Subversion Repositories HelenOS

Compare Revisions

Ignore whitespace Rev 4055 → Rev 3022

/branches/dd/kernel/generic/include/udebug/udebug_ipc.h
File deleted
/branches/dd/kernel/generic/include/udebug/udebug.h
File deleted
/branches/dd/kernel/generic/include/udebug/udebug_ops.h
File deleted
/branches/dd/kernel/generic/include/string.h
File deleted
/branches/dd/kernel/generic/include/ipc/kbox.h
File deleted
/branches/dd/kernel/generic/include/ipc/ipc.h
195,12 → 195,6
*/
#define IPC_M_DATA_READ 7
 
/** Debug the recipient.
* - ARG1 - specifies the debug method (from udebug_method_t)
* - other arguments are specific to the debug method
*/
#define IPC_M_DEBUG_ALL 8
 
/* Well-known methods */
#define IPC_M_LAST_SYSTEM 511
#define IPC_M_PING 512
287,13 → 281,6
 
/** Buffer for IPC_M_DATA_WRITE and IPC_M_DATA_READ. */
uint8_t *buffer;
 
/*
* The forward operation can masquerade the caller phone. For those
* cases, we must keep it aside so that the answer is processed
* correctly.
*/
phone_t *caller_phone;
} call_t;
 
extern void ipc_init(void);
300,7 → 287,7
extern call_t * ipc_wait_for_call(answerbox_t *, uint32_t, int);
extern void ipc_answer(answerbox_t *, call_t *);
extern int ipc_call(phone_t *, call_t *);
extern int ipc_call_sync(phone_t *, call_t *);
extern void ipc_call_sync(phone_t *, call_t *);
extern void ipc_phone_init(phone_t *);
extern void ipc_phone_connect(phone_t *, answerbox_t *);
extern void ipc_call_free(call_t *);
313,8 → 300,6
extern int ipc_phone_hangup(phone_t *);
extern void ipc_backsend_err(phone_t *, call_t *, unative_t);
extern void ipc_print_task(task_id_t);
extern void ipc_answerbox_slam_phones(answerbox_t *, bool);
extern void ipc_cleanup_call_list(link_t *);
 
extern answerbox_t *ipc_phone_0;
 
/branches/dd/kernel/generic/include/ipc/sysipc.h
53,13 → 53,10
int nonblocking);
unative_t sys_ipc_forward_fast(unative_t callid, unative_t phoneid,
unative_t method, unative_t arg1, unative_t arg2, int mode);
unative_t sys_ipc_forward_slow(unative_t callid, unative_t phoneid,
ipc_data_t *data, int mode);
unative_t sys_ipc_hangup(int phoneid);
unative_t sys_ipc_register_irq(inr_t inr, devno_t devno, unative_t method,
irq_code_t *ucode);
unative_t sys_ipc_unregister_irq(inr_t inr, devno_t devno);
unative_t sys_ipc_connect_kbox(sysarg64_t *task_id);
 
#endif
 
/branches/dd/kernel/generic/include/ipc/irq.h
36,7 → 36,7
#define KERN_IPC_IRQ_H_
 
/** Maximum length of IPC IRQ program */
#define IRQ_MAX_PROG_SIZE 20
#define IRQ_MAX_PROG_SIZE 10
 
#include <ipc/ipc.h>
#include <ddi/irq.h>
43,21 → 43,16
#include <arch/types.h>
#include <adt/list.h>
 
extern int ipc_irq_register(answerbox_t *, inr_t, devno_t, unative_t,
irq_code_t *);
extern int ipc_irq_register(answerbox_t *box, inr_t inr, devno_t devno,
unative_t method, irq_code_t *ucode);
extern void ipc_irq_send_notif(irq_t *irq);
extern void ipc_irq_unregister(answerbox_t *box, inr_t inr, devno_t devno);
extern void ipc_irq_cleanup(answerbox_t *box);
 
extern irq_ownership_t ipc_irq_top_half_claim(irq_t *);
extern void ipc_irq_top_half_handler(irq_t *);
 
extern int ipc_irq_unregister(answerbox_t *, inr_t, devno_t);
extern void ipc_irq_cleanup(answerbox_t *);
 
/*
* User friendly wrappers for ipc_irq_send_msg(). They are in the form
* ipc_irq_send_msg_m(), where m is the number of payload arguments.
*/
#define ipc_irq_send_msg_0(irq) \
ipc_irq_send_msg((irq), 0, 0, 0, 0, 0)
#define ipc_irq_send_msg_1(irq, a1) \
ipc_irq_send_msg((irq), (a1), 0, 0, 0, 0)
#define ipc_irq_send_msg_2(irq, a1, a2) \
69,8 → 64,8
#define ipc_irq_send_msg_5(irq, a1, a2, a3, a4, a5) \
ipc_irq_send_msg((irq), (a1), (a2), (a3), (a4), (a5))
 
extern void ipc_irq_send_msg(irq_t *, unative_t, unative_t, unative_t, unative_t,
unative_t);
extern void ipc_irq_send_msg(irq_t *irq, unative_t a1, unative_t a2,
unative_t a3, unative_t a4, unative_t a5);
 
#endif
 
/branches/dd/kernel/generic/include/proc/program.h
File deleted
/branches/dd/kernel/generic/include/proc/task.h
52,11 → 52,7
#include <arch/cpu.h>
#include <mm/tlb.h>
#include <proc/scheduler.h>
#include <udebug/udebug.h>
#include <ipc/kbox.h>
 
#define TASK_NAME_BUFLEN 20
 
struct thread;
 
/** Task structure. */
70,8 → 66,8
* threads.
*/
SPINLOCK_DECLARE(lock);
 
char name[TASK_NAME_BUFLEN];
char *name;
/** List of threads contained in this task. */
link_t th_head;
/** Address space. */
97,15 → 93,7
* certain extent.
*/
atomic_t active_calls;
 
#ifdef CONFIG_UDEBUG
/** Debugging stuff. */
udebug_task_t udebug;
 
/** Kernel answerbox. */
kbox_t kb;
#endif
 
/** Architecture specific task data. */
task_arch_t arch;
128,6 → 116,7
extern void task_done(void);
extern task_t *task_create(as_t *as, char *name);
extern void task_destroy(task_t *t);
extern task_t *task_run_program(void *program_addr, char *name);
extern task_t *task_find_by_id(task_id_t id);
extern int task_kill(task_id_t id);
extern uint64_t task_get_accounting(task_t *t);
144,7 → 133,6
#endif
 
extern unative_t sys_task_get_id(task_id_t *uspace_task_id);
extern unative_t sys_task_set_name(const char *uspace_name, size_t name_len);
 
#endif
 
/branches/dd/kernel/generic/include/proc/thread.h
46,7 → 46,6
#include <arch/cpu.h>
#include <mm/tlb.h>
#include <proc/uarg.h>
#include <udebug/udebug.h>
 
#define THREAD_STACK_SIZE STACK_SIZE
#define THREAD_NAME_BUFLEN 20
204,12 → 203,6
 
/** Thread's kernel stack. */
uint8_t *kstack;
 
#ifdef CONFIG_UDEBUG
/** Debugging stuff */
udebug_thread_t udebug;
#endif
 
} thread_t;
 
