Subversion Repositories HelenOS

Compare Revisions

Ignore whitespace Rev 2421 → Rev 2422

/branches/fs/kernel/generic/include/print.h
40,7 → 40,7
#include <arch/arg.h>
 
/* We need this address in spinlock to avoid deadlock in deadlock detection */
SPINLOCK_EXTERN(printflock);
SPINLOCK_EXTERN(printf_lock);
 
#define EOF (-1)
 
/branches/fs/kernel/generic/include/time/clock.h
35,8 → 35,19
#ifndef KERN_CLOCK_H_
#define KERN_CLOCK_H_
 
#include <arch/types.h>
 
#define HZ 100
 
/** Uptime structure */
typedef struct {
unative_t seconds1;
unative_t useconds;
unative_t seconds2;
} uptime_t;
 
extern uptime_t *uptime;
 
extern void clock(void);
extern void clock_counter_init(void);
 
/branches/fs/kernel/generic/include/proc/task.h
90,10 → 90,10
* Active asynchronous messages. It is used for limiting uspace to
* certain extent.
*/
atomic_t active_calls;
atomic_t active_calls;
/** Architecture specific task data. */
task_arch_t arch;
task_arch_t arch;
/**
* Serializes access to the B+tree of task's futexes. This mutex is
111,6 → 111,7
extern btree_t tasks_btree;
 
extern void task_init(void);
extern void task_done(void);
extern task_t *task_create(as_t *as, char *name);
extern void task_destroy(task_t *t);
extern task_t *task_run_program(void *program_addr, char *name);
/branches/fs/kernel/generic/include/proc/thread.h
53,7 → 53,11
 
/* Thread flags */
 
/** Thread cannot be migrated to another CPU. */
/** Thread cannot be migrated to another CPU.
*
* When using this flag, the caller must set cpu in the thread_t
* structure manually before calling thread_ready (even on uniprocessor).
*/
#define THREAD_FLAG_WIRED (1 << 0)
/** Thread was migrated to another CPU and has not run yet. */
#define THREAD_FLAG_STOLEN (1 << 1)
193,7 → 197,7
/** Thread's priority. Implemented as index to CPU->rq */
int priority;
/** Thread ID. */
uint32_t tid;
thread_id_t tid;
/** Architecture-specific data. */
thread_arch_t arch;
248,8 → 252,9
extern slab_cache_t *fpu_context_slab;
 
/* Thread syscall prototypes. */
unative_t sys_thread_create(uspace_arg_t *uspace_uarg, char *uspace_name);
unative_t sys_thread_exit(int uspace_status);
extern unative_t sys_thread_create(uspace_arg_t *uspace_uarg, char *uspace_name, thread_id_t *uspace_thread_id);
extern unative_t sys_thread_exit(int uspace_status);
extern unative_t sys_thread_get_id(thread_id_t *uspace_thread_id);
 
#endif
 
/branches/fs/kernel/generic/include/interrupt.h
48,7 → 48,7
#define fault_if_from_uspace(istate, cmd, ...) \
{ \
if (istate_from_uspace(istate)) { \
klog_printf("Task %lld killed due to an exception at %p.", TASK->taskid, istate_get_pc(istate)); \
klog_printf("Task %llu killed due to an exception at %p.", TASK->taskid, istate_get_pc(istate)); \
klog_printf(" " cmd, ##__VA_ARGS__); \
task_kill(TASK->taskid); \
thread_exit(); \
/branches/fs/kernel/generic/include/synch/mutex.h
44,13 → 44,11
} mutex_t;
 
#define mutex_lock(mtx) \
_mutex_lock_timeout((mtx),SYNCH_NO_TIMEOUT,SYNCH_FLAGS_NONE)
_mutex_lock_timeout((mtx), SYNCH_NO_TIMEOUT, SYNCH_FLAGS_NONE)
#define mutex_trylock(mtx) \
_mutex_lock_timeout((mtx),SYNCH_NO_TIMEOUT,SYNCH_FLAGS_NON_BLOCKING)
#define mutex_lock_timeout(mtx,usec) \
_mutex_lock_timeout((mtx),(usec),SYNCH_FLAGS_NON_BLOCKING)
#define mutex_lock_active(mtx) \
while (mutex_trylock((mtx)) != ESYNCH_OK_ATOMIC)
_mutex_lock_timeout((mtx), SYNCH_NO_TIMEOUT, SYNCH_FLAGS_NON_BLOCKING)
#define mutex_lock_timeout(mtx, usec) \
_mutex_lock_timeout((mtx), (usec), SYNCH_FLAGS_NON_BLOCKING)
 
extern void mutex_initialize(mutex_t *mtx);
extern int _mutex_lock_timeout(mutex_t *mtx, uint32_t usec, int flags);
/branches/fs/kernel/generic/include/synch/spinlock.h
101,8 → 101,26
preemption_enable();
}
 
#ifdef CONFIG_DEBUG_SPINLOCK
 
extern int printf(const char *, ...);
 
#define DEADLOCK_THRESHOLD 100000000
#define DEADLOCK_PROBE_INIT(pname) count_t pname = 0
#define DEADLOCK_PROBE(pname, value) \
if ((pname)++ > (value)) { \
(pname) = 0; \
printf("Deadlock probe %s: exceeded threshold %d\n", \
"cpu%d: function=%s, line=%d\n", \
#pname, (value), CPU->id, __FUNCTION__, __LINE__); \
}
#else
#define DEADLOCK_PROBE_INIT(pname)
#define DEADLOCK_PROBE(pname, value)
#endif
 
#else
 
/* On UP systems, spinlocks are effectively left out. */
#define SPINLOCK_DECLARE(name)
#define SPINLOCK_EXTERN(name)
113,6 → 131,9
#define spinlock_trylock(x) (preemption_disable(), 1)
#define spinlock_unlock(x) preemption_enable()
 
#define DEADLOCK_PROBE_INIT(pname)
#define DEADLOCK_PROBE(pname, value)
 
#endif
 
#endif
/branches/fs/kernel/generic/include/synch/waitq.h
40,8 → 40,10
#include <synch/synch.h>
#include <adt/list.h>
 
#define WAKEUP_FIRST 0
#define WAKEUP_ALL 1
typedef enum {
WAKEUP_FIRST = 0,
WAKEUP_ALL
} wakeup_mode_t;
 
/** Wait queue structure. */
typedef struct {
70,8 → 72,8
extern ipl_t waitq_sleep_prepare(waitq_t *wq);
extern int waitq_sleep_timeout_unsafe(waitq_t *wq, uint32_t usec, int flags);
extern void waitq_sleep_finish(waitq_t *wq, int rc, ipl_t ipl);
extern void waitq_wakeup(waitq_t *wq, bool all);
extern void _waitq_wakeup_unsafe(waitq_t *wq, bool all);
extern void waitq_wakeup(waitq_t *wq, wakeup_mode_t mode);
extern void _waitq_wakeup_unsafe(waitq_t *wq, wakeup_mode_t mode);
extern void waitq_interrupt_sleep(struct thread *t);
 
#endif
/branches/fs/kernel/generic/include/ddi/irq.h
121,6 → 121,14
* this lock must not be taken first.
*/
SPINLOCK_DECLARE(lock);
/** Send EOI before processing the interrupt.
* This is essential for timer interrupt which
* has to be acknowledged before doing preemption
* to make sure another timer interrupt will
* be eventually generated.
*/
bool preack;
 
/** Unique device number. -1 if not yet assigned. */
devno_t devno;
127,7 → 135,7
 
/** Actual IRQ number. -1 if not yet assigned. */
inr_t inr;
/** Trigger level of the IRQ.*/
/** Trigger level of the IRQ. */
irq_trigger_t trigger;
/** Claim ownership of the IRQ. */
irq_ownership_t (* claim)(void);
/branches/fs/kernel/generic/include/printf/printf_core.h
47,7 → 47,7
 
};
 
int printf_core(const char *fmt, struct printf_spec *ps ,va_list ap);
int printf_core(const char *fmt, struct printf_spec *ps, va_list ap);
 
#endif
 
/branches/fs/kernel/generic/include/arch.h
74,8 → 74,12
extern void arch_post_cpu_init(void);
extern void arch_pre_smp_init(void);
extern void arch_post_smp_init(void);
 
extern void calibrate_delay_loop(void);
 
extern void reboot(void);
extern void arch_reboot(void);
 
#endif
 
/** @}
/branches/fs/kernel/generic/include/mm/as.h
89,24 → 89,26
@public
/** Protected by asidlock. */
link_t inactive_as_with_asid_link;
/**
* Number of processors on wich is this address space active.
* Protected by asidlock.
*/
count_t cpu_refcount;
/**
* Address space identifier.
* Constant on architectures that do not support ASIDs.
* Protected by asidlock.
*/
asid_t asid;
/** Number of references (i.e tasks that reference this as). */
atomic_t refcount;
 
mutex_t lock;
/** Number of references (i.e tasks that reference this as). */
count_t refcount;
/** Number of processors on wich is this address space active. */
count_t cpu_refcount;
/** B+tree of address space areas. */
btree_t as_area_btree;
/**
* Address space identifier.
* Constant on architectures that do not support ASIDs.
*/
asid_t asid;
/** Non-generic content. */
as_genarch_t genarch;
133,24 → 135,26
typedef struct as {
/** Protected by asidlock. */
link_t inactive_as_with_asid_link;
/**
* Number of processors on wich is this address space active.
* Protected by asidlock.
*/
count_t cpu_refcount;
/**
* Address space identifier.
* Constant on architectures that do not support ASIDs.
* Protected by asidlock.
*/
asid_t asid;
 
mutex_t lock;
 
/** Number of references (i.e tasks that reference this as). */
count_t refcount;
atomic_t refcount;
 
/** Number of processors on wich is this address space active. */
count_t cpu_refcount;
mutex_t lock;
 
/** B+tree of address space areas. */
btree_t as_area_btree;
/**
* Address space identifier.
* Constant on architectures that do not support ASIDs.
*/
asid_t asid;
/** Non-generic content. */
as_genarch_t genarch;
 
205,7 → 209,6
/** Address space area structure.
*
* Each as_area_t structure describes one contiguous area of virtual memory.
* In the future, it should not be difficult to support shared areas.
*/
typedef struct {
mutex_t lock;
250,7 → 253,6
extern as_operations_t *as_operations;
#endif
 
SPINLOCK_EXTERN(inactive_as_with_asid_lock);
extern link_t inactive_as_with_asid_head;
 
extern void as_init(void);
/branches/fs/kernel/generic/include/syscall/syscall.h
40,6 → 40,7
SYS_TLS_SET = 1, /* Hardcoded in AMD64, IA32 uspace - psthread.S */
SYS_THREAD_CREATE,
SYS_THREAD_EXIT,
SYS_THREAD_GET_ID,
SYS_TASK_GET_ID,
SYS_FUTEX_SLEEP,
SYS_FUTEX_WAKEUP,
/branches/fs/kernel/generic/src/synch/spinlock.c
73,7 → 73,6
* @param sl Pointer to spinlock_t structure.
*/
#ifdef CONFIG_DEBUG_SPINLOCK
#define DEADLOCK_THRESHOLD 100000000
void spinlock_lock_debug(spinlock_t *sl)
{
count_t i = 0;
84,7 → 83,7
while (test_and_set(&sl->val)) {
 
/*
* We need to be careful about printflock and fb_lock.
* We need to be careful about printf_lock and fb_lock.
* Both of them are used to report deadlocks via
* printf() and fb_putchar().
*
94,13 → 93,13
* However, we encountered false positives caused by very
* slow VESA framebuffer interaction (especially when
* run in a simulator) that caused problems with both
* printflock and fb_lock.
* printf_lock and fb_lock.
*
* Possible deadlocks on both printflock and fb_lock
* Possible deadlocks on both printf_lock and fb_lock
* are therefore not reported as they would cause an
* infinite recursion.
*/
if (sl == &printflock)
if (sl == &printf_lock)
continue;
#ifdef CONFIG_FB
if (sl == &fb_lock)
/branches/fs/kernel/generic/src/synch/waitq.c
86,6 → 86,7
thread_t *t = (thread_t *) data;
waitq_t *wq;
bool do_wakeup = false;
DEADLOCK_PROBE_INIT(p_wqlock);
 
spinlock_lock(&threads_lock);
if (!thread_exists(t))
96,6 → 97,7
if ((wq = t->sleep_queue)) { /* assignment */
if (!spinlock_trylock(&wq->lock)) {
spinlock_unlock(&t->lock);
DEADLOCK_PROBE(p_wqlock, DEADLOCK_THRESHOLD);
goto grab_locks; /* avoid deadlock */
}
 
