc_call_t *);
extern void fat_truncate(ipc_callid_t, ipc_call_t *);
extern void fat_stat(ipc_callid_t, ipc_call_t *);
extern void fat_close(ipc_callid_t, ipc_call_t *);
extern void fat_destroy(ipc_callid_t, ipc_call_t *);
extern void fat_open_node(ipc_callid_t, ipc_call_t *);
extern void fat_device(ipc_callid_t, ipc_call_t *);
extern void fat_stat(ipc_callid_t, ipc_call_t *);
extern void fat_sync(ipc_callid_t, ipc_call_t *);
 
extern fat_idx_t *fat_idx_get_new(dev_handle_t);
/branches/dd/uspace/srv/fs/fat/fat_fat.c
45,15 → 45,15
#include <byteorder.h>
#include <align.h>
#include <assert.h>
#include <futex.h>
#include <fibril_sync.h>
#include <mem.h>
 
/**
* The fat_alloc_lock futex protects all copies of the File Allocation Table
* The fat_alloc_lock mutex protects all copies of the File Allocation Table
* during allocation of clusters. The lock does not have to be held durring
* deallocation of clusters.
*/
static futex_t fat_alloc_lock = FUTEX_INITIALIZER;
static FIBRIL_MUTEX_INITIALIZE(fat_alloc_lock);
 
/** Walk the cluster chain.
*
326,7 → 326,7
/*
* Search FAT1 for unused clusters.
*/
futex_down(&fat_alloc_lock);
fibril_mutex_lock(&fat_alloc_lock);
for (b = 0, cl = 0; b < sf; b++) {
blk = block_get(dev_handle, rscnt + b, BLOCK_FLAGS_NONE);
for (c = 0; c < bps / sizeof(fat_cluster_t); c++, cl++) {
350,7 → 350,7
*mcl = lifo[found - 1];
*lcl = lifo[0];
free(lifo);
futex_up(&fat_alloc_lock);
fibril_mutex_unlock(&fat_alloc_lock);
return EOK;
}
}
357,7 → 357,7
}
block_put(blk);
}
futex_up(&fat_alloc_lock);
fibril_mutex_unlock(&fat_alloc_lock);
 
/*
* We could not find enough clusters. Now we need to free the clusters
/branches/dd/uspace/srv/fs/fat/fat.c
89,37 → 89,39
callid = async_get_call(&call);
switch (IPC_GET_METHOD(call)) {
case VFS_MOUNTED:
case IPC_M_PHONE_HUNGUP:
return;
case VFS_OUT_MOUNTED:
fat_mounted(callid, &call);
break;
case VFS_MOUNT:
case VFS_OUT_MOUNT:
fat_mount(callid, &call);
break;
case VFS_LOOKUP:
case VFS_OUT_LOOKUP:
fat_lookup(callid, &call);
break;
case VFS_READ:
case VFS_OUT_READ:
fat_read(callid, &call);
break;
case VFS_WRITE:
case VFS_OUT_WRITE:
fat_write(callid, &call);
break;
case VFS_TRUNCATE:
case VFS_OUT_TRUNCATE:
fat_truncate(callid, &call);
break;
case VFS_CLOSE:
case VFS_OUT_STAT:
fat_stat(callid, &call);
break;
case VFS_OUT_CLOSE:
fat_close(callid, &call);
break;
case VFS_DESTROY:
case VFS_OUT_DESTROY:
fat_destroy(callid, &call);
break;
case VFS_OPEN_NODE:
case VFS_OUT_OPEN_NODE:
fat_open_node(callid, &call);
break;
case VFS_DEVICE:
fat_device(callid, &call);
break;
case VFS_SYNC:
case VFS_OUT_SYNC:
fat_sync(callid, &call);
break;
default:
/branches/dd/uspace/srv/fs/fat/fat_ops.c
51,7 → 51,7
#include <adt/hash_table.h>
#include <adt/list.h>
#include <assert.h>
#include <futex.h>
#include <fibril_sync.h>
#include <sys/mman.h>
#include <align.h>
 
58,8 → 58,8
#define FAT_NODE(node) ((node) ? (fat_node_t *) (node)->data : NULL)
#define FS_NODE(node) ((node) ? (node)->bp : NULL)
 
/** Futex protecting the list of cached free FAT nodes. */
static futex_t ffn_futex = FUTEX_INITIALIZER;
/** Mutex protecting the list of cached free FAT nodes. */
static FIBRIL_MUTEX_INITIALIZE(ffn_mutex);
 
/** List of cached free FAT nodes. */
static LIST_INITIALIZE(ffn_head);
66,7 → 66,7
 
static void fat_node_initialize(fat_node_t *node)
{
futex_initialize(&node->lock, 1);
fibril_mutex_initialize(&node->lock);
node->bp = NULL;
node->idx = NULL;
node->type = 0;
115,30 → 115,30
fs_node_t *fn;
fat_node_t *nodep;
 
futex_down(&ffn_futex);
fibril_mutex_lock(&ffn_mutex);
if (!list_empty(&ffn_head)) {
/* Try to use a cached free node structure. */
fat_idx_t *idxp_tmp;
nodep = list_get_instance(ffn_head.next, fat_node_t, ffn_link);
if (futex_trydown(&nodep->lock) == ESYNCH_WOULD_BLOCK)
if (!fibril_mutex_trylock(&nodep->lock))
goto skip_cache;
idxp_tmp = nodep->idx;
if (futex_trydown(&idxp_tmp->lock) == ESYNCH_WOULD_BLOCK) {
futex_up(&nodep->lock);
if (!fibril_mutex_trylock(&idxp_tmp->lock)) {
fibril_mutex_unlock(&nodep->lock);
goto skip_cache;
}
list_remove(&nodep->ffn_link);
futex_up(&ffn_futex);
fibril_mutex_unlock(&ffn_mutex);
if (nodep->dirty)
fat_node_sync(nodep);
idxp_tmp->nodep = NULL;
futex_up(&nodep->lock);
futex_up(&idxp_tmp->lock);
fibril_mutex_unlock(&nodep->lock);
fibril_mutex_unlock(&idxp_tmp->lock);
fn = FS_NODE(nodep);
} else {
skip_cache:
/* Try to allocate a new node structure. */
futex_up(&ffn_futex);
fibril_mutex_unlock(&ffn_mutex);
fn = (fs_node_t *)malloc(sizeof(fs_node_t));
if (!fn)
return NULL;
175,10 → 175,10
* We are lucky.
* The node is already instantiated in memory.
*/
futex_down(&idxp->nodep->lock);
fibril_mutex_lock(&idxp->nodep->lock);
if (!idxp->nodep->refcnt++)
list_remove(&idxp->nodep->ffn_link);
futex_up(&idxp->nodep->lock);
fibril_mutex_unlock(&idxp->nodep->lock);
return idxp->nodep;
}
 
268,7 → 268,7
return NULL;
/* idxp->lock held */
nodep = fat_node_get_core(idxp);
futex_up(&idxp->lock);
fibril_mutex_unlock(&idxp->lock);
return FS_NODE(nodep);
}
 
