Subversion Repositories HelenOS

Compare Revisions

Ignore whitespace Rev HEAD → Rev 2725

/trunk/kernel/generic/src/main/main.c
32,7 → 32,7
 
/**
* @file
* @brief Main initialization kernel function for all processors.
* @brief Main initialization kernel function for all processors.
*
* During kernel boot, all processors, after architecture dependent
* initialization, start executing code found in this file. After
57,11 → 57,9
#include <proc/scheduler.h>
#include <proc/thread.h>
#include <proc/task.h>
#include <proc/tasklet.h>
#include <main/kinit.h>
#include <main/version.h>
#include <console/kconsole.h>
#include <console/console.h>
#include <cpu.h>
#include <align.h>
#include <interrupt.h>
79,10 → 77,9
#include <ipc/ipc.h>
#include <macros.h>
#include <adt/btree.h>
#include <console/klog.h>
#include <smp/smp.h>
#include <ddi/ddi.h>
#include <main/main.h>
#include <ipc/event.h>
 
/** Global configuration structure. */
config_t config;
89,7 → 86,7
 
/** Initial user-space tasks */
init_t init = {
.cnt = 0
0
};
 
/** Boot allocations. */
105,15 → 102,17
* the linker or the low level assembler code with
* appropriate sizes and addresses.
*/
uintptr_t hardcoded_load_address = 0; /**< Virtual address of where the kernel
* is loaded. */
size_t hardcoded_ktext_size = 0; /**< Size of the kernel code in bytes.
*/
size_t hardcoded_kdata_size = 0; /**< Size of the kernel data in bytes.
*/
uintptr_t stack_safe = 0; /**< Lowest safe stack virtual address.
*/
 
/** Virtual address of where the kernel is loaded. */
uintptr_t hardcoded_load_address = 0;
/** Size of the kernel code in bytes. */
size_t hardcoded_ktext_size = 0;
/** Size of the kernel data in bytes. */
size_t hardcoded_kdata_size = 0;
/** Lowest safe stack virtual address. */
uintptr_t stack_safe = 0;
void main_bsp(void);
void main_ap(void);
 
/*
* These two functions prevent stack from underflowing during the
130,11 → 129,9
 
/** Main kernel routine for bootstrap CPU.
*
* The code here still runs on the boot stack, which knows nothing about
* preemption counts. Because of that, this function cannot directly call
* functions that disable or enable preemption (e.g. spinlock_lock()). The
* primary task of this function is to calculate address of a new stack and
* switch to it.
* Initializes the kernel by bootstrap CPU.
* This function passes control directly to
* main_bsp_separated_stack().
*
* Assuming interrupts_disable().
*
153,7 → 150,7
config.stack_base = config.base + config.kernel_size;
/* Avoid placing stack on top of init */
size_t i;
count_t i;
for (i = 0; i < init.cnt; i++) {
if (PA_overlaps(config.stack_base, config.stack_size,
init.tasks[i].addr, init.tasks[i].size))
187,93 → 184,89
*/
void main_bsp_separated_stack(void)
{
/* Keep this the first thing. */
task_t *k;
thread_t *t;
count_t i;
the_initialize(THE);
version_print();
LOG("\nconfig.base=%#" PRIp " config.kernel_size=%" PRIs
"\nconfig.stack_base=%#" PRIp " config.stack_size=%" PRIs,
config.base, config.kernel_size, config.stack_base,
config.stack_size);
#ifdef CONFIG_KCONSOLE
 
/*
* kconsole data structures must be initialized very early
* because other subsystems will register their respective
* commands.
*/
LOG_EXEC(kconsole_init());
#endif
kconsole_init();
/*
* Exception handler initialization, before architecture
* starts adding its own handlers
*/
LOG_EXEC(exc_init());
exc_init();
 