128,6 → 130,7
waitq_t *wq;
bool do_wakeup = false;
ipl_t ipl;
DEADLOCK_PROBE_INIT(p_wqlock);
 
ipl = interrupts_disable();
spinlock_lock(&threads_lock);
147,6 → 150,7
if (!spinlock_trylock(&wq->lock)) {
spinlock_unlock(&t->lock);
DEADLOCK_PROBE(p_wqlock, DEADLOCK_THRESHOLD);
goto grab_locks; /* avoid deadlock */
}
 
379,11 → 383,10
* Besides its 'normal' wakeup operation, it attempts to unregister possible
* timeout.
*
* @param wq Pointer to wait queue.
* @param all If this is non-zero, all sleeping threads will be woken up and
* missed count will be zeroed.
* @param wq Pointer to wait queue.
* @param mode Wakeup mode.
*/
void waitq_wakeup(waitq_t *wq, bool all)
void waitq_wakeup(waitq_t *wq, wakeup_mode_t mode)
{
ipl_t ipl;
 
390,10 → 393,10
ipl = interrupts_disable();
spinlock_lock(&wq->lock);
 
_waitq_wakeup_unsafe(wq, all);
_waitq_wakeup_unsafe(wq, mode);
 
spinlock_unlock(&wq->lock);
interrupts_restore(ipl);
spinlock_unlock(&wq->lock);
interrupts_restore(ipl);
}
 
/** Internal SMP- and IRQ-unsafe version of waitq_wakeup()
401,22 → 404,27
* This is the internal SMP- and IRQ-unsafe version of waitq_wakeup(). It
* assumes wq->lock is already locked and interrupts are already disabled.
*
* @param wq Pointer to wait queue.
* @param all If this is non-zero, all sleeping threads will be woken up and
* missed count will be zeroed.
* @param wq Pointer to wait queue.
* @param mode If mode is WAKEUP_FIRST, then the longest waiting thread,
* if any, is woken up. If mode is WAKEUP_ALL, then all
* waiting threads, if any, are woken up. If there are no
* waiting threads to be woken up, the missed wakeup is
* recorded in the wait queue.
*/
void _waitq_wakeup_unsafe(waitq_t *wq, bool all)
void _waitq_wakeup_unsafe(waitq_t *wq, wakeup_mode_t mode)
{
thread_t *t;
count_t count = 0;
 
loop:
if (list_empty(&wq->head)) {
wq->missed_wakeups++;
if (all)
wq->missed_wakeups = 0;
if (count && mode == WAKEUP_ALL)
wq->missed_wakeups--;
return;
}
 
count++;
t = list_get_instance(wq->head.next, thread_t, wq_link);
/*
445,7 → 453,7
 
thread_ready(t);
 
if (all)
if (mode == WAKEUP_ALL)
goto loop;
}
 
/branches/fs/kernel/generic/src/main/kinit.c
118,7 → 118,7
 
#ifdef CONFIG_SMP
if (config.cpu_count > 1) {
unsigned int i;
count_t i;
/*
* For each CPU, create its load balancing thread.
167,6 → 167,7
 
task_t *utask = task_run_program((void *) init.tasks[i].addr,
"uspace");
if (utask) {
/*
* Set capabilities to init userspace tasks.
/branches/fs/kernel/generic/src/main/shutdown.c
0,0 → 1,53
/*
* Copyright (c) 2007 Martin Decky
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* - The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
 
/** @addtogroup main
* @{
*/
 
/**
* @file
* @brief Shutdown procedures.
*/
 
#include <arch.h>
#include <print.h>
 
void reboot(void)
{
task_done();
#ifdef CONFIG_DEBUG
printf("Rebooting the system\n");
#endif
arch_reboot();
}
 
/** @}
*/
/branches/fs/kernel/generic/src/time/timeout.c
45,7 → 45,6
#include <arch/asm.h>
#include <arch.h>
 
 
/** Initialize timeouts
*
* Initialize kernel timeouts.
175,6 → 174,7
timeout_t *hlp;
link_t *l;
ipl_t ipl;
DEADLOCK_PROBE_INIT(p_tolock);
 
grab_locks:
ipl = interrupts_disable();
186,7 → 186,8
}
if (!spinlock_trylock(&t->cpu->timeoutlock)) {
spinlock_unlock(&t->lock);
interrupts_restore(ipl);
interrupts_restore(ipl);
DEADLOCK_PROBE(p_tolock, DEADLOCK_THRESHOLD);
goto grab_locks;
}
/branches/fs/kernel/generic/src/time/clock.c
41,7 → 41,6
#include <time/clock.h>
#include <time/timeout.h>
#include <arch/types.h>
#include <config.h>
#include <synch/spinlock.h>
#include <synch/waitq.h>
57,16 → 56,12
#include <mm/frame.h>
#include <ddi/ddi.h>
 
/** Physical memory area of the real time clock. */
/* Pointer to variable with uptime */
uptime_t *uptime;
 
/** Physical memory area of the real time clock */
static parea_t clock_parea;
 
/* Pointers to public variables with time */
struct ptime {
unative_t seconds1;
unative_t useconds;
unative_t seconds2;
};
struct ptime *public_time;
/* Variable holding fragment of second, so that we would update
* seconds correctly
*/
86,15 → 81,14
if (!faddr)
panic("Cannot allocate page for clock");
public_time = (struct ptime *) PA2KA(faddr);
uptime = (uptime_t *) PA2KA(faddr);
uptime->seconds1 = 0;
uptime->seconds2 = 0;
uptime->useconds = 0;
 
/* TODO: We would need some arch dependent settings here */
public_time->seconds1 = 0;
public_time->seconds2 = 0;
public_time->useconds = 0;
 
clock_parea.pbase = (uintptr_t) faddr;
clock_parea.vbase = (uintptr_t) public_time;
clock_parea.vbase = (uintptr_t) uptime;
clock_parea.frames = 1;
clock_parea.cacheable = true;
ddi_parea_register(&clock_parea);
104,8 → 98,6
* physmem_map() the clock_parea.
*/
sysinfo_set_item_val("clock.cacheable", NULL, (unative_t) true);
sysinfo_set_item_val("clock.fcolor", NULL, (unative_t)
PAGE_COLOR(clock_parea.vbase));
sysinfo_set_item_val("clock.faddr", NULL, (unative_t) faddr);
}
 
118,16 → 110,16
static void clock_update_counters(void)
{
if (CPU->id == 0) {
secfrag += 1000000/HZ;
secfrag += 1000000 / HZ;
if (secfrag >= 1000000) {
secfrag -= 1000000;
public_time->seconds1++;
uptime->seconds1++;
write_barrier();
public_time->useconds = secfrag;
uptime->useconds = secfrag;
write_barrier();
public_time->seconds2 = public_time->seconds1;
uptime->seconds2 = uptime->seconds1;
} else
public_time->useconds += 1000000/HZ;
uptime->useconds += 1000000 / HZ;
}
}
 
/branches/fs/kernel/generic/src/ddi/ddi.c
99,8 → 99,7
* @return 0 on success, EPERM if the caller lacks capabilities to use this
* syscall, ENOENT if there is no task matching the specified ID or the
* physical address space is not enabled for mapping and ENOMEM if there
* was a problem in creating address space area. ENOTSUP is returned when
* an attempt to create an illegal address alias is detected.
* was a problem in creating address space area.
*/
static int ddi_physmem_map(uintptr_t pf, uintptr_t vp, count_t pages, int flags)
{
139,18 → 138,6
interrupts_restore(ipl);
return ENOENT;
}
 
#ifdef CONFIG_VIRT_IDX_DCACHE
if (PAGE_COLOR(parea->vbase) != PAGE_COLOR(vp)) {
/*
* Refuse to create an illegal address alias.
*/
spinlock_unlock(&parea_lock);
interrupts_restore(ipl);
return ENOTSUP;
}
#endif /* CONFIG_VIRT_IDX_DCACHE */
 
spinlock_unlock(&parea_lock);
 
spinlock_lock(&TASK->lock);
/branches/fs/kernel/generic/src/ddi/irq.c
138,6 → 138,7
{
link_initialize(&irq->link);
spinlock_initialize(&irq->lock, "irq.lock");
irq->preack = false;
irq->inr = -1;
irq->devno = -1;
irq->trigger = (irq_trigger_t) 0;
/branches/fs/kernel/generic/src/printf/snprintf.c
50,4 → 50,3
 
/** @}
*/
 
/branches/fs/kernel/generic/src/printf/vprintf.c
35,7 → 35,11
#include <print.h>
#include <printf/printf_core.h>
#include <putchar.h>
#include <synch/spinlock.h>
#include <arch/asm.h>
 
SPINLOCK_INITIALIZE(printf_lock); /**< vprintf spinlock */
 
static int vprintf_write(const char *str, size_t count, void *unused)
{
size_t i;
55,8 → 59,16
int vprintf(const char *fmt, va_list ap)
{
struct printf_spec ps = {(int(*)(void *, size_t, void *)) vprintf_write, NULL};
return printf_core(fmt, &ps, ap);
 
int irqpri = interrupts_disable();
spinlock_lock(&printf_lock);
int ret = printf_core(fmt, &ps, ap);
spinlock_unlock(&printf_lock);
interrupts_restore(irqpri);
return ret;
}
 
/** @}
/branches/fs/kernel/generic/src/printf/vsnprintf.c
42,8 → 42,6
char *string; /* destination string */
};
 
int vsnprintf_write(const char *str, size_t count, struct vsnprintf_data *data);
 
/** Write string to given buffer.
* Write at most data->size characters including trailing zero. According to C99, snprintf() has to return number
* of characters that would have been written if enough space had been available. Hence the return value is not
54,7 → 52,7
* @param data structure with destination string, counter of used space and total string size.
* @return number of characters to print (not characters really printed!)
*/
int vsnprintf_write(const char *str, size_t count, struct vsnprintf_data *data)
static int vsnprintf_write(const char *str, size_t count, struct vsnprintf_data *data)
{
size_t i;
i = data->size - data->len;
/branches/fs/kernel/generic/src/printf/printf_core.c
38,14 → 38,9
#include <printf/printf_core.h>
#include <putchar.h>
#include <print.h>
#include <synch/spinlock.h>
#include <arch/arg.h>
#include <arch/asm.h>
 
#include <arch.h>
 
SPINLOCK_INITIALIZE(printflock); /**< printf spinlock */
 
#define __PRINTF_FLAG_PREFIX 0x00000001 /**< show prefixes 0x or 0*/
#define __PRINTF_FLAG_SIGNED 0x00000002 /**< signed / unsigned number */
#define __PRINTF_FLAG_ZEROPADDED 0x00000004 /**< print leading zeroes */
458,7 → 453,6
*/
int printf_core(const char *fmt, struct printf_spec *ps, va_list ap)
{
int irqpri;
int i = 0, j = 0; /**< i is index of currently processed char from fmt, j is index to the first not printed nonformating character */
int end;
int counter; /**< counter of printed characters */
472,10 → 466,7
uint64_t flags;
counter = 0;
irqpri = interrupts_disable();
spinlock_lock(&printflock);
 
while ((c = fmt[i])) {
/* control character */
if (c == '%' ) {
712,8 → 703,6
}
 
out:
spinlock_unlock(&printflock);
interrupts_restore(irqpri);
return counter;
}
/branches/fs/kernel/generic/src/printf/vsprintf.c
36,7 → 36,7
 
int vsprintf(char *str, const char *fmt, va_list ap)
{
return vsnprintf(str, (size_t)-1, fmt, ap);
return vsnprintf(str, (size_t) - 1, fmt, ap);
}
 
