Subversion Repositories HelenOS

Compare Revisions

Ignore whitespace Rev HEAD → Rev 2728

/trunk/uspace/srv/fs/devfs/devfs.h
File deleted
/trunk/uspace/srv/fs/devfs/Makefile
File deleted
/trunk/uspace/srv/fs/devfs/devfs_ops.h
File deleted
/trunk/uspace/srv/fs/devfs/devfs.c
File deleted
/trunk/uspace/srv/fs/devfs/devfs_ops.c
File deleted
/trunk/uspace/srv/fs/tmpfs/tmpfs_dump.c
File deleted
/trunk/uspace/srv/fs/tmpfs/tmpfs_ops.c
45,406 → 45,310
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <dirent.h>
#include <assert.h>
#include <sys/types.h>
#include <adt/hash_table.h>
#include <libadt/hash_table.h>
#include <as.h>
#include <libfs.h>
 
#define min(a, b) ((a) < (b) ? (a) : (b))
#define max(a, b) ((a) > (b) ? (a) : (b))
 
#define NODES_BUCKETS 256
#define PLB_GET_CHAR(i) (tmpfs_reg.plb_ro[(i) % PLB_SIZE])
 
/** All root nodes have index 0. */
#define TMPFS_SOME_ROOT 0
/** Global counter for assigning node indices. Shared by all instances. */
fs_index_t tmpfs_next_index = 1;
#define DENTRIES_BUCKETS 256
 
/*
* Implementation of the libfs interface.
* Hash table of all directory entries.
*/
hash_table_t dentries;
 
/* Forward declarations of static functions. */
static fs_node_t *tmpfs_match(fs_node_t *, const char *);
static fs_node_t *tmpfs_node_get(dev_handle_t, fs_index_t);
static void tmpfs_node_put(fs_node_t *);
static fs_node_t *tmpfs_create_node(dev_handle_t, int);
static int tmpfs_link_node(fs_node_t *, fs_node_t *, const char *);
static int tmpfs_unlink_node(fs_node_t *, fs_node_t *, const char *);
static int tmpfs_destroy_node(fs_node_t *);
 
/* Implementation of helper functions. */
static fs_index_t tmpfs_index_get(fs_node_t *fn)
static hash_index_t dentries_hash(unsigned long *key)
{
return TMPFS_NODE(fn)->index;
return *key % DENTRIES_BUCKETS;
}
 
static size_t tmpfs_size_get(fs_node_t *fn)
static int dentries_compare(unsigned long *key, hash_count_t keys,
link_t *item)
{
return TMPFS_NODE(fn)->size;
tmpfs_dentry_t *dentry = hash_table_get_instance(item, tmpfs_dentry_t,
dh_link);
return dentry->index == *key;
}
 
static unsigned tmpfs_lnkcnt_get(fs_node_t *fn)
static void dentries_remove_callback(link_t *item)
{
return TMPFS_NODE(fn)->lnkcnt;
}
 
static bool tmpfs_has_children(fs_node_t *fn)
{
return !list_empty(&TMPFS_NODE(fn)->cs_head);
}
 
static fs_node_t *tmpfs_root_get(dev_handle_t dev_handle)
{
return tmpfs_node_get(dev_handle, TMPFS_SOME_ROOT);
}
 
static char tmpfs_plb_get_char(unsigned pos)
{
return tmpfs_reg.plb_ro[pos % PLB_SIZE];
}
 
static bool tmpfs_is_directory(fs_node_t *fn)
{
return TMPFS_NODE(fn)->type == TMPFS_DIRECTORY;
}
 
static bool tmpfs_is_file(fs_node_t *fn)
{
return TMPFS_NODE(fn)->type == TMPFS_FILE;
}
 
/** libfs operations */
libfs_ops_t tmpfs_libfs_ops = {
.match = tmpfs_match,
.node_get = tmpfs_node_get,
.node_put = tmpfs_node_put,
.create = tmpfs_create_node,
.destroy = tmpfs_destroy_node,
.link = tmpfs_link_node,
.unlink = tmpfs_unlink_node,
.index_get = tmpfs_index_get,
.size_get = tmpfs_size_get,
.lnkcnt_get = tmpfs_lnkcnt_get,
.has_children = tmpfs_has_children,
.root_get = tmpfs_root_get,
.plb_get_char = tmpfs_plb_get_char,
.is_directory = tmpfs_is_directory,
.is_file = tmpfs_is_file
/** TMPFS dentries hash table operations. */
hash_table_operations_t dentries_ops = {
.hash = dentries_hash,
.compare = dentries_compare,
.remove_callback = dentries_remove_callback
};
 
/** Hash table of all TMPFS nodes. */
hash_table_t nodes;
unsigned tmpfs_next_index = 1;
 
#define NODES_KEY_INDEX 0
#define NODES_KEY_DEV 1
 
/* Implementation of hash table interface for the nodes hash table. */
static hash_index_t nodes_hash(unsigned long key[])
static void tmpfs_dentry_initialize(tmpfs_dentry_t *dentry)
{
return key[NODES_KEY_INDEX] % NODES_BUCKETS;
dentry->index = 0;
dentry->parent = NULL;
dentry->sibling = NULL;
dentry->child = NULL;
dentry->name = NULL;
dentry->type = TMPFS_NONE;
dentry->size = 0;
dentry->data = NULL;
link_initialize(&dentry->dh_link);
}
 
static int nodes_compare(unsigned long key[], hash_count_t keys, link_t *item)
{
tmpfs_node_t *nodep = hash_table_get_instance(item, tmpfs_node_t,
nh_link);
return (nodep->index == key[NODES_KEY_INDEX] &&
nodep->dev_handle == key[NODES_KEY_DEV]);
}
/*
* For now, we don't distinguish between different dev_handles/instances. All
* requests resolve to the only instance, rooted in the following variable.
*/
static tmpfs_dentry_t *root;
 
static void nodes_remove_callback(link_t *item)
static bool tmpfs_init(void)
{
}
if (!hash_table_create(&dentries, DENTRIES_BUCKETS, 1, &dentries_ops))
return false;
 
/** TMPFS nodes hash table operations. */
hash_table_operations_t nodes_ops = {
.hash = nodes_hash,
.compare = nodes_compare,
.remove_callback = nodes_remove_callback
};
root = (tmpfs_dentry_t *) malloc(sizeof(tmpfs_dentry_t));
if (!root)
return false;
tmpfs_dentry_initialize(root);
root->index = tmpfs_next_index++;
root->name = "";
root->type = TMPFS_DIRECTORY;
hash_table_insert(&dentries, &root->index, &root->dh_link);
 
static void tmpfs_node_initialize(tmpfs_node_t *nodep)
{
nodep->bp = NULL;
nodep->index = 0;
nodep->dev_handle = 0;
nodep->type = TMPFS_NONE;
nodep->lnkcnt = 0;
nodep->size = 0;
nodep->data = NULL;
link_initialize(&nodep->nh_link);
list_initialize(&nodep->cs_head);
}
 
static void tmpfs_dentry_initialize(tmpfs_dentry_t *dentryp)
{
link_initialize(&dentryp->link);
dentryp->name = NULL;
dentryp->node = NULL;
}
 
bool tmpfs_init(void)
{
if (!hash_table_create(&nodes, NODES_BUCKETS, 2, &nodes_ops))
return false;
return true;
}
 
static bool tmpfs_instance_init(dev_handle_t dev_handle)
/** Compare one component of path to a directory entry.
*
* @param dentry Directory entry to compare the path component with.
* @param component Array of characters holding component name.
*
* @return True on match, false otherwise.
*/
static bool match_component(tmpfs_dentry_t *dentry, const char *component)
{
fs_node_t *rfn;
rfn = tmpfs_create_node(dev_handle, L_DIRECTORY);
if (!rfn)
return false;
TMPFS_NODE(rfn)->lnkcnt = 0; /* FS root is not linked */
return true;
return !strcmp(dentry->name, component);
}
 
fs_node_t *tmpfs_match(fs_node_t *pfn, const char *component)
static unsigned long create_node(tmpfs_dentry_t *dentry,
const char *component, int lflag)
{
tmpfs_node_t *parentp = TMPFS_NODE(pfn);
link_t *lnk;
assert(dentry->type == TMPFS_DIRECTORY);
assert((lflag & L_FILE) ^ (lflag & L_DIRECTORY));
 
for (lnk = parentp->cs_head.next; lnk != &parentp->cs_head;
lnk = lnk->next) {
tmpfs_dentry_t *dentryp = list_get_instance(lnk, tmpfs_dentry_t,
link);
if (!str_cmp(dentryp->name, component))
return FS_NODE(dentryp->node);
tmpfs_dentry_t *node = malloc(sizeof(tmpfs_dentry_t));
if (!node)
return 0;
size_t len = strlen(component);
char *name = malloc(len + 1);
if (!name) {
free(node);
return 0;
}
strcpy(name, component);
 
return NULL;
}
tmpfs_dentry_initialize(node);
node->index = tmpfs_next_index++;
node->name = name;
node->parent = dentry;
if (lflag & L_DIRECTORY)
node->type = TMPFS_DIRECTORY;
else
node->type = TMPFS_FILE;
 
fs_node_t *tmpfs_node_get(dev_handle_t dev_handle, fs_index_t index)
{
unsigned long key[] = {
[NODES_KEY_INDEX] = index,
[NODES_KEY_DEV] = dev_handle
};
link_t *lnk = hash_table_find(&nodes, key);
if (!lnk)
return NULL;
return FS_NODE(hash_table_get_instance(lnk, tmpfs_node_t, nh_link));
}
/* Insert the new node into the namespace. */
if (dentry->child) {
tmpfs_dentry_t *tmp = dentry->child;
while (tmp->sibling)
tmp = tmp->sibling;
tmp->sibling = node;
} else {
dentry->child = node;
}
 
void tmpfs_node_put(fs_node_t *fn)
{
/* nothing to do */
/* Insert the new node into the dentry hash table. */
hash_table_insert(&dentries, &node->index, &node->dh_link);
return node->index;
}
 
fs_node_t *tmpfs_create_node(dev_handle_t dev_handle, int lflag)
static int destroy_component(tmpfs_dentry_t *dentry)
{
assert((lflag & L_FILE) ^ (lflag & L_DIRECTORY));
 
tmpfs_node_t *nodep = malloc(sizeof(tmpfs_node_t));
if (!nodep)
return NULL;
tmpfs_node_initialize(nodep);
nodep->bp = malloc(sizeof(fs_node_t));
if (!nodep->bp) {
free(nodep);
return NULL;
}
fs_node_initialize(nodep->bp);
nodep->bp->data = nodep; /* link the FS and TMPFS nodes */
if (!tmpfs_root_get(dev_handle))
nodep->index = TMPFS_SOME_ROOT;
else
nodep->index = tmpfs_next_index++;
nodep->dev_handle = dev_handle;
if (lflag & L_DIRECTORY)
nodep->type = TMPFS_DIRECTORY;
else
nodep->type = TMPFS_FILE;
 
/* Insert the new node into the nodes hash table. */
unsigned long key[] = {
[NODES_KEY_INDEX] = nodep->index,
[NODES_KEY_DEV] = nodep->dev_handle
};
hash_table_insert(&nodes, key, &nodep->nh_link);
return FS_NODE(nodep);
return EPERM;
}
 
int tmpfs_link_node(fs_node_t *pfn, fs_node_t *cfn, const char *nm)
void tmpfs_lookup(ipc_callid_t rid, ipc_call_t *request)
{
tmpfs_node_t *parentp = TMPFS_NODE(pfn);
tmpfs_node_t *childp = TMPFS_NODE(cfn);
tmpfs_dentry_t *dentryp;
link_t *lnk;
unsigned next = IPC_GET_ARG1(*request);
unsigned last = IPC_GET_ARG2(*request);
int dev_handle = IPC_GET_ARG3(*request);
int lflag = IPC_GET_ARG4(*request);
 
assert(parentp->type == TMPFS_DIRECTORY);
if (last < next)
last += PLB_SIZE;
 