277,12 → 277,12
fat_node_t *nodep = FAT_NODE(fn);
bool destroy = false;
 
futex_down(&nodep->lock);
fibril_mutex_lock(&nodep->lock);
if (!--nodep->refcnt) {
if (nodep->idx) {
futex_down(&ffn_futex);
fibril_mutex_lock(&ffn_mutex);
list_append(&nodep->ffn_link, &ffn_head);
futex_up(&ffn_futex);
fibril_mutex_unlock(&ffn_mutex);
} else {
/*
* The node does not have any index structure associated
293,7 → 293,7
destroy = true;
}
}
futex_up(&nodep->lock);
fibril_mutex_unlock(&nodep->lock);
if (destroy) {
free(nodep->bp);
free(nodep);
360,7 → 360,7
nodep->idx = idxp;
idxp->nodep = nodep;
 
futex_up(&idxp->lock);
fibril_mutex_unlock(&idxp->lock);
return FS_NODE(nodep);
}
 
409,16 → 409,16
fat_cluster_t mcl, lcl;
int rc;
 
futex_down(&childp->lock);
fibril_mutex_lock(&childp->lock);
if (childp->lnkcnt == 1) {
/*
* On FAT, we don't support multiple hard links.
*/
futex_up(&childp->lock);
fibril_mutex_unlock(&childp->lock);
return EMLINK;
}
assert(childp->lnkcnt == 0);
futex_up(&childp->lock);
fibril_mutex_unlock(&childp->lock);
 
if (!fat_dentry_name_verify(name)) {
/*
432,7 → 432,7
* a new one.
*/
futex_down(&parentp->idx->lock);
fibril_mutex_lock(&parentp->idx->lock);
bs = block_bb_get(parentp->idx->dev_handle);
bps = uint16_t_le2host(bs->bps);
dps = bps / sizeof(fat_dentry_t);
463,12 → 463,12
*/
if (parentp->idx->pfc == FAT_CLST_ROOT) {
/* Can't grow the root directory. */
futex_up(&parentp->idx->lock);
fibril_mutex_unlock(&parentp->idx->lock);
return ENOSPC;
}
rc = fat_alloc_clusters(bs, parentp->idx->dev_handle, 1, &mcl, &lcl);
if (rc != EOK) {
futex_up(&parentp->idx->lock);
fibril_mutex_unlock(&parentp->idx->lock);
return rc;
}
fat_append_clusters(bs, parentp, mcl);
491,9 → 491,9
fat_dentry_name_set(d, name);
b->dirty = true; /* need to sync block */
block_put(b);
futex_up(&parentp->idx->lock);
fibril_mutex_unlock(&parentp->idx->lock);
 
futex_down(&childp->idx->lock);
fibril_mutex_lock(&childp->idx->lock);
/*
* If possible, create the Sub-directory Identifier Entry and the
529,12 → 529,12
 
childp->idx->pfc = parentp->firstc;
childp->idx->pdi = i * dps + j;
futex_up(&childp->idx->lock);
fibril_mutex_unlock(&childp->idx->lock);
 
futex_down(&childp->lock);
fibril_mutex_lock(&childp->lock);
childp->lnkcnt = 1;
childp->dirty = true; /* need to sync node */
futex_up(&childp->lock);
fibril_mutex_unlock(&childp->lock);
 
/*
* Hash in the index structure into the position hash.
559,10 → 559,10
if (fat_has_children(cfn))
return ENOTEMPTY;
 
futex_down(&parentp->lock);
futex_down(&childp->lock);
fibril_mutex_lock(&parentp->lock);
fibril_mutex_lock(&childp->lock);
assert(childp->lnkcnt == 1);
futex_down(&childp->idx->lock);
fibril_mutex_lock(&childp->idx->lock);
bs = block_bb_get(childp->idx->dev_handle);
bps = uint16_t_le2host(bs->bps);
 
581,11 → 581,11
/* clear position information */
childp->idx->pfc = FAT_CLST_RES0;
childp->idx->pdi = 0;
futex_up(&childp->idx->lock);
fibril_mutex_unlock(&childp->idx->lock);
childp->lnkcnt = 0;
childp->dirty = true;
futex_up(&childp->lock);
futex_up(&parentp->lock);
fibril_mutex_unlock(&childp->lock);
fibril_mutex_unlock(&parentp->lock);
 
return EOK;
}
602,7 → 602,7
fat_dentry_t *d;
block_t *b;
 
futex_down(&parentp->idx->lock);
fibril_mutex_lock(&parentp->idx->lock);
bs = block_bb_get(parentp->idx->dev_handle);
bps = uint16_t_le2host(bs->bps);
dps = bps / sizeof(fat_dentry_t);
617,7 → 617,7
continue;
case FAT_DENTRY_LAST:
block_put(b);
futex_up(&parentp->idx->lock);
fibril_mutex_unlock(&parentp->idx->lock);
return NULL;
default:
case FAT_DENTRY_VALID:
636,7 → 636,7
fat_idx_t *idx = fat_idx_get_by_pos(
parentp->idx->dev_handle, parentp->firstc,
i * dps + j);
futex_up(&parentp->idx->lock);
fibril_mutex_unlock(&parentp->idx->lock);
if (!idx) {
/*
* Can happen if memory is low or if we
646,7 → 646,7
return NULL;
}
nodep = fat_node_get_core(idx);
futex_up(&idx->lock);
fibril_mutex_unlock(&idx->lock);
block_put(b);
return FS_NODE(nodep);
}
654,7 → 654,7
block_put(b);
}
 
futex_up(&parentp->idx->lock);
fibril_mutex_unlock(&parentp->idx->lock);
return NULL;
}
 
686,7 → 686,7
if (nodep->type != FAT_DIRECTORY)
return false;
futex_down(&nodep->idx->lock);
fibril_mutex_lock(&nodep->idx->lock);
bs = block_bb_get(nodep->idx->dev_handle);
bps = uint16_t_le2host(bs->bps);
dps = bps / sizeof(fat_dentry_t);
705,22 → 705,22
continue;
case FAT_DENTRY_LAST:
block_put(b);
futex_up(&nodep->idx->lock);
fibril_mutex_unlock(&nodep->idx->lock);
return false;
default:
case FAT_DENTRY_VALID:
block_put(b);
futex_up(&nodep->idx->lock);
fibril_mutex_unlock(&nodep->idx->lock);
return true;
}
block_put(b);
futex_up(&nodep->idx->lock);
fibril_mutex_unlock(&nodep->idx->lock);
return true;
}
block_put(b);
}
 
futex_up(&nodep->idx->lock);
fibril_mutex_unlock(&nodep->idx->lock);
return false;
}
 
770,6 → 770,7
void fat_mounted(ipc_callid_t rid, ipc_call_t *request)
{
dev_handle_t dev_handle = (dev_handle_t) IPC_GET_ARG1(*request);
enum cache_mode cmode;
fat_bs_t *bs;
uint16_t bps;
uint16_t rde;
797,6 → 798,12
}
opts[size] = '\0';
 
/* Check for option enabling write through. */
if (str_cmp(opts, "wtcache") == 0)
cmode = CACHE_MODE_WT;
else
cmode = CACHE_MODE_WB;
 
/* initialize libblock */
rc = block_init(dev_handle, BS_SIZE);
if (rc != EOK) {
826,7 → 833,7
}
 