/** @}
/branches/fs/kernel/generic/src/console/cmd.c
48,6 → 48,7
#include <arch/types.h>
#include <adt/list.h>
#include <arch.h>
#include <config.h>
#include <func.h>
#include <macros.h>
#include <debug.h>
79,10 → 80,26
 
static cmd_info_t exit_info = {
.name = "exit",
.description = "Exit kconsole",
.description = "Exit kconsole.",
.argc = 0
};
 
static int cmd_reboot(cmd_arg_t *argv);
static cmd_info_t reboot_info = {
.name = "reboot",
.description = "Reboot.",
.func = cmd_reboot,
.argc = 0
};
 
static int cmd_uptime(cmd_arg_t *argv);
static cmd_info_t uptime_info = {
.name = "uptime",
.description = "Print uptime information.",
.func = cmd_uptime,
.argc = 0
};
 
static int cmd_continue(cmd_arg_t *argv);
static cmd_info_t continue_info = {
.name = "continue",
192,10 → 209,10
};
 
/* Data and methods for 'call0' command. */
static char call0_buf[MAX_CMDLINE+1];
static char carg1_buf[MAX_CMDLINE+1];
static char carg2_buf[MAX_CMDLINE+1];
static char carg3_buf[MAX_CMDLINE+1];
static char call0_buf[MAX_CMDLINE + 1];
static char carg1_buf[MAX_CMDLINE + 1];
static char carg2_buf[MAX_CMDLINE + 1];
static char carg3_buf[MAX_CMDLINE + 1];
 
static int cmd_call0(cmd_arg_t *argv);
static cmd_arg_t call0_argv = {
211,6 → 228,21
.argv = &call0_argv
};
 
/* Data and methods for 'mcall0' command. */
static int cmd_mcall0(cmd_arg_t *argv);
static cmd_arg_t mcall0_argv = {
.type = ARG_TYPE_STRING,
.buffer = call0_buf,
.len = sizeof(call0_buf)
};
static cmd_info_t mcall0_info = {
.name = "mcall0",
.description = "mcall0 <function> -> call function() on each CPU.",
.func = cmd_mcall0,
.argc = 1,
.argv = &mcall0_argv
};
 
/* Data and methods for 'call1' command. */
static int cmd_call1(cmd_arg_t *argv);
static cmd_arg_t call1_argv[] = {
406,6 → 438,7
 
static cmd_info_t *basic_commands[] = {
&call0_info,
&mcall0_info,
&call1_info,
&call2_info,
&call3_info,
413,6 → 446,8
&cpus_info,
&desc_info,
&exit_info,
&reboot_info,
&uptime_info,
&halt_info,
&help_info,
&ipc_task_info,
488,6 → 523,41
return 1;
}
 
 
/** Reboot the system.
*
* @param argv Argument vector.
*
* @return 0 on failure, 1 on success.
*/
int cmd_reboot(cmd_arg_t *argv)
{
reboot();
/* Not reached */
return 1;
}
 
 
/** Print system uptime information.
*
* @param argv Argument vector.
*
* @return 0 on failure, 1 on success.
*/
int cmd_uptime(cmd_arg_t *argv)
{
ASSERT(uptime);
/* This doesn't have to be very accurate */
unative_t sec = uptime->seconds1;
printf("Up %u days, %u hours, %u minutes, %u seconds\n",
sec / 86400, (sec % 86400) / 3600, (sec % 3600) / 60, sec % 60);
return 1;
}
 
/** Describe specified command.
*
* @param argv Argument vector.
540,7 → 610,7
struct {
unative_t f;
unative_t gp;
}fptr;
} fptr;
#endif
 
symaddr = get_symbol_addr((char *) argv->buffer);
551,7 → 621,7
printf("Duplicate symbol, be more specific.\n");
} else {
symbol = get_symtab_entry(symaddr);
printf("Calling f(): %.*p: %s\n", sizeof(uintptr_t) * 2, symaddr, symbol);
printf("Calling %s() (%.*p)\n", symbol, sizeof(uintptr_t) * 2, symaddr);
#ifdef ia64
fptr.f = symaddr;
fptr.gp = ((unative_t *)cmd_call2)[1];
565,6 → 635,35
return 1;
}
 
/** Call function with zero parameters on each CPU */
int cmd_mcall0(cmd_arg_t *argv)
{
/*
* For each CPU, create a thread which will
* call the function.
*/
count_t i;
for (i = 0; i < config.cpu_count; i++) {
if (!cpus[i].active)
continue;
thread_t *t;
if ((t = thread_create((void (*)(void *)) cmd_call0, (void *) argv, TASK, THREAD_FLAG_WIRED, "call0", false))) {
spinlock_lock(&t->lock);
t->cpu = &cpus[i];
spinlock_unlock(&t->lock);
printf("cpu%u: ", i);
thread_ready(t);
thread_join(t);
thread_detach(t);
} else
printf("Unable to create thread for cpu%u\n", i);
}
return 1;
}
 
/** Call function with one parameter */
int cmd_call1(cmd_arg_t *argv)
{
713,7 → 812,7
/** Write 4 byte value to address */
int cmd_set4(cmd_arg_t *argv)
{
uint32_t *addr ;
uint32_t *addr;
uint32_t arg1 = argv[1].intval;
bool pointer = false;
 
/branches/fs/kernel/generic/src/console/klog.c
90,8 → 90,6
ddi_parea_register(&klog_parea);
 
sysinfo_set_item_val("klog.faddr", NULL, (unative_t) faddr);
sysinfo_set_item_val("klog.fcolor", NULL, (unative_t)
PAGE_COLOR((uintptr_t) klog));
sysinfo_set_item_val("klog.pages", NULL, 1 << KLOG_ORDER);
sysinfo_set_item_val("klog.devno", NULL, devno);
sysinfo_set_item_val("klog.inr", NULL, KLOG_VIRT_INR);
/branches/fs/kernel/generic/src/proc/scheduler.c
207,7 → 207,7
 
interrupts_disable();
for (i = 0; i<RQ_COUNT; i++) {
for (i = 0; i < RQ_COUNT; i++) {
r = &CPU->rq[i];
spinlock_lock(&r->lock);
if (r->n == 0) {
377,7 → 377,8
void scheduler_separated_stack(void)
{
int priority;
DEADLOCK_PROBE_INIT(p_joinwq);
 
ASSERT(CPU != NULL);
if (THREAD) {
406,9 → 407,12
spinlock_unlock(&THREAD->lock);
delay(10);
spinlock_lock(&THREAD->lock);
DEADLOCK_PROBE(p_joinwq,
DEADLOCK_THRESHOLD);
goto repeat;
}
_waitq_wakeup_unsafe(&THREAD->join_wq, false);
_waitq_wakeup_unsafe(&THREAD->join_wq,
WAKEUP_FIRST);
spinlock_unlock(&THREAD->join_wq.lock);
THREAD->state = Undead;
447,8 → 451,8
/*
* Entering state is unexpected.
*/
panic("tid%d: unexpected state %s\n", THREAD->tid,
thread_states[THREAD->state]);
panic("tid%llu: unexpected state %s\n", THREAD->tid,
thread_states[THREAD->state]);
break;
}
 
500,7 → 504,7
THREAD->state = Running;
 
#ifdef SCHEDULER_VERBOSE
printf("cpu%d: tid %d (priority=%d, ticks=%lld, nrdy=%ld)\n",
printf("cpu%d: tid %llu (priority=%d, ticks=%llu, nrdy=%ld)\n",
CPU->id, THREAD->tid, THREAD->priority, THREAD->ticks,
atomic_get(&CPU->nrdy));
#endif
568,7 → 572,7
* Searching least priority queues on all CPU's first and most priority
* queues on all CPU's last.
*/
for (j= RQ_COUNT - 1; j >= 0; j--) {
for (j = RQ_COUNT - 1; j >= 0; j--) {
for (i = 0; i < config.cpu_active; i++) {
link_t *l;
runq_t *r;
609,8 → 613,8
*/
spinlock_lock(&t->lock);
if ((!(t->flags & (THREAD_FLAG_WIRED |
THREAD_FLAG_STOLEN))) &&
(!(t->fpu_context_engaged)) ) {
THREAD_FLAG_STOLEN))) &&
(!(t->fpu_context_engaged))) {
/*
* Remove t from r.
*/
636,7 → 640,7
*/
spinlock_lock(&t->lock);
#ifdef KCPULB_VERBOSE
printf("kcpulb%d: TID %d -> cpu%d, nrdy=%ld, "
printf("kcpulb%d: TID %llu -> cpu%d, nrdy=%ld, "
"avg=%nd\n", CPU->id, t->tid, CPU->id,
atomic_get(&CPU->nrdy),
atomic_get(&nrdy) / config.cpu_active);
719,7 → 723,7
for (cur = r->rq_head.next; cur != &r->rq_head;
cur = cur->next) {
t = list_get_instance(cur, thread_t, rq_link);
printf("%d(%s) ", t->tid,
printf("%llu(%s) ", t->tid,
thread_states[t->state]);
}
printf("\n");
/branches/fs/kernel/generic/src/proc/task.c
41,6 → 41,7
#include <proc/uarg.h>
#include <mm/as.h>
#include <mm/slab.h>
#include <atomic.h>
#include <synch/spinlock.h>
#include <synch/waitq.h>
#include <arch.h>
92,6 → 93,49
btree_create(&tasks_btree);
}
 
/** Kill all tasks except the current task.
*
*/
void task_done(void)
{
task_t *t;
do { /* Repeat until there are any tasks except TASK */
/* Messing with task structures, avoid deadlock */
ipl_t ipl = interrupts_disable();
spinlock_lock(&tasks_lock);
t = NULL;
link_t *cur;
for (cur = tasks_btree.leaf_head.next; cur != &tasks_btree.leaf_head; cur = cur->next) {
btree_node_t *node = list_get_instance(cur, btree_node_t, leaf_link);
unsigned int i;
for (i = 0; i < node->keys; i++) {
if ((task_t *) node->value[i] != TASK) {
t = (task_t *) node->value[i];
break;
}
}
}
if (t != NULL) {
task_id_t id = t->taskid;
spinlock_unlock(&tasks_lock);
interrupts_restore(ipl);
#ifdef CONFIG_DEBUG
printf("Killing task %llu\n", id);
#endif
task_kill(id);
} else {
spinlock_unlock(&tasks_lock);
interrupts_restore(ipl);
}
} while (t != NULL);
}
 
/** Create new task
*
140,11 → 184,8
 
/*
* Increment address space reference count.
* TODO: Reconsider the locking scheme.
*/
mutex_lock(&as->lock);
as->refcount++;
mutex_unlock(&as->lock);
atomic_inc(&as->refcount);
 
spinlock_lock(&tasks_lock);
 
166,15 → 207,8
task_destroy_arch(t);
btree_destroy(&t->futexes);
 
mutex_lock_active(&t->as->lock);
if (--t->as->refcount == 0) {
mutex_unlock(&t->as->lock);
if (atomic_predec(&t->as->refcount) == 0)
as_destroy(t->as);
/*
* t->as is destroyed.
*/
} else
mutex_unlock(&t->as->lock);
free(t);
TASK = NULL;
382,7 → 416,7
link_t *cur;
ipl_t ipl;
/* Messing with thread structures, avoid deadlock */
/* Messing with task structures, avoid deadlock */
ipl = interrupts_disable();
spinlock_lock(&tasks_lock);
408,7 → 442,7
char suffix;
order(task_get_accounting(t), &cycles, &suffix);
printf("%-6lld %-10s %-3ld %#10zx %#10zx %9llu%c %7zd "
printf("%-6llu %-10s %-3ld %#10zx %#10zx %9llu%c %7zd "
"%6zd", t->taskid, t->name, t->context, t, t->as,
cycles, suffix, t->refcount,
atomic_get(&t->active_calls));
495,7 → 529,7
 
ipc_cleanup();
futex_cleanup();
klog_printf("Cleanup of task %lld completed.", TASK->taskid);
klog_printf("Cleanup of task %llu completed.", TASK->taskid);
}
 
/** Kernel thread used to kill the userspace task when its main thread exits.
/branches/fs/kernel/generic/src/proc/thread.c
94,7 → 94,7
btree_t threads_btree;
 
SPINLOCK_INITIALIZE(tidlock);
uint32_t last_tid = 0;
thread_id_t last_tid = 0;
 
static slab_cache_t *thread_slab;
#ifdef ARCH_HAS_FPU
238,6 → 238,7
cpu = CPU;
if (t->flags & THREAD_FLAG_WIRED) {
ASSERT(t->cpu != NULL);
cpu = t->cpu;
}
t->state = Ready;
496,7 → 497,7
ipl_t ipl;
 