/* Check for duplicit entries. */
for (lnk = parentp->cs_head.next; lnk != &parentp->cs_head;
lnk = lnk->next) {
dentryp = list_get_instance(lnk, tmpfs_dentry_t, link);
if (!str_cmp(dentryp->name, nm))
return EEXIST;
/*
* Initialize TMPFS.
*/
if (!root && !tmpfs_init()) {
ipc_answer_0(rid, ENOMEM);
return;
}
 
/* Allocate and initialize the dentry. */
dentryp = malloc(sizeof(tmpfs_dentry_t));
if (!dentryp)
return ENOMEM;
tmpfs_dentry_initialize(dentryp);
tmpfs_dentry_t *dtmp = root->child;
tmpfs_dentry_t *dcur = root;
 
/* Populate and link the new dentry. */
size_t size = str_size(nm);
dentryp->name = malloc(size + 1);
if (!dentryp->name) {
free(dentryp);
return ENOMEM;
}
str_cpy(dentryp->name, size + 1, nm);
dentryp->node = childp;
childp->lnkcnt++;
list_append(&dentryp->link, &parentp->cs_head);
 
return EOK;
}
 
int tmpfs_unlink_node(fs_node_t *pfn, fs_node_t *cfn, const char *nm)
{
tmpfs_node_t *parentp = TMPFS_NODE(pfn);
tmpfs_node_t *childp = NULL;
tmpfs_dentry_t *dentryp;
link_t *lnk;
 
if (!parentp)
return EBUSY;
if (PLB_GET_CHAR(next) == '/')
next++; /* eat slash */
for (lnk = parentp->cs_head.next; lnk != &parentp->cs_head;
lnk = lnk->next) {
dentryp = list_get_instance(lnk, tmpfs_dentry_t, link);
if (!str_cmp(dentryp->name, nm)) {
childp = dentryp->node;
assert(FS_NODE(childp) == cfn);
break;
}
}
char component[NAME_MAX + 1];
int len = 0;
while (dtmp && next <= last) {
 
if (!childp)
return ENOENT;
if ((childp->lnkcnt == 1) && !list_empty(&childp->cs_head))
return ENOTEMPTY;
/* collect the component */
if (PLB_GET_CHAR(next) != '/') {
if (len + 1 == NAME_MAX) {
/* comopnent length overflow */
ipc_answer_0(rid, ENAMETOOLONG);
return;
}
component[len++] = PLB_GET_CHAR(next);
next++; /* process next character */
if (next <= last)
continue;
}
 
list_remove(&dentryp->link);
free(dentryp);
childp->lnkcnt--;
assert(len);
component[len] = '\0';
next++; /* eat slash */
len = 0;
 
return EOK;
}
/* match the component */
while (dtmp && !match_component(dtmp, component))
dtmp = dtmp->sibling;
 
int tmpfs_destroy_node(fs_node_t *fn)
{
tmpfs_node_t *nodep = TMPFS_NODE(fn);
assert(!nodep->lnkcnt);
assert(list_empty(&nodep->cs_head));
/* handle miss: match amongst siblings */
if (!dtmp) {
if ((next > last) && (lflag & L_CREATE)) {
/* no components left and L_CREATE specified */
if (dcur->type != TMPFS_DIRECTORY) {
ipc_answer_0(rid, ENOTDIR);
return;
}
unsigned long index = create_node(dcur,
component, lflag);
if (index > 0) {
ipc_answer_4(rid, EOK,
tmpfs_reg.fs_handle, dev_handle,
index, 0);
} else {
ipc_answer_0(rid, ENOSPC);
}
return;
}
ipc_answer_0(rid, ENOENT);
return;
}
 
unsigned long key[] = {
[NODES_KEY_INDEX] = nodep->index,
[NODES_KEY_DEV] = nodep->dev_handle
};
hash_table_remove(&nodes, key, 2);
/* descend one level */
dcur = dtmp;
dtmp = dtmp->child;
}
 
if (nodep->type == TMPFS_FILE)
free(nodep->data);
free(nodep->bp);
free(nodep);
return EOK;
}
/* handle miss: excessive components */
if (!dtmp && next <= last) {
if (lflag & L_CREATE) {
if (dcur->type != TMPFS_DIRECTORY) {
ipc_answer_0(rid, ENOTDIR);
return;
}
 
void tmpfs_mounted(ipc_callid_t rid, ipc_call_t *request)
{
dev_handle_t dev_handle = (dev_handle_t) IPC_GET_ARG1(*request);
/* collect next component */
while (next <= last) {
if (PLB_GET_CHAR(next) == '/') {
/* more than one component */
ipc_answer_0(rid, ENOENT);
return;
}
if (len + 1 == NAME_MAX) {
/* component length overflow */
ipc_answer_0(rid, ENAMETOOLONG);
return;
}
component[len++] = PLB_GET_CHAR(next);
next++; /* process next character */
}
assert(len);
component[len] = '\0';
len = 0;
unsigned long index;
index = create_node(dcur, component, lflag);
if (index) {
ipc_answer_4(rid, EOK, tmpfs_reg.fs_handle,
dev_handle, index, 0);
} else {
ipc_answer_0(rid, ENOSPC);
}
return;
}
ipc_answer_0(rid, ENOENT);
return;
}
 
/* accept the mount options */
ipc_callid_t callid;
size_t size;
if (!ipc_data_write_receive(&callid, &size)) {
ipc_answer_0(callid, EINVAL);
ipc_answer_0(rid, EINVAL);
/* handle hit */
if (lflag & L_DESTROY) {
int res = destroy_component(dcur);
ipc_answer_0(rid, res);
return;
}
char *opts = malloc(size + 1);
if (!opts) {
ipc_answer_0(callid, ENOMEM);
ipc_answer_0(rid, ENOMEM);
if ((lflag & (L_CREATE | L_EXCLUSIVE)) == (L_CREATE | L_EXCLUSIVE)) {
ipc_answer_0(rid, EEXIST);
return;
}
ipcarg_t retval = ipc_data_write_finalize(callid, opts, size);
if (retval != EOK) {
ipc_answer_0(rid, retval);
free(opts);
if ((lflag & L_FILE) && (dcur->type != TMPFS_FILE)) {
ipc_answer_0(rid, EISDIR);
return;
}
opts[size] = '\0';
 
/* Initialize TMPFS instance. */
if (!tmpfs_instance_init(dev_handle)) {
ipc_answer_0(rid, ENOMEM);
if ((lflag & L_DIRECTORY) && (dcur->type != TMPFS_DIRECTORY)) {
ipc_answer_0(rid, ENOTDIR);
return;
}
 
tmpfs_node_t *rootp = TMPFS_NODE(tmpfs_root_get(dev_handle));
if (str_cmp(opts, "restore") == 0) {
if (tmpfs_restore(dev_handle))
ipc_answer_3(rid, EOK, rootp->index, rootp->size,
rootp->lnkcnt);
else
ipc_answer_0(rid, ELIMIT);
} else {
ipc_answer_3(rid, EOK, rootp->index, rootp->size,
rootp->lnkcnt);
}
ipc_answer_4(rid, EOK, tmpfs_reg.fs_handle, dev_handle, dcur->index,
dcur->size);
}
 
void tmpfs_mount(ipc_callid_t rid, ipc_call_t *request)
{
libfs_mount(&tmpfs_libfs_ops, tmpfs_reg.fs_handle, rid, request);
}
 
void tmpfs_lookup(ipc_callid_t rid, ipc_call_t *request)
{
libfs_lookup(&tmpfs_libfs_ops, tmpfs_reg.fs_handle, rid, request);
}
 
void tmpfs_read(ipc_callid_t rid, ipc_call_t *request)
{
dev_handle_t dev_handle = (dev_handle_t)IPC_GET_ARG1(*request);
fs_index_t index = (fs_index_t)IPC_GET_ARG2(*request);
off_t pos = (off_t)IPC_GET_ARG3(*request);
int dev_handle = IPC_GET_ARG1(*request);
unsigned long index = IPC_GET_ARG2(*request);
off_t pos = IPC_GET_ARG3(*request);
 
/*
* Lookup the respective TMPFS node.
* Lookup the respective dentry.
*/
link_t *hlp;
unsigned long key[] = {
[NODES_KEY_INDEX] = index,
[NODES_KEY_DEV] = dev_handle,
};
hlp = hash_table_find(&nodes, key);
hlp = hash_table_find(&dentries, &index);
if (!hlp) {
ipc_answer_0(rid, ENOENT);
return;
}
tmpfs_node_t *nodep = hash_table_get_instance(hlp, tmpfs_node_t,
nh_link);
tmpfs_dentry_t *dentry = hash_table_get_instance(hlp, tmpfs_dentry_t,
dh_link);
 
/*
* Receive the read request.
*/
ipc_callid_t callid;
size_t size;
if (!ipc_data_read_receive(&callid, &size)) {
size_t len;
if (!ipc_data_read_receive(&callid, &len)) {
ipc_answer_0(callid, EINVAL);
ipc_answer_0(rid, EINVAL);
return;
451,16 → 355,15
}
 
size_t bytes;
if (nodep->type == TMPFS_FILE) {
bytes = max(0, min(nodep->size - pos, size));
(void) ipc_data_read_finalize(callid, nodep->data + pos,
if (dentry->type == TMPFS_FILE) {
bytes = max(0, min(dentry->size - pos, len));
(void) ipc_data_read_finalize(callid, dentry->data + pos,
bytes);
} else {
tmpfs_dentry_t *dentryp;
link_t *lnk;
int i;
tmpfs_dentry_t *cur = dentry->child;
assert(nodep->type == TMPFS_DIRECTORY);
assert(dentry->type == TMPFS_DIRECTORY);
/*
* Yes, we really use O(n) algorithm here.
467,21 → 370,18
* If it bothers someone, it could be fixed by introducing a
* hash table.
*/
for (i = 0, lnk = nodep->cs_head.next;
i < pos && lnk != &nodep->cs_head;
i++, lnk = lnk->next)
for (i = 0, cur = dentry->child; i < pos && cur; i++,
cur = cur->sibling)
;
 
if (lnk == &nodep->cs_head) {
if (!cur) {
ipc_answer_0(callid, ENOENT);
ipc_answer_1(rid, ENOENT, 0);
return;
}
 
dentryp = list_get_instance(lnk, tmpfs_dentry_t, link);
 
(void) ipc_data_read_finalize(callid, dentryp->name,
str_size(dentryp->name) + 1);
(void) ipc_data_read_finalize(callid, cur->name,
strlen(cur->name) + 1);
bytes = 1;
}
 
493,32 → 393,28
 
void tmpfs_write(ipc_callid_t rid, ipc_call_t *request)
{
dev_handle_t dev_handle = (dev_handle_t)IPC_GET_ARG1(*request);
fs_index_t index = (fs_index_t)IPC_GET_ARG2(*request);
off_t pos = (off_t)IPC_GET_ARG3(*request);
int dev_handle = IPC_GET_ARG1(*request);
unsigned long index = IPC_GET_ARG2(*request);
off_t pos = IPC_GET_ARG3(*request);
 