/** Thread list lock.
259,8 → 252,7
extern slab_cache_t *fpu_context_slab;
 
/* Thread syscall prototypes. */
extern unative_t sys_thread_create(uspace_arg_t *uspace_uarg,
char *uspace_name, size_t name_len, thread_id_t *uspace_thread_id);
extern unative_t sys_thread_create(uspace_arg_t *uspace_uarg, char *uspace_name, thread_id_t *uspace_thread_id);
extern unative_t sys_thread_exit(int uspace_status);
extern unative_t sys_thread_get_id(thread_id_t *uspace_thread_id);
 
/branches/dd/kernel/generic/include/byteorder.h
51,14 → 51,6
#define uint32_t_be2host(n) (n)
#define uint64_t_be2host(n) (n)
 
#define host2uint16_t_le(n) uint16_t_byteorder_swap(n)
#define host2uint32_t_le(n) uint32_t_byteorder_swap(n)
#define host2uint64_t_le(n) uint64_t_byteorder_swap(n)
 
#define host2uint16_t_be(n) (n)
#define host2uint32_t_be(n) (n)
#define host2uint64_t_be(n) (n)
 
#else
 
#define uint16_t_le2host(n) (n)
69,14 → 61,6
#define uint32_t_be2host(n) uint32_t_byteorder_swap(n)
#define uint64_t_be2host(n) uint64_t_byteorder_swap(n)
 
#define host2uint16_t_le(n) (n)
#define host2uint32_t_le(n) (n)
#define host2uint64_t_le(n) (n)
 
#define host2uint16_t_be(n) uint16_t_byteorder_swap(n)
#define host2uint32_t_be(n) uint32_t_byteorder_swap(n)
#define host2uint64_t_be(n) uint64_t_byteorder_swap(n)
 
#endif
 
static inline uint64_t uint64_t_byteorder_swap(uint64_t n)
/branches/dd/kernel/generic/include/lib/elf.h
114,8 → 114,7
#define EE_MEMORY 2 /* Cannot allocate address space */
#define EE_INCOMPATIBLE 3 /* ELF image is not compatible with current architecture */
#define EE_UNSUPPORTED 4 /* Non-supported ELF (e.g. dynamic ELFs) */
#define EE_LOADER 5 /* The image is actually a program loader */
#define EE_IRRECOVERABLE 6
#define EE_IRRECOVERABLE 5
 
/**
* ELF section types
339,10 → 338,6
 
extern char *elf_error(unsigned int rc);
 
/* Interpreter string used to recognize the program loader */
#define ELF_INTERP_ZSTR "kernel"
#define ELF_INTERP_ZLEN sizeof(ELF_INTERP_ZSTR)
 
#endif
 
/** @}
/branches/dd/kernel/generic/include/lib/rd.h
66,18 → 66,16
#define RE_UNSUPPORTED 2 /* Non-supported image (e.g. wrong version) */
 
/** RAM disk header */
struct rd_header {
typedef struct {
uint8_t magic[RD_MAGIC_SIZE];
uint8_t version;
uint8_t data_type;
uint32_t header_size;
uint64_t data_size;
} __attribute__ ((packed));
} rd_header;
 
typedef struct rd_header rd_header_t;
extern int init_rd(rd_header * addr, size_t size);
 
extern int init_rd(rd_header_t *addr, size_t size);
 
#endif
 
/** @}
/branches/dd/kernel/generic/include/lib/objc.h
0,0 → 1,50
/*
* Copyright (c) 2007 Martin Decky
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* - The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
 
/** @addtogroup generic
* @{
*/
/** @file
*/
 
#ifndef KERN_OBJC_H_
#define KERN_OBJC_H_
 
extern id class_create_instance(Class _class);
extern id object_dispose(id object);
 
@interface base_t {
Class isa;
}
 
+ (id) new;
- (id) free;
 
@end
 
#endif
/branches/dd/kernel/generic/include/lib/objc_ext.h
0,0 → 1,64
/*
* Copyright (c) 2007 Martin Decky
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* - The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
 
/** @addtogroup generic
* @{
*/
/** @file
*/
 
#ifndef KERN_OBJC_EXT_H_
#define KERN_OBJC_EXT_H_
 
#include <arch/types.h>
#include <arch/arg.h>
 
extern void *stderr;
 
extern void __assert_fail(const char *assertion, const char *file, unsigned int line, const char *function);
extern void abort(void);
 
extern void *fopen(const char *path, const char *mode);
extern size_t fread(void *ptr, size_t size, size_t nmemb, void *stream);
extern size_t fwrite(const void *ptr, size_t size, size_t nmemb, void *stream);
extern int fflush(void *stream);
extern int feof(void *stream);
extern int fclose(void *stream);
 
extern int vfprintf(void *stream, const char *format, va_list ap);
extern int sscanf(const char *str, const char *format, ...);
extern const unsigned short **__ctype_b_loc(void);
extern long int __strtol_internal(const char *__nptr, char **__endptr, int __base, int __group);
 
extern void *memset(void *s, int c, size_t n);
extern void *calloc(size_t nmemb, size_t size);
 
#endif
 
/** @}
*/
/branches/dd/kernel/generic/include/mm/slab.h
53,13 → 53,12
#define SLAB_INSIDE_SIZE (PAGE_SIZE >> 3)
 
/** Maximum wasted space we allow for cache */
#define SLAB_MAX_BADNESS(cache) \
(((unsigned int) PAGE_SIZE << (cache)->order) >> 2)
#define SLAB_MAX_BADNESS(cache) (((unsigned int) PAGE_SIZE << (cache)->order) >> 2)
 
/* slab_reclaim constants */
 
/** Reclaim all possible memory, because we are in memory stress */
#define SLAB_RECLAIM_ALL 0x01
#define SLAB_RECLAIM_ALL 0x1
 
/* cache_create flags */
 
100,7 → 99,7
int flags;
 
/* Computed values */
uint8_t order; /**< Order of frames to be allocated */
uint8_t order; /**< Order of frames to be allocated */
unsigned int objects; /**< Number of objects that fit in */
 
/* Statistics */
122,13 → 121,14
slab_mag_cache_t *mag_cache;
} slab_cache_t;
 
extern slab_cache_t *slab_cache_create(char *, size_t, size_t,
int (*)(void *, int), int (*)(void *), int);
extern void slab_cache_destroy(slab_cache_t *);
extern slab_cache_t * slab_cache_create(char *name, size_t size, size_t align,
int (*constructor)(void *obj, int kmflag), int (*destructor)(void *obj),
int flags);
extern void slab_cache_destroy(slab_cache_t *cache);
 
extern void * slab_alloc(slab_cache_t *, int);
extern void slab_free(slab_cache_t *, void *);
extern count_t slab_reclaim(int);
extern void * slab_alloc(slab_cache_t *cache, int flags);
extern void slab_free(slab_cache_t *cache, void *obj);
extern count_t slab_reclaim(int flags);
 
/* slab subsytem initialization */
extern void slab_cache_init(void);
138,9 → 138,9
extern void slab_print_list(void);
 
/* malloc support */
extern void *malloc(unsigned int, int);
extern void *realloc(void *, unsigned int, int);
extern void free(void *);
extern void * malloc(unsigned int size, int flags);
extern void * realloc(void *ptr, unsigned int size, int flags);
extern void free(void *ptr);
#endif
 