/*
* Since the thread is expected to not be already detached,
* Since the thread is expected not to be already detached,
* pointer to it must be still valid.
*/
ipl = interrupts_disable();
580,7 → 581,7
char suffix;
order(t->cycles, &cycles, &suffix);
printf("%-6zd %-10s %#10zx %-8s %#10zx %-3ld %#10zx "
printf("%-6llu %-10s %#10zx %-8s %#10zx %-3ld %#10zx "
"%#10zx %9llu%c ", t->tid, t->name, t,
thread_states[t->state], t->task, t->task->context,
t->thread_code, t->kstack, cycles, suffix);
636,12 → 637,11
/** Process syscall to create new thread.
*
*/
unative_t sys_thread_create(uspace_arg_t *uspace_uarg, char *uspace_name)
unative_t sys_thread_create(uspace_arg_t *uspace_uarg, char *uspace_name, thread_id_t *uspace_thread_id)
{
thread_t *t;
char namebuf[THREAD_NAME_BUFLEN];
uspace_arg_t *kernel_uarg;
uint32_t tid;
int rc;
 
rc = copy_from_uspace(namebuf, uspace_name, THREAD_NAME_BUFLEN);
658,12 → 658,14
t = thread_create(uinit, kernel_uarg, TASK, THREAD_FLAG_USPACE, namebuf,
false);
if (t) {
tid = t->tid;
thread_ready(t);
return (unative_t) tid;
} else {
if (uspace_thread_id != NULL)
return (unative_t) copy_to_uspace(uspace_thread_id, &t->tid,
sizeof(t->tid));
else
return 0;
} else
free(kernel_uarg);
}
 
return (unative_t) ENOMEM;
}
678,6 → 680,22
return 0;
}
 
/** Syscall for getting TID.
*
* @param uspace_thread_id Userspace address of 8-byte buffer where to store
* current thread ID.
*
* @return 0 on success or an error code from @ref errno.h.
*/
unative_t sys_thread_get_id(thread_id_t *uspace_thread_id)
{
/*
* No need to acquire lock on THREAD because tid
* remains constant for the lifespan of the thread.
*/
return (unative_t) copy_to_uspace(uspace_thread_id, &THREAD->tid,
sizeof(THREAD->tid));
}
 
/** @}
*/
 
/branches/fs/kernel/generic/src/lib/rd.c
49,7 → 49,7
 
int init_rd(rd_header * header, size_t size)
{
printf("Header magic %c%c%c%c\n",header->magic[0],header->magic[1],header->magic[2],header->magic[3]);
//printf("Header magic %c%c%c%c\n",header->magic[0],header->magic[1],header->magic[2],header->magic[3]);
 
/* Identify RAM disk */
if ((header->magic[0] != RD_MAG0) || (header->magic[1] != RD_MAG1) ||
56,14 → 56,14
(header->magic[2] != RD_MAG2) || (header->magic[3] != RD_MAG3))
return RE_INVALID;
 
printf("Header version %d\n",header->version);
printf("Expected version %d\n",RD_VERSION);
//printf("Header version %d\n",header->version);
//printf("Expected version %d\n",RD_VERSION);
/* Identify version */
if (header->version != RD_VERSION)
return RE_UNSUPPORTED;
 
printf("Header type %d\n",header->data_type);
//printf("Header type %d\n",header->data_type);
uint32_t hsize;
uint64_t dsize;
80,9 → 80,9
return RE_UNSUPPORTED;
}
 
printf("Header size %d\n",header->header_size);
printf("Data size %d\n",header->data_size);
printf("Size %d\n",size);
//printf("Header size %d\n",header->header_size);
//printf("Data size %d\n",header->data_size);
//printf("Size %d\n",size);
//jelen: does this make any sense? (we don't even care about the header size, do we?)
/*
98,7 → 98,6
if ((uint64_t) hsize + dsize > size)
dsize = size - hsize;
rd_parea.pbase = ALIGN_DOWN((uintptr_t)KA2PA((void *) header + hsize), FRAME_SIZE);
rd_parea.vbase = (uintptr_t) ((void *) header + hsize);
rd_parea.frames = SIZE2FRAMES(dsize);
111,8 → 110,6
sysinfo_set_item_val("rd.size", NULL, dsize);
sysinfo_set_item_val("rd.address.physical", NULL, (unative_t)
KA2PA((void *) header + hsize));
sysinfo_set_item_val("rd.address.color", NULL, (unative_t)
PAGE_COLOR((uintptr_t) header + hsize));
 
return RE_OK;
}
/branches/fs/kernel/generic/src/lib/memstr.c
130,7 → 130,8
{
char *orig = dest;
while ((*(dest++) = *(src++)));
while ((*(dest++) = *(src++)))
;
return orig;
}
 
/branches/fs/kernel/generic/src/lib/func.c
223,20 → 223,23
 
void order(const uint64_t val, uint64_t *rv, char *suffix)
{
if (val > 1000000000000000000LL) {
*rv = val / 1000000000000000LL;
if (val > 10000000000000000000ULL) {
*rv = val / 1000000000000000000ULL;
*suffix = 'Z';
} else if (val > 1000000000000000000ULL) {
*rv = val / 1000000000000000ULL;
*suffix = 'E';
} else if (val > 1000000000000000LL) {
*rv = val / 1000000000000LL;
} else if (val > 1000000000000000ULL) {
*rv = val / 1000000000000ULL;
*suffix = 'T';
} else if (val > 1000000000000LL) {
*rv = val / 1000000000LL;
} else if (val > 1000000000000ULL) {
*rv = val / 1000000000ULL;
*suffix = 'G';
} else if (val > 1000000000LL) {
*rv = val / 1000000LL;
} else if (val > 1000000000ULL) {
*rv = val / 1000000ULL;
*suffix = 'M';
} else if (val > 1000000LL) {
*rv = val / 1000LL;
} else if (val > 1000000ULL) {
*rv = val / 1000ULL;
*suffix = 'k';
} else {
*rv = val;
/branches/fs/kernel/generic/src/lib/objc.c
49,7 → 49,7
return class_create_instance(self);
}
 
- (id) free
- (id) dispose
{
return object_dispose(self);
}
/branches/fs/kernel/generic/src/adt/btree.c
970,7 → 970,7
 
printf("(");
for (i = 0; i < node->keys; i++) {
printf("%lld%s", node->key[i], i < node->keys - 1 ? "," : "");
printf("%llu%s", node->key[i], i < node->keys - 1 ? "," : "");
if (node->depth && node->subtree[i]) {
list_append(&node->subtree[i]->bfs_link, &head);
}
992,7 → 992,7
 
printf("(");
for (i = 0; i < node->keys; i++)
printf("%lld%s", node->key[i], i < node->keys - 1 ? "," : "");
printf("%llu%s", node->key[i], i < node->keys - 1 ? "," : "");
printf(")");
}
printf("\n");
/branches/fs/kernel/generic/src/mm/tlb.c
78,7 → 78,8
* @param page Virtual page address, if required by type.
* @param count Number of pages, if required by type.
*/
void tlb_shootdown_start(tlb_invalidate_type_t type, asid_t asid, uintptr_t page, count_t count)
void tlb_shootdown_start(tlb_invalidate_type_t type, asid_t asid,
uintptr_t page, count_t count)
{
int i;
 
107,11 → 108,11
/*
* Enqueue the message.
*/
cpu->tlb_messages[cpu->tlb_messages_count].type = type;
cpu->tlb_messages[cpu->tlb_messages_count].asid = asid;
cpu->tlb_messages[cpu->tlb_messages_count].page = page;
cpu->tlb_messages[cpu->tlb_messages_count].count = count;
cpu->tlb_messages_count++;
index_t idx = cpu->tlb_messages_count++;
cpu->tlb_messages[idx].type = type;
cpu->tlb_messages[idx].asid = asid;
cpu->tlb_messages[idx].page = page;
cpu->tlb_messages[idx].count = count;
}
spinlock_unlock(&cpu->lock);
}
/branches/fs/kernel/generic/src/mm/backend_anon.c
72,11 → 72,13
* @param addr Faulting virtual address.
* @param access Access mode that caused the fault (i.e. read/write/exec).
*
* @return AS_PF_FAULT on failure (i.e. page fault) or AS_PF_OK on success (i.e. serviced).
* @return AS_PF_FAULT on failure (i.e. page fault) or AS_PF_OK on success (i.e.
* serviced).
*/
int anon_page_fault(as_area_t *area, uintptr_t addr, pf_access_t access)
{
uintptr_t frame;
bool dirty = false;
 
if (!as_area_check_access(area, access))
return AS_PF_FAULT;
86,13 → 88,14
/*
* The area is shared, chances are that the mapping can be found
* in the pagemap of the address space area share info structure.
* in the pagemap of the address space area share info
* structure.
* In the case that the pagemap does not contain the respective
* mapping, a new frame is allocated and the mapping is created.
*/
mutex_lock(&area->sh_info->lock);
frame = (uintptr_t) btree_search(&area->sh_info->pagemap,
ALIGN_DOWN(addr, PAGE_SIZE) - area->base, &leaf);
ALIGN_DOWN(addr, PAGE_SIZE) - area->base, &leaf);
if (!frame) {
bool allocate = true;
int i;
102,7 → 105,8
* Just a small workaround.
*/
for (i = 0; i < leaf->keys; i++) {
if (leaf->key[i] == ALIGN_DOWN(addr, PAGE_SIZE)) {
if (leaf->key[i] ==
ALIGN_DOWN(addr, PAGE_SIZE)) {
allocate = false;
break;
}
110,11 → 114,15
if (allocate) {
frame = (uintptr_t) frame_alloc(ONE_FRAME, 0);
memsetb(PA2KA(frame), FRAME_SIZE, 0);
dirty = true;
/*
* Insert the address of the newly allocated frame to the pagemap.
* Insert the address of the newly allocated
* frame to the pagemap.
*/
btree_insert(&area->sh_info->pagemap, ALIGN_DOWN(addr, PAGE_SIZE) - area->base, (void *) frame, leaf);
btree_insert(&area->sh_info->pagemap,
ALIGN_DOWN(addr, PAGE_SIZE) - area->base,
(void *) frame, leaf);
}
}
frame_reference_add(ADDR2PFN(frame));
137,12 → 145,13
*/
frame = (uintptr_t) frame_alloc(ONE_FRAME, 0);
memsetb(PA2KA(frame), FRAME_SIZE, 0);
dirty = true;
}
/*
* Map 'page' to 'frame'.
* Note that TLB shootdown is not attempted as only new information is being
* inserted into page tables.
* Note that TLB shootdown is not attempted as only new information is
* being inserted into page tables.
*/
page_mapping_insert(AS, addr, frame, as_area_get_flags(area));
if (!used_space_insert(area, ALIGN_DOWN(addr, PAGE_SIZE), 1))
162,9 → 171,6
void anon_frame_free(as_area_t *area, uintptr_t page, uintptr_t frame)
{
frame_free(frame);
#ifdef CONFIG_VIRT_IDX_DCACHE
dcache_flush_frame(page, frame);
#endif
}
 
/** Share the anonymous address space area.
184,7 → 190,8
* Copy used portions of the area to sh_info's page map.
*/
mutex_lock(&area->sh_info->lock);
for (cur = area->used_space.leaf_head.next; cur != &area->used_space.leaf_head; cur = cur->next) {
for (cur = area->used_space.leaf_head.next;
cur != &area->used_space.leaf_head; cur = cur->next) {
btree_node_t *node;
int i;
198,14 → 205,19
pte_t *pte;
page_table_lock(area->as, false);
pte = page_mapping_find(area->as, base + j*PAGE_SIZE);
ASSERT(pte && PTE_VALID(pte) && PTE_PRESENT(pte));
btree_insert(&area->sh_info->pagemap, (base + j*PAGE_SIZE) - area->base,
(void *) PTE_GET_FRAME(pte), NULL);
pte = page_mapping_find(area->as,
base + j * PAGE_SIZE);
ASSERT(pte && PTE_VALID(pte) &&
PTE_PRESENT(pte));
btree_insert(&area->sh_info->pagemap,
(base + j * PAGE_SIZE) - area->base,
(void *) PTE_GET_FRAME(pte), NULL);
page_table_unlock(area->as, false);
frame_reference_add(ADDR2PFN(PTE_GET_FRAME(pte)));
 
pfn_t pfn = ADDR2PFN(PTE_GET_FRAME(pte));
frame_reference_add(pfn);
}
 
}
}
mutex_unlock(&area->sh_info->lock);
/branches/fs/kernel/generic/src/mm/as.c
57,6 → 57,7
#include <genarch/mm/page_ht.h>
#include <mm/asid.h>
#include <arch/mm/asid.h>
#include <preemption.h>
#include <synch/spinlock.h>
#include <synch/mutex.h>
#include <adt/list.h>
95,10 → 96,13
#endif
 