/*
* Lookup the respective TMPFS node.
* Lookup the respective dentry.
*/
link_t *hlp;
unsigned long key[] = {
[NODES_KEY_INDEX] = index,
[NODES_KEY_DEV] = dev_handle
};
hlp = hash_table_find(&nodes, key);
hlp = hash_table_find(&dentries, &index);
if (!hlp) {
ipc_answer_0(rid, ENOENT);
return;
}
tmpfs_node_t *nodep = hash_table_get_instance(hlp, tmpfs_node_t,
nh_link);
tmpfs_dentry_t *dentry = hash_table_get_instance(hlp, tmpfs_dentry_t,
dh_link);
 
/*
* Receive the write request.
*/
ipc_callid_t callid;
size_t size;
if (!ipc_data_write_receive(&callid, &size)) {
size_t len;
if (!ipc_data_write_receive(&callid, &len)) {
ipc_answer_0(callid, EINVAL);
ipc_answer_0(rid, EINVAL);
return;
527,13 → 423,13
/*
* Check whether the file needs to grow.
*/
if (pos + size <= nodep->size) {
if (pos + len <= dentry->size) {
/* The file size is not changing. */
(void) ipc_data_write_finalize(callid, nodep->data + pos, size);
ipc_answer_2(rid, EOK, size, nodep->size);
(void) ipc_data_write_finalize(callid, dentry->data + pos, len);
ipc_answer_2(rid, EOK, len, dentry->size);
return;
}
size_t delta = (pos + size) - nodep->size;
size_t delta = (pos + len) - dentry->size;
/*
* At this point, we are deliberately extremely straightforward and
* simply realloc the contents of the file on every write that grows the
541,104 → 437,57
* our heap allocator can save us and just grow the block whenever
* possible.
*/
void *newdata = realloc(nodep->data, nodep->size + delta);
void *newdata = realloc(dentry->data, dentry->size + delta);
if (!newdata) {
ipc_answer_0(callid, ENOMEM);
ipc_answer_2(rid, EOK, 0, nodep->size);
ipc_answer_2(rid, EOK, 0, dentry->size);
return;
}
/* Clear any newly allocated memory in order to emulate gaps. */
memset(newdata + nodep->size, 0, delta);
nodep->size += delta;
nodep->data = newdata;
(void) ipc_data_write_finalize(callid, nodep->data + pos, size);
ipc_answer_2(rid, EOK, size, nodep->size);
memset(newdata + dentry->size, 0, delta);
dentry->size += delta;
dentry->data = newdata;
(void) ipc_data_write_finalize(callid, dentry->data + pos, len);
ipc_answer_2(rid, EOK, len, dentry->size);
}
 
void tmpfs_truncate(ipc_callid_t rid, ipc_call_t *request)
{
dev_handle_t dev_handle = (dev_handle_t)IPC_GET_ARG1(*request);
fs_index_t index = (fs_index_t)IPC_GET_ARG2(*request);
size_t size = (off_t)IPC_GET_ARG3(*request);
int dev_handle = IPC_GET_ARG1(*request);
unsigned long index = IPC_GET_ARG2(*request);
size_t size = IPC_GET_ARG3(*request);
 
/*
* Lookup the respective TMPFS node.
* Lookup the respective dentry.
*/
link_t *hlp;
unsigned long key[] = {
[NODES_KEY_INDEX] = index,
[NODES_KEY_DEV] = dev_handle
};
hlp = hash_table_find(&nodes, key);
hlp = hash_table_find(&dentries, &index);
if (!hlp) {
ipc_answer_0(rid, ENOENT);
return;
}
tmpfs_node_t *nodep = hash_table_get_instance(hlp, tmpfs_node_t,
nh_link);
tmpfs_dentry_t *dentry = hash_table_get_instance(hlp, tmpfs_dentry_t,
dh_link);
 
if (size == nodep->size) {
if (size == dentry->size) {
ipc_answer_0(rid, EOK);
return;
}
 
void *newdata = realloc(nodep->data, size);
void *newdata = realloc(dentry->data, size);
if (!newdata) {
ipc_answer_0(rid, ENOMEM);
return;
}
if (size > nodep->size) {
size_t delta = size - nodep->size;
memset(newdata + nodep->size, 0, delta);
if (size > dentry->size) {
size_t delta = size - dentry->size;
memset(newdata + dentry->size, 0, delta);
}
nodep->size = size;
nodep->data = newdata;
dentry->size = size;
dentry->data = newdata;
ipc_answer_0(rid, EOK);
}
 
void tmpfs_close(ipc_callid_t rid, ipc_call_t *request)
{
ipc_answer_0(rid, EOK);
}
 
void tmpfs_destroy(ipc_callid_t rid, ipc_call_t *request)
{
dev_handle_t dev_handle = (dev_handle_t)IPC_GET_ARG1(*request);
fs_index_t index = (fs_index_t)IPC_GET_ARG2(*request);
int rc;
 
link_t *hlp;
unsigned long key[] = {
[NODES_KEY_INDEX] = index,
[NODES_KEY_DEV] = dev_handle
};
hlp = hash_table_find(&nodes, key);
if (!hlp) {
ipc_answer_0(rid, ENOENT);
return;
}
tmpfs_node_t *nodep = hash_table_get_instance(hlp, tmpfs_node_t,
nh_link);
rc = tmpfs_destroy_node(FS_NODE(nodep));
ipc_answer_0(rid, rc);
}
 
void tmpfs_open_node(ipc_callid_t rid, ipc_call_t *request)
{
libfs_open_node(&tmpfs_libfs_ops, tmpfs_reg.fs_handle, rid, request);
}
 
void tmpfs_stat(ipc_callid_t rid, ipc_call_t *request)
{
libfs_stat(&tmpfs_libfs_ops, tmpfs_reg.fs_handle, rid, request);
}
 
void tmpfs_sync(ipc_callid_t rid, ipc_call_t *request)
{
/* Dummy implementation */
ipc_answer_0(rid, EOK);
}
 
/**
* @}
*/
*/
/trunk/uspace/srv/fs/tmpfs/tmpfs.c
50,11 → 50,24
#include <libfs.h>
#include "../../vfs/vfs.h"
 
#define NAME "tmpfs"
 
 
vfs_info_t tmpfs_vfs_info = {
.name = "tmpfs",
.ops = {
[IPC_METHOD_TO_VFS_OP(VFS_LOOKUP)] = VFS_OP_DEFINED,
[IPC_METHOD_TO_VFS_OP(VFS_OPEN)] = VFS_OP_DEFINED,
[IPC_METHOD_TO_VFS_OP(VFS_CLOSE)] = VFS_OP_DEFINED,
[IPC_METHOD_TO_VFS_OP(VFS_READ)] = VFS_OP_DEFINED,
[IPC_METHOD_TO_VFS_OP(VFS_WRITE)] = VFS_OP_DEFINED,
[IPC_METHOD_TO_VFS_OP(VFS_TRUNCATE)] = VFS_OP_NULL,
[IPC_METHOD_TO_VFS_OP(VFS_RENAME)] = VFS_OP_NULL,
[IPC_METHOD_TO_VFS_OP(VFS_OPENDIR)] = VFS_OP_NULL,
[IPC_METHOD_TO_VFS_OP(VFS_READDIR)] = VFS_OP_NULL,
[IPC_METHOD_TO_VFS_OP(VFS_CLOSEDIR)] = VFS_OP_NULL,
[IPC_METHOD_TO_VFS_OP(VFS_UNLINK)] = VFS_OP_NULL,
[IPC_METHOD_TO_VFS_OP(VFS_MOUNT)] = VFS_OP_NULL,
[IPC_METHOD_TO_VFS_OP(VFS_UNMOUNT)] = VFS_OP_NULL,
}
};
 
fs_reg_t tmpfs_reg;
96,41 → 109,15
callid = async_get_call(&call);
switch (IPC_GET_METHOD(call)) {
case IPC_M_PHONE_HUNGUP:
return;
case VFS_OUT_MOUNTED:
tmpfs_mounted(callid, &call);
break;
case VFS_OUT_MOUNT:
tmpfs_mount(callid, &call);
break;
case VFS_OUT_LOOKUP:
case VFS_LOOKUP:
tmpfs_lookup(callid, &call);
break;
case VFS_OUT_READ:
case VFS_READ:
tmpfs_read(callid, &call);
break;
case VFS_OUT_WRITE:
case VFS_WRITE:
tmpfs_write(callid, &call);
break;
case VFS_OUT_TRUNCATE:
tmpfs_truncate(callid, &call);
break;
case VFS_OUT_CLOSE:
tmpfs_close(callid, &call);
break;
case VFS_OUT_DESTROY:
tmpfs_destroy(callid, &call);
break;
case VFS_OUT_OPEN_NODE:
tmpfs_open_node(callid, &call);
break;
case VFS_OUT_STAT:
tmpfs_stat(callid, &call);
break;
case VFS_OUT_SYNC:
tmpfs_sync(callid, &call);
break;
default:
ipc_answer_0(callid, ENOTSUP);
break;
140,27 → 127,27
 
int main(int argc, char **argv)
{
printf(NAME ": HelenOS TMPFS file system server\n");
int vfs_phone;
 
if (!tmpfs_init()) {
printf(NAME ": failed to initialize TMPFS\n");
return -1;
}
printf("TMPFS: HelenOS TMPFS file system server.\n");
 
int vfs_phone = ipc_connect_me_to_blocking(PHONE_NS, SERVICE_VFS, 0, 0);
if (vfs_phone < EOK) {
printf(NAME ": Unable to connect to VFS\n");
return -1;
vfs_phone = ipc_connect_me_to(PHONE_NS, SERVICE_VFS, 0, 0);
while (vfs_phone < EOK) {
usleep(10000);
vfs_phone = ipc_connect_me_to(PHONE_NS, SERVICE_VFS, 0, 0);
}
 
int rc = fs_register(vfs_phone, &tmpfs_reg, &tmpfs_vfs_info,
int rc;
rc = fs_register(vfs_phone, &tmpfs_reg, &tmpfs_vfs_info,
tmpfs_connection);
if (rc != EOK) {
printf(NAME ": Failed to register file system (%d)\n", rc);
printf("Failed to register the TMPFS file system (%d)\n", rc);
return rc;
}
dprintf("TMPFS filesystem registered, fs_handle=%d.\n",
tmpfs_reg.fs_handle);
 
printf(NAME ": Accepting connections\n");
async_manager();
/* not reached */
return 0;
/trunk/uspace/srv/fs/tmpfs/tmpfs.h
38,62 → 38,33
#include <atomic.h>
#include <sys/types.h>
#include <bool.h>
#include <adt/hash_table.h>
#include <libadt/hash_table.h>
 
#ifndef dprintf
#define dprintf(...) printf(__VA_ARGS__)
#endif
 
#define TMPFS_NODE(node) ((node) ? (tmpfs_node_t *)(node)->data : NULL)
#define FS_NODE(node) ((node) ? (node)->bp : NULL)
 
typedef enum {
TMPFS_NONE,
TMPFS_FILE,
TMPFS_DIRECTORY
} tmpfs_dentry_type_t;
 