/** @}
/branches/dd/kernel/generic/include/mm/as.h
53,6 → 53,10
#include <adt/btree.h>
#include <lib/elf.h>
 
#ifdef __OBJC__
#include <lib/objc.h>
#endif
 
/**
* Defined to be true if user address space and kernel address space shadow each
* other.
80,6 → 84,47
/** The page fault was caused by memcpy_from_uspace() or memcpy_to_uspace(). */
#define AS_PF_DEFER 2
 
#ifdef __OBJC__
@interface as_t : base_t {
@public
/** Protected by asidlock. */
link_t inactive_as_with_asid_link;
/**
* Number of processors on wich is this address space active.
* Protected by asidlock.
*/
count_t cpu_refcount;
/**
* Address space identifier.
* Constant on architectures that do not support ASIDs.
* Protected by asidlock.
*/
asid_t asid;
/** Number of references (i.e tasks that reference this as). */
atomic_t refcount;
 
mutex_t lock;
/** B+tree of address space areas. */
btree_t as_area_btree;
/** Non-generic content. */
as_genarch_t genarch;
/** Architecture specific content. */
as_arch_t arch;
}
 
+ (pte_t *) page_table_create: (int) flags;
+ (void) page_table_destroy: (pte_t *) page_table;
- (void) page_table_lock: (bool) _lock;
- (void) page_table_unlock: (bool) unlock;
 
@end
 
#else
 
/** Address space structure.
*
* as_t contains the list of as_areas of userspace accessible
123,6 → 168,7
void (* page_table_lock)(as_t *as, bool lock);
void (* page_table_unlock)(as_t *as, bool unlock);
} as_operations_t;
#endif
 
/**
* This structure contains information associated with the shared address space
203,7 → 249,10
 
extern as_t *AS_KERNEL;
 
#ifndef __OBJC__
extern as_operations_t *as_operations;
#endif
 
extern link_t inactive_as_with_asid_head;
 
extern void as_init(void);
220,7 → 269,6
extern int as_area_resize(as_t *as, uintptr_t address, size_t size, int flags);
int as_area_share(as_t *src_as, uintptr_t src_base, size_t acc_size,
as_t *dst_as, uintptr_t dst_base, int dst_flags_mask);
extern int as_area_change_flags(as_t *as, int flags, uintptr_t address);
 
extern int as_area_get_flags(as_area_t *area);
extern bool as_area_check_access(as_area_t *area, pf_access_t access);
251,19 → 299,11
extern mem_backend_t elf_backend;
extern mem_backend_t phys_backend;
 
/**
* This flags is passed when running the loader, otherwise elf_load()
* would return with a EE_LOADER error code.
*/
#define ELD_F_NONE 0
#define ELD_F_LOADER 1
extern unsigned int elf_load(elf_header_t *header, as_t *as);
 
extern unsigned int elf_load(elf_header_t *header, as_t *as, int flags);
 
/* Address space area related syscalls. */
extern unative_t sys_as_area_create(uintptr_t address, size_t size, int flags);
extern unative_t sys_as_area_resize(uintptr_t address, size_t size, int flags);
extern unative_t sys_as_area_change_flags(uintptr_t address, int flags);
extern unative_t sys_as_area_destroy(uintptr_t address);
 
/* Introspection functions. */
/branches/dd/kernel/generic/include/mm/frame.h
38,82 → 38,35
 
#include <arch/types.h>
#include <adt/list.h>
#include <synch/spinlock.h>
#include <mm/buddy.h>
#include <synch/spinlock.h>
#include <arch/mm/page.h>
#include <arch/mm/frame.h>
 
#define ONE_FRAME 0
#define TWO_FRAMES 1
#define FOUR_FRAMES 2
#define ONE_FRAME 0
#define TWO_FRAMES 1
#define FOUR_FRAMES 2
 
 
#ifdef ARCH_STACK_FRAMES
#define STACK_FRAMES ARCH_STACK_FRAMES
#define STACK_FRAMES ARCH_STACK_FRAMES
#else
#define STACK_FRAMES ONE_FRAME
#define STACK_FRAMES ONE_FRAME
#endif
 
/** Maximum number of zones in the system. */
#define ZONES_MAX 32
/** Maximum number of zones in system. */
#define ZONES_MAX 16
 
typedef uint8_t frame_flags_t;
/** If possible, merge with neighbouring zones. */
#define ZONE_JOIN 0x1
 
/** Convert the frame address to kernel VA. */
#define FRAME_KA 0x01
/** Convert the frame address to kernel va. */
#define FRAME_KA 0x1
/** Do not panic and do not sleep on failure. */
#define FRAME_ATOMIC 0x02
#define FRAME_ATOMIC 0x2
/** Do not start reclaiming when no free memory. */
#define FRAME_NO_RECLAIM 0x04
#define FRAME_NO_RECLAIM 0x4
 
typedef uint8_t zone_flags_t;
 
/** Available zone (free for allocation) */
#define ZONE_AVAILABLE 0x00
/** Zone is reserved (not available for allocation) */
#define ZONE_RESERVED 0x08
/** Zone is used by firmware (not available for allocation) */
#define ZONE_FIRMWARE 0x10
 
/** Currently there is no equivalent zone flags
for frame flags */
#define FRAME_TO_ZONE_FLAGS(frame_flags) 0
 
typedef struct {
count_t refcount; /**< Tracking of shared frames */
uint8_t buddy_order; /**< Buddy system block order */
link_t buddy_link; /**< Link to the next free block inside
one order */
void *parent; /**< If allocated by slab, this points there */
} frame_t;
 
typedef struct {
pfn_t base; /**< Frame_no of the first frame
in the frames array */
count_t count; /**< Size of zone */
count_t free_count; /**< Number of free frame_t
structures */
count_t busy_count; /**< Number of busy frame_t
structures */
zone_flags_t flags; /**< Type of the zone */
frame_t *frames; /**< Array of frame_t structures
in this zone */
buddy_system_t *buddy_system; /**< Buddy system for the zone */
} zone_t;
 
/*
* The zoneinfo.lock must be locked when accessing zoneinfo structure.
* Some of the attributes in zone_t structures are 'read-only'
*/
typedef struct {
SPINLOCK_DECLARE(lock);
count_t count;
zone_t info[ZONES_MAX];
} zones_t;
 
extern zones_t zones;
 
static inline uintptr_t PFN2ADDR(pfn_t frame)
{
return (uintptr_t) (frame << FRAME_WIDTH);
136,37 → 89,31
return (size_t) (frames << FRAME_WIDTH);
}
 
static inline bool zone_flags_available(zone_flags_t flags)
{
return ((flags & (ZONE_RESERVED | ZONE_FIRMWARE)) == 0);
}
#define IS_BUDDY_ORDER_OK(index, order) \
((~(((unative_t) -1) << (order)) & (index)) == 0)
#define IS_BUDDY_LEFT_BLOCK(zone, frame) \
(((frame_index((zone), (frame)) >> (frame)->buddy_order) & 0x1) == 0)
#define IS_BUDDY_RIGHT_BLOCK(zone, frame) \
(((frame_index((zone), (frame)) >> (frame)->buddy_order) & 0x1) == 1)
#define IS_BUDDY_LEFT_BLOCK_ABS(zone, frame) \
(((frame_index_abs((zone), (frame)) >> (frame)->buddy_order) & 0x1) == 0)
#define IS_BUDDY_RIGHT_BLOCK_ABS(zone, frame) \
(((frame_index_abs((zone), (frame)) >> (frame)->buddy_order) & 0x1) == 1)
 