/**
* This lock protects inactive_as_with_asid_head list. It must be acquired
* before as_t mutex.
* This lock serializes access to the ASID subsystem.
* It protects:
* - inactive_as_with_asid_head list
* - as->asid for each as of the as_t type
* - asids_allocated counter
*/
SPINLOCK_INITIALIZE(inactive_as_with_asid_lock);
SPINLOCK_INITIALIZE(asidlock);
 
/**
* This list contains address spaces that are not active on any
178,7 → 182,7
else
as->asid = ASID_INVALID;
as->refcount = 0;
atomic_set(&as->refcount, 0);
as->cpu_refcount = 0;
#ifdef AS_PAGE_TABLE
as->genarch.page_table = page_table_create(flags);
193,26 → 197,45
*
* When there are no tasks referencing this address space (i.e. its refcount is
* zero), the address space can be destroyed.
*
* We know that we don't hold any spinlock.
*/
void as_destroy(as_t *as)
{
ipl_t ipl;
bool cond;
DEADLOCK_PROBE_INIT(p_asidlock);
 
ASSERT(as->refcount == 0);
ASSERT(atomic_get(&as->refcount) == 0);
/*
* Since there is no reference to this area,
* it is safe not to lock its mutex.
*/
ipl = interrupts_disable();
spinlock_lock(&inactive_as_with_asid_lock);
 
/*
* We need to avoid deadlock between TLB shootdown and asidlock.
* We therefore try to take asid conditionally and if we don't succeed,
* we enable interrupts and try again. This is done while preemption is
* disabled to prevent nested context switches. We also depend on the
* fact that so far no spinlocks are held.
*/
preemption_disable();
ipl = interrupts_read();
retry:
interrupts_disable();
if (!spinlock_trylock(&asidlock)) {
interrupts_enable();
DEADLOCK_PROBE(p_asidlock, DEADLOCK_THRESHOLD);
goto retry;
}
preemption_enable(); /* Interrupts disabled, enable preemption */
if (as->asid != ASID_INVALID && as != AS_KERNEL) {
if (as != AS && as->cpu_refcount == 0)
list_remove(&as->inactive_as_with_asid_link);
asid_put(as->asid);
}
spinlock_unlock(&inactive_as_with_asid_lock);
spinlock_unlock(&asidlock);
 
/*
* Destroy address space areas of the address space.
411,7 → 434,7
int i = 0;
if (overlaps(b, c * PAGE_SIZE, area->base,
pages*PAGE_SIZE)) {
pages * PAGE_SIZE)) {
if (b + c * PAGE_SIZE <= start_free) {
/*
468,15 → 491,16
/*
* Finish TLB shootdown sequence.
*/
 
tlb_invalidate_pages(as->asid, area->base + pages * PAGE_SIZE,
area->pages - pages);
tlb_shootdown_finalize();
/*
* Invalidate software translation caches (e.g. TSB on sparc64).
*/
as_invalidate_translation_cache(as, area->base +
pages * PAGE_SIZE, area->pages - pages);
tlb_shootdown_finalize();
} else {
/*
* Growing the area.
553,7 → 577,7
if (area->backend &&
area->backend->frame_free) {
area->backend->frame_free(area, b +
j * PAGE_SIZE, PTE_GET_FRAME(pte));
j * PAGE_SIZE, PTE_GET_FRAME(pte));
}
page_mapping_remove(as, b + j * PAGE_SIZE);
page_table_unlock(as, false);
564,14 → 588,14
/*
* Finish TLB shootdown sequence.
*/
 
tlb_invalidate_pages(as->asid, area->base, area->pages);
tlb_shootdown_finalize();
/*
* Invalidate potential software translation caches (e.g. TSB on
* sparc64).
*/
as_invalidate_translation_cache(as, area->base, area->pages);
tlb_shootdown_finalize();
btree_destroy(&area->used_space);
 
613,8 → 637,7
* such address space area, EPERM if there was a problem in accepting the area
* or ENOMEM if there was a problem in allocating destination address space
* area. ENOTSUP is returned if the address space area backend does not support
* sharing or if the kernel detects an attempt to create an illegal address
* alias.
* sharing.
*/
int as_area_share(as_t *src_as, uintptr_t src_base, size_t acc_size,
as_t *dst_as, uintptr_t dst_base, int dst_flags_mask)
667,20 → 690,6
return EPERM;
}
 
#ifdef CONFIG_VIRT_IDX_DCACHE
if (!(dst_flags_mask & AS_AREA_EXEC)) {
if (PAGE_COLOR(src_area->base) != PAGE_COLOR(dst_base)) {
/*
* Refuse to create an illegal address alias.
*/
mutex_unlock(&src_area->lock);
mutex_unlock(&src_as->lock);
interrupts_restore(ipl);
return ENOTSUP;
}
}
#endif /* CONFIG_VIRT_IDX_DCACHE */
 
/*
* Now we are committed to sharing the area.
* First, prepare the area for sharing.
875,24 → 884,37
/** Switch address spaces.
*
* Note that this function cannot sleep as it is essentially a part of
* scheduling. Sleeping here would lead to deadlock on wakeup.
* scheduling. Sleeping here would lead to deadlock on wakeup. Another
* thing which is forbidden in this context is locking the address space.
*
* When this function is enetered, no spinlocks may be held.
*
* @param old Old address space or NULL.
* @param new New address space.
*/
void as_switch(as_t *old_as, as_t *new_as)
{
ipl_t ipl;
bool needs_asid = false;
ipl = interrupts_disable();
spinlock_lock(&inactive_as_with_asid_lock);
DEADLOCK_PROBE_INIT(p_asidlock);
preemption_disable();
retry:
(void) interrupts_disable();
if (!spinlock_trylock(&asidlock)) {
/*
* Avoid deadlock with TLB shootdown.
* We can enable interrupts here because
* preemption is disabled. We should not be
* holding any other lock.
*/
(void) interrupts_enable();
DEADLOCK_PROBE(p_asidlock, DEADLOCK_THRESHOLD);
goto retry;
}
preemption_enable();
 
/*
* First, take care of the old address space.
*/
if (old_as) {
mutex_lock_active(&old_as->lock);
ASSERT(old_as->cpu_refcount);
if((--old_as->cpu_refcount == 0) && (old_as != AS_KERNEL)) {
/*
901,11 → 923,10
* list of inactive address spaces with assigned
* ASID.
*/
ASSERT(old_as->asid != ASID_INVALID);
list_append(&old_as->inactive_as_with_asid_link,
&inactive_as_with_asid_head);
ASSERT(old_as->asid != ASID_INVALID);
list_append(&old_as->inactive_as_with_asid_link,
&inactive_as_with_asid_head);
}
mutex_unlock(&old_as->lock);
 
/*
* Perform architecture-specific tasks when the address space
917,36 → 938,15
/*
* Second, prepare the new address space.
*/
mutex_lock_active(&new_as->lock);
if ((new_as->cpu_refcount++ == 0) && (new_as != AS_KERNEL)) {
if (new_as->asid != ASID_INVALID) {
if (new_as->asid != ASID_INVALID)
list_remove(&new_as->inactive_as_with_asid_link);
} else {
/*
* Defer call to asid_get() until new_as->lock is released.
*/
needs_asid = true;
}
else
new_as->asid = asid_get();
}
#ifdef AS_PAGE_TABLE
SET_PTL0_ADDRESS(new_as->genarch.page_table);
#endif
mutex_unlock(&new_as->lock);
 
if (needs_asid) {
/*
* Allocation of new ASID was deferred
* until now in order to avoid deadlock.
*/
asid_t asid;
asid = asid_get();
mutex_lock_active(&new_as->lock);
new_as->asid = asid;
mutex_unlock(&new_as->lock);
}
spinlock_unlock(&inactive_as_with_asid_lock);
interrupts_restore(ipl);
/*
* Perform architecture-specific steps.
953,6 → 953,8
* (e.g. write ASID to hardware register etc.)
*/
as_install_arch(new_as);
 
spinlock_unlock(&asidlock);
AS = new_as;
}
/branches/fs/kernel/generic/src/mm/backend_phys.c
32,7 → 32,8
 
/**
* @file
* @brief Backend for address space areas backed by continuous physical memory.
* @brief Backend for address space areas backed by continuous physical
* memory.
*/
 
#include <debug.h>
62,7 → 63,8
* @param addr Faulting virtual address.
* @param access Access mode that caused the fault (i.e. read/write/exec).
*
* @return AS_PF_FAULT on failure (i.e. page fault) or AS_PF_OK on success (i.e. serviced).
* @return AS_PF_FAULT on failure (i.e. page fault) or AS_PF_OK on success (i.e.
* serviced).
*/
int phys_page_fault(as_area_t *area, uintptr_t addr, pf_access_t access)
{
72,7 → 74,8
return AS_PF_FAULT;
 
ASSERT(addr - area->base < area->backend_data.frames * FRAME_SIZE);
page_mapping_insert(AS, addr, base + (addr - area->base), as_area_get_flags(area));
page_mapping_insert(AS, addr, base + (addr - area->base),
as_area_get_flags(area));
if (!used_space_insert(area, ALIGN_DOWN(addr, PAGE_SIZE), 1))
panic("Could not insert used space.\n");
 
/branches/fs/kernel/generic/src/mm/frame.c
70,16 → 70,19
typedef struct {
count_t refcount; /**< tracking of shared frames */
uint8_t buddy_order; /**< buddy system block order */
link_t buddy_link; /**< link to the next free block inside one order */
link_t buddy_link; /**< link to the next free block inside one
order */
void *parent; /**< If allocated by slab, this points there */
} frame_t;
 
typedef struct {
SPINLOCK_DECLARE(lock); /**< this lock protects everything below */
pfn_t base; /**< frame_no of the first frame in the frames array */
pfn_t base; /**< frame_no of the first frame in the frames
array */
count_t count; /**< Size of zone */
 
frame_t *frames; /**< array of frame_t structures in this zone */
frame_t *frames; /**< array of frame_t structures in this
zone */
count_t free_count; /**< number of free frame_t structures */
count_t busy_count; /**< number of busy frame_t structures */
157,8 → 160,8
for (i = 0; i < zones.count; i++) {
/* Check for overflow */
z = zones.info[i];
if (overlaps(newzone->base,newzone->count,
z->base, z->count)) {
if (overlaps(newzone->base,newzone->count, z->base,
z->count)) {
printf("Zones overlap!\n");
return -1;
}
166,7 → 169,7
break;
}
/* Move other zones up */
for (j = i;j < zones.count; j++)
for (j = i; j < zones.count; j++)
zones.info[j + 1] = zones.info[j];
zones.info[i] = newzone;
zones.count++;
202,7 → 205,8
z = zones.info[i];
spinlock_lock(&z->lock);
if (z->base <= frame && z->base + z->count > frame) {
spinlock_unlock(&zones.lock); /* Unlock the global lock */
/* Unlock the global lock */
spinlock_unlock(&zones.lock);
if (pzone)
*pzone = i;
return z;
229,7 → 233,8
* Assume interrupts are disabled.
*
* @param order Size (2^order) of free space we are trying to find
* @param pzone Pointer to preferred zone or NULL, on return contains zone number
* @param pzone Pointer to preferred zone or NULL, on return contains zone
* number
*/
static zone_t * find_free_zone_and_lock(uint8_t order, unsigned int *pzone)
{
273,10 → 278,10
* @param order - Order of parent must be different then this parameter!!
*/
static link_t *zone_buddy_find_block(buddy_system_t *b, link_t *child,
uint8_t order)
uint8_t order)
{
frame_t * frame;
zone_t * zone;
frame_t *frame;
zone_t *zone;
index_t index;
frame = list_get_instance(child, frame_t, buddy_link);
293,8 → 298,8
 