/* forward declaration */
struct tmpfs_node;
 
typedef struct tmpfs_dentry {
link_t link; /**< Linkage for the list of siblings. */
struct tmpfs_node *node;/**< Back pointer to TMPFS node. */
char *name; /**< Name of dentry. */
} tmpfs_dentry_t;
 
typedef struct tmpfs_node {
fs_node_t *bp; /**< Back pointer to the FS node. */
fs_index_t index; /**< TMPFS node index. */
dev_handle_t dev_handle;/**< Device handle. */
link_t nh_link; /**< Nodes hash table link. */
tmpfs_dentry_type_t type;
unsigned lnkcnt; /**< Link count. */
unsigned long index; /**< TMPFS node index. */
link_t dh_link; /**< Dentries hash table link. */
struct tmpfs_dentry *parent;
struct tmpfs_dentry *sibling;
struct tmpfs_dentry *child;
char *name;
enum {
TMPFS_NONE,
TMPFS_FILE,
TMPFS_DIRECTORY
} type;
size_t size; /**< File size if type is TMPFS_FILE. */
void *data; /**< File content's if type is TMPFS_FILE. */
link_t cs_head; /**< Head of child's siblings list. */
} tmpfs_node_t;
} tmpfs_dentry_t;
 
extern fs_reg_t tmpfs_reg;
 
extern libfs_ops_t tmpfs_libfs_ops;
 
extern bool tmpfs_init(void);
 
extern void tmpfs_mounted(ipc_callid_t, ipc_call_t *);
extern void tmpfs_mount(ipc_callid_t, ipc_call_t *);
extern void tmpfs_lookup(ipc_callid_t, ipc_call_t *);
extern void tmpfs_read(ipc_callid_t, ipc_call_t *);
extern void tmpfs_write(ipc_callid_t, ipc_call_t *);
extern void tmpfs_truncate(ipc_callid_t, ipc_call_t *);
extern void tmpfs_stat(ipc_callid_t, ipc_call_t *);
extern void tmpfs_close(ipc_callid_t, ipc_call_t *);
extern void tmpfs_destroy(ipc_callid_t, ipc_call_t *);
extern void tmpfs_open_node(ipc_callid_t, ipc_call_t *);
extern void tmpfs_sync(ipc_callid_t, ipc_call_t *);
 
extern bool tmpfs_restore(dev_handle_t);
 
#endif
 
/**
/trunk/uspace/srv/fs/tmpfs/Makefile
31,17 → 31,12
 
LIBC_PREFIX = ../../../lib/libc
LIBFS_PREFIX = ../../../lib/libfs
LIBBLOCK_PREFIX = ../../../lib/libblock
SOFTINT_PREFIX = ../../../lib/softint
 
include $(LIBC_PREFIX)/Makefile.toolchain
 
CFLAGS += -I $(LIBFS_PREFIX) -I $(LIBBLOCK_PREFIX)
CFLAGS += -I $(LIBFS_PREFIX)
 
LIBS = \
$(LIBFS_PREFIX)/libfs.a \
$(LIBBLOCK_PREFIX)/libblock.a \
$(LIBC_PREFIX)/libc.a
LIBS = $(LIBC_PREFIX)/libc.a $(LIBFS_PREFIX)/libfs.a
 
## Sources
#
49,31 → 44,28
OUTPUT = tmpfs
SOURCES = \
tmpfs.c \
tmpfs_ops.c \
tmpfs_dump.c
tmpfs_ops.c
 
OBJECTS := $(addsuffix .o,$(basename $(SOURCES)))
 
.PHONY: all clean depend disasm
 
all: $(OUTPUT) $(OUTPUT).disasm
all: $(OUTPUT) disasm
 
-include Makefile.depend
 
clean:
-rm -f $(OUTPUT) $(OUTPUT).map $(OUTPUT).disasm Makefile.depend $(OBJECTS)
-rm -f $(OUTPUT) $(OUTPUT).map $(OUTPUT).disasm Makefile.depend
 
depend:
$(CC) $(DEFS) $(CFLAGS) -M $(SOURCES) > Makefile.depend
 
$(OUTPUT): $(OBJECTS) $(LIBS)
$(LD) -T $(LIBC_PREFIX)/arch/$(UARCH)/_link.ld $(OBJECTS) $(LIBS) $(LFLAGS) -o $@ -Map $(OUTPUT).map
$(LD) -T $(LIBC_PREFIX)/arch/$(ARCH)/_link.ld $(OBJECTS) $(LIBS) $(LFLAGS) -o $@ -Map $(OUTPUT).map
 
disasm: $(OUTPUT).disasm
disasm:
$(OBJDUMP) -d $(OUTPUT) >$(OUTPUT).disasm
 
$(OUTPUT).disasm: $(OUTPUT)
$(OBJDUMP) -d $< > $@
 
%.o: %.S
$(CC) $(DEFS) $(AFLAGS) $(CFLAGS) -D__ASM__ -c $< -o $@
 
/trunk/uspace/srv/fs/fat/fat_fat.c
File deleted
/trunk/uspace/srv/fs/fat/fat_dentry.c
File deleted
/trunk/uspace/srv/fs/fat/fat_dentry.h
File deleted
/trunk/uspace/srv/fs/fat/fat_fat.h
File deleted
/trunk/uspace/srv/fs/fat/fat_idx.c
File deleted
/trunk/uspace/srv/fs/fat/fat.c
49,6 → 49,21
 
vfs_info_t fat_vfs_info = {
.name = "fat",
.ops = {
[IPC_METHOD_TO_VFS_OP(VFS_LOOKUP)] = VFS_OP_DEFINED,
[IPC_METHOD_TO_VFS_OP(VFS_OPEN)] = VFS_OP_DEFINED,
[IPC_METHOD_TO_VFS_OP(VFS_CLOSE)] = VFS_OP_DEFINED,
[IPC_METHOD_TO_VFS_OP(VFS_READ)] = VFS_OP_DEFINED,
[IPC_METHOD_TO_VFS_OP(VFS_WRITE)] = VFS_OP_NULL,
[IPC_METHOD_TO_VFS_OP(VFS_TRUNCATE)] = VFS_OP_NULL,
[IPC_METHOD_TO_VFS_OP(VFS_RENAME)] = VFS_OP_NULL,
[IPC_METHOD_TO_VFS_OP(VFS_OPENDIR)] = VFS_OP_NULL,
[IPC_METHOD_TO_VFS_OP(VFS_READDIR)] = VFS_OP_NULL,
[IPC_METHOD_TO_VFS_OP(VFS_CLOSEDIR)] = VFS_OP_NULL,
[IPC_METHOD_TO_VFS_OP(VFS_UNLINK)] = VFS_OP_NULL,
[IPC_METHOD_TO_VFS_OP(VFS_MOUNT)] = VFS_OP_NULL,
[IPC_METHOD_TO_VFS_OP(VFS_UNMOUNT)] = VFS_OP_NULL,
}
};
 
fs_reg_t fat_reg;
89,41 → 104,9
callid = async_get_call(&call);
switch (IPC_GET_METHOD(call)) {
case IPC_M_PHONE_HUNGUP:
return;
case VFS_OUT_MOUNTED:
fat_mounted(callid, &call);
break;
case VFS_OUT_MOUNT:
fat_mount(callid, &call);
break;
case VFS_OUT_LOOKUP:
case VFS_LOOKUP:
fat_lookup(callid, &call);
break;
case VFS_OUT_READ:
fat_read(callid, &call);
break;
case VFS_OUT_WRITE:
fat_write(callid, &call);
break;
case VFS_OUT_TRUNCATE:
fat_truncate(callid, &call);
break;
case VFS_OUT_STAT:
fat_stat(callid, &call);
break;
case VFS_OUT_CLOSE:
fat_close(callid, &call);
break;
case VFS_OUT_DESTROY:
fat_destroy(callid, &call);
break;
case VFS_OUT_OPEN_NODE:
fat_open_node(callid, &call);
break;
case VFS_OUT_SYNC:
fat_sync(callid, &call);
break;
default:
ipc_answer_0(callid, ENOTSUP);
break;
134,24 → 117,20
int main(int argc, char **argv)
{
int vfs_phone;
int rc;
 
printf("fat: HelenOS FAT file system server.\n");
printf("FAT: HelenOS FAT file system server.\n");
 
rc = fat_idx_init();
if (rc != EOK)
goto err;
 
vfs_phone = ipc_connect_me_to_blocking(PHONE_NS, SERVICE_VFS, 0, 0);
if (vfs_phone < EOK) {
printf("fat: failed to connect to VFS\n");
return -1;
vfs_phone = ipc_connect_me_to(PHONE_NS, SERVICE_VFS, 0, 0);
while (vfs_phone < EOK) {
usleep(10000);
vfs_phone = ipc_connect_me_to(PHONE_NS, SERVICE_VFS, 0, 0);
}
int rc;
rc = fs_register(vfs_phone, &fat_reg, &fat_vfs_info, fat_connection);
if (rc != EOK) {
fat_idx_fini();
goto err;
printf("Failed to register the FAT file system (%d)\n", rc);
return rc;
}
dprintf("FAT filesystem registered, fs_handle=%d.\n",
160,10 → 139,6
async_manager();
/* not reached */
return 0;
 
err:
printf("Failed to register the FAT file system (%d)\n", rc);
return rc;
}
 
/**
/trunk/uspace/srv/fs/fat/fat.h
1,5 → 1,5
/*
* Copyright (c) 2008 Jakub Jermar
* Copyright (c) 2007 Jakub Jermar
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
33,41 → 33,31
#ifndef FAT_FAT_H_
#define FAT_FAT_H_
 
#include "fat_fat.h"
#include <ipc/ipc.h>
#include <fibril_sync.h>
#include <libfs.h>
#include <atomic.h>
#include <sys/types.h>
#include <bool.h>
#include "../../vfs/vfs.h"
 
#ifndef dprintf
#define dprintf(...) printf(__VA_ARGS__)
#endif
 
#define min(a, b) ((a) < (b) ? (a) : (b))
 
#define BS_BLOCK 0
#define BS_SIZE 512
 
typedef struct fat_bs {
typedef struct {
uint8_t ji[3]; /**< Jump instruction. */
uint8_t oem_name[8];
/* BIOS Parameter Block */
uint16_t bps; /**< Bytes per sector. */
uint8_t spc; /**< Sectors per cluster. */
uint16_t rscnt; /**< Reserved sector count. */
uint16_t rsc; /**< Reserved sector count. */
uint8_t fatcnt; /**< Number of FATs. */
uint16_t root_ent_max; /**< Maximum number of root directory
entries. */
uint16_t totsec16; /**< Total sectors. 16-bit version. */
uint16_t totsec; /**< Total sectors. */
uint8_t mdesc; /**< Media descriptor. */
uint16_t sec_per_fat; /**< Sectors per FAT12/FAT16. */
uint16_t sec_per_track; /**< Sectors per track. */
uint16_t headcnt; /**< Number of heads. */
uint32_t hidden_sec; /**< Hidden sectors. */
uint32_t totsec32; /**< Total sectors. 32-bit version. */
uint32_t total_sec; /**< Total sectors. */
 
union {
struct {
111,7 → 101,7
/** Serial number. */
uint32_t id;
/** Volume label. */
uint8_t label[11];
uint8_t label;
/** FAT type. */
uint8_t type[8];
/** Boot code. */
122,110 → 112,32
};
} __attribute__ ((packed)) fat_bs_t;
 
typedef enum {
FAT_INVALID,
FAT_DIRECTORY,
FAT_FILE
} fat_node_type_t;
 
struct fat_node;
 