#define IS_BUDDY_ORDER_OK(index, order) \
((~(((unative_t) -1) << (order)) & (index)) == 0)
#define IS_BUDDY_LEFT_BLOCK(zone, frame) \
(((frame_index((zone), (frame)) >> (frame)->buddy_order) & 0x01) == 0)
#define IS_BUDDY_RIGHT_BLOCK(zone, frame) \
(((frame_index((zone), (frame)) >> (frame)->buddy_order) & 0x01) == 1)
#define IS_BUDDY_LEFT_BLOCK_ABS(zone, frame) \
(((frame_index_abs((zone), (frame)) >> (frame)->buddy_order) & 0x01) == 0)
#define IS_BUDDY_RIGHT_BLOCK_ABS(zone, frame) \
(((frame_index_abs((zone), (frame)) >> (frame)->buddy_order) & 0x01) == 1)
#define frame_alloc(order, flags) \
frame_alloc_generic(order, flags, NULL)
 
#define frame_alloc(order, flags) \
frame_alloc_generic(order, flags, NULL)
 
extern void frame_init(void);
extern void *frame_alloc_generic(uint8_t, frame_flags_t, count_t *);
extern void frame_free(uintptr_t);
extern void frame_reference_add(pfn_t);
extern void *frame_alloc_generic(uint8_t order, int flags, unsigned int *pzone);
extern void frame_free(uintptr_t frame);
extern void frame_reference_add(pfn_t pfn);
 
extern count_t find_zone(pfn_t frame, count_t count, count_t hint);
extern count_t zone_create(pfn_t, count_t, pfn_t, zone_flags_t);
extern void *frame_get_parent(pfn_t, count_t);
extern void frame_set_parent(pfn_t, void *, count_t);
extern void frame_mark_unavailable(pfn_t, count_t);
extern uintptr_t zone_conf_size(count_t);
extern bool zone_merge(count_t, count_t);
extern int zone_create(pfn_t start, count_t count, pfn_t confframe, int flags);
extern void *frame_get_parent(pfn_t frame, unsigned int hint);
extern void frame_set_parent(pfn_t frame, void *data, unsigned int hint);
extern void frame_mark_unavailable(pfn_t start, count_t count);
extern uintptr_t zone_conf_size(count_t count);
extern void zone_merge(unsigned int z1, unsigned int z2);
extern void zone_merge_all(void);
extern uint64_t zone_total_size(void);
 
174,7 → 121,7
* Console functions
*/
extern void zone_print_list(void);
extern void zone_print_one(count_t);
extern void zone_print_one(unsigned int znum);
 
#endif
 
/branches/dd/kernel/generic/include/mm/page.h
39,10 → 39,15
#include <mm/as.h>
#include <memstr.h>
 
/**
* Macro for computing page color.
*/
#define PAGE_COLOR(va) (((va) >> PAGE_WIDTH) & ((1 << PAGE_COLOR_BITS) - 1))
 
/** Operations to manipulate page mappings. */
typedef struct {
void (* mapping_insert)(as_t *as, uintptr_t page, uintptr_t frame,
int flags);
int flags);
void (* mapping_remove)(as_t *as, uintptr_t page);
pte_t *(* mapping_find)(as_t *as, uintptr_t page);
} page_mapping_operations_t;
59,7 → 64,6
extern pte_t *page_table_create(int flags);
extern void page_table_destroy(pte_t *page_table);
extern void map_structure(uintptr_t s, size_t size);
 
extern uintptr_t hw_map(uintptr_t physaddr, size_t size);
 
#endif
/branches/dd/kernel/generic/include/mm/buddy.h
66,6 → 66,7
void (*mark_available)(struct buddy_system *, link_t *);
/** Find parent of block that has given order */
link_t *(* find_block)(struct buddy_system *, link_t *, uint8_t);
void (* print_id)(struct buddy_system *, link_t *);
} buddy_system_operations_t;
 
typedef struct buddy_system {
77,13 → 78,14
void *data;
} buddy_system_t;
 
extern void buddy_system_create(buddy_system_t *, uint8_t,
buddy_system_operations_t *, void *);
extern link_t *buddy_system_alloc(buddy_system_t *, uint8_t);
extern bool buddy_system_can_alloc(buddy_system_t *, uint8_t);
extern void buddy_system_free(buddy_system_t *, link_t *);
extern size_t buddy_conf_size(size_t);
extern link_t *buddy_system_alloc_block(buddy_system_t *, link_t *);
extern void buddy_system_create(buddy_system_t *b, uint8_t max_order,
buddy_system_operations_t *op, void *data);
extern link_t *buddy_system_alloc(buddy_system_t *b, uint8_t i);
extern bool buddy_system_can_alloc(buddy_system_t *b, uint8_t order);
extern void buddy_system_free(buddy_system_t *b, link_t *block);
extern void buddy_system_structure_print(buddy_system_t *b, size_t elem_size);
extern size_t buddy_conf_size(int max_order);
extern link_t *buddy_system_alloc_block(buddy_system_t *b, link_t *block);
 
#endif
 
/branches/dd/kernel/generic/include/config.h
26,7 → 26,7
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
 
/** @addtogroup generic
/** @addtogroup generic
* @{
*/
/** @file
38,16 → 38,15
#include <arch/types.h>
#include <arch/mm/page.h>
 
#define STACK_SIZE PAGE_SIZE
#define STACK_SIZE PAGE_SIZE
 
#define CONFIG_INIT_TASKS 32
#define CONFIG_MEMORY_SIZE (8 * 1024 * 1024)
 
#define CONFIG_TASK_NAME_BUFLEN 32
#define CONFIG_INIT_TASKS 32
 
typedef struct {
uintptr_t addr;
size_t size;
char name[CONFIG_TASK_NAME_BUFLEN];
} init_task_t;
 
typedef struct {
66,14 → 65,14
} ballocs_t;
 
typedef struct {
count_t cpu_count; /**< Number of processors detected. */
volatile count_t cpu_active; /**< Number of processors that are up and running. */
count_t cpu_count; /**< Number of processors detected. */
volatile count_t cpu_active; /**< Number of processors that are up and running. */
 
uintptr_t base;
size_t kernel_size; /**< Size of memory in bytes taken by kernel and stack */
size_t kernel_size; /**< Size of memory in bytes taken by kernel and stack */
uintptr_t stack_base; /**< Base adddress of initial stack */
size_t stack_size; /**< Size of initial stack */
uintptr_t stack_base; /**< Base adddress of initial stack */
size_t stack_size; /**< Size of initial stack */
} config_t;
 
extern config_t config;
/branches/dd/kernel/generic/include/macros.h
26,7 → 26,7
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
 