/* Initialize the block cache */
rc = block_cache_init(dev_handle, bps, 0 /* XXX */);
rc = block_cache_init(dev_handle, bps, 0 /* XXX */, cmode);
if (rc != EOK) {
block_fini(dev_handle);
ipc_answer_0(rid, rc);
881,7 → 888,7
rootp->bp = rfn;
rfn->data = rootp;
futex_up(&ridxp->lock);
fibril_mutex_unlock(&ridxp->lock);
 
ipc_answer_3(rid, EOK, ridxp->index, rootp->size, rootp->lnkcnt);
}
1195,9 → 1202,9
libfs_open_node(&fat_libfs_ops, fat_reg.fs_handle, rid, request);
}
 
void fat_device(ipc_callid_t rid, ipc_call_t *request)
void fat_stat(ipc_callid_t rid, ipc_call_t *request)
{
ipc_answer_0(rid, ENOTSUP);
libfs_stat(&fat_libfs_ops, fat_reg.fs_handle, rid, request);
}
 
void fat_sync(ipc_callid_t rid, ipc_call_t *request)
/branches/dd/uspace/srv/devmap/devmap.c
46,7 → 46,8
#include <string.h>
#include <ipc/devmap.h>
 
#define NAME "devmap"
#define NAME "devmap"
#define NULL_DEVICES 256
 
/** Representation of device driver.
*
83,16 → 84,8
devmap_driver_t *driver;
} devmap_device_t;
 
/** Pending lookup structure. */
typedef struct {
link_t link;
char *name; /**< Device name */
ipc_callid_t callid; /**< Call ID waiting for the lookup */
} pending_req_t;
 
LIST_INITIALIZE(devices_list);
LIST_INITIALIZE(drivers_list);
LIST_INITIALIZE(pending_req);
 
/* Locking order:
* drivers_list_mutex
102,10 → 95,13
**/
 
static FIBRIL_MUTEX_INITIALIZE(devices_list_mutex);
static FIBRIL_CONDVAR_INITIALIZE(devices_list_cv);
static FIBRIL_MUTEX_INITIALIZE(drivers_list_mutex);
static FIBRIL_MUTEX_INITIALIZE(create_handle_mutex);
static FIBRIL_MUTEX_INITIALIZE(null_devices_mutex);
 
static dev_handle_t last_handle = 0;
static devmap_device_t *null_devices[NULL_DEVICES];
 
static dev_handle_t devmap_create_handle(void)
{
174,10 → 170,8
}
 
/**
*
* Unregister device and free it. It's assumed that driver's device list is
* already locked.
*
*/
static int devmap_device_unregister_core(devmap_device_t *device)
{
191,10 → 185,8
}
 
/**
*
* Read info about new driver and add it into linked list of registered
* drivers.
*
*/
static void devmap_driver_register(devmap_driver_t **odriver)
{
344,31 → 336,6
return EOK;
}
 
 
/** Process pending lookup requests */
static void process_pending_lookup(void)
{
link_t *cur;
loop:
for (cur = pending_req.next; cur != &pending_req; cur = cur->next) {
pending_req_t *pr = list_get_instance(cur, pending_req_t, link);
const devmap_device_t *dev = devmap_device_find_name(pr->name);
if (!dev)
continue;
ipc_answer_1(pr->callid, EOK, dev->handle);
free(pr->name);
list_remove(cur);
free(pr);
goto loop;
}
}
 
 
/** Register instance of device
*
*/
445,6 → 412,7
list_append(&device->driver_devices, &device->driver->devices);
fibril_mutex_unlock(&device->driver->devices_mutex);
fibril_condvar_broadcast(&devices_list_cv);
fibril_mutex_unlock(&devices_list_mutex);
ipc_answer_1(iid, EOK, device->handle);
530,10 → 498,14
}
name[size] = '\0';
fibril_mutex_lock(&devices_list_mutex);
const devmap_device_t *dev;
recheck:
 
/*
* Find device name in linked list of known devices.
* Find device name in the list of known devices.
*/
const devmap_device_t *dev = devmap_device_find_name(name);
dev = devmap_device_find_name(name);
/*
* Device was not found.
540,24 → 512,18
*/
if (dev == NULL) {
if (IPC_GET_ARG1(*icall) & IPC_FLAG_BLOCKING) {
/* Blocking lookup, add to pending list */
pending_req_t *pr = (pending_req_t *) malloc(sizeof(pending_req_t));
if (!pr) {
ipc_answer_0(iid, ENOMEM);
free(name);
return;
}
pr->name = name;
pr->callid = iid;
list_append(&pr->link, &pending_req);
return;
/* Blocking lookup */
fibril_condvar_wait(&devices_list_cv,
&devices_list_mutex);
goto recheck;
}
ipc_answer_0(iid, ENOENT);
free(name);
fibril_mutex_unlock(&devices_list_mutex);
return;
}
fibril_mutex_unlock(&devices_list_mutex);
ipc_answer_1(iid, EOK, dev->handle);
free(name);
655,21 → 621,43
ipc_answer_1(iid, EOK, pos);
}
 
/** Initialize device mapper.
*
*
*/
static bool devmap_init()
static void devmap_null_create(ipc_callid_t iid, ipc_call_t *icall)
{
fibril_mutex_lock(&null_devices_mutex);
unsigned int i;
bool fnd = false;
for (i = 0; i < NULL_DEVICES; i++) {
if (null_devices[i] == NULL) {
fnd = true;
break;
}
}
if (!fnd) {
fibril_mutex_unlock(&null_devices_mutex);
ipc_answer_0(iid, ENOMEM);
return;
}
/* Create NULL device entry */
devmap_device_t *device = (devmap_device_t *) malloc(sizeof(devmap_device_t));
if (device == NULL)
return false;
if (device == NULL) {
fibril_mutex_unlock(&null_devices_mutex);
ipc_answer_0(iid, ENOMEM);
return;
}
device->name = str_dup("null");
char null[DEVMAP_NAME_MAXLEN];
snprintf(null, DEVMAP_NAME_MAXLEN, "null%u", i);
device->name = str_dup(null);
if (device->name == NULL) {
fibril_mutex_unlock(&null_devices_mutex);
free(device);
return false;
ipc_answer_0(iid, ENOMEM);
return;
}
list_initialize(&(device->devices));
681,11 → 669,50
device->handle = devmap_create_handle();
device->driver = NULL;
/* Insert device into list of all devices */
/* Insert device into list of all devices
and into null devices array */
list_append(&device->devices, &devices_list);
null_devices[i] = device;
fibril_mutex_unlock(&devices_list_mutex);
fibril_mutex_unlock(&null_devices_mutex);
ipc_answer_1(iid, EOK, (ipcarg_t) i);
}
 
static void devmap_null_destroy(ipc_callid_t iid, ipc_call_t *icall)
{
fibril_mutex_lock(&null_devices_mutex);
ipcarg_t i = IPC_GET_ARG1(*icall);
if (null_devices[i] == NULL) {
ipc_answer_0(iid, ENOENT);
return;
}
devmap_device_unregister_core(null_devices[i]);
null_devices[i] = NULL;
fibril_mutex_unlock(&null_devices_mutex);
ipc_answer_0(iid, EOK);
}
 
/** Initialize device mapper.
*
*
*/
static bool devmap_init(void)
{
fibril_mutex_lock(&null_devices_mutex);
unsigned int i;
for (i = 0; i < NULL_DEVICES; i++)
null_devices[i] = NULL;
fibril_mutex_unlock(&null_devices_mutex);
return true;
}
 