/** FAT index structure.
*
* This structure exists to help us to overcome certain limitations of the FAT
* file system design. The problem with FAT is that it is hard to find
* an entity which could represent a VFS index. There are two candidates:
*
* a) number of the node's first cluster
* b) the pair of the parent directory's first cluster and the dentry index
* within the parent directory
*
* We need VFS indices to be:
* A) unique
* B) stable in time, at least until the next mount
*
* Unfortunately a) does not meet the A) criterion because zero-length files
* will have the first cluster field cleared. And b) does not meet the B)
* criterion because unlink() and rename() will both free up the original
* dentry, which contains all the essential info about the file.
*
* Therefore, a completely opaque indices are used and the FAT server maintains
* a mapping between them and otherwise nice b) variant. On rename(), the VFS
* index stays unaltered, while the internal FAT "physical tree address"
* changes. The unlink case is also handled this way thanks to an in-core node
* pointer embedded in the index structure.
*/
typedef struct {
/** Used indices (position) hash table link. */
link_t uph_link;
/** Used indices (index) hash table link. */
link_t uih_link;
uint8_t name[8];
uint8_t ext[3];
uint8_t attr;
uint8_t reserved;
uint8_t ctime_fine;
uint16_t ctime;
uint16_t cdate;
uint16_t adate;
union {
uint16_t eaidx; /* FAT12/FAT16 */
uint16_t firstc_hi; /* FAT32 */
};
uint16_t mtime;
uint16_t mdate;
union {
uint16_t firstc; /* FAT12/FAT16 */
uint16_t firstc_lo; /* FAT32 */
};
uint32_t size;
} __attribute__ ((packed)) fat_dentry_t;
 
fibril_mutex_t lock;
dev_handle_t dev_handle;
fs_index_t index;
/**
* Parent node's first cluster.
* Zero is used if this node is not linked, in which case nodep must
* contain a pointer to the in-core node structure.
* One is used when the parent is the root directory.
*/
fat_cluster_t pfc;
/** Directory entry index within the parent node. */
unsigned pdi;
/** Pointer to in-core node instance. */
struct fat_node *nodep;
} fat_idx_t;
 
/** FAT in-core node. */
typedef struct fat_node {
/** Back pointer to the FS node. */
fs_node_t *bp;
fibril_mutex_t lock;
fat_node_type_t type;
fat_idx_t *idx;
/**
* Node's first cluster.
* Zero is used for zero-length nodes.
* One is used to mark root directory.
*/
fat_cluster_t firstc;
/** FAT in-core node free list link. */
link_t ffn_link;
size_t size;
unsigned lnkcnt;
unsigned refcnt;
bool dirty;
} fat_node_t;
 
extern fs_reg_t fat_reg;
 
extern void fat_mounted(ipc_callid_t, ipc_call_t *);
extern void fat_mount(ipc_callid_t, ipc_call_t *);
extern void fat_lookup(ipc_callid_t, ipc_call_t *);
extern void fat_read(ipc_callid_t, ipc_call_t *);
extern void fat_write(ipc_callid_t, ipc_call_t *);
extern void fat_truncate(ipc_callid_t, ipc_call_t *);
extern void fat_stat(ipc_callid_t, ipc_call_t *);
extern void fat_close(ipc_callid_t, ipc_call_t *);
extern void fat_destroy(ipc_callid_t, ipc_call_t *);
extern void fat_open_node(ipc_callid_t, ipc_call_t *);
extern void fat_stat(ipc_callid_t, ipc_call_t *);
extern void fat_sync(ipc_callid_t, ipc_call_t *);
 
extern fat_idx_t *fat_idx_get_new(dev_handle_t);
extern fat_idx_t *fat_idx_get_by_pos(dev_handle_t, fat_cluster_t, unsigned);
extern fat_idx_t *fat_idx_get_by_index(dev_handle_t, fs_index_t);
extern void fat_idx_destroy(fat_idx_t *);
extern void fat_idx_hashin(fat_idx_t *);
extern void fat_idx_hashout(fat_idx_t *);
 
extern int fat_idx_init(void);
extern void fat_idx_fini(void);
extern int fat_idx_init_by_dev_handle(dev_handle_t);
extern void fat_idx_fini_by_dev_handle(dev_handle_t);
 
#endif
 
/**
/trunk/uspace/srv/fs/fat/fat_ops.c
1,5 → 1,5
/*
* Copyright (c) 2008 Jakub Jermar
* Copyright (c) 2007 Jakub Jermar
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
36,1183 → 36,107
*/
 
#include "fat.h"
#include "fat_dentry.h"
#include "fat_fat.h"
#include "../../vfs/vfs.h"
#include <libfs.h>
#include <libblock.h>
#include <ipc/ipc.h>
#include <ipc/services.h>
#include <ipc/devmap.h>
#include <async.h>
#include <errno.h>
#include <string.h>
#include <byteorder.h>
#include <adt/hash_table.h>
#include <adt/list.h>
#include <assert.h>
#include <fibril_sync.h>
#include <sys/mman.h>
#include <align.h>
 
#define FAT_NODE(node) ((node) ? (fat_node_t *) (node)->data : NULL)
#define FS_NODE(node) ((node) ? (node)->bp : NULL)
#define PLB_GET_CHAR(i) (fat_reg.plb_ro[(i) % PLB_SIZE])
 
/** Mutex protecting the list of cached free FAT nodes. */
static FIBRIL_MUTEX_INITIALIZE(ffn_mutex);
#define FAT_NAME_LEN 8
#define FAT_EXT_LEN 3
 
/** List of cached free FAT nodes. */
static LIST_INITIALIZE(ffn_head);
#define FAT_PAD ' '
 
static void fat_node_initialize(fat_node_t *node)
{
fibril_mutex_initialize(&node->lock);
node->bp = NULL;
node->idx = NULL;
node->type = 0;
link_initialize(&node->ffn_link);
node->size = 0;
node->lnkcnt = 0;
node->refcnt = 0;
node->dirty = false;
}
#define FAT_DENTRY_UNUSED 0x00
#define FAT_DENTRY_E5_ESC 0x05
#define FAT_DENTRY_DOT 0x2e
#define FAT_DENTRY_ERASED 0xe5
 
static void fat_node_sync(fat_node_t *node)
{
block_t *b;
fat_bs_t *bs;
fat_dentry_t *d;
uint16_t bps;
unsigned dps;
assert(node->dirty);
 
bs = block_bb_get(node->idx->dev_handle);
bps = uint16_t_le2host(bs->bps);
dps = bps / sizeof(fat_dentry_t);
/* Read the block that contains the dentry of interest. */
b = _fat_block_get(bs, node->idx->dev_handle, node->idx->pfc,
(node->idx->pdi * sizeof(fat_dentry_t)) / bps, BLOCK_FLAGS_NONE);
 
d = ((fat_dentry_t *)b->data) + (node->idx->pdi % dps);
 
d->firstc = host2uint16_t_le(node->firstc);
if (node->type == FAT_FILE) {
d->size = host2uint32_t_le(node->size);
} else if (node->type == FAT_DIRECTORY) {
d->attr = FAT_ATTR_SUBDIR;
}
/* TODO: update other fields? (e.g time fields) */
b->dirty = true; /* need to sync block */
block_put(b);
}
 
static fat_node_t *fat_node_get_new(void)
{
fs_node_t *fn;
fat_node_t *nodep;
 
fibril_mutex_lock(&ffn_mutex);
if (!list_empty(&ffn_head)) {
/* Try to use a cached free node structure. */
fat_idx_t *idxp_tmp;
nodep = list_get_instance(ffn_head.next, fat_node_t, ffn_link);
if (!fibril_mutex_trylock(&nodep->lock))
goto skip_cache;
idxp_tmp = nodep->idx;
if (!fibril_mutex_trylock(&idxp_tmp->lock)) {
fibril_mutex_unlock(&nodep->lock);
goto skip_cache;
}
list_remove(&nodep->ffn_link);
fibril_mutex_unlock(&ffn_mutex);
if (nodep->dirty)
fat_node_sync(nodep);
idxp_tmp->nodep = NULL;
fibril_mutex_unlock(&nodep->lock);
fibril_mutex_unlock(&idxp_tmp->lock);
fn = FS_NODE(nodep);
} else {
skip_cache:
/* Try to allocate a new node structure. */
fibril_mutex_unlock(&ffn_mutex);
fn = (fs_node_t *)malloc(sizeof(fs_node_t));
if (!fn)
return NULL;
nodep = (fat_node_t *)malloc(sizeof(fat_node_t));
if (!nodep) {
free(fn);
return NULL;
}
}
fat_node_initialize(nodep);
fs_node_initialize(fn);
fn->data = nodep;
nodep->bp = fn;
return nodep;
}
 
/** Internal version of fat_node_get().
/** Compare one component of path to a directory entry.
*
* @param idxp Locked index structure.
* @param dentry Directory entry to compare the path component with.
* @param start Index into PLB where the path component starts.
* @param last Index of the last character of the path in PLB.
*
* @return Zero on failure or delta such that (index + delta) %
* PLB_SIZE points to a new path component in PLB.
*/
static fat_node_t *fat_node_get_core(fat_idx_t *idxp)
static unsigned match_path_component(fat_dentry_t *dentry, unsigned start,
unsigned last)
{
block_t *b;
fat_bs_t *bs;
fat_dentry_t *d;
fat_node_t *nodep = NULL;
unsigned bps;
unsigned spc;
unsigned dps;
unsigned cur; /* current position in PLB */
int pos; /* current position in dentry->name or dentry->ext */
bool name_processed = false;
bool dot_processed = false;
bool ext_processed = false;
 
if (idxp->nodep) {
/*
* We are lucky.
* The node is already instantiated in memory.
*/
fibril_mutex_lock(&idxp->nodep->lock);
if (!idxp->nodep->refcnt++)
list_remove(&idxp->nodep->ffn_link);
fibril_mutex_unlock(&idxp->nodep->lock);
return idxp->nodep;
}
 
/*
* We must instantiate the node from the file system.
*/
assert(idxp->pfc);
 
nodep = fat_node_get_new();
if (!nodep)
return NULL;
 
bs = block_bb_get(idxp->dev_handle);
bps = uint16_t_le2host(bs->bps);
spc = bs->spc;
dps = bps / sizeof(fat_dentry_t);
 
/* Read the block that contains the dentry of interest. */
b = _fat_block_get(bs, idxp->dev_handle, idxp->pfc,
(idxp->pdi * sizeof(fat_dentry_t)) / bps, BLOCK_FLAGS_NONE);
assert(b);
 
d = ((fat_dentry_t *)b->data) + (idxp->pdi % dps);
if (d->attr & FAT_ATTR_SUBDIR) {
/*
* The only directory which does not have this bit set is the
* root directory itself. The root directory node is handled
* and initialized elsewhere.
*/
nodep->type = FAT_DIRECTORY;
/*
* Unfortunately, the 'size' field of the FAT dentry is not
* defined for the directory entry type. We must determine the
* size of the directory by walking the FAT.
*/
nodep->size = bps * spc * fat_clusters_get(bs, idxp->dev_handle,
uint16_t_le2host(d->firstc));
} else {
nodep->type = FAT_FILE;
nodep->size = uint32_t_le2host(d->size);
}
nodep->firstc = uint16_t_le2host(d->firstc);
nodep->lnkcnt = 1;
nodep->refcnt = 1;
 
block_put(b);
 
/* Link the idx structure with the node structure. */
nodep->idx = idxp;
idxp->nodep = nodep;
 
return nodep;
}
 
/*
* Forward declarations of FAT libfs operations.
*/
static fs_node_t *fat_node_get(dev_handle_t, fs_index_t);
static void fat_node_put(fs_node_t *);
static fs_node_t *fat_create_node(dev_handle_t, int);
static int fat_destroy_node(fs_node_t *);
static int fat_link(fs_node_t *, fs_node_t *, const char *);
static int fat_unlink(fs_node_t *, fs_node_t *, const char *);
static fs_node_t *fat_match(fs_node_t *, const char *);
static fs_index_t fat_index_get(fs_node_t *);
static size_t fat_size_get(fs_node_t *);
static unsigned fat_lnkcnt_get(fs_node_t *);
static bool fat_has_children(fs_node_t *);
static fs_node_t *fat_root_get(dev_handle_t);
static char fat_plb_get_char(unsigned);
static bool fat_is_directory(fs_node_t *);
static bool fat_is_file(fs_node_t *node);
 