/** @addtogroup generic
/** @addtogroup generic
* @{
*/
/** @file
37,25 → 37,22
 
#include <arch/types.h>
 
#define isdigit(d) (((d) >= '0') && ((d) <= '9'))
#define islower(c) (((c) >= 'a') && ((c) <= 'z'))
#define isupper(c) (((c) >= 'A') && ((c) <= 'Z'))
#define isalpha(c) (is_lower((c)) || is_upper((c)))
#define isalphanum(c) (is_alpha((c)) || is_digit((c)))
#define isspace(c) \
(((c) == ' ') || ((c) == '\t') || ((c) == '\n') || ((c) == '\r'))
#define isdigit(d) (((d) >= '0') && ((d) <= '9'))
#define islower(c) (((c) >= 'a') && ((c) <= 'z'))
#define isupper(c) (((c) >= 'A') && ((c) <= 'Z'))
#define isalpha(c) (is_lower(c) || is_upper(c))
#define isalphanum(c) (is_alpha(c) || is_digit(c))
#define isspace(c) (((c) == ' ') || ((c) == '\t') || ((c) == '\n') || \
((c) == '\r'))
 
#define min(a, b) ((a) < (b) ? (a) : (b))
#define max(a, b) ((a) > (b) ? (a) : (b))
#define min(a,b) ((a) < (b) ? (a) : (b))
#define max(a,b) ((a) > (b) ? (a) : (b))
 
#define min3(a, b, c) ((a) < (b) ? (min(a, c)) : (min(b, c)))
#define max3(a, b, c) ((a) > (b) ? (max(a, c)) : (max(b, c)))
 
/** Return true if the intervals overlap.
/** Return true if the interlvals overlap.
*
* @param s1 Start address of the first interval.
* @param s1 Start address of the first interval.
* @param sz1 Size of the first interval.
* @param s2 Start address of the second interval.
* @param s2 Start address of the second interval.
* @param sz2 Size of the second interval.
*/
static inline int overlaps(uintptr_t s1, size_t sz1, uintptr_t s2, size_t sz2)
62,35 → 59,19
{
uintptr_t e1 = s1 + sz1;
uintptr_t e2 = s2 + sz2;
return ((s1 < e2) && (s2 < e1));
 
return (s1 < e2) && (s2 < e1);
}
 
/* Compute overlapping of physical addresses */
#define PA_overlaps(x, szx, y, szy) \
overlaps(KA2PA((x)), (szx), KA2PA((y)), (szy))
#define PA_overlaps(x, szx, y, szy) overlaps(KA2PA(x), szx, KA2PA(y), szy)
 
#define SIZE2KB(size) ((size) >> 10)
#define SIZE2MB(size) ((size) >> 20)
#define SIZE2KB(size) (size >> 10)
#define SIZE2MB(size) (size >> 20)
 
#define KB2SIZE(kb) ((kb) << 10)
#define MB2SIZE(mb) ((mb) << 20)
#define STRING(arg) STRING_ARG(arg)
#define STRING_ARG(arg) #arg
 
#define STRING(arg) STRING_ARG(arg)
#define STRING_ARG(arg) #arg
 
/** Pseudorandom generator
*
* A pretty standard linear congruential pseudorandom
* number generator (m = 2^32 or 2^64 depending on architecture).
*
*/
#define RANDI(seed) \
({ \
(seed) = 1103515245 * (seed) + 12345; \
(seed); \
})
 
#endif
 
/** @}
/branches/dd/kernel/generic/include/errno.h
48,18 → 48,14
* sys_ipc_hangup() to close the connection.
* Used by answerbox to close the connection.
*/
#define EPARTY -8 /* The other party encountered an error when
* receiving the call.
*/
#define EEXISTS -9 /* Entry already exists */
#define EBADMEM -10 /* Bad memory pointer */
#define ENOTSUP -11 /* Not supported */
#define EADDRNOTAVAIL -12 /* Address not available. */
#define ETIMEOUT -13 /* Timeout expired */
#define EINVAL -14 /* Invalid value */
#define EBUSY -15 /* Resource is busy */
#define EOVERFLOW -16 /* The result does not fit its size. */
#define EINTR -17 /* Operation was interrupted. */
#define EEXISTS -8 /* Entry already exists */
#define EBADMEM -9 /* Bad memory pointer */
#define ENOTSUP -10 /* Not supported */
#define EADDRNOTAVAIL -11 /* Address not available. */
#define ETIMEOUT -12 /* Timeout expired */
#define EINVAL -13 /* Invalid value */
#define EBUSY -14 /* Resource is busy */
#define EOVERFLOW -15 /* The result does not fit its size. */
 
#endif
 
/branches/dd/kernel/generic/include/panic.h
36,15 → 36,15
#define KERN_PANIC_H_
 
#ifdef CONFIG_DEBUG
# define panic(format, ...) \
panic_printf("Kernel panic in %s() at %s:%u: " format "\n", \
__func__, __FILE__, __LINE__, ##__VA_ARGS__);
#define panic(format, ...) \
panic_printf("Kernel panic in %s() at %s on line %d: " format, __func__, \
__FILE__, __LINE__, ##__VA_ARGS__);
#else
# define panic(format, ...) \
panic_printf("Kernel panic: " format "\n", ##__VA_ARGS__);
#define panic(format, ...) \
panic_printf("Kernel panic: " format, ##__VA_ARGS__);
#endif
 
extern void panic_printf(char *fmt, ...) __attribute__((noreturn));
extern void panic_printf(char *fmt, ...) __attribute__((noreturn)) ;
 
#endif
 
/branches/dd/kernel/generic/include/syscall/syscall.h
36,26 → 36,17
#define KERN_SYSCALL_H_
 
typedef enum {
SYS_KLOG = 0,
SYS_IO = 0,
SYS_TLS_SET = 1, /* Hardcoded in AMD64, IA32 uspace - fibril.S */
SYS_THREAD_CREATE,
SYS_THREAD_EXIT,
SYS_THREAD_GET_ID,
SYS_TASK_GET_ID,
SYS_TASK_SET_NAME,
SYS_PROGRAM_SPAWN_LOADER,
SYS_FUTEX_SLEEP,
SYS_FUTEX_WAKEUP,
SYS_SMC_COHERENCE,
SYS_AS_AREA_CREATE,
SYS_AS_AREA_RESIZE,
SYS_AS_AREA_CHANGE_FLAGS,
SYS_AS_AREA_DESTROY,
SYS_IPC_CALL_SYNC_FAST,
SYS_IPC_CALL_SYNC_SLOW,
SYS_IPC_CALL_ASYNC_FAST,
63,25 → 54,18
SYS_IPC_ANSWER_FAST,
SYS_IPC_ANSWER_SLOW,
SYS_IPC_FORWARD_FAST,
SYS_IPC_FORWARD_SLOW,
SYS_IPC_WAIT,
SYS_IPC_HANGUP,
SYS_IPC_REGISTER_IRQ,
SYS_IPC_UNREGISTER_IRQ,
SYS_CAP_GRANT,
SYS_CAP_REVOKE,
SYS_PHYSMEM_MAP,
SYS_IOSPACE_ENABLE,
SYS_PREEMPT_CONTROL,
SYS_SYSINFO_VALID,
SYS_SYSINFO_VALUE,
SYS_DEBUG_ENABLE_CONSOLE,
SYS_DEBUG_DISABLE_CONSOLE,
SYS_IPC_CONNECT_KBOX,
SYSCALL_END
} syscall_t;
 