738,7 → 765,7
}
}
if (NULL != driver) {
if (driver != NULL) {
/*
* Unregister the device driver and all its devices.
*/
770,6 → 797,12
case DEVMAP_DEVICE_GET_NAME:
devmap_get_name(callid, &call);
break;
case DEVMAP_DEVICE_NULL_CREATE:
devmap_null_create(callid, &call);
break;
case DEVMAP_DEVICE_NULL_DESTROY:
devmap_null_destroy(callid, &call);
break;
case DEVMAP_DEVICE_GET_COUNT:
devmap_get_count(callid, &call);
break;
818,9 → 851,7
return -1;
}
/* Set a handler of incomming connections and
pending operations */
async_set_pending(process_pending_lookup);
/* Set a handler of incomming connections */
async_set_client_connection(devmap_connection);
/* Register device mapper at naming service */
/branches/dd/uspace/srv/vfs/vfs.c
43,7 → 43,6
#include <bool.h>
#include <string.h>
#include <as.h>
#include <adt/list.h>
#include <atomic.h>
#include "vfs.h"
 
80,56 → 79,52
case IPC_M_PHONE_HUNGUP:
keep_on_going = false;
break;
case VFS_REGISTER:
case VFS_IN_REGISTER:
vfs_register(callid, &call);
/*
* Keep the connection open so that a file system can
* later ask us to connect it to another file system.
* This is necessary to support non-root mounts.
*/
keep_on_going = false;
break;
case VFS_MOUNT:
case VFS_IN_MOUNT:
vfs_mount(callid, &call);
break;
case VFS_OPEN:
case VFS_IN_OPEN:
vfs_open(callid, &call);
break;
case VFS_OPEN_NODE:
case VFS_IN_OPEN_NODE:
vfs_open_node(callid, &call);
break;
case VFS_CLOSE:
case VFS_IN_CLOSE:
vfs_close(callid, &call);
break;
case VFS_READ:
case VFS_IN_READ:
vfs_read(callid, &call);
break;
case VFS_WRITE:
case VFS_IN_WRITE:
vfs_write(callid, &call);
break;
case VFS_SEEK:
case VFS_IN_SEEK:
vfs_seek(callid, &call);
break;
case VFS_TRUNCATE:
case VFS_IN_TRUNCATE:
vfs_truncate(callid, &call);
break;
case VFS_MKDIR:
case VFS_IN_FSTAT:
vfs_fstat(callid, &call);
break;
case VFS_IN_STAT:
vfs_stat(callid, &call);
break;
case VFS_IN_MKDIR:
vfs_mkdir(callid, &call);
break;
case VFS_UNLINK:
case VFS_IN_UNLINK:
vfs_unlink(callid, &call);
break;
case VFS_RENAME:
case VFS_IN_RENAME:
vfs_rename(callid, &call);
break;
case VFS_DEVICE:
vfs_device(callid, &call);
break;
case VFS_SYNC:
case VFS_IN_SYNC:
vfs_sync(callid, &call);
break;
case VFS_NODE:
vfs_node(callid, &call);
break;
default:
ipc_answer_0(callid, ENOTSUP);
break;
144,11 → 139,6
printf(NAME ": HelenOS VFS server\n");
/*
* Initialize the list of registered file systems.
*/
list_initialize(&fs_head);
/*
* Initialize VFS node hash table.
*/
if (!vfs_nodes_init()) {
159,7 → 149,6
/*
* Allocate and initialize the Path Lookup Buffer.
*/
list_initialize(&plb_head);
plb = as_get_mappable_page(PLB_SIZE);
if (!plb) {
printf(NAME ": Cannot allocate a mappable piece of address space\n");
174,11 → 163,10
memset(plb, 0, PLB_SIZE);
/*
* Set a connectio handling function/fibril.
* Set a connection handling function/fibril.
*/
async_set_pending(vfs_process_pending_mount);
async_set_client_connection(vfs_connection);
 
/*
* Register at the naming service.
*/
/branches/dd/uspace/srv/vfs/vfs_ops.c
43,7 → 43,6
#include <stdlib.h>
#include <string.h>
#include <bool.h>
#include <futex.h>
#include <fibril_sync.h>
#include <adt/list.h>
#include <unistd.h>
55,20 → 54,6
/* Forward declarations of static functions. */
static int vfs_truncate_internal(fs_handle_t, dev_handle_t, fs_index_t, size_t);
 
/** Pending mount structure. */
typedef struct {
link_t link;
char *fs_name; /**< File system name */
char *mp; /**< Mount point */
char *opts; /**< Mount options. */
ipc_callid_t callid; /**< Call ID waiting for the mount */
ipc_callid_t rid; /**< Request ID */
dev_handle_t dev_handle; /**< Device handle */
} pending_req_t;
 
FIBRIL_MUTEX_INITIALIZE(pending_lock);
LIST_INITIALIZE(pending_req);
 
/**
* This rwlock prevents the race between a triplet-to-VFS-node resolution and a
* concurrent VFS operation which modifies the file system namespace.
123,7 → 108,7
/*
* Now we hold a reference to mp_node.
* It will be dropped upon the corresponding VFS_UNMOUNT.
* It will be dropped upon the corresponding VFS_IN_UNMOUNT.
* This prevents the mount point from being deleted.
*/
} else {
136,20 → 121,20
/* Tell the mountee that it is being mounted. */
phone = vfs_grab_phone(fs_handle);
msg = async_send_1(phone, VFS_MOUNTED,
msg = async_send_1(phone, VFS_OUT_MOUNTED,
(ipcarg_t) dev_handle, &answer);
/* send the mount options */
rc = ipc_data_write_start(phone, (void *)opts,
str_size(opts));
if (rc != EOK) {
async_wait_for(msg, NULL);
vfs_release_phone(phone);
async_wait_for(msg, NULL);
fibril_rwlock_write_unlock(&namespace_rwlock);
ipc_answer_0(rid, rc);
return;
}
async_wait_for(msg, &rc);
vfs_release_phone(phone);
async_wait_for(msg, &rc);
if (rc != EOK) {
fibril_rwlock_write_unlock(&namespace_rwlock);
196,10 → 181,9
int mountee_phone = vfs_grab_phone(fs_handle);
assert(mountee_phone >= 0);
vfs_release_phone(mountee_phone);
 
phone = vfs_grab_phone(mp_res.triplet.fs_handle);
msg = async_send_4(phone, VFS_MOUNT,
msg = async_send_4(phone, VFS_OUT_MOUNT,
(ipcarg_t) mp_res.triplet.dev_handle,
(ipcarg_t) mp_res.triplet.index,
(ipcarg_t) fs_handle,
208,8 → 192,9
/* send connection */
rc = async_req_1_0(phone, IPC_M_CONNECTION_CLONE, mountee_phone);
if (rc != EOK) {
async_wait_for(msg, NULL);
vfs_release_phone(mountee_phone);
vfs_release_phone(phone);
async_wait_for(msg, NULL);
/* Mount failed, drop reference to mp_node. */
if (mp_node)
vfs_node_put(mp_node);
217,12 → 202,14
fibril_rwlock_write_unlock(&namespace_rwlock);
return;
}
 
vfs_release_phone(mountee_phone);
/* send the mount options */
rc = ipc_data_write_start(phone, (void *)opts, str_size(opts));
if (rc != EOK) {
async_wait_for(msg, NULL);
vfs_release_phone(phone);
async_wait_for(msg, NULL);
/* Mount failed, drop reference to mp_node. */
if (mp_node)
vfs_node_put(mp_node);
230,8 → 217,8
ipc_answer_0(rid, rc);
return;
}
async_wait_for(msg, &rc);
vfs_release_phone(phone);
async_wait_for(msg, &rc);
if (rc == EOK) {
rindex = (fs_index_t) IPC_GET_ARG1(answer);
258,39 → 245,6
fibril_rwlock_write_unlock(&namespace_rwlock);
}
 