/*
* FAT libfs operations.
*/
 
/** Instantiate a FAT in-core node. */
fs_node_t *fat_node_get(dev_handle_t dev_handle, fs_index_t index)
{
fat_node_t *nodep;
fat_idx_t *idxp;
 
idxp = fat_idx_get_by_index(dev_handle, index);
if (!idxp)
return NULL;
/* idxp->lock held */
nodep = fat_node_get_core(idxp);
fibril_mutex_unlock(&idxp->lock);
return FS_NODE(nodep);
}
 
void fat_node_put(fs_node_t *fn)
{
fat_node_t *nodep = FAT_NODE(fn);
bool destroy = false;
 
fibril_mutex_lock(&nodep->lock);
if (!--nodep->refcnt) {
if (nodep->idx) {
fibril_mutex_lock(&ffn_mutex);
list_append(&nodep->ffn_link, &ffn_head);
fibril_mutex_unlock(&ffn_mutex);
} else {
/*
* The node does not have any index structure associated
* with itself. This can only mean that we are releasing
* the node after a failed attempt to allocate the index
* structure for it.
*/
destroy = true;
if (last < start)
last += PLB_SIZE;
for (pos = 0, cur = start; (cur <= last) && (PLB_GET_CHAR(cur) != '/');
pos++, cur++) {
if (!name_processed) {
if ((pos == FAT_NAME_LEN - 1) ||
(dentry->name[pos + 1] == FAT_PAD)) {
/* this is the last character in name */
name_processed = true;
}
if (dentry->name[0] == FAT_PAD) {
/* name is empty */
name_processed = true;
} else if ((pos == 0) && (dentry->name[pos] ==
FAT_DENTRY_E5_ESC)) {
if (PLB_GET_CHAR(cur) == 0xe5)
continue;
else
return 0; /* character mismatch */
} else {
if (PLB_GET_CHAR(cur) == dentry->name[pos])
continue;
else
return 0; /* character mismatch */
}
}
}
fibril_mutex_unlock(&nodep->lock);
if (destroy) {
free(nodep->bp);
free(nodep);
}
}
 
fs_node_t *fat_create_node(dev_handle_t dev_handle, int flags)
{
fat_idx_t *idxp;
fat_node_t *nodep;
fat_bs_t *bs;
fat_cluster_t mcl, lcl;
uint16_t bps;
int rc;
 
bs = block_bb_get(dev_handle);
bps = uint16_t_le2host(bs->bps);
if (flags & L_DIRECTORY) {
/* allocate a cluster */
rc = fat_alloc_clusters(bs, dev_handle, 1, &mcl, &lcl);
if (rc != EOK)
return NULL;
}
 
nodep = fat_node_get_new();
if (!nodep) {
fat_free_clusters(bs, dev_handle, mcl);
return NULL;
}
idxp = fat_idx_get_new(dev_handle);
if (!idxp) {
fat_free_clusters(bs, dev_handle, mcl);
fat_node_put(FS_NODE(nodep));
return NULL;
}
/* idxp->lock held */
if (flags & L_DIRECTORY) {
int i;
block_t *b;
 
/*
* Populate the new cluster with unused dentries.
*/
for (i = 0; i < bs->spc; i++) {
b = _fat_block_get(bs, dev_handle, mcl, i,
BLOCK_FLAGS_NOREAD);
/* mark all dentries as never-used */
memset(b->data, 0, bps);
b->dirty = false;
block_put(b);
if (!dot_processed) {
dot_processed = true;
pos = -1;
if (PLB_GET_CHAR(cur) != '.')
return 0;
continue;
}
nodep->type = FAT_DIRECTORY;
nodep->firstc = mcl;
nodep->size = bps * bs->spc;
} else {
nodep->type = FAT_FILE;
nodep->firstc = FAT_CLST_RES0;
nodep->size = 0;
}
nodep->lnkcnt = 0; /* not linked anywhere */
nodep->refcnt = 1;
nodep->dirty = true;
 
nodep->idx = idxp;
idxp->nodep = nodep;
 
fibril_mutex_unlock(&idxp->lock);
return FS_NODE(nodep);
}
 
int fat_destroy_node(fs_node_t *fn)
{
fat_node_t *nodep = FAT_NODE(fn);
fat_bs_t *bs;
 
/*
* The node is not reachable from the file system. This means that the
* link count should be zero and that the index structure cannot be
* found in the position hash. Obviously, we don't need to lock the node
* nor its index structure.
*/
assert(nodep->lnkcnt == 0);
 
/*
* The node may not have any children.
*/
assert(fat_has_children(fn) == false);
 
bs = block_bb_get(nodep->idx->dev_handle);
if (nodep->firstc != FAT_CLST_RES0) {
assert(nodep->size);
/* Free all clusters allocated to the node. */
fat_free_clusters(bs, nodep->idx->dev_handle, nodep->firstc);
}
 
fat_idx_destroy(nodep->idx);
free(nodep->bp);
free(nodep);
return EOK;
}
 
int fat_link(fs_node_t *pfn, fs_node_t *cfn, const char *name)
{
fat_node_t *parentp = FAT_NODE(pfn);
fat_node_t *childp = FAT_NODE(cfn);
fat_dentry_t *d;
fat_bs_t *bs;
block_t *b;
unsigned i, j;
uint16_t bps;
unsigned dps;
unsigned blocks;
fat_cluster_t mcl, lcl;
int rc;
 
fibril_mutex_lock(&childp->lock);
if (childp->lnkcnt == 1) {
/*
* On FAT, we don't support multiple hard links.
*/
fibril_mutex_unlock(&childp->lock);
return EMLINK;
}
assert(childp->lnkcnt == 0);
fibril_mutex_unlock(&childp->lock);
 
if (!fat_dentry_name_verify(name)) {
/*
* Attempt to create unsupported name.
*/
return ENOTSUP;
}
 
/*
* Get us an unused parent node's dentry or grow the parent and allocate
* a new one.
*/
fibril_mutex_lock(&parentp->idx->lock);
bs = block_bb_get(parentp->idx->dev_handle);
bps = uint16_t_le2host(bs->bps);
dps = bps / sizeof(fat_dentry_t);
 
blocks = parentp->size / bps;
 
for (i = 0; i < blocks; i++) {
b = fat_block_get(bs, parentp, i, BLOCK_FLAGS_NONE);
for (j = 0; j < dps; j++) {
d = ((fat_dentry_t *)b->data) + j;
switch (fat_classify_dentry(d)) {
case FAT_DENTRY_SKIP:
case FAT_DENTRY_VALID:
/* skipping used and meta entries */
continue;
case FAT_DENTRY_FREE:
case FAT_DENTRY_LAST:
/* found an empty slot */
goto hit;
if (!ext_processed) {
if ((pos == FAT_EXT_LEN - 1) ||
(dentry->ext[pos + 1] == FAT_PAD)) {
/* this is the last character in ext */
ext_processed = true;
}
}
block_put(b);
}
j = 0;
/*
* We need to grow the parent in order to create a new unused dentry.
*/
if (parentp->idx->pfc == FAT_CLST_ROOT) {
/* Can't grow the root directory. */
fibril_mutex_unlock(&parentp->idx->lock);
return ENOSPC;
}
rc = fat_alloc_clusters(bs, parentp->idx->dev_handle, 1, &mcl, &lcl);
if (rc != EOK) {
fibril_mutex_unlock(&parentp->idx->lock);
return rc;
}
fat_append_clusters(bs, parentp, mcl);
b = fat_block_get(bs, parentp, i, BLOCK_FLAGS_NOREAD);
d = (fat_dentry_t *)b->data;
/*
* Clear all dentries in the block except for the first one (the first
* dentry will be cleared in the next step).
*/
memset(d + 1, 0, bps - sizeof(fat_dentry_t));
 
hit:
/*
* At this point we only establish the link between the parent and the
* child. The dentry, except of the name and the extension, will remain
* uninitialized until the corresponding node is synced. Thus the valid
* dentry data is kept in the child node structure.
*/
memset(d, 0, sizeof(fat_dentry_t));
fat_dentry_name_set(d, name);
b->dirty = true; /* need to sync block */
block_put(b);
fibril_mutex_unlock(&parentp->idx->lock);
 
fibril_mutex_lock(&childp->idx->lock);
/*
* If possible, create the Sub-directory Identifier Entry and the
* Sub-directory Parent Pointer Entry (i.e. "." and ".."). These entries
* are not mandatory according to Standard ECMA-107 and HelenOS VFS does
* not use them anyway, so this is rather a sign of our good will.
*/
b = fat_block_get(bs, childp, 0, BLOCK_FLAGS_NONE);
d = (fat_dentry_t *)b->data;
if (fat_classify_dentry(d) == FAT_DENTRY_LAST ||
str_cmp(d->name, FAT_NAME_DOT) == 0) {
memset(d, 0, sizeof(fat_dentry_t));
str_cpy(d->name, 8, FAT_NAME_DOT);
str_cpy(d->ext, 3, FAT_EXT_PAD);
d->attr = FAT_ATTR_SUBDIR;
d->firstc = host2uint16_t_le(childp->firstc);
/* TODO: initialize also the date/time members. */
}
d++;
if (fat_classify_dentry(d) == FAT_DENTRY_LAST ||
str_cmp(d->name, FAT_NAME_DOT_DOT) == 0) {
memset(d, 0, sizeof(fat_dentry_t));
str_cpy(d->name, 8, FAT_NAME_DOT_DOT);
str_cpy(d->ext, 3, FAT_EXT_PAD);
d->attr = FAT_ATTR_SUBDIR;
d->firstc = (parentp->firstc == FAT_CLST_ROOT) ?
host2uint16_t_le(FAT_CLST_RES0) :
host2uint16_t_le(parentp->firstc);
/* TODO: initialize also the date/time members. */
}
b->dirty = true; /* need to sync block */
block_put(b);
 
childp->idx->pfc = parentp->firstc;
childp->idx->pdi = i * dps + j;
fibril_mutex_unlock(&childp->idx->lock);
 
fibril_mutex_lock(&childp->lock);
childp->lnkcnt = 1;
childp->dirty = true; /* need to sync node */
fibril_mutex_unlock(&childp->lock);
 
/*
* Hash in the index structure into the position hash.
*/
fat_idx_hashin(childp->idx);
 
return EOK;
}
 
int fat_unlink(fs_node_t *pfn, fs_node_t *cfn, const char *nm)
{
fat_node_t *parentp = FAT_NODE(pfn);
fat_node_t *childp = FAT_NODE(cfn);
fat_bs_t *bs;
fat_dentry_t *d;
uint16_t bps;
block_t *b;
 
if (!parentp)
return EBUSY;
if (fat_has_children(cfn))
return ENOTEMPTY;
 
fibril_mutex_lock(&parentp->lock);
fibril_mutex_lock(&childp->lock);
assert(childp->lnkcnt == 1);
fibril_mutex_lock(&childp->idx->lock);
bs = block_bb_get(childp->idx->dev_handle);
bps = uint16_t_le2host(bs->bps);
 
b = _fat_block_get(bs, childp->idx->dev_handle, childp->idx->pfc,
(childp->idx->pdi * sizeof(fat_dentry_t)) / bps,
BLOCK_FLAGS_NONE);
d = (fat_dentry_t *)b->data +
(childp->idx->pdi % (bps / sizeof(fat_dentry_t)));
/* mark the dentry as not-currently-used */
d->name[0] = FAT_DENTRY_ERASED;
b->dirty = true; /* need to sync block */
block_put(b);
 