static void zone_buddy_print_id(buddy_system_t *b, link_t *block)
{
frame_t * frame;
zone_t * zone;
frame_t *frame;
zone_t *zone;
index_t index;
 
frame = list_get_instance(block, frame_t, buddy_link);
310,16 → 315,17
*
* @return Buddy for given block if found
*/
static link_t * zone_buddy_find_buddy(buddy_system_t *b, link_t * block)
static link_t *zone_buddy_find_buddy(buddy_system_t *b, link_t *block)
{
frame_t * frame;
zone_t * zone;
frame_t *frame;
zone_t *zone;
index_t index;
bool is_left, is_right;
 
frame = list_get_instance(block, frame_t, buddy_link);
zone = (zone_t *) b->data;
ASSERT(IS_BUDDY_ORDER_OK(frame_index_abs(zone, frame), frame->buddy_order));
ASSERT(IS_BUDDY_ORDER_OK(frame_index_abs(zone, frame),
frame->buddy_order));
is_left = IS_BUDDY_LEFT_BLOCK_ABS(zone, frame);
is_right = IS_BUDDY_RIGHT_BLOCK_ABS(zone, frame);
348,8 → 354,8
*
* @return right block
*/
static link_t * zone_buddy_bisect(buddy_system_t *b, link_t * block) {
frame_t * frame_l, * frame_r;
static link_t * zone_buddy_bisect(buddy_system_t *b, link_t *block) {
frame_t *frame_l, *frame_r;
 
frame_l = list_get_instance(block, frame_t, buddy_link);
frame_r = (frame_l + (1 << (frame_l->buddy_order - 1)));
365,8 → 371,8
*
* @return Coalesced block (actually block that represents lower address)
*/
static link_t * zone_buddy_coalesce(buddy_system_t *b, link_t * block_1,
link_t * block_2)
static link_t *zone_buddy_coalesce(buddy_system_t *b, link_t *block_1,
link_t *block_2)
{
frame_t *frame1, *frame2;
382,8 → 388,9
* @param block Buddy system block
* @param order Order to set
*/
static void zone_buddy_set_order(buddy_system_t *b, link_t * block, uint8_t order) {
frame_t * frame;
static void zone_buddy_set_order(buddy_system_t *b, link_t *block,
uint8_t order) {
frame_t *frame;
frame = list_get_instance(block, frame_t, buddy_link);
frame->buddy_order = order;
}
395,8 → 402,8
*
* @return Order of block
*/
static uint8_t zone_buddy_get_order(buddy_system_t *b, link_t * block) {
frame_t * frame;
static uint8_t zone_buddy_get_order(buddy_system_t *b, link_t *block) {
frame_t *frame;
frame = list_get_instance(block, frame_t, buddy_link);
return frame->buddy_order;
}
420,8 → 427,8
* @param block Buddy system block
*
*/
static void zone_buddy_mark_available(buddy_system_t *b, link_t * block) {
frame_t * frame;
static void zone_buddy_mark_available(buddy_system_t *b, link_t *block) {
frame_t *frame;
frame = list_get_instance(block, frame_t, buddy_link);
frame->refcount = 0;
}
520,8 → 527,8
frame = zone_get_frame(zone, frame_idx);
if (frame->refcount)
return;
link = buddy_system_alloc_block(zone->buddy_system,
&frame->buddy_link);
link = buddy_system_alloc_block(zone->buddy_system,
&frame->buddy_link);
ASSERT(link);
zone->free_count--;
}
545,12 → 552,12
pfn_t frame_idx;
frame_t *frame;
 
ASSERT(!overlaps(z1->base,z1->count,z2->base,z2->count));
ASSERT(!overlaps(z1->base, z1->count, z2->base, z2->count));
ASSERT(z1->base < z2->base);
 
spinlock_initialize(&z->lock, "zone_lock");
z->base = z1->base;
z->count = z2->base+z2->count - z1->base;
z->count = z2->base + z2->count - z1->base;
z->flags = z1->flags & z2->flags;
 
z->free_count = z1->free_count + z2->free_count;
558,12 → 565,12
max_order = fnzb(z->count);
 
z->buddy_system = (buddy_system_t *)&z[1];
buddy_system_create(z->buddy_system, max_order,
&zone_buddy_system_operations,
(void *) z);
z->buddy_system = (buddy_system_t *) &z[1];
buddy_system_create(z->buddy_system, max_order,
&zone_buddy_system_operations, (void *) z);
 
z->frames = (frame_t *)((uint8_t *) z->buddy_system + buddy_conf_size(max_order));
z->frames = (frame_t *)((uint8_t *) z->buddy_system +
buddy_conf_size(max_order));
for (i = 0; i < z->count; i++) {
/* This marks all frames busy */
frame_initialize(&z->frames[i]);
603,7 → 610,7
}
while (zone_can_alloc(z2, 0)) {
frame_idx = zone_frame_alloc(z2, 0);
frame = &z->frames[frame_idx + (z2->base-z1->base)];
frame = &z->frames[frame_idx + (z2->base - z1->base)];
frame->refcount = 0;
buddy_system_free(z->buddy_system, &frame->buddy_link);
}
668,7 → 675,7
for (i = 0; i < (count_t) (1 << order); i++) {
frame = &zone->frames[i + frame_idx];
frame->buddy_order = 0;
if (! frame->refcount)
if (!frame->refcount)
frame->refcount = 1;
ASSERT(frame->refcount == 1);
}
710,7 → 717,8
spinlock_lock(&zone1->lock);
spinlock_lock(&zone2->lock);
 
cframes = SIZE2FRAMES(zone_conf_size(zone2->base+zone2->count-zone1->base));
cframes = SIZE2FRAMES(zone_conf_size(zone2->base + zone2->count -
zone1->base));
if (cframes == 1)
order = 0;
else
803,7 → 811,8
/* Allocate frames _after_ the conframe */
/* Check sizes */
z->frames = (frame_t *)((uint8_t *) z->buddy_system + buddy_conf_size(max_order));
z->frames = (frame_t *)((uint8_t *) z->buddy_system +
buddy_conf_size(max_order));
for (i = 0; i < count; i++) {
frame_initialize(&z->frames[i]);
}
865,16 → 874,20
if (confframe >= start && confframe < start+count) {
for (;confframe < start + count; confframe++) {
addr = PFN2ADDR(confframe);
if (overlaps(addr, PFN2ADDR(confcount), KA2PA(config.base), config.kernel_size))
if (overlaps(addr, PFN2ADDR(confcount),
KA2PA(config.base), config.kernel_size))
continue;
if (overlaps(addr, PFN2ADDR(confcount), KA2PA(config.stack_base), config.stack_size))
if (overlaps(addr, PFN2ADDR(confcount),
KA2PA(config.stack_base), config.stack_size))
continue;
bool overlap = false;
count_t i;
for (i = 0; i < init.cnt; i++)
if (overlaps(addr, PFN2ADDR(confcount), KA2PA(init.tasks[i].addr), init.tasks[i].size)) {
if (overlaps(addr, PFN2ADDR(confcount),
KA2PA(init.tasks[i].addr),
init.tasks[i].size)) {
overlap = true;
break;
}
915,7 → 928,7
spinlock_unlock(&zone->lock);
}
 
void * frame_get_parent(pfn_t pfn, unsigned int hint)
void *frame_get_parent(pfn_t pfn, unsigned int hint)
{
zone_t *zone = find_zone_and_lock(pfn, &hint);
void *res;
1073,15 → 1086,21
/* Tell the architecture to create some memory */
frame_arch_init();
if (config.cpu_active == 1) {
frame_mark_unavailable(ADDR2PFN(KA2PA(config.base)), SIZE2FRAMES(config.kernel_size));
frame_mark_unavailable(ADDR2PFN(KA2PA(config.stack_base)), SIZE2FRAMES(config.stack_size));
frame_mark_unavailable(ADDR2PFN(KA2PA(config.base)),
SIZE2FRAMES(config.kernel_size));
frame_mark_unavailable(ADDR2PFN(KA2PA(config.stack_base)),
SIZE2FRAMES(config.stack_size));
count_t i;
for (i = 0; i < init.cnt; i++)
frame_mark_unavailable(ADDR2PFN(KA2PA(init.tasks[i].addr)), SIZE2FRAMES(init.tasks[i].size));
for (i = 0; i < init.cnt; i++) {
pfn_t pfn = ADDR2PFN(KA2PA(init.tasks[i].addr));
frame_mark_unavailable(pfn,
SIZE2FRAMES(init.tasks[i].size));
}
 
if (ballocs.size)
frame_mark_unavailable(ADDR2PFN(KA2PA(ballocs.base)), SIZE2FRAMES(ballocs.size));
frame_mark_unavailable(ADDR2PFN(KA2PA(ballocs.base)),
SIZE2FRAMES(ballocs.size));
 
/* Black list first frame, as allocating NULL would
* fail in some places */
1106,7 → 1125,8
for (i = 0; i < zones.count; i++) {
zone = zones.info[i];
spinlock_lock(&zone->lock);
printf("%-2d %12p %12zd %12zd\n", i, PFN2ADDR(zone->base), zone->free_count, zone->busy_count);
printf("%-2d %12p %12zd %12zd\n", i, PFN2ADDR(zone->base),
zone->free_count, zone->busy_count);
spinlock_unlock(&zone->lock);
}
spinlock_unlock(&zones.lock);
1138,10 → 1158,14
spinlock_lock(&zone->lock);
printf("Memory zone information\n");
printf("Zone base address: %#.*p\n", sizeof(uintptr_t) * 2, PFN2ADDR(zone->base));
printf("Zone size: %zd frames (%zdK)\n", zone->count, ((zone->count) * FRAME_SIZE) >> 10);
printf("Allocated space: %zd frames (%zdK)\n", zone->busy_count, (zone->busy_count * FRAME_SIZE) >> 10);
printf("Available space: %zd frames (%zdK)\n", zone->free_count, (zone->free_count * FRAME_SIZE) >> 10);
printf("Zone base address: %#.*p\n", sizeof(uintptr_t) * 2,
PFN2ADDR(zone->base));
printf("Zone size: %zd frames (%zdK)\n", zone->count,
((zone->count) * FRAME_SIZE) >> 10);
printf("Allocated space: %zd frames (%zdK)\n", zone->busy_count,
(zone->busy_count * FRAME_SIZE) >> 10);
printf("Available space: %zd frames (%zdK)\n", zone->free_count,
(zone->free_count * FRAME_SIZE) >> 10);
buddy_system_structure_print(zone->buddy_system, FRAME_SIZE);
spinlock_unlock(&zone->lock);
1152,3 → 1176,4
 
/** @}
*/
 
/branches/fs/kernel/generic/src/mm/page.c
76,7 → 76,7
cnt = length / PAGE_SIZE + (length % PAGE_SIZE > 0);
 
for (i = 0; i < cnt; i++)
page_mapping_insert(AS_KERNEL, s + i * PAGE_SIZE, s + i * PAGE_SIZE, PAGE_NOT_CACHEABLE);
page_mapping_insert(AS_KERNEL, s + i * PAGE_SIZE, s + i * PAGE_SIZE, PAGE_NOT_CACHEABLE | PAGE_WRITE);
 
}
 
/branches/fs/kernel/generic/src/mm/backend_elf.c
71,7 → 71,8
* @param addr Faulting virtual address.
* @param access Access mode that caused the fault (i.e. read/write/exec).
*
* @return AS_PF_FAULT on failure (i.e. page fault) or AS_PF_OK on success (i.e. serviced).
* @return AS_PF_FAULT on failure (i.e. page fault) or AS_PF_OK on success (i.e.
* serviced).
*/
int elf_page_fault(as_area_t *area, uintptr_t addr, pf_access_t access)
{
80,11 → 81,13
btree_node_t *leaf;
uintptr_t base, frame;
index_t i;
bool dirty = false;
 
if (!as_area_check_access(area, access))
return AS_PF_FAULT;
 