/** Process pending mount requests */
void vfs_process_pending_mount(void)
{
link_t *cur;
loop:
fibril_mutex_lock(&pending_lock);
for (cur = pending_req.next; cur != &pending_req; cur = cur->next) {
pending_req_t *pr = list_get_instance(cur, pending_req_t, link);
 
fs_handle_t fs_handle = fs_name_to_handle(pr->fs_name, true);
if (!fs_handle)
continue;
/* Acknowledge that we know fs_name. */
ipc_answer_0(pr->callid, EOK);
/* Do the mount */
vfs_mount_internal(pr->rid, pr->dev_handle, fs_handle, pr->mp,
pr->opts);
free(pr->fs_name);
free(pr->mp);
free(pr->opts);
list_remove(cur);
free(pr);
fibril_mutex_unlock(&pending_lock);
fibril_yield();
goto loop;
}
fibril_mutex_unlock(&pending_lock);
}
 
void vfs_mount(ipc_callid_t rid, ipc_call_t *request)
{
/*
444,35 → 398,17
* Check if we know a file system with the same name as is in fs_name.
* This will also give us its file system handle.
*/
fs_handle_t fs_handle = fs_name_to_handle(fs_name, true);
fibril_mutex_lock(&fs_head_lock);
fs_handle_t fs_handle;
recheck:
fs_handle = fs_name_to_handle(fs_name, false);
if (!fs_handle) {
if (flags & IPC_FLAG_BLOCKING) {
pending_req_t *pr;
 
/* Blocking mount, add to pending list */
pr = (pending_req_t *) malloc(sizeof(pending_req_t));
if (!pr) {
ipc_answer_0(callid, ENOMEM);
ipc_answer_0(rid, ENOMEM);
free(mp);
free(fs_name);
free(opts);
return;
}
pr->fs_name = fs_name;
pr->mp = mp;
pr->opts = opts;
pr->callid = callid;
pr->rid = rid;
pr->dev_handle = dev_handle;
link_initialize(&pr->link);
fibril_mutex_lock(&pending_lock);
list_append(&pr->link, &pending_req);
fibril_mutex_unlock(&pending_lock);
return;
fibril_condvar_wait(&fs_head_cv, &fs_head_lock);
goto recheck;
}
fibril_mutex_unlock(&fs_head_lock);
ipc_answer_0(callid, ENOENT);
ipc_answer_0(rid, ENOENT);
free(mp);
480,6 → 416,7
free(opts);
return;
}
fibril_mutex_unlock(&fs_head_lock);
/* Acknowledge that we know fs_name. */
ipc_answer_0(callid, EOK);
500,8 → 437,8
/*
* The POSIX interface is open(path, oflag, mode).
* We can receive oflags and mode along with the VFS_OPEN call; the path
* will need to arrive in another call.
* We can receive oflags and mode along with the VFS_IN_OPEN call;
* the path will need to arrive in another call.
*
* We also receive one private, non-POSIX set of flags called lflag
* used to pass information to vfs_lookup_internal().
618,7 → 555,7
* file is being opened and that a file structure is pointing to it.
* It is necessary so that the file will not disappear when
* vfs_node_put() is called. The reference will be dropped by the
* respective VFS_CLOSE.
* respective VFS_IN_CLOSE.
*/
vfs_node_addref(node);
vfs_node_put(node);
695,7 → 632,7
* file is being opened and that a file structure is pointing to it.
* It is necessary so that the file will not disappear when
* vfs_node_put() is called. The reference will be dropped by the
* respective VFS_CLOSE.
* respective VFS_IN_CLOSE.
*/
vfs_node_addref(node);
vfs_node_put(node);
704,7 → 641,7
ipc_answer_1(rid, EOK, fd);
}
 
void vfs_node(ipc_callid_t rid, ipc_call_t *request)
void vfs_sync(ipc_callid_t rid, ipc_call_t *request)
{
int fd = IPC_GET_ARG1(*request);
715,21 → 652,6
return;
}
ipc_answer_3(rid, EOK, file->node->fs_handle, file->node->dev_handle,
file->node->index);
}
 
void vfs_device(ipc_callid_t rid, ipc_call_t *request)
{
int fd = IPC_GET_ARG1(*request);
/* Lookup the file structure corresponding to the file descriptor. */
vfs_file_t *file = vfs_file_get(fd);
if (!file) {
ipc_answer_0(rid, ENOENT);
return;
}
/*
* Lock the open file structure so that no other thread can manipulate
* the same open file at a time.
737,53 → 659,17
fibril_mutex_lock(&file->lock);
int fs_phone = vfs_grab_phone(file->node->fs_handle);
/* Make a VFS_DEVICE request at the destination FS server. */
/* Make a VFS_OUT_SYMC request at the destination FS server. */
aid_t msg;
ipc_call_t answer;
msg = async_send_2(fs_phone, IPC_GET_METHOD(*request),
file->node->dev_handle, file->node->index, &answer);
vfs_release_phone(fs_phone);
msg = async_send_2(fs_phone, VFS_OUT_SYNC, file->node->dev_handle,
file->node->index, &answer);
 
/* Wait for reply from the FS server. */
ipcarg_t rc;
async_wait_for(msg, &rc);
fibril_mutex_unlock(&file->lock);
ipc_answer_1(rid, EOK, IPC_GET_ARG1(answer));
}
 
void vfs_sync(ipc_callid_t rid, ipc_call_t *request)
{
int fd = IPC_GET_ARG1(*request);
/* Lookup the file structure corresponding to the file descriptor. */
vfs_file_t *file = vfs_file_get(fd);
if (!file) {
ipc_answer_0(rid, ENOENT);
return;
}
/*
* Lock the open file structure so that no other thread can manipulate
* the same open file at a time.
*/
fibril_mutex_lock(&file->lock);
int fs_phone = vfs_grab_phone(file->node->fs_handle);
/* Make a VFS_SYMC request at the destination FS server. */
aid_t msg;
ipc_call_t answer;
msg = async_send_2(fs_phone, IPC_GET_METHOD(*request),
file->node->dev_handle, file->node->index, &answer);
 
vfs_release_phone(fs_phone);
 