/* remove the index structure from the position hash */
fat_idx_hashout(childp->idx);
/* clear position information */
childp->idx->pfc = FAT_CLST_RES0;
childp->idx->pdi = 0;
fibril_mutex_unlock(&childp->idx->lock);
childp->lnkcnt = 0;
childp->dirty = true;
fibril_mutex_unlock(&childp->lock);
fibril_mutex_unlock(&parentp->lock);
 
return EOK;
}
 
fs_node_t *fat_match(fs_node_t *pfn, const char *component)
{
fat_bs_t *bs;
fat_node_t *parentp = FAT_NODE(pfn);
char name[FAT_NAME_LEN + 1 + FAT_EXT_LEN + 1];
unsigned i, j;
unsigned bps; /* bytes per sector */
unsigned dps; /* dentries per sector */
unsigned blocks;
fat_dentry_t *d;
block_t *b;
 
fibril_mutex_lock(&parentp->idx->lock);
bs = block_bb_get(parentp->idx->dev_handle);
bps = uint16_t_le2host(bs->bps);
dps = bps / sizeof(fat_dentry_t);
blocks = parentp->size / bps;
for (i = 0; i < blocks; i++) {
b = fat_block_get(bs, parentp, i, BLOCK_FLAGS_NONE);
for (j = 0; j < dps; j++) {
d = ((fat_dentry_t *)b->data) + j;
switch (fat_classify_dentry(d)) {
case FAT_DENTRY_SKIP:
case FAT_DENTRY_FREE:
if (dentry->ext[0] == FAT_PAD) {
/* ext is empty; the match will fail */
ext_processed = true;
} else if (PLB_GET_CHAR(cur) == dentry->ext[pos]) {
continue;
case FAT_DENTRY_LAST:
block_put(b);
fibril_mutex_unlock(&parentp->idx->lock);
return NULL;
default:
case FAT_DENTRY_VALID:
fat_dentry_name_get(d, name);
break;
} else {
/* character mismatch */
return 0;
}
if (fat_dentry_namecmp(name, component) == 0) {
/* hit */
fat_node_t *nodep;
/*
* Assume tree hierarchy for locking. We
* already have the parent and now we are going
* to lock the child. Never lock in the oposite
* order.
*/
fat_idx_t *idx = fat_idx_get_by_pos(
parentp->idx->dev_handle, parentp->firstc,
i * dps + j);
fibril_mutex_unlock(&parentp->idx->lock);
if (!idx) {
/*
* Can happen if memory is low or if we
* run out of 32-bit indices.
*/
block_put(b);
return NULL;
}
nodep = fat_node_get_core(idx);
fibril_mutex_unlock(&idx->lock);
block_put(b);
return FS_NODE(nodep);
}
}
block_put(b);
return 0; /* extra characters in the component */
}
 
fibril_mutex_unlock(&parentp->idx->lock);
return NULL;
}
 
fs_index_t fat_index_get(fs_node_t *fn)
{
return FAT_NODE(fn)->idx->index;
}
 
size_t fat_size_get(fs_node_t *fn)
{
return FAT_NODE(fn)->size;
}
 
unsigned fat_lnkcnt_get(fs_node_t *fn)
{
return FAT_NODE(fn)->lnkcnt;
}
 
bool fat_has_children(fs_node_t *fn)
{
fat_bs_t *bs;
fat_node_t *nodep = FAT_NODE(fn);
unsigned bps;
unsigned dps;
unsigned blocks;
block_t *b;
unsigned i, j;
 
if (nodep->type != FAT_DIRECTORY)
return false;
fibril_mutex_lock(&nodep->idx->lock);
bs = block_bb_get(nodep->idx->dev_handle);
bps = uint16_t_le2host(bs->bps);
dps = bps / sizeof(fat_dentry_t);
 
blocks = nodep->size / bps;
 
for (i = 0; i < blocks; i++) {
fat_dentry_t *d;
b = fat_block_get(bs, nodep, i, BLOCK_FLAGS_NONE);
for (j = 0; j < dps; j++) {
d = ((fat_dentry_t *)b->data) + j;
switch (fat_classify_dentry(d)) {
case FAT_DENTRY_SKIP:
case FAT_DENTRY_FREE:
continue;
case FAT_DENTRY_LAST:
block_put(b);
fibril_mutex_unlock(&nodep->idx->lock);
return false;
default:
case FAT_DENTRY_VALID:
block_put(b);
fibril_mutex_unlock(&nodep->idx->lock);
return true;
}
block_put(b);
fibril_mutex_unlock(&nodep->idx->lock);
return true;
}
block_put(b);
}
 
fibril_mutex_unlock(&nodep->idx->lock);
return false;
}
 
fs_node_t *fat_root_get(dev_handle_t dev_handle)
{
return fat_node_get(dev_handle, 0);
}
 
char fat_plb_get_char(unsigned pos)
{
return fat_reg.plb_ro[pos % PLB_SIZE];
}
 
bool fat_is_directory(fs_node_t *fn)
{
return FAT_NODE(fn)->type == FAT_DIRECTORY;
}
 
bool fat_is_file(fs_node_t *fn)
{
return FAT_NODE(fn)->type == FAT_FILE;
}
 
/** libfs operations */
libfs_ops_t fat_libfs_ops = {
.match = fat_match,
.node_get = fat_node_get,
.node_put = fat_node_put,
.create = fat_create_node,
.destroy = fat_destroy_node,
.link = fat_link,
.unlink = fat_unlink,
.index_get = fat_index_get,
.size_get = fat_size_get,
.lnkcnt_get = fat_lnkcnt_get,
.has_children = fat_has_children,
.root_get = fat_root_get,
.plb_get_char = fat_plb_get_char,
.is_directory = fat_is_directory,
.is_file = fat_is_file
};
 
/*
* VFS operations.
*/
 
void fat_mounted(ipc_callid_t rid, ipc_call_t *request)
{
dev_handle_t dev_handle = (dev_handle_t) IPC_GET_ARG1(*request);
enum cache_mode cmode;
fat_bs_t *bs;
uint16_t bps;
uint16_t rde;
int rc;
 
/* accept the mount options */
ipc_callid_t callid;
size_t size;
if (!ipc_data_write_receive(&callid, &size)) {
ipc_answer_0(callid, EINVAL);
ipc_answer_0(rid, EINVAL);
return;
}
char *opts = malloc(size + 1);
if (!opts) {
ipc_answer_0(callid, ENOMEM);
ipc_answer_0(rid, ENOMEM);
return;
}
ipcarg_t retval = ipc_data_write_finalize(callid, opts, size);
if (retval != EOK) {
ipc_answer_0(rid, retval);
free(opts);
return;
}
opts[size] = '\0';
 
/* Check for option enabling write through. */
if (str_cmp(opts, "wtcache") == 0)
cmode = CACHE_MODE_WT;
if (ext_processed || (name_processed && dentry->ext[0] == FAT_PAD))
return cur - start;
else
cmode = CACHE_MODE_WB;
 
/* initialize libblock */
rc = block_init(dev_handle, BS_SIZE);
if (rc != EOK) {
ipc_answer_0(rid, rc);
return;
}
 
/* prepare the boot block */
rc = block_bb_read(dev_handle, BS_BLOCK * BS_SIZE, BS_SIZE);
if (rc != EOK) {
block_fini(dev_handle);
ipc_answer_0(rid, rc);
return;
}
 
/* get the buffer with the boot sector */
bs = block_bb_get(dev_handle);
/* Read the number of root directory entries. */
bps = uint16_t_le2host(bs->bps);
rde = uint16_t_le2host(bs->root_ent_max);
 
if (bps != BS_SIZE) {
block_fini(dev_handle);
ipc_answer_0(rid, ENOTSUP);
return;
}
 
/* Initialize the block cache */
rc = block_cache_init(dev_handle, bps, 0 /* XXX */, cmode);
if (rc != EOK) {
block_fini(dev_handle);
ipc_answer_0(rid, rc);
return;
}
 
rc = fat_idx_init_by_dev_handle(dev_handle);
if (rc != EOK) {
block_fini(dev_handle);
ipc_answer_0(rid, rc);
return;
}
 
/* Initialize the root node. */
fs_node_t *rfn = (fs_node_t *)malloc(sizeof(fs_node_t));
if (!rfn) {
block_fini(dev_handle);
fat_idx_fini_by_dev_handle(dev_handle);
ipc_answer_0(rid, ENOMEM);
return;
}
fs_node_initialize(rfn);
fat_node_t *rootp = (fat_node_t *)malloc(sizeof(fat_node_t));
if (!rootp) {
free(rfn);
block_fini(dev_handle);
fat_idx_fini_by_dev_handle(dev_handle);
ipc_answer_0(rid, ENOMEM);
return;
}
fat_node_initialize(rootp);
 
fat_idx_t *ridxp = fat_idx_get_by_pos(dev_handle, FAT_CLST_ROOTPAR, 0);
if (!ridxp) {
free(rfn);
free(rootp);
block_fini(dev_handle);
fat_idx_fini_by_dev_handle(dev_handle);
ipc_answer_0(rid, ENOMEM);
return;
}
assert(ridxp->index == 0);
/* ridxp->lock held */
 
rootp->type = FAT_DIRECTORY;
rootp->firstc = FAT_CLST_ROOT;
rootp->refcnt = 1;
rootp->lnkcnt = 0; /* FS root is not linked */
rootp->size = rde * sizeof(fat_dentry_t);
rootp->idx = ridxp;
ridxp->nodep = rootp;
rootp->bp = rfn;
rfn->data = rootp;
fibril_mutex_unlock(&ridxp->lock);
 
ipc_answer_3(rid, EOK, ridxp->index, rootp->size, rootp->lnkcnt);
return 0;
}
 
void fat_mount(ipc_callid_t rid, ipc_call_t *request)
{
libfs_mount(&fat_libfs_ops, fat_reg.fs_handle, rid, request);
}
 
void fat_lookup(ipc_callid_t rid, ipc_call_t *request)
{
libfs_lookup(&fat_libfs_ops, fat_reg.fs_handle, rid, request);
}
int first = IPC_GET_ARG1(*request);
int second = IPC_GET_ARG2(*request);
int dev_handle = IPC_GET_ARG3(*request);
 
void fat_read(ipc_callid_t rid, ipc_call_t *request)
{
dev_handle_t dev_handle = (dev_handle_t)IPC_GET_ARG1(*request);
fs_index_t index = (fs_index_t)IPC_GET_ARG2(*request);
off_t pos = (off_t)IPC_GET_ARG3(*request);
fs_node_t *fn = fat_node_get(dev_handle, index);
fat_node_t *nodep;
fat_bs_t *bs;
uint16_t bps;
size_t bytes;
block_t *b;
 
if (!fn) {
ipc_answer_0(rid, ENOENT);
return;
}
nodep = FAT_NODE(fn);
 
ipc_callid_t callid;
size_t len;
if (!ipc_data_read_receive(&callid, &len)) {
fat_node_put(fn);
ipc_answer_0(callid, EINVAL);
ipc_answer_0(rid, EINVAL);
return;
}
 
bs = block_bb_get(dev_handle);
bps = uint16_t_le2host(bs->bps);
 
if (nodep->type == FAT_FILE) {
/*
* Our strategy for regular file reads is to read one block at
* most and make use of the possibility to return less data than
* requested. This keeps the code very simple.
*/
if (pos >= nodep->size) {
/* reading beyond the EOF */
bytes = 0;
(void) ipc_data_read_finalize(callid, NULL, 0);
} else {
bytes = min(len, bps - pos % bps);
bytes = min(bytes, nodep->size - pos);
b = fat_block_get(bs, nodep, pos / bps,
BLOCK_FLAGS_NONE);
(void) ipc_data_read_finalize(callid, b->data + pos % bps,
bytes);
block_put(b);
}
} else {
unsigned bnum;
off_t spos = pos;
char name[FAT_NAME_LEN + 1 + FAT_EXT_LEN + 1];
fat_dentry_t *d;
 
assert(nodep->type == FAT_DIRECTORY);
assert(nodep->size % bps == 0);
assert(bps % sizeof(fat_dentry_t) == 0);
 