/branches/dd/kernel/generic/include/adt/avl.h
36,7 → 36,6
#define KERN_AVLTREE_H_
 
#include <arch/types.h>
#include <typedefs.h>
 
/**
* Macro for getting a pointer to the structure which contains the avltree
/branches/dd/kernel/generic/include/adt/list.h
36,7 → 36,6
#define KERN_LIST_H_
 
#include <arch/types.h>
#include <typedefs.h>
 
/** Doubly linked list head and link type. */
typedef struct link {
/branches/dd/kernel/generic/include/adt/bitmap.h
49,14 → 49,6
extern void bitmap_clear_range(bitmap_t *bitmap, index_t start, count_t bits);
extern void bitmap_copy(bitmap_t *dst, bitmap_t *src, count_t bits);
 
static inline int bitmap_get(bitmap_t *bitmap,index_t bit)
{
if(bit >= bitmap->bits)
return 0;
return !! ((bitmap->map)[bit/8] & (1 << (bit & 7)));
}
 
 
#endif
 
/** @}
/branches/dd/kernel/generic/include/synch/smc.h
File deleted
/branches/dd/kernel/generic/include/synch/spinlock.h
36,7 → 36,6
#define KERN_SPINLOCK_H_
 
#include <arch/types.h>
#include <arch/barrier.h>
#include <preemption.h>
#include <atomic.h>
#include <debug.h>
111,8 → 110,8
#define DEADLOCK_PROBE(pname, value) \
if ((pname)++ > (value)) { \
(pname) = 0; \
printf("Deadlock probe %s: exceeded threshold %u\n", \
"cpu%u: function=%s, line=%u\n", \
printf("Deadlock probe %s: exceeded threshold %d\n", \
"cpu%d: function=%s, line=%d\n", \
#pname, (value), CPU->id, __func__, __LINE__); \
}
#else
/branches/dd/kernel/generic/include/synch/mutex.h
39,26 → 39,20
#include <synch/semaphore.h>
#include <synch/synch.h>
 
typedef enum {
MUTEX_PASSIVE,
MUTEX_ACTIVE
} mutex_type_t;
 
typedef struct {
mutex_type_t type;
semaphore_t sem;
} mutex_t;
 
#define mutex_lock(mtx) \
#define mutex_lock(mtx) \
_mutex_lock_timeout((mtx), SYNCH_NO_TIMEOUT, SYNCH_FLAGS_NONE)
#define mutex_trylock(mtx) \
#define mutex_trylock(mtx) \
_mutex_lock_timeout((mtx), SYNCH_NO_TIMEOUT, SYNCH_FLAGS_NON_BLOCKING)
#define mutex_lock_timeout(mtx, usec) \
#define mutex_lock_timeout(mtx, usec) \
_mutex_lock_timeout((mtx), (usec), SYNCH_FLAGS_NON_BLOCKING)
 
extern void mutex_initialize(mutex_t *, mutex_type_t);
extern int _mutex_lock_timeout(mutex_t *, uint32_t, int);
extern void mutex_unlock(mutex_t *);
extern void mutex_initialize(mutex_t *mtx);
extern int _mutex_lock_timeout(mutex_t *mtx, uint32_t usec, int flags);
extern void mutex_unlock(mutex_t *mtx);
 
#endif
 
/branches/dd/kernel/generic/include/interrupt.h
40,16 → 40,17
#include <proc/task.h>
#include <proc/thread.h>
#include <arch.h>
#include <console/klog.h>
#include <ddi/irq.h>
 
typedef void (* iroutine)(int n, istate_t *istate);
 
#define fault_if_from_uspace(istate, fmt, ...) \
#define fault_if_from_uspace(istate, cmd, ...) \
{ \
if (istate_from_uspace(istate)) { \
task_t *task = TASK; \
printf("Task %s (%" PRIu64 ") killed due to an exception at %p: ", task->name, task->taskid, istate_get_pc(istate)); \
printf(fmt "\n", ##__VA_ARGS__); \
klog_printf("Task %llu killed due to an exception at %p.", task->taskid, istate_get_pc(istate)); \
klog_printf(" " cmd, ##__VA_ARGS__); \
task_kill(task->taskid); \
thread_exit(); \
} \
/branches/dd/kernel/generic/include/arch.h
63,11 → 63,12
as_t *as; /**< Current address space. */
} the_t;
 
#define THE ((the_t * )(get_stack_base()))
#define THE ((the_t *)(get_stack_base()))
 
extern void the_initialize(the_t *the);
extern void the_copy(the_t *src, the_t *dst);
 
extern void arch_pre_main(void);
extern void arch_pre_mm_init(void);
extern void arch_post_mm_init(void);
extern void arch_post_cpu_init(void);
78,7 → 79,6
 
extern void reboot(void);
extern void arch_reboot(void);
extern void *arch_construct_function(fncptr_t *fptr, void *addr, void *caller);
 
#endif
 
/branches/dd/kernel/generic/include/ddi/irq.h
36,16 → 36,18
#define KERN_IRQ_H_
 
typedef enum {
CMD_PIO_READ_8 = 1,
CMD_PIO_READ_16,
CMD_PIO_READ_32,
CMD_PIO_WRITE_8,
CMD_PIO_WRITE_16,
CMD_PIO_WRITE_32,
CMD_BTEST,
CMD_PREDICATE,
CMD_ACCEPT,
CMD_DECLINE,
CMD_MEM_READ_1 = 0,
CMD_MEM_READ_2,
CMD_MEM_READ_4,
CMD_MEM_READ_8,
CMD_MEM_WRITE_1,
CMD_MEM_WRITE_2,
CMD_MEM_WRITE_4,
CMD_MEM_WRITE_8,
CMD_PORT_READ_1,
CMD_PORT_WRITE_1,
CMD_IA64_GETCHAR,
CMD_PPC32_GETCHAR,
CMD_LAST
} irq_cmd_type;
 
52,9 → 54,8
typedef struct {
irq_cmd_type cmd;
void *addr;
unsigned long long value;
unsigned int srcarg;
unsigned int dstarg;
unsigned long long value;
int dstarg;
} irq_cmd_t;
 
typedef struct {
66,10 → 67,8
 
#include <arch/types.h>
#include <adt/list.h>
#include <adt/hash_table.h>
#include <synch/spinlock.h>
#include <proc/task.h>
#include <ipc/ipc.h>
 
typedef enum {
IRQ_DECLINE, /**< Decline to service. */
82,11 → 81,8
} irq_trigger_t;
 
struct irq;
typedef void (* irq_handler_t)(struct irq *);
typedef void (* irq_handler_t)(struct irq *irq, void *arg, ...);
 
/** Type for function used to clear the interrupt. */
typedef void (* cir_t)(void *, inr_t);
 