/* Wait for reply from the FS server. */
ipcarg_t rc;
async_wait_for(msg, &rc);
fibril_mutex_unlock(&file->lock);
ipc_answer_0(rid, rc);
805,21 → 691,19
* the same open file at a time.
*/
fibril_mutex_lock(&file->lock);
int fs_phone = vfs_grab_phone(file->node->fs_handle);
/* Make a VFS_CLOSE request at the destination FS server. */
/* Make a VFS_OUT_CLOSE request at the destination FS server. */
aid_t msg;
ipc_call_t answer;
msg = async_send_2(fs_phone, IPC_GET_METHOD(*request),
file->node->dev_handle, file->node->index, &answer);
msg = async_send_2(fs_phone, VFS_OUT_CLOSE, file->node->dev_handle,
file->node->index, &answer);
 
vfs_release_phone(fs_phone);
/* Wait for reply from the FS server. */
ipcarg_t rc;
async_wait_for(msg, &rc);
 
vfs_release_phone(fs_phone);
fibril_mutex_unlock(&file->lock);
int retval = IPC_GET_ARG1(answer);
899,7 → 783,7
ipc_call_t answer;
if (!read && file->append)
file->pos = file->node->size;
msg = async_send_3(fs_phone, IPC_GET_METHOD(*request),
msg = async_send_3(fs_phone, read ? VFS_OUT_READ : VFS_OUT_WRITE,
file->node->dev_handle, file->node->index, file->pos, &answer);
/*
910,12 → 794,12
*/
ipc_forward_fast(callid, fs_phone, 0, 0, 0, IPC_FF_ROUTE_FROM_ME);
 
vfs_release_phone(fs_phone);
/* Wait for reply from the FS server. */
ipcarg_t rc;
async_wait_for(msg, &rc);
vfs_release_phone(fs_phone);
size_t bytes = IPC_GET_ARG1(answer);
 
if (file->node->type == VFS_NODE_DIRECTORY)
1013,7 → 897,7
int fs_phone;
fs_phone = vfs_grab_phone(fs_handle);
rc = async_req_3_0(fs_phone, VFS_TRUNCATE, (ipcarg_t)dev_handle,
rc = async_req_3_0(fs_phone, VFS_OUT_TRUNCATE, (ipcarg_t)dev_handle,
(ipcarg_t)index, (ipcarg_t)size);
vfs_release_phone(fs_phone);
return (int)rc;
1043,6 → 927,106
ipc_answer_0(rid, (ipcarg_t)rc);
}
 
void vfs_fstat(ipc_callid_t rid, ipc_call_t *request)
{
int fd = IPC_GET_ARG1(*request);
size_t size = IPC_GET_ARG2(*request);
ipcarg_t rc;
 
vfs_file_t *file = vfs_file_get(fd);
if (!file) {
ipc_answer_0(rid, ENOENT);
return;
}
 
ipc_callid_t callid;
if (!ipc_data_read_receive(&callid, NULL)) {
ipc_answer_0(callid, EINVAL);
ipc_answer_0(rid, EINVAL);
return;
}
 
fibril_mutex_lock(&file->lock);
 
int fs_phone = vfs_grab_phone(file->node->fs_handle);
aid_t msg;
msg = async_send_3(fs_phone, VFS_OUT_STAT, file->node->dev_handle,
file->node->index, true, NULL);
ipc_forward_fast(callid, fs_phone, 0, 0, 0, IPC_FF_ROUTE_FROM_ME);
async_wait_for(msg, &rc);
vfs_release_phone(fs_phone);
 
fibril_mutex_unlock(&file->lock);
ipc_answer_0(rid, rc);
}
 
void vfs_stat(ipc_callid_t rid, ipc_call_t *request)
{
size_t len;
ipc_callid_t callid;
 
if (!ipc_data_write_receive(&callid, &len)) {
ipc_answer_0(callid, EINVAL);
ipc_answer_0(rid, EINVAL);
return;
}
char *path = malloc(len + 1);
if (!path) {
ipc_answer_0(callid, ENOMEM);
ipc_answer_0(rid, ENOMEM);
return;
}
int rc;
if ((rc = ipc_data_write_finalize(callid, path, len))) {
ipc_answer_0(rid, rc);
free(path);
return;
}
path[len] = '\0';
 
if (!ipc_data_read_receive(&callid, NULL)) {
free(path);
ipc_answer_0(callid, EINVAL);
ipc_answer_0(rid, EINVAL);
return;
}
 
vfs_lookup_res_t lr;
fibril_rwlock_read_lock(&namespace_rwlock);
rc = vfs_lookup_internal(path, L_NONE, &lr, NULL);
free(path);
if (rc != EOK) {
fibril_rwlock_read_unlock(&namespace_rwlock);
ipc_answer_0(callid, rc);
ipc_answer_0(rid, rc);
return;
}
vfs_node_t *node = vfs_node_get(&lr);
if (!node) {
fibril_rwlock_read_unlock(&namespace_rwlock);
ipc_answer_0(callid, ENOMEM);
ipc_answer_0(rid, ENOMEM);
return;
}
 
fibril_rwlock_read_unlock(&namespace_rwlock);
 
int fs_phone = vfs_grab_phone(node->fs_handle);
aid_t msg;
msg = async_send_3(fs_phone, VFS_OUT_STAT, node->dev_handle,
node->index, false, NULL);
ipc_forward_fast(callid, fs_phone, 0, 0, 0, IPC_FF_ROUTE_FROM_ME);
ipcarg_t rv;
async_wait_for(msg, &rv);
vfs_release_phone(fs_phone);
 
ipc_answer_0(rid, rv);
 
vfs_node_put(node);
}
 
void vfs_mkdir(ipc_callid_t rid, ipc_call_t *request)
{
int mode = IPC_GET_ARG1(*request);
1117,12 → 1101,12
/*
* The name has already been unlinked by vfs_lookup_internal().
* We have to get and put the VFS node to ensure that it is
* VFS_DESTROY'ed after the last reference to it is dropped.
* VFS_OUT_DESTROY'ed after the last reference to it is dropped.
*/
vfs_node_t *node = vfs_node_get(&lr);
futex_down(&nodes_futex);
fibril_mutex_lock(&nodes_mutex);
node->lnkcnt--;
futex_up(&nodes_futex);
fibril_mutex_unlock(&nodes_mutex);
fibril_rwlock_write_unlock(&namespace_rwlock);
vfs_node_put(node);
ipc_answer_0(rid, EOK);
1271,9 → 1255,9
free(new);
return;
}
futex_down(&nodes_futex);
fibril_mutex_lock(&nodes_mutex);
new_node->lnkcnt--;
futex_up(&nodes_futex);
fibril_mutex_unlock(&nodes_mutex);
break;
default:
fibril_rwlock_write_unlock(&namespace_rwlock);
1293,9 → 1277,9
free(new);
return;
}
futex_down(&nodes_futex);
fibril_mutex_lock(&nodes_mutex);
old_node->lnkcnt++;
futex_up(&nodes_futex);
fibril_mutex_unlock(&nodes_mutex);
/* Destroy the link for the old name. */
rc = vfs_lookup_internal(oldc, L_UNLINK, NULL, NULL);
if (rc != EOK) {
1308,9 → 1292,9
free(new);
return;
}
futex_down(&nodes_futex);
fibril_mutex_lock(&nodes_mutex);
old_node->lnkcnt--;
futex_up(&nodes_futex);
fibril_mutex_unlock(&nodes_mutex);
fibril_rwlock_write_unlock(&namespace_rwlock);
vfs_node_put(old_node);
if (new_node)
/branches/dd/uspace/srv/vfs/vfs_register.c
52,8 → 52,9
#include <atomic.h>
#include "vfs.h"
 