/*
* Memory management subsystems initialization.
*/
LOG_EXEC(arch_pre_mm_init());
LOG_EXEC(frame_init());
*/
arch_pre_mm_init();
frame_init();
/* Initialize at least 1 memory segment big enough for slab to work. */
LOG_EXEC(slab_cache_init());
LOG_EXEC(btree_init());
LOG_EXEC(as_init());
LOG_EXEC(page_init());
LOG_EXEC(tlb_init());
LOG_EXEC(ddi_init());
LOG_EXEC(tasklet_init());
LOG_EXEC(arch_post_mm_init());
LOG_EXEC(arch_pre_smp_init());
LOG_EXEC(smp_init());
slab_cache_init();
btree_init();
as_init();
page_init();
tlb_init();
ddi_init();
arch_post_mm_init();
version_print();
printf("kernel: %.*p hardcoded_ktext_size=%zd KB, "
"hardcoded_kdata_size=%zd KB\n", sizeof(uintptr_t) * 2,
config.base, SIZE2KB(hardcoded_ktext_size),
SIZE2KB(hardcoded_kdata_size));
printf("stack: %.*p size=%zd KB\n", sizeof(uintptr_t) * 2,
config.stack_base, SIZE2KB(config.stack_size));
arch_pre_smp_init();
smp_init();
/* Slab must be initialized after we know the number of processors. */
LOG_EXEC(slab_enable_cpucache());
slab_enable_cpucache();
printf("Detected %" PRIs " CPU(s), %" PRIu64" MiB free memory\n",
config.cpu_count, SIZE2MB(zone_total_size()));
printf("Detected %zu CPU(s), %llu MB free memory\n",
config.cpu_count, SIZE2MB(zone_total_size()));
cpu_init();
LOG_EXEC(cpu_init());
calibrate_delay_loop();
clock_counter_init();
timeout_init();
scheduler_init();
task_init();
thread_init();
futex_init();
klog_init();
LOG_EXEC(calibrate_delay_loop());
LOG_EXEC(clock_counter_init());
LOG_EXEC(timeout_init());
LOG_EXEC(scheduler_init());
LOG_EXEC(task_init());
LOG_EXEC(thread_init());
LOG_EXEC(futex_init());
if (init.cnt > 0) {
size_t i;
for (i = 0; i < init.cnt; i++)
LOG("init[%" PRIs "].addr=%#" PRIp ", init[%" PRIs
"].size=%#" PRIs, i, init.tasks[i].addr, i,
printf("init[%zd].addr=%.*p, init[%zd].size=%zd\n", i,
sizeof(uintptr_t) * 2, init.tasks[i].addr, i,
init.tasks[i].size);
} else
printf("No init binaries found.\n");
printf("No init binaries found\n");
LOG_EXEC(ipc_init());
LOG_EXEC(event_init());
LOG_EXEC(klog_init());
ipc_init();
 
/*
* Create kernel task.
*/
task_t *kernel = task_create(AS_KERNEL, "kernel");
if (!kernel)
panic("Cannot create kernel task.");
k = task_create(AS_KERNEL, "kernel");
if (!k)
panic("can't create kernel task\n");
/*
* Create the first thread.
*/
thread_t *kinit_thread
= thread_create(kinit, NULL, kernel, 0, "kinit", true);
if (!kinit_thread)
panic("Cannot create kinit thread.");
LOG_EXEC(thread_ready(kinit_thread));
t = thread_create(kinit, NULL, k, 0, "kinit", true);
if (!t)
panic("can't create kinit thread\n");
thread_ready(t);
/*
* This call to scheduler() will return to kinit,
326,7 → 319,6
* collide with another CPU coming up. To prevent this, we
* switch to this cpu's private stack prior to waking kmp up.
*/
context_save(&CPU->saved_context);
context_set(&CPU->saved_context, FADDR(main_ap_separated_stack),
(uintptr_t) CPU->stack, CPU_STACK_SIZE);
context_restore(&CPU->saved_context);