/*
* Our strategy for readdir() is to use the position pointer as
* an index into the array of all dentries. On entry, it points
* to the first unread dentry. If we skip any dentries, we bump
* the position pointer accordingly.
*/
bnum = (pos * sizeof(fat_dentry_t)) / bps;
while (bnum < nodep->size / bps) {
off_t o;
 
b = fat_block_get(bs, nodep, bnum, BLOCK_FLAGS_NONE);
for (o = pos % (bps / sizeof(fat_dentry_t));
o < bps / sizeof(fat_dentry_t);
o++, pos++) {
d = ((fat_dentry_t *)b->data) + o;
switch (fat_classify_dentry(d)) {
case FAT_DENTRY_SKIP:
case FAT_DENTRY_FREE:
continue;
case FAT_DENTRY_LAST:
block_put(b);
goto miss;
default:
case FAT_DENTRY_VALID:
fat_dentry_name_get(d, name);
block_put(b);
goto hit;
}
}
block_put(b);
bnum++;
}
miss:
fat_node_put(fn);
ipc_answer_0(callid, ENOENT);
ipc_answer_1(rid, ENOENT, 0);
return;
hit:
(void) ipc_data_read_finalize(callid, name, str_size(name) + 1);
bytes = (pos - spos) + 1;
}
 
fat_node_put(fn);
ipc_answer_1(rid, EOK, (ipcarg_t)bytes);
}
 
void fat_write(ipc_callid_t rid, ipc_call_t *request)
{
dev_handle_t dev_handle = (dev_handle_t)IPC_GET_ARG1(*request);
fs_index_t index = (fs_index_t)IPC_GET_ARG2(*request);
off_t pos = (off_t)IPC_GET_ARG3(*request);
fs_node_t *fn = fat_node_get(dev_handle, index);
fat_node_t *nodep;
fat_bs_t *bs;
size_t bytes;
block_t *b;
uint16_t bps;
unsigned spc;
unsigned bpc; /* bytes per cluster */
off_t boundary;
int flags = BLOCK_FLAGS_NONE;
if (!fn) {
ipc_answer_0(rid, ENOENT);
return;
}
nodep = FAT_NODE(fn);
ipc_callid_t callid;
size_t len;
if (!ipc_data_write_receive(&callid, &len)) {
fat_node_put(fn);
ipc_answer_0(callid, EINVAL);
ipc_answer_0(rid, EINVAL);
return;
}
 
bs = block_bb_get(dev_handle);
bps = uint16_t_le2host(bs->bps);
spc = bs->spc;
bpc = bps * spc;
 
/*
* In all scenarios, we will attempt to write out only one block worth
* of data at maximum. There might be some more efficient approaches,
* but this one greatly simplifies fat_write(). Note that we can afford
* to do this because the client must be ready to handle the return
* value signalizing a smaller number of bytes written.
*/
bytes = min(len, bps - pos % bps);
if (bytes == bps)
flags |= BLOCK_FLAGS_NOREAD;
boundary = ROUND_UP(nodep->size, bpc);
if (pos < boundary) {
/*
* This is the easier case - we are either overwriting already
* existing contents or writing behind the EOF, but still within
* the limits of the last cluster. The node size may grow to the
* next block size boundary.
*/
fat_fill_gap(bs, nodep, FAT_CLST_RES0, pos);
b = fat_block_get(bs, nodep, pos / bps, flags);
(void) ipc_data_write_finalize(callid, b->data + pos % bps,
bytes);
b->dirty = true; /* need to sync block */
block_put(b);
if (pos + bytes > nodep->size) {
nodep->size = pos + bytes;
nodep->dirty = true; /* need to sync node */
}
ipc_answer_2(rid, EOK, bytes, nodep->size);
fat_node_put(fn);
return;
} else {
/*
* This is the more difficult case. We must allocate new
* clusters for the node and zero them out.
*/
int status;
unsigned nclsts;
fat_cluster_t mcl, lcl;
nclsts = (ROUND_UP(pos + bytes, bpc) - boundary) / bpc;
/* create an independent chain of nclsts clusters in all FATs */
status = fat_alloc_clusters(bs, dev_handle, nclsts, &mcl, &lcl);
if (status != EOK) {
/* could not allocate a chain of nclsts clusters */
fat_node_put(fn);
ipc_answer_0(callid, status);
ipc_answer_0(rid, status);
return;
}
/* zero fill any gaps */
fat_fill_gap(bs, nodep, mcl, pos);
b = _fat_block_get(bs, dev_handle, lcl, (pos / bps) % spc,
flags);
(void) ipc_data_write_finalize(callid, b->data + pos % bps,
bytes);
b->dirty = true; /* need to sync block */
block_put(b);
/*
* Append the cluster chain starting in mcl to the end of the
* node's cluster chain.
*/
fat_append_clusters(bs, nodep, mcl);
nodep->size = pos + bytes;
nodep->dirty = true; /* need to sync node */
ipc_answer_2(rid, EOK, bytes, nodep->size);
fat_node_put(fn);
return;
}
}
 
void fat_truncate(ipc_callid_t rid, ipc_call_t *request)
{
dev_handle_t dev_handle = (dev_handle_t)IPC_GET_ARG1(*request);
fs_index_t index = (fs_index_t)IPC_GET_ARG2(*request);
size_t size = (off_t)IPC_GET_ARG3(*request);
fs_node_t *fn = fat_node_get(dev_handle, index);
fat_node_t *nodep;
fat_bs_t *bs;
uint16_t bps;
uint8_t spc;
unsigned bpc; /* bytes per cluster */
int rc;
 
if (!fn) {
ipc_answer_0(rid, ENOENT);
return;
}
nodep = FAT_NODE(fn);
 
bs = block_bb_get(dev_handle);
bps = uint16_t_le2host(bs->bps);
spc = bs->spc;
bpc = bps * spc;
 
if (nodep->size == size) {
rc = EOK;
} else if (nodep->size < size) {
/*
* The standard says we have the freedom to grow the node.
* For now, we simply return an error.
*/
rc = EINVAL;
} else if (ROUND_UP(nodep->size, bpc) == ROUND_UP(size, bpc)) {
/*
* The node will be shrunk, but no clusters will be deallocated.
*/
nodep->size = size;
nodep->dirty = true; /* need to sync node */
rc = EOK;
} else {
/*
* The node will be shrunk, clusters will be deallocated.
*/
if (size == 0) {
fat_chop_clusters(bs, nodep, FAT_CLST_RES0);
} else {
fat_cluster_t lastc;
(void) fat_cluster_walk(bs, dev_handle, nodep->firstc,
&lastc, (size - 1) / bpc);
fat_chop_clusters(bs, nodep, lastc);
}
nodep->size = size;
nodep->dirty = true; /* need to sync node */
rc = EOK;
}
fat_node_put(fn);
ipc_answer_0(rid, rc);
return;
}
 
void fat_close(ipc_callid_t rid, ipc_call_t *request)
{
ipc_answer_0(rid, EOK);
}
 
void fat_destroy(ipc_callid_t rid, ipc_call_t *request)
{
dev_handle_t dev_handle = (dev_handle_t)IPC_GET_ARG1(*request);
fs_index_t index = (fs_index_t)IPC_GET_ARG2(*request);
int rc;
 
fs_node_t *fn = fat_node_get(dev_handle, index);
if (!fn) {
ipc_answer_0(rid, ENOENT);
return;
}
 
rc = fat_destroy_node(fn);
ipc_answer_0(rid, rc);
}
 
void fat_open_node(ipc_callid_t rid, ipc_call_t *request)
{
libfs_open_node(&fat_libfs_ops, fat_reg.fs_handle, rid, request);
}
 
void fat_stat(ipc_callid_t rid, ipc_call_t *request)
{
libfs_stat(&fat_libfs_ops, fat_reg.fs_handle, rid, request);
}
 
void fat_sync(ipc_callid_t rid, ipc_call_t *request)
{
/* Dummy implementation */
ipc_answer_0(rid, EOK);
}
 
/**
* @}
*/
*/
/trunk/uspace/srv/fs/fat/Makefile
31,17 → 31,12
 
LIBC_PREFIX = ../../../lib/libc
LIBFS_PREFIX = ../../../lib/libfs
LIBBLOCK_PREFIX = ../../../lib/libblock
SOFTINT_PREFIX = ../../../lib/softint
 
include $(LIBC_PREFIX)/Makefile.toolchain
 
CFLAGS += -I $(LIBFS_PREFIX) -I $(LIBBLOCK_PREFIX)
CFLAGS += -I $(LIBFS_PREFIX)
 
LIBS = \
$(LIBFS_PREFIX)/libfs.a \
$(LIBBLOCK_PREFIX)/libblock.a \
$(LIBC_PREFIX)/libc.a
LIBS = $(LIBC_PREFIX)/libc.a $(LIBFS_PREFIX)/libfs.a
 
## Sources
#
49,33 → 44,28
OUTPUT = fat
SOURCES = \
fat.c \
fat_ops.c \
fat_idx.c \
fat_dentry.c \
fat_fat.c
fat_ops.c
 
OBJECTS := $(addsuffix .o,$(basename $(SOURCES)))
 
.PHONY: all clean depend disasm
 
all: $(OUTPUT) $(OUTPUT).disasm
all: $(OUTPUT) disasm
 
-include Makefile.depend
 
clean:
-rm -f $(OUTPUT) $(OUTPUT).map $(OUTPUT).disasm Makefile.depend $(OBJECTS)
-rm -f $(OUTPUT) $(OUTPUT).map $(OUTPUT).disasm Makefile.depend
 
depend:
$(CC) $(DEFS) $(CFLAGS) -M $(SOURCES) > Makefile.depend
 
$(OUTPUT): $(OBJECTS) $(LIBS)
$(LD) -T $(LIBC_PREFIX)/arch/$(UARCH)/_link.ld $(OBJECTS) $(LIBS) $(LFLAGS) -o $@ -Map $(OUTPUT).map
$(LD) -T $(LIBC_PREFIX)/arch/$(ARCH)/_link.ld $(OBJECTS) $(LIBS) $(LFLAGS) -o $@ -Map $(OUTPUT).map
 
disasm: $(OUTPUT).disasm
disasm:
$(OBJDUMP) -d $(OUTPUT) >$(OUTPUT).disasm
 
$(OUTPUT).disasm: $(OUTPUT)
$(OBJDUMP) -d $< > $@
 
%.o: %.S
$(CC) $(DEFS) $(AFLAGS) $(CFLAGS) -D__ASM__ -c $< -o $@