FIBRIL_CONDVAR_INITIALIZE(fs_head_cv);
FIBRIL_MUTEX_INITIALIZE(fs_head_lock);
link_t fs_head;
LIST_INITIALIZE(fs_head);
 
atomic_t fs_handle_next = {
.count = 1
268,6 → 269,7
fs_info->fs_handle = (fs_handle_t) atomic_postinc(&fs_handle_next);
ipc_answer_1(rid, EOK, (ipcarg_t) fs_info->fs_handle);
fibril_condvar_broadcast(&fs_head_cv);
fibril_mutex_unlock(&fs_head_lock);
dprintf("\"%.*s\" filesystem successfully registered, handle=%d.\n",
283,13 → 285,14
*/
int vfs_grab_phone(fs_handle_t handle)
{
int phone;
 
/*
* For now, we don't try to be very clever and very fast.
* We simply lookup the phone in the fs_head list. We currently don't
* open any additional phones (even though that itself would be pretty
* straightforward; housekeeping multiple open phones to a FS task would
* be more demanding). Instead, we simply take the respective
* phone_futex and keep it until vfs_release_phone().
* For now, we don't try to be very clever and very fast. We simply
* lookup the phone in the fs_head list and duplicate it. The duplicate
* phone will be returned to the client and the client will use it for
* communication. In the future, we should cache the connections so
* that they do not have to be reestablished over and over again.
*/
fibril_mutex_lock(&fs_head_lock);
link_t *cur;
299,7 → 302,11
if (fs->fs_handle == handle) {
fibril_mutex_unlock(&fs_head_lock);
fibril_mutex_lock(&fs->phone_lock);
return fs->phone;
phone = ipc_connect_me_to(fs->phone, 0, 0, 0);
fibril_mutex_unlock(&fs->phone_lock);
 
assert(phone > 0);
return phone;
}
}
fibril_mutex_unlock(&fs_head_lock);
306,31 → 313,14
return 0;
}
 
/** Tell VFS that the phone is in use for any request.
/** Tell VFS that the phone is not needed anymore.
*
* @param phone Phone to FS task.
*/
void vfs_release_phone(int phone)
{
bool found = false;
 
fibril_mutex_lock(&fs_head_lock);
link_t *cur;
for (cur = fs_head.next; cur != &fs_head; cur = cur->next) {
fs_info_t *fs = list_get_instance(cur, fs_info_t, fs_link);
if (fs->phone == phone) {
found = true;
fibril_mutex_unlock(&fs_head_lock);
fibril_mutex_unlock(&fs->phone_lock);
return;
}
}
fibril_mutex_unlock(&fs_head_lock);
 
/*
* Not good to get here.
*/
assert(found == true);
/* TODO: implement connection caching */
ipc_hangup(phone);
}
 
/** Convert file system name to its handle.
/branches/dd/uspace/srv/vfs/vfs.h
36,7 → 36,6
#include <ipc/ipc.h>
#include <adt/list.h>
#include <fibril_sync.h>
#include <futex.h>
#include <sys/types.h>
#include <devmap.h>
#include <bool.h>
145,8 → 144,10
off_t pos;
} vfs_file_t;
 
extern futex_t nodes_futex;
extern fibril_mutex_t nodes_mutex;
 
extern fibril_condvar_t fs_head_cv;
extern fibril_mutex_t fs_head_lock;
extern link_t fs_head; /**< List of registered file systems. */
 
extern vfs_pair_t rootfs; /**< Root file system. */
158,7 → 159,7
size_t len; /**< Number of characters in this PLB entry. */
} plb_entry_t;
 
extern futex_t plb_futex; /**< Futex protecting plb and plb_head. */
extern fibril_mutex_t plb_mutex;/**< Mutex protecting plb and plb_head. */
extern uint8_t *plb; /**< Path Lookup Buffer */
extern link_t plb_head; /**< List of active PLB entries. */
 
193,19 → 194,19
extern void vfs_node_addref(vfs_node_t *);
extern void vfs_node_delref(vfs_node_t *);
 
extern void vfs_process_pending_mount(void);
extern void vfs_register(ipc_callid_t, ipc_call_t *);
extern void vfs_mount(ipc_callid_t, ipc_call_t *);
extern void vfs_open(ipc_callid_t, ipc_call_t *);
extern void vfs_open_node(ipc_callid_t, ipc_call_t *);
extern void vfs_device(ipc_callid_t, ipc_call_t *);
extern void vfs_sync(ipc_callid_t, ipc_call_t *);
extern void vfs_node(ipc_callid_t, ipc_call_t *);
extern void vfs_close(ipc_callid_t, ipc_call_t *);
extern void vfs_read(ipc_callid_t, ipc_call_t *);
extern void vfs_write(ipc_callid_t, ipc_call_t *);
extern void vfs_seek(ipc_callid_t, ipc_call_t *);
extern void vfs_truncate(ipc_callid_t, ipc_call_t *);
extern void vfs_fstat(ipc_callid_t, ipc_call_t *);
extern void vfs_fstat(ipc_callid_t, ipc_call_t *);
extern void vfs_stat(ipc_callid_t, ipc_call_t *);
extern void vfs_mkdir(ipc_callid_t, ipc_call_t *);
extern void vfs_unlink(ipc_callid_t, ipc_call_t *);
extern void vfs_rename(ipc_callid_t, ipc_call_t *);
/branches/dd/uspace/srv/vfs/vfs_node.c
38,7 → 38,6
#include "vfs.h"
#include <stdlib.h>
#include <string.h>
#include <futex.h>
#include <fibril_sync.h>
#include <adt/hash_table.h>
#include <assert.h>
45,8 → 44,8
#include <async.h>
#include <errno.h>
 
/** Futex protecting the VFS node hash table. */
futex_t nodes_futex = FUTEX_INITIALIZER;
/** Mutex protecting the VFS node hash table. */
FIBRIL_MUTEX_INITIALIZE(nodes_mutex);
 
#define NODES_BUCKETS_LOG 8
#define NODES_BUCKETS (1 << NODES_BUCKETS_LOG)
89,9 → 88,9
*/
void vfs_node_addref(vfs_node_t *node)
{
futex_down(&nodes_futex);
fibril_mutex_lock(&nodes_mutex);
_vfs_node_addref(node);
futex_up(&nodes_futex);
fibril_mutex_unlock(&nodes_mutex);
}
 
/** Decrement reference count of a VFS node.
105,7 → 104,7
bool free_vfs_node = false;
bool free_fs_node = false;
 
futex_down(&nodes_futex);
fibril_mutex_lock(&nodes_mutex);
if (node->refcnt-- == 1) {
/*
* We are dropping the last reference to this node.
121,7 → 120,7
if (!node->lnkcnt)
free_fs_node = true;
}
futex_up(&nodes_futex);
fibril_mutex_unlock(&nodes_mutex);
 
if (free_fs_node) {
/*
130,7 → 129,7
*/
int phone = vfs_grab_phone(node->fs_handle);
ipcarg_t rc;
rc = async_req_2_0(phone, VFS_DESTROY,
rc = async_req_2_0(phone, VFS_OUT_DESTROY,
(ipcarg_t)node->dev_handle, (ipcarg_t)node->index);
assert(rc == EOK);
vfs_release_phone(phone);
161,12 → 160,12
link_t *tmp;
vfs_node_t *node;
 
futex_down(&nodes_futex);
fibril_mutex_lock(&nodes_mutex);
tmp = hash_table_find(&nodes, key);
if (!tmp) {
node = (vfs_node_t *) malloc(sizeof(vfs_node_t));
if (!node) {
futex_up(&nodes_futex);
fibril_mutex_unlock(&nodes_mutex);
return NULL;
}
memset(node, 0, sizeof(vfs_node_t));
193,7 → 192,7
assert(node->type == result->type || result->type == VFS_NODE_UNKNOWN);
 