ASSERT((addr >= entry->p_vaddr) && (addr < entry->p_vaddr + entry->p_memsz));
ASSERT((addr >= entry->p_vaddr) &&
(addr < entry->p_vaddr + entry->p_memsz));
i = (addr - entry->p_vaddr) >> PAGE_WIDTH;
base = (uintptr_t) (((void *) elf) + entry->p_offset);
ASSERT(ALIGN_UP(base, FRAME_SIZE) == base);
107,7 → 110,8
*/
 
for (i = 0; i < leaf->keys; i++) {
if (leaf->key[i] == ALIGN_DOWN(addr, PAGE_SIZE)) {
if (leaf->key[i] ==
ALIGN_DOWN(addr, PAGE_SIZE)) {
found = true;
break;
}
115,8 → 119,10
}
if (frame || found) {
frame_reference_add(ADDR2PFN(frame));
page_mapping_insert(AS, addr, frame, as_area_get_flags(area));
if (!used_space_insert(area, ALIGN_DOWN(addr, PAGE_SIZE), 1))
page_mapping_insert(AS, addr, frame,
as_area_get_flags(area));
if (!used_space_insert(area,
ALIGN_DOWN(addr, PAGE_SIZE), 1))
panic("Could not insert used space.\n");
mutex_unlock(&area->sh_info->lock);
return AS_PF_OK;
124,10 → 130,12
}
/*
* The area is either not shared or the pagemap does not contain the mapping.
* The area is either not shared or the pagemap does not contain the
* mapping.
*/
if (ALIGN_DOWN(addr, PAGE_SIZE) + PAGE_SIZE < entry->p_vaddr + entry->p_filesz) {
if (ALIGN_DOWN(addr, PAGE_SIZE) + PAGE_SIZE <
entry->p_vaddr + entry->p_filesz) {
/*
* Initialized portion of the segment. The memory is backed
* directly by the content of the ELF image. Pages are
138,18 → 146,22
*/
if (entry->p_flags & PF_W) {
frame = (uintptr_t)frame_alloc(ONE_FRAME, 0);
memcpy((void *) PA2KA(frame), (void *) (base + i*FRAME_SIZE), FRAME_SIZE);
memcpy((void *) PA2KA(frame),
(void *) (base + i * FRAME_SIZE), FRAME_SIZE);
dirty = true;
 
if (area->sh_info) {
frame_reference_add(ADDR2PFN(frame));
btree_insert(&area->sh_info->pagemap, ALIGN_DOWN(addr, PAGE_SIZE) - area->base,
(void *) frame, leaf);
btree_insert(&area->sh_info->pagemap,
ALIGN_DOWN(addr, PAGE_SIZE) - area->base,
(void *) frame, leaf);
}
 
} else {
frame = KA2PA(base + i*FRAME_SIZE);
}
} else if (ALIGN_DOWN(addr, PAGE_SIZE) >= ALIGN_UP(entry->p_vaddr + entry->p_filesz, PAGE_SIZE)) {
} else if (ALIGN_DOWN(addr, PAGE_SIZE) >=
ALIGN_UP(entry->p_vaddr + entry->p_filesz, PAGE_SIZE)) {
/*
* This is the uninitialized portion of the segment.
* It is not physically present in the ELF image.
158,11 → 170,13
*/
frame = (uintptr_t)frame_alloc(ONE_FRAME, 0);
memsetb(PA2KA(frame), FRAME_SIZE, 0);
dirty = true;
 
if (area->sh_info) {
frame_reference_add(ADDR2PFN(frame));
btree_insert(&area->sh_info->pagemap, ALIGN_DOWN(addr, PAGE_SIZE) - area->base,
(void *) frame, leaf);
btree_insert(&area->sh_info->pagemap,
ALIGN_DOWN(addr, PAGE_SIZE) - area->base,
(void *) frame, leaf);
}
 
} else {
175,12 → 189,15
size = entry->p_filesz - (i<<PAGE_WIDTH);
frame = (uintptr_t)frame_alloc(ONE_FRAME, 0);
memsetb(PA2KA(frame) + size, FRAME_SIZE - size, 0);
memcpy((void *) PA2KA(frame), (void *) (base + i*FRAME_SIZE), size);
memcpy((void *) PA2KA(frame), (void *) (base + i * FRAME_SIZE),
size);
dirty = true;
 
if (area->sh_info) {
frame_reference_add(ADDR2PFN(frame));
btree_insert(&area->sh_info->pagemap, ALIGN_DOWN(addr, PAGE_SIZE) - area->base,
(void *) frame, leaf);
btree_insert(&area->sh_info->pagemap,
ALIGN_DOWN(addr, PAGE_SIZE) - area->base,
(void *) frame, leaf);
}
 
}
211,31 → 228,28
uintptr_t base;
index_t i;
ASSERT((page >= entry->p_vaddr) && (page < entry->p_vaddr + entry->p_memsz));
ASSERT((page >= entry->p_vaddr) &&
(page < entry->p_vaddr + entry->p_memsz));
i = (page - entry->p_vaddr) >> PAGE_WIDTH;
base = (uintptr_t) (((void *) elf) + entry->p_offset);
ASSERT(ALIGN_UP(base, FRAME_SIZE) == base);
if (page + PAGE_SIZE < ALIGN_UP(entry->p_vaddr + entry->p_filesz, PAGE_SIZE)) {
if (page + PAGE_SIZE <
ALIGN_UP(entry->p_vaddr + entry->p_filesz, PAGE_SIZE)) {
if (entry->p_flags & PF_W) {
/*
* Free the frame with the copy of writable segment data.
* Free the frame with the copy of writable segment
* data.
*/
frame_free(frame);
#ifdef CONFIG_VIRT_IDX_DCACHE
dcache_flush_frame(page, frame);
#endif
}
} else {
/*
* The frame is either anonymous memory or the mixed case (i.e. lower
* part is backed by the ELF image and the upper is anonymous).
* In any case, a frame needs to be freed.
*/
frame_free(frame);
#ifdef CONFIG_VIRT_IDX_DCACHE
dcache_flush_frame(page, frame);
#endif
* The frame is either anonymous memory or the mixed case (i.e.
* lower part is backed by the ELF image and the upper is
* anonymous). In any case, a frame needs to be freed.
*/
frame_free(frame);
}
}
 
260,10 → 274,12
* Find the node in which to start linear search.
*/
if (area->flags & AS_AREA_WRITE) {
node = list_get_instance(area->used_space.leaf_head.next, btree_node_t, leaf_link);
node = list_get_instance(area->used_space.leaf_head.next,
btree_node_t, leaf_link);
} else {
(void) btree_search(&area->sh_info->pagemap, start_anon, &leaf);
node = btree_leaf_node_left_neighbour(&area->sh_info->pagemap, leaf);
node = btree_leaf_node_left_neighbour(&area->sh_info->pagemap,
leaf);
if (!node)
node = leaf;
}
272,7 → 288,8
* Copy used anonymous portions of the area to sh_info's page map.
*/
mutex_lock(&area->sh_info->lock);
for (cur = &node->leaf_link; cur != &area->used_space.leaf_head; cur = cur->next) {
for (cur = &node->leaf_link; cur != &area->used_space.leaf_head;
cur = cur->next) {
int i;
node = list_get_instance(cur, btree_node_t, leaf_link);
294,19 → 311,26
pte_t *pte;
/*
* Skip read-only pages that are backed by the ELF image.
* Skip read-only pages that are backed by the
* ELF image.
*/
if (!(area->flags & AS_AREA_WRITE))
if (base + (j + 1)*PAGE_SIZE <= start_anon)
if (base + (j + 1) * PAGE_SIZE <=
start_anon)
continue;
page_table_lock(area->as, false);
pte = page_mapping_find(area->as, base + j*PAGE_SIZE);
ASSERT(pte && PTE_VALID(pte) && PTE_PRESENT(pte));
btree_insert(&area->sh_info->pagemap, (base + j*PAGE_SIZE) - area->base,
pte = page_mapping_find(area->as,
base + j * PAGE_SIZE);
ASSERT(pte && PTE_VALID(pte) &&
PTE_PRESENT(pte));
btree_insert(&area->sh_info->pagemap,
(base + j * PAGE_SIZE) - area->base,
(void *) PTE_GET_FRAME(pte), NULL);
page_table_unlock(area->as, false);
frame_reference_add(ADDR2PFN(PTE_GET_FRAME(pte)));
 
pfn_t pfn = ADDR2PFN(PTE_GET_FRAME(pte));
frame_reference_add(pfn);
}
}
/branches/fs/kernel/generic/src/syscall/syscall.c
100,7 → 100,7
if (id < SYSCALL_END)
rc = syscall_table[id](a1, a2, a3, a4);
else {
klog_printf("TASK %lld: Unknown syscall id %d",TASK->taskid,id);
klog_printf("TASK %llu: Unknown syscall id %d",TASK->taskid,id);
task_kill(TASK->taskid);
thread_exit();
}
118,6 → 118,7
/* Thread and task related syscalls. */
(syshandler_t) sys_thread_create,
(syshandler_t) sys_thread_exit,
(syshandler_t) sys_thread_get_id,
(syshandler_t) sys_task_get_id,
/* Synchronization related syscalls. */
/branches/fs/kernel/generic/src/ipc/ipcrsc.c
34,8 → 34,8
 
/* IPC resources management
*
* The goal of this source code is to properly manage IPC resources
* and allow straight and clean clean-up procedure upon task termination.
* The goal of this source code is to properly manage IPC resources and allow
* straight and clean clean-up procedure upon task termination.
*
* The pattern of usage of the resources is:
* - allocate empty phone slot, connect | deallocate slot
47,24 → 47,24
*
* Locking strategy
*
* - To use a phone, disconnect a phone etc., the phone must be
* first locked and then checked that it is connected
* - To connect an allocated phone it need not be locked (assigning
* pointer is atomic on all platforms)
* - To use a phone, disconnect a phone etc., the phone must be first locked and
* then checked that it is connected
* - To connect an allocated phone it need not be locked (assigning pointer is
* atomic on all platforms)
*
* - To find an empty phone slot, the TASK must be locked
* - To answer a message, the answerbox must be locked
* - The locking of phone and answerbox is done at the ipc_ level.
* It is perfectly correct to pass unconnected phone to these functions
* and proper reply will be generated.
* It is perfectly correct to pass unconnected phone to these functions and
* proper reply will be generated.
*
* Locking order
*
* - first phone, then answerbox
* + Easy locking on calls
* - Very hard traversing list of phones when disconnecting because
* the phones may disconnect during traversal of list of connected phones.
* The only possibility is try_lock with restart of list traversal.
* - Very hard traversing list of phones when disconnecting because the phones
* may disconnect during traversal of list of connected phones. The only
* possibility is try_lock with restart of list traversal.
*
* Destroying is less frequent, this approach is taken.
*
71,24 → 71,23
* Phone call
*
* *** Connect_me_to ***
* The caller sends IPC_M_CONNECT_ME_TO to an answerbox. The server
* receives 'phoneid' of the connecting phone as an ARG3. If it answers
* with RETVAL=0, the phonecall is accepted, otherwise it is refused.
* The caller sends IPC_M_CONNECT_ME_TO to an answerbox. The server receives
* 'phoneid' of the connecting phone as an ARG3. If it answers with RETVAL=0,
* the phonecall is accepted, otherwise it is refused.
*
* *** Connect_to_me ***
* The caller sends IPC_M_CONNECT_TO_ME, with special
* The server receives an automatically
* opened phoneid. If it accepts (RETVAL=0), it can use the phoneid
* immediately.
* Possible race condition can arise, when the client receives messages
* from new connection before getting response for connect_to_me message.
* Userspace should implement handshake protocol that would control it.
* The caller sends IPC_M_CONNECT_TO_ME.
* The server receives an automatically opened phoneid. If it accepts
* (RETVAL=0), it can use the phoneid immediately.
* Possible race condition can arise, when the client receives messages from new
* connection before getting response for connect_to_me message. Userspace
* should implement handshake protocol that would control it.
*
* Phone hangup
*
* *** The caller hangs up (sys_ipc_hangup) ***
* - The phone is disconnected (no more messages can be sent over this phone),
* all in-progress messages are correctly handled. The anwerbox receives
* all in-progress messages are correctly handled. The answerbox receives
* IPC_M_PHONE_HUNGUP call from the phone that hung up. When all async
* calls are answered, the phone is deallocated.
*
/branches/fs/kernel/generic/src/ipc/sysipc.c
49,12 → 49,12
#include <mm/as.h>
#include <print.h>
 
#define GET_CHECK_PHONE(phone,phoneid,err) { \
#define GET_CHECK_PHONE(phone, phoneid, err) { \
if (phoneid > IPC_MAX_PHONES) { err; } \
phone = &TASK->phones[phoneid]; \
}
 