/** IPC notification config structure.
*
* Primarily, this structure is encapsulated in the irq_t structure.
99,8 → 95,6
answerbox_t *answerbox;
/** Method to be used for the notification. */
unative_t method;
/** Arguments that will be sent if the IRQ is claimed. */
unative_t scratch[IPC_CALL_LEN];
/** Top-half pseudocode. */
irq_code_t *code;
/** Counter. */
144,29 → 138,22
/** Trigger level of the IRQ. */
irq_trigger_t trigger;
/** Claim ownership of the IRQ. */
irq_ownership_t (* claim)(struct irq *);
irq_ownership_t (* claim)(void);
/** Handler for this IRQ and device. */
irq_handler_t handler;
/** Instance argument for the handler and the claim function. */
void *instance;
/** Argument for the handler. */
void *arg;
 
/** Clear interrupt routine. */
cir_t cir;
/** First argument to the clear interrupt routine. */
void *cir_arg;
 
/** Notification configuration structure. */
ipc_notif_cfg_t notif_cfg;
} irq_t;
 
SPINLOCK_EXTERN(irq_uspace_hash_table_lock);
extern hash_table_t irq_uspace_hash_table;
extern void irq_init(count_t inrs, count_t chains);
extern void irq_initialize(irq_t *irq);
extern void irq_register(irq_t *irq);
extern irq_t *irq_dispatch_and_lock(inr_t inr);
extern irq_t *irq_find_and_lock(inr_t inr, devno_t devno);
 
extern void irq_init(count_t, count_t);
extern void irq_initialize(irq_t *);
extern void irq_register(irq_t *);
extern irq_t *irq_dispatch_and_lock(inr_t);
 
#endif
 
#endif
/branches/dd/kernel/generic/include/ddi/device.h
35,9 → 35,6
#ifndef KERN_DEVICE_H_
#define KERN_DEVICE_H_
 
#include <arch/types.h>
#include <typedefs.h>
 
extern devno_t device_assign_devno(void);
 
#endif
/branches/dd/kernel/generic/include/ddi/ddi.h
38,14 → 38,13
#include <ddi/ddi_arg.h>
#include <arch/types.h>
#include <proc/task.h>
#include <adt/list.h>
 
/** Structure representing contiguous physical memory area. */
typedef struct {
uintptr_t pbase; /**< Physical base of the area. */
pfn_t frames; /**< Number of frames in the area. */
link_t link; /**< Linked list link */
uintptr_t pbase; /**< Physical base of the area. */
uintptr_t vbase; /**< Virtual base of the area. */
count_t frames; /**< Number of frames in the area. */
bool cacheable; /**< Cacheability. */
} parea_t;
 
extern void ddi_init(void);
/branches/dd/kernel/generic/include/memstr.h
42,9 → 42,9
* Architecture independent variants.
*/
extern void *_memcpy(void *dst, const void *src, size_t cnt);
extern void _memsetb(void *dst, size_t cnt, uint8_t x);
extern void _memsetw(void *dst, size_t cnt, uint16_t x);
extern void *memmove(void *dst, const void *src, size_t cnt);
extern void _memsetb(uintptr_t dst, size_t cnt, uint8_t x);
extern void _memsetw(uintptr_t dst, size_t cnt, uint16_t x);
extern char *strcpy(char *dest, const char *src);
 
#endif
 
/branches/dd/kernel/generic/include/console/chardev.h
50,7 → 50,7
/** Resume pushing characters. */
void (* resume)(struct chardev *);
/** Write character to stream. */
void (* write)(struct chardev *, char c, bool silent);
void (* write)(struct chardev *, char c);
/** Read character directly from device, assume interrupts disabled. */
char (* read)(struct chardev *);
} chardev_operations_t;
/branches/dd/kernel/generic/include/console/kconsole.h
37,7 → 37,6
 
#include <adt/list.h>
#include <synch/spinlock.h>
#include <ipc/irq.h>
 
#define MAX_CMDLINE 256
#define KCONSOLE_HISTORY 10
84,16 → 83,11
void (* help)(void);
} cmd_info_t;
 
extern bool kconsole_notify;
extern irq_t kconsole_irq;
 
SPINLOCK_EXTERN(cmd_lock);
extern link_t cmd_head;
 
extern void kconsole_init(void);
extern void kconsole_notify_init(void);
extern void kconsole(char *prompt, char *msg, bool kcon);
extern void kconsole_thread(void *data);
extern void kconsole(void *prompt);
 
extern int cmd_register(cmd_info_t *cmd);
 
/branches/dd/kernel/generic/include/console/console.h
41,21 → 41,11
extern chardev_t *stdin;
extern chardev_t *stdout;
 
extern bool silent;
 
extern void console_init(void);
 
extern void klog_init(void);
extern void klog_update(void);
 
extern uint8_t getc(chardev_t *chardev);
extern uint8_t _getc(chardev_t *chardev);
uint8_t _getc(chardev_t *chardev);
extern count_t gets(chardev_t *chardev, char *buf, size_t buflen);
extern void putchar(char c);
 
extern void grab_console(void);
extern void release_console(void);
 
extern void arch_grab_console(void);
extern void arch_release_console(void);
 
/branches/dd/kernel/generic/include/console/klog.h
0,0 → 1,44
/*
* Copyright (c) 2006 Ondrej Palkovsky
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* - The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
 
/** @addtogroup genericklog
* @{
*/
/** @file
*/
 
#ifndef KERN_KLOG_H_
#define KERN_KLOG_H_
 
void klog_init(void);
void klog_printf(const char *fmt, ...);
 
#endif
 
/** @}
*/
/branches/dd/kernel/generic/include/func.h
41,6 → 41,11
extern atomic_t haltstate;
 
extern void halt(void);
 
extern size_t strlen(const char *str);
extern int strcmp(const char *src, const char *dst);
extern int strncmp(const char *src, const char *dst, size_t len);
extern void strncpy(char *dest, const char *src, size_t len);
extern unative_t atoi(const char *text);
extern void order(const uint64_t val, uint64_t *rv, char *suffix);
 
/branches/dd/kernel/generic/include/fpu_context.h
37,6 → 37,10
 
#include <arch/fpu_context.h>
 
#if defined(CONFIG_FPU_LAZY) && !defined(ARCH_HAS_FPU)
# error "CONFIG_FPU_LAZY defined, but no ARCH_HAS_FPU"
#endif
 
extern void fpu_context_save(fpu_context_t *);
extern void fpu_context_restore(fpu_context_t *);
extern void fpu_init(void);
/branches/dd/kernel/generic/include/debug.h
38,11 → 38,11
#include <panic.h>
#include <arch/debug.h>
 
#define CALLER ((uintptr_t) __builtin_return_address(0))
#define CALLER ((uintptr_t)__builtin_return_address(0))
 
#ifndef HERE
/** Current Instruction Pointer address */
# define HERE ((uintptr_t *) 0)
# define HERE ((uintptr_t *) 0)
#endif
 
/** Debugging ASSERT macro
55,51 → 55,12
*
*/
#ifdef CONFIG_DEBUG
# define ASSERT(expr) \
if (!(expr)) { \
panic("Assertion failed (%s), caller=%p.", #expr, CALLER); \
}
# define ASSERT(expr) if (!(expr)) { panic("assertion failed (%s), caller=%.*p\n", #expr, sizeof(uintptr_t) * 2, CALLER); }
#else
# define ASSERT(expr)
#endif
 
/** Extensive logging output macro
*
* If CONFIG_LOG is set, the LOG() macro
* will print whatever message is indicated plus
* an information about the location.
*
*/
 