_vfs_node_addref(node);
futex_up(&nodes_futex);
fibril_mutex_unlock(&nodes_mutex);
 
return node;
}
/branches/dd/uspace/srv/vfs/vfs_lookup.c
42,14 → 42,14
#include <string.h>
#include <stdarg.h>
#include <bool.h>
#include <futex.h>
#include <fibril_sync.h>
#include <adt/list.h>
#include <vfs/canonify.h>
 
#define min(a, b) ((a) < (b) ? (a) : (b))
 
futex_t plb_futex = FUTEX_INITIALIZER;
link_t plb_head; /**< PLB entry ring buffer. */
FIBRIL_MUTEX_INITIALIZE(plb_mutex);
LIST_INITIALIZE(plb_head); /**< PLB entry ring buffer. */
uint8_t *plb = NULL;
 
/** Perform a path lookup.
92,7 → 92,7
va_end(ap);
}
futex_down(&plb_futex);
fibril_mutex_lock(&plb_mutex);
 
plb_entry_t entry;
link_initialize(&entry.plb_link);
119,7 → 119,7
/*
* The buffer cannot absorb the path.
*/
futex_up(&plb_futex);
fibril_mutex_unlock(&plb_mutex);
return ELIMIT;
}
} else {
127,7 → 127,7
/*
* The buffer cannot absorb the path.
*/
futex_up(&plb_futex);
fibril_mutex_unlock(&plb_mutex);
return ELIMIT;
}
}
146,7 → 146,7
*/
list_append(&entry.plb_link, &plb_head);
futex_up(&plb_futex);
fibril_mutex_unlock(&plb_mutex);
 
/*
* Copy the path into PLB.
159,16 → 159,16
 
ipc_call_t answer;
int phone = vfs_grab_phone(root->fs_handle);
aid_t req = async_send_5(phone, VFS_LOOKUP, (ipcarg_t) first,
aid_t req = async_send_5(phone, VFS_OUT_LOOKUP, (ipcarg_t) first,
(ipcarg_t) (first + len - 1) % PLB_SIZE,
(ipcarg_t) root->dev_handle, (ipcarg_t) lflag, (ipcarg_t) index,
&answer);
vfs_release_phone(phone);
ipcarg_t rc;
async_wait_for(req, &rc);
vfs_release_phone(phone);
futex_down(&plb_futex);
fibril_mutex_lock(&plb_mutex);
list_remove(&entry.plb_link);
/*
* Erasing the path from PLB will come handy for debugging purposes.
175,7 → 175,7
*/
memset(&plb[first], 0, cnt1);
memset(plb, 0, cnt2);
futex_up(&plb_futex);
fibril_mutex_unlock(&plb_mutex);
 
if ((rc == EOK) && (result)) {
result->triplet.fs_handle = (fs_handle_t) IPC_GET_ARG1(answer);
204,14 → 204,14
int phone = vfs_grab_phone(result->triplet.fs_handle);
ipc_call_t answer;
aid_t req = async_send_2(phone, VFS_OPEN_NODE,
aid_t req = async_send_2(phone, VFS_OUT_OPEN_NODE,
(ipcarg_t) result->triplet.dev_handle,
(ipcarg_t) result->triplet.index, &answer);
vfs_release_phone(phone);
ipcarg_t rc;
async_wait_for(req, &rc);
vfs_release_phone(phone);
if (rc == EOK) {
result->size = (size_t) IPC_GET_ARG1(answer);
/branches/dd/uspace/srv/vfs/vfs_file.c
57,7 → 57,7
* first VFS_OPEN operation.
*
* This resource being per-connection and, in the first place, per-fibril, we
* don't need to protect it by a futex.
* don't need to protect it by a mutex.
*/
fibril_local vfs_file_t **files = NULL;
 
/branches/dd/HelenOS.config
396,6 → 396,9
% Sun keyboard support
! [(CONFIG_HID_IN=generic|CONFIG_HID_IN=keyboard)&PLATFORM=sparc64&MACHINE=generic&(CONFIG_NS16550=y|CONFIG_Z8530=y)] CONFIG_SUN_KBD (y)
 
% Macintosh ADB keyboard support
! [(CONFIG_HID_IN=generic|CONFIG_HID_IN=keyboard)&PLATFORM=ppc32&(CONFIG_VIA_CUDA=y)] CONFIG_MAC_KBD (y)
 
% Dummy serial line input
! [CONFIG_MIPS_KBD=y|CONFIG_ARM_KBD=y] CONFIG_DSRLNIN (y)
 
456,3 → 459,9
 
% External ramdisk
! [PLATFORM=sparc64] CONFIG_RD_EXTERNAL (y/n)
 
% Load disk drivers on startup
! CONFIG_START_BD (n/y)
 
% Mount /data on startup
! [CONFIG_START_BD=y] CONFIG_MOUNT_DATA (n/y)
/branches/dd/defaults/sparc64/Makefile.config
54,3 → 54,9
 
# External ramdisk
CONFIG_RD_EXTERNAL = y
 
# Load disk drivers on startup
CONFIG_START_BD = n
 
# Mount /data on startup
CONFIG_MOUNT_DATA = n
/branches/dd/defaults/ia64/Makefile.config
42,3 → 42,9
 
# Output device class
CONFIG_HID_OUT = generic
 
# Load disk drivers on startup
CONFIG_START_BD = n
 
# Mount /data on startup
CONFIG_MOUNT_DATA = n
/branches/dd/defaults/arm32/Makefile.config
30,3 → 30,9
 
# What is your output device?
CONFIG_HID_OUT = generic
 
# Load disk drivers on startup
CONFIG_START_BD = n
 
# Mount /data on startup
CONFIG_MOUNT_DATA = n
/branches/dd/defaults/ppc32/Makefile.config
36,3 → 36,9
 
# Use Block Address Translation by the loader
CONFIG_BAT = y
 
# Load disk drivers on startup
CONFIG_START_BD = n
 
# Mount /data on startup
CONFIG_MOUNT_DATA = n
/branches/dd/defaults/amd64/Makefile.config
54,3 → 54,9
 
# Default framebuffer depth
CONFIG_VESA_BPP = 16
 
# Load disk drivers on startup
CONFIG_START_BD = n
 
# Mount /data on startup
CONFIG_MOUNT_DATA = n
/branches/dd/defaults/mips32/Makefile.config
36,3 → 36,9
 
# Output device class
CONFIG_HID_OUT = generic
 
# Load disk drivers on startup
CONFIG_START_BD = n
 
# Mount /data on startup
CONFIG_MOUNT_DATA = n
/branches/dd/defaults/ia32/Makefile.config
60,3 → 60,9
 
# Default framebuffer depth
CONFIG_VESA_BPP = 16
 
# Load disk drivers on startup
CONFIG_START_BD = n
 
# Mount /data on startup
CONFIG_MOUNT_DATA = n