Subversion Repositories HelenOS

Compare Revisions

Ignore whitespace Rev 429 → Rev 430

/SPARTAN/trunk/generic/src/debug/print.c
0,0 → 1,406
/*
* Copyright (C) 2001-2004 Jakub Jermar
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* - The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
 
#include <putchar.h>
#include <print.h>
#include <synch/spinlock.h>
#include <arch/arg.h>
#include <arch/asm.h>
#include <arch/fmath.h>
 
#include <arch.h>
 
static char digits[] = "0123456789abcdef"; /**< Hexadecimal characters */
static spinlock_t printflock; /**< printf spinlock */
 
#define DEFAULT_DOUBLE_PRECISION 16
#define DEFAULT_DOUBLE_BUFFER_SIZE 128
 
void print_double(double num, __u8 modifier, __u16 precision)
{
double intval,intval2;
int counter;
int exponent,exponenttmp;
unsigned char buf[DEFAULT_DOUBLE_BUFFER_SIZE];
unsigned long in1,in2;
 
if (fmath_is_nan(num)) {
print_str("NaN");
return;
}
if (num<0.0) {
putchar('-');
num=num*-1.0;
}
 
 
if (fmath_is_infinity(num)) {
print_str("Inf");
return;
}
 
if ((modifier=='E')||(modifier=='e')) {
intval2=fmath_fint(fmath_get_decimal_exponent(num),&intval);
exponent=intval;
if ((intval2<0.0)) exponent--;
num = num / ((fmath_dpow(10.0,exponent)));
print_double(num,modifier+1,precision); /* modifier+1 = E => F or e => f */
putchar(modifier);
if (exponent<0) {
putchar('-');
exponent*=-1;
}
print_number(exponent,10);
return;
}
/* TODO: rounding constant - when we got fraction >= 0.5, we must increment last printed number */
 
/*
* Here is a problem with cumulative error while printing big double values -> we will divide
* the number with a power of 10, print new number with better method for small numbers and
* then print decimal point at correct position.
*/
fmath_fint(fmath_get_decimal_exponent(num),&intval);
exponent=(intval>0.0?intval:0);
precision+=exponent;
if (exponent>0) num = num / ((fmath_dpow(10.0,exponent)));
num=fmath_fint(num,&intval);
if (precision>0) {
counter=precision-1;
if (exponent>0) counter++;
if (counter>=DEFAULT_DOUBLE_BUFFER_SIZE) {
counter=DEFAULT_DOUBLE_BUFFER_SIZE;
}
exponenttmp=exponent;
while(counter>=0) {
num *= 10.0;
num = fmath_fint(num,&intval2);
buf[counter--]=((int)intval2)+'0';
exponenttmp--;
if ((exponenttmp==0)&&(counter>=0)) buf[counter--]='.';
}
counter=precision;
if ((exponent==0)&&(counter<DEFAULT_DOUBLE_BUFFER_SIZE)) buf[counter]='.';
counter++;
} else {
counter=0;
}
in1=intval;
if (in1==0.0) {
if (counter<DEFAULT_DOUBLE_BUFFER_SIZE) buf[counter++]='0';
} else {
while(( in1>0 )&&(counter<DEFAULT_DOUBLE_BUFFER_SIZE)) {
in2=in1;
in1/=10;
buf[counter]=in2-in1*10 + '0';
counter++;
}
}
counter = (counter>=DEFAULT_DOUBLE_BUFFER_SIZE?DEFAULT_DOUBLE_BUFFER_SIZE:counter);
while (counter>0) {
putchar(buf[--counter]);
}
return;
}
 
/** Print NULL terminated string
*
* Print characters from str using putchar() until
* \\0 character is reached.
*
* @param str Characters to print.
*
*/
void print_str(const char *str)
{
int i = 0;
char c;
while (c = str[i++])
putchar(c);
}
 
 
/** Print hexadecimal digits
*
* Print fixed count of hexadecimal digits from
* the number num. The digits are printed in
* natural left-to-right order starting with
* the width-th digit.
*
* @param num Number containing digits.
* @param width Count of digits to print.
*
*/
void print_fixed_hex(const __u64 num, const int width)
{
int i;
for (i = width*8 - 4; i >= 0; i -= 4)
putchar(digits[(num>>i) & 0xf]);
}
 
 
/** Print number in given base
*
* Print significant digits of a number in given
* base.
*
* @param num Number to print.
* @param base Base to print the number in (should
* be in range 2 .. 16).
*
*/
void print_number(const __native num, const unsigned int base)
{
int val = num;
char d[sizeof(__native)*8+1]; /* this is good enough even for base == 2 */
int i = sizeof(__native)*8-1;
do {
d[i--] = digits[val % base];
} while (val /= base);
d[sizeof(__native)*8] = 0;
print_str(&d[i + 1]);
}
 