#define STRUCT_TO_USPACE(dst,src) copy_to_uspace(dst,src,sizeof(*(src)))
#define STRUCT_TO_USPACE(dst, src) copy_to_uspace(dst, src, sizeof(*(src)))
 
/** Return true if the method is a system method */
static inline int is_system_method(unative_t method)
71,8 → 71,8
*/
static inline int is_forwardable(unative_t method)
{
if (method == IPC_M_PHONE_HUNGUP || method == IPC_M_AS_AREA_SEND \
|| method == IPC_M_AS_AREA_RECV)
if (method == IPC_M_PHONE_HUNGUP || method == IPC_M_AS_AREA_SEND ||
method == IPC_M_AS_AREA_RECV)
return 0; /* This message is meant only for the receiver */
return 1;
}
130,18 → 130,20
phone_dealloc(phoneid);
} else {
/* The connection was accepted */
phone_connect(phoneid,&answer->sender->answerbox);
phone_connect(phoneid, &answer->sender->answerbox);
/* Set 'phone identification' as arg3 of response */
IPC_SET_ARG3(answer->data, (unative_t)&TASK->phones[phoneid]);
IPC_SET_ARG3(answer->data,
(unative_t) &TASK->phones[phoneid]);
}
} else if (IPC_GET_METHOD(*olddata) == IPC_M_CONNECT_ME_TO) {
/* If the users accepted call, connect */
if (!IPC_GET_RETVAL(answer->data)) {
ipc_phone_connect((phone_t *)IPC_GET_ARG3(*olddata),
&TASK->answerbox);
ipc_phone_connect((phone_t *) IPC_GET_ARG3(*olddata),
&TASK->answerbox);
}
} else if (IPC_GET_METHOD(*olddata) == IPC_M_AS_AREA_SEND) {
if (!IPC_GET_RETVAL(answer->data)) { /* Accepted, handle as_area receipt */
if (!IPC_GET_RETVAL(answer->data)) {
/* Accepted, handle as_area receipt */
ipl_t ipl;
int rc;
as_t *as;
152,8 → 154,9
spinlock_unlock(&answer->sender->lock);
interrupts_restore(ipl);
rc = as_area_share(as, IPC_GET_ARG1(*olddata), IPC_GET_ARG2(*olddata),
AS, IPC_GET_ARG1(answer->data), IPC_GET_ARG3(*olddata));
rc = as_area_share(as, IPC_GET_ARG1(*olddata),
IPC_GET_ARG2(*olddata), AS,
IPC_GET_ARG1(answer->data), IPC_GET_ARG3(*olddata));
IPC_SET_RETVAL(answer->data, rc);
return rc;
}
169,8 → 172,9
spinlock_unlock(&answer->sender->lock);
interrupts_restore(ipl);
rc = as_area_share(AS, IPC_GET_ARG1(answer->data), IPC_GET_ARG2(*olddata),
as, IPC_GET_ARG1(*olddata), IPC_GET_ARG2(answer->data));
rc = as_area_share(AS, IPC_GET_ARG1(answer->data),
IPC_GET_ARG2(*olddata), as, IPC_GET_ARG1(*olddata),
IPC_GET_ARG2(answer->data));
IPC_SET_RETVAL(answer->data, rc);
}
}
192,7 → 196,7
if (newphid < 0)
return ELIMIT;
/* Set arg3 for server */
IPC_SET_ARG3(call->data, (unative_t)&TASK->phones[newphid]);
IPC_SET_ARG3(call->data, (unative_t) &TASK->phones[newphid]);
call->flags |= IPC_CALL_CONN_ME_TO;
call->priv = newphid;
break;
217,8 → 221,8
/** Do basic kernel processing of received call answer */
static void process_answer(call_t *call)
{
if (IPC_GET_RETVAL(call->data) == EHANGUP && \
call->flags & IPC_CALL_FORWARDED)
if (IPC_GET_RETVAL(call->data) == EHANGUP &&
(call->flags & IPC_CALL_FORWARDED))
IPC_SET_RETVAL(call->data, EFORWARD);
 
if (call->flags & IPC_CALL_CONN_ME_TO) {
233,7 → 237,7
*
* @return 0 - the call should be passed to userspace, 1 - ignore call
*/
static int process_request(answerbox_t *box,call_t *call)
static int process_request(answerbox_t *box, call_t *call)
{
int phoneid;
 
254,8 → 258,8
* @return Call identification, returns -1 on fatal error,
-2 on 'Too many async request, handle answers first
*/
unative_t sys_ipc_call_sync_fast(unative_t phoneid, unative_t method,
unative_t arg1, ipc_data_t *data)
unative_t sys_ipc_call_sync_fast(unative_t phoneid, unative_t method,
unative_t arg1, ipc_data_t *data)
{
call_t call;
phone_t *phone;
278,8 → 282,8
}
 
/** Synchronous IPC call allowing to send whole message */
unative_t sys_ipc_call_sync(unative_t phoneid, ipc_data_t *question,
ipc_data_t *reply)
unative_t sys_ipc_call_sync(unative_t phoneid, ipc_data_t *question,
ipc_data_t *reply)
{
call_t call;
phone_t *phone;
287,7 → 291,8
int rc;
 
ipc_call_static_init(&call);
rc = copy_from_uspace(&call.data.args, &question->args, sizeof(call.data.args));
rc = copy_from_uspace(&call.data.args, &question->args,
sizeof(call.data.args));
if (rc != 0)
return (unative_t) rc;
 
324,8 → 329,8
* @return Call identification, returns -1 on fatal error,
-2 on 'Too many async request, handle answers first
*/
unative_t sys_ipc_call_async_fast(unative_t phoneid, unative_t method,
unative_t arg1, unative_t arg2)
unative_t sys_ipc_call_async_fast(unative_t phoneid, unative_t method,
unative_t arg1, unative_t arg2)
{
call_t *call;
phone_t *phone;
342,7 → 347,7
IPC_SET_ARG2(call->data, arg2);
IPC_SET_ARG3(call->data, 0);
 
if (!(res=request_preprocess(call)))
if (!(res = request_preprocess(call)))
ipc_call(phone, call);
else
ipc_backsend_err(phone, call, res);
367,12 → 372,13
GET_CHECK_PHONE(phone, phoneid, return IPC_CALLRET_FATAL);
 
call = ipc_call_alloc(0);
rc = copy_from_uspace(&call->data.args, &data->args, sizeof(call->data.args));
rc = copy_from_uspace(&call->data.args, &data->args,
sizeof(call->data.args));
if (rc != 0) {
ipc_call_free(call);
return (unative_t) rc;
}
if (!(res=request_preprocess(call)))
if (!(res = request_preprocess(call)))
ipc_call(phone, call);
else
ipc_backsend_err(phone, call, res);
388,7 → 394,7
* arg3 is not rewritten for certain system IPC
*/
unative_t sys_ipc_forward_fast(unative_t callid, unative_t phoneid,
unative_t method, unative_t arg1)
unative_t method, unative_t arg1)
{
call_t *call;
phone_t *phone;
429,8 → 435,8
}
 
/** Send IPC answer */
unative_t sys_ipc_answer_fast(unative_t callid, unative_t retval,
unative_t arg1, unative_t arg2)
unative_t sys_ipc_answer_fast(unative_t callid, unative_t retval,
unative_t arg1, unative_t arg2)
{
call_t *call;
ipc_data_t saved_data;
480,7 → 486,7
saveddata = 1;
}
rc = copy_from_uspace(&call->data.args, &data->args,
sizeof(call->data.args));
sizeof(call->data.args));
if (rc != 0)
return rc;
 
508,9 → 514,10
 
/** Wait for incoming ipc call or answer
*
* @param calldata Pointer to buffer where the call/answer data is stored
* @param usec Timeout. See waitq_sleep_timeout() for explanation.
* @param flags Select mode of sleep operation. See waitq_sleep_timeout() for explanation.
* @param calldata Pointer to buffer where the call/answer data is stored.
* @param usec Timeout. See waitq_sleep_timeout() for explanation.
* @param flags Select mode of sleep operation. See waitq_sleep_timeout()
* for explanation.
*
* @return Callid, if callid & 1, then the call is answer
*/
519,7 → 526,8
call_t *call;
 
restart:
call = ipc_wait_for_call(&TASK->answerbox, usec, flags | SYNCH_FLAGS_INTERRUPTIBLE);
call = ipc_wait_for_call(&TASK->answerbox, usec,
flags | SYNCH_FLAGS_INTERRUPTIBLE);
if (!call)
return 0;
 
574,7 → 582,8
*
* @return EPERM or a return code returned by ipc_irq_register().
*/
unative_t sys_ipc_register_irq(inr_t inr, devno_t devno, unative_t method, irq_code_t *ucode)
unative_t sys_ipc_register_irq(inr_t inr, devno_t devno, unative_t method,
irq_code_t *ucode)
{
if (!(cap_get(TASK) & CAP_IRQ_REG))
return EPERM;
/branches/fs/kernel/generic/src/ipc/ipc.c
163,7 → 163,7
spinlock_lock(&callerbox->lock);
list_append(&call->link, &callerbox->answers);
spinlock_unlock(&callerbox->lock);
waitq_wakeup(&callerbox->wq, 0);
waitq_wakeup(&callerbox->wq, WAKEUP_FIRST);
}
 
/** Answer message, that is in callee queue
205,7 → 205,7
spinlock_lock(&box->lock);
list_append(&call->link, &box->calls);
spinlock_unlock(&box->lock);
waitq_wakeup(&box->wq, 0);
waitq_wakeup(&box->wq, WAKEUP_FIRST);
}
 
/** Send a asynchronous request using phone to answerbox
374,6 → 374,7
int i;
call_t *call;
phone_t *phone;
DEADLOCK_PROBE_INIT(p_phonelck);
 
/* Disconnect all our phones ('ipc_phone_hangup') */
for (i=0;i < IPC_MAX_PHONES; i++)
387,9 → 388,10
spinlock_lock(&TASK->answerbox.lock);
while (!list_empty(&TASK->answerbox.connected_phones)) {
phone = list_get_instance(TASK->answerbox.connected_phones.next,
phone_t, link);
phone_t, link);
if (! spinlock_trylock(&phone->lock)) {
spinlock_unlock(&TASK->answerbox.lock);
DEADLOCK_PROBE(p_phonelck, DEADLOCK_THRESHOLD);
goto restart_phones;
}
500,7 → 502,7
printf("ABOX - CALLS:\n");
for (tmp=task->answerbox.calls.next; tmp != &task->answerbox.calls;tmp = tmp->next) {
call = list_get_instance(tmp, call_t, link);
printf("Callid: %p Srctask:%lld M:%d A1:%d A2:%d A3:%d Flags:%x\n",call,
printf("Callid: %p Srctask:%llu M:%d A1:%d A2:%d A3:%d Flags:%x\n",call,
call->sender->taskid, IPC_GET_METHOD(call->data), IPC_GET_ARG1(call->data),
IPC_GET_ARG2(call->data), IPC_GET_ARG3(call->data), call->flags);
}
510,7 → 512,7
tmp != &task->answerbox.dispatched_calls;
tmp = tmp->next) {
call = list_get_instance(tmp, call_t, link);
printf("Callid: %p Srctask:%lld M:%d A1:%d A2:%d A3:%d Flags:%x\n",call,
printf("Callid: %p Srctask:%llu M:%d A1:%d A2:%d A3:%d Flags:%x\n",call,
call->sender->taskid, IPC_GET_METHOD(call->data), IPC_GET_ARG1(call->data),
IPC_GET_ARG2(call->data), IPC_GET_ARG3(call->data), call->flags);
}
/branches/fs/kernel/generic/src/ipc/irq.c
336,6 → 336,7
while (box->irq_head.next != &box->irq_head) {
link_t *cur = box->irq_head.next;
irq_t *irq;
DEADLOCK_PROBE_INIT(p_irqlock);
irq = list_get_instance(cur, irq_t, notif_cfg.link);
if (!spinlock_trylock(&irq->lock)) {
344,6 → 345,7
*/
spinlock_unlock(&box->irq_lock);
interrupts_restore(ipl);
DEADLOCK_PROBE(p_irqlock, DEADLOCK_THRESHOLD);
goto loop;
}