 
/** General formatted text print
*
* Print text formatted according the fmt parameter
* and variant arguments. Each formatting directive
* begins with \% (percentage) character and one of the
* following character:
*
* \% Prints the percentage character.
*
* s The next variant argument is treated as char*
* and printed as a NULL terminated string.
*
* c The next variant argument is treated as a single char.
*
* p The next variant argument is treated as a maximum
* bit-width integer with respect to architecture
* and printed in full hexadecimal width.
*
* P As with 'p', but '0x' is prefixed.
*
* q The next variant argument is treated as a 64b integer
* and printed in full hexadecimal width.
*
* Q As with 'q', but '0x' is prefixed.
*
* l The next variant argument is treated as a 32b integer
* and printed in full hexadecimal width.
*
* L As with 'l', but '0x' is prefixed.
*
* w The next variant argument is treated as a 16b integer
* and printed in full hexadecimal width.
*
* W As with 'w', but '0x' is prefixed.
*
* b The next variant argument is treated as a 8b integer
* and printed in full hexadecimal width.
*
* B As with 'b', but '0x' is prefixed.
*
* d The next variant argument is treated as integer
* and printed in standard decimal format (only significant
* digits).
*
* x The next variant argument is treated as integer
* and printed in standard hexadecimal format (only significant
* digits).
*
* X As with 'x', but '0x' is prefixed.
*
* . The decimal number following period will be treated as precision
* for printing floating point numbers. One of 'e', 'E', 'f' or 'F'
* must follow.
*
* e The next variant argument is treated as double precision float
* and printed in exponent notation with only one digit before decimal point
* in specified precision. The exponent sign is printed as 'e'.
*
* E As with 'e', but the exponent sign is printed as 'E'.
*
* f The next variant argument is treated as double precision float
* and printed in decimal notation in specified precision.
*
* F As with 'f'.
*
* All other characters from fmt except the formatting directives
* are printed in verbatim.
*
* @param fmt Formatting NULL terminated string.
*/
void printf(const char *fmt, ...)
{
int irqpri, i = 0;
va_list ap;
char c;
__u16 precision;
va_start(ap, fmt);
 
irqpri = interrupts_disable();
spinlock_lock(&printflock);
 
while (c = fmt[i++]) {
switch (c) {
 
/* control character */
case '%':
precision = DEFAULT_DOUBLE_PRECISION;
if (fmt[i]=='.') {
precision=0;
c=fmt[++i];
while((c>='0')&&(c<='9')) {
precision = precision*10 + c - '0';
c=fmt[++i];
}
}
switch (c = fmt[i++]) {
 
/* percentile itself */
case '%':
break;
 
/*
* String and character conversions.
*/
case 's':
print_str(va_arg(ap, char_ptr));
goto loop;
 
case 'c':
c = (char) va_arg(ap, int);
break;
 
/*
* Hexadecimal conversions with fixed width.
*/
case 'P':
print_str("0x");
case 'p':
print_fixed_hex(va_arg(ap, __native), sizeof(__native));
goto loop;
 
case 'Q':
print_str("0x");
case 'q':
print_fixed_hex(va_arg(ap, __u64), INT64);
goto loop;
 
case 'L':
print_str("0x");
case 'l':
print_fixed_hex(va_arg(ap, __native), INT32);
goto loop;
 
case 'W':
print_str("0x");
case 'w':
print_fixed_hex(va_arg(ap, __native), INT16);
goto loop;
 
case 'B':
print_str("0x");
case 'b':
print_fixed_hex(va_arg(ap, __native), INT8);
goto loop;
 
/*
* Floating point conversions.
*/
case 'F':
print_double(va_arg(ap, double),'F',precision);
goto loop;
case 'f':
print_double(va_arg(ap, double),'f',precision);
goto loop;
case 'E':
print_double(va_arg(ap, double),'E',precision);
goto loop;
case 'e':
print_double(va_arg(ap, double),'e',precision);
goto loop;
/*
* Decimal and hexadecimal conversions.
*/
case 'd':
print_number(va_arg(ap, __native), 10);
goto loop;
 
case 'X':
print_str("0x");
case 'x':
print_number(va_arg(ap, __native), 16);
goto loop;
/*
* Bad formatting.
*/
default:
goto out;
}
 
default: putchar(c);
}
loop:
;
}
 
out:
spinlock_unlock(&printflock);
interrupts_restore(irqpri);
va_end(ap);
}