#ifdef CONFIG_LOG
# define LOG(format, ...) \
printf("%s() at %s:%u: " format "\n", __func__, __FILE__, \
__LINE__, ##__VA_ARGS__);
#else
# define LOG(format, ...)
#endif
 
/** Extensive logging execute macro
*
* If CONFIG_LOG is set, the LOG_EXEC() macro
* will print an information about calling a given
* function and call it.
*
*/
 
#ifdef CONFIG_LOG
# define LOG_EXEC(fnc) \
{ \
printf("%s() at %s:%u: " #fnc "\n", __func__, __FILE__, \
__LINE__); \
fnc; \
}
#else
# define LOG_EXEC(fnc) fnc
#endif
 
 
#endif
 
/** @}
*/
/branches/dd/kernel/generic/include/main/main.h
35,13 → 35,8
#ifndef KERN_MAIN_H_
#define KERN_MAIN_H_
 
#include <arch/types.h>
 
extern uintptr_t stack_safe;
 
extern void main_bsp(void);
extern void main_ap(void);
 
#endif
 
/** @}
/branches/dd/kernel/generic/include/typedefs.h
35,26 → 35,8
#ifndef KERN_TYPEDEFS_H_
#define KERN_TYPEDEFS_H_
 
#include <arch/types.h>
 
#define NULL 0
#define false 0
#define true 1
 
typedef void (* function)();
 
typedef uint8_t bool;
typedef uint64_t thread_id_t;
typedef uint64_t task_id_t;
typedef uint32_t context_id_t;
 
typedef int32_t inr_t;
typedef int32_t devno_t;
 
typedef volatile uint8_t ioport8_t;
typedef volatile uint16_t ioport16_t;
typedef volatile uint32_t ioport32_t;
 
#endif
 
/** @}
/branches/dd/kernel/generic/include/align.h
26,13 → 26,13
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
 
/** @addtogroup generic
/** @addtogroup generic
* @ingroup others
* @{
*/
/**
* @file
* @brief Macros for making values and addresses aligned.
* @brief Macros for making values and addresses aligned.
*/
 
#ifndef KERN_ALIGN_H_
43,7 → 43,7
* @param s Address or size to be aligned.
* @param a Size of alignment, must be power of 2.
*/
#define ALIGN_DOWN(s, a) ((s) & ~((a) - 1))
#define ALIGN_DOWN(s, a) ((s) & ~((a) - 1))
 
 
/** Align to the nearest higher address.
51,7 → 51,7
* @param s Address or size to be aligned.
* @param a Size of alignment, must be power of 2.
*/
#define ALIGN_UP(s, a) (((s) + ((a) - 1)) & ~((a) - 1))
#define ALIGN_UP(s, a) (((s) + ((a) - 1)) & ~((a) - 1))
 
#endif
 
/branches/dd/kernel/generic/include/stackarg.h
52,9 → 52,9
(ap).last = (uint8_t *) &(lst)
 
#define va_arg(ap, type) \
(*((type *)((ap).last + ((ap).pos += sizeof(type)) - sizeof(type))))
(*((type *)((ap).last + ((ap).pos += sizeof(type) ) - sizeof(type))))
 
#define va_copy(dst, src) dst = src
#define va_copy(dst,src) dst=src
#define va_end(ap)
 
 
/branches/dd/kernel/generic/include/stdarg.h
45,7 → 45,7
#define va_start(ap, last) __builtin_va_start(ap, last)
#define va_arg(ap, type) __builtin_va_arg(ap, type)
#define va_end(ap) __builtin_va_end(ap)
#define va_copy(dst, src) __builtin_va_copy(dst, src)
#define va_copy(dst,src) __builtin_va_copy(dst,src)
 
#endif
 
/branches/dd/kernel/generic/src/udebug/udebug.c
File deleted
/branches/dd/kernel/generic/src/udebug/udebug_ops.c
File deleted
/branches/dd/kernel/generic/src/udebug/udebug_ipc.c
File deleted
/branches/dd/kernel/generic/src/ipc/kbox.c
File deleted
/branches/dd/kernel/generic/src/ipc/sysipc.c
42,9 → 42,8
#include <ipc/sysipc.h>
#include <ipc/irq.h>
#include <ipc/ipcrsc.h>
#include <ipc/kbox.h>
#include <udebug/udebug_ipc.h>
#include <arch/interrupt.h>
#include <print.h>
#include <syscall/copy.h>
#include <security/cap.h>
#include <mm/as.h>
271,12 → 270,12
/* The recipient agreed to receive data. */
int rc;
uintptr_t dst;
size_t size;
size_t max_size;
uintptr_t size;
uintptr_t max_size;
 
dst = (uintptr_t)IPC_GET_ARG1(answer->data);
size = (size_t)IPC_GET_ARG2(answer->data);
max_size = (size_t)IPC_GET_ARG2(*olddata);
dst = IPC_GET_ARG1(answer->data);
size = IPC_GET_ARG2(answer->data);
max_size = IPC_GET_ARG2(*olddata);
 
if (size <= max_size) {
rc = copy_to_uspace((void *) dst,
296,11 → 295,10
/** Called before the request is sent.
*
* @param call Call structure with the request.
* @param phone Phone that the call will be sent through.
*
* @return Return 0 on success, ELIMIT or EPERM on error.
*/
static int request_preprocess(call_t *call, phone_t *phone)
static int request_preprocess(call_t *call)
{
int newphid;
size_t size;
342,10 → 340,6
return rc;
}
break;
#ifdef CONFIG_UDEBUG
case IPC_M_DEBUG_ALL:
return udebug_request_preprocess(call, phone);
#endif
default:
break;
}
375,7 → 369,6
 
if (call->buffer) {
/* This must be an affirmative answer to IPC_M_DATA_READ. */
/* or IPC_M_DEBUG_ALL/UDEBUG_M_MEM_READ... */
uintptr_t dst = IPC_GET_ARG1(call->data);
size_t size = IPC_GET_ARG2(call->data);
int rc = copy_to_uspace((void *) dst, call->buffer, size);
406,13 → 399,7
return -1;
}
IPC_SET_ARG5(call->data, phoneid);
}
switch (IPC_GET_METHOD(call->data)) {
case IPC_M_DEBUG_ALL:
return -1;
default:
break;
}
}
return 0;
}
 
439,7 → 426,7
phone_t *phone;
int res;
int rc;
 
GET_CHECK_PHONE(phone, phoneid, return ENOENT);
 
ipc_call_static_init(&call);
454,18 → 441,9
IPC_SET_ARG4(call.data, 0);
IPC_SET_ARG5(call.data, 0);
 
if (!(res = request_preprocess(&call, phone))) {
#ifdef CONFIG_UDEBUG
udebug_stoppable_begin();
#endif
rc = ipc_call_sync(phone, &call);
#ifdef CONFIG_UDEBUG
udebug_stoppable_end();
#endif
if (rc != EOK)
return rc;
if (!(res = request_preprocess(&call))) {
ipc_call_sync(phone, &call);
process_answer(&call);
 
} else {
IPC_SET_RETVAL(call.data, res);
}
501,16 → 479,8
 
GET_CHECK_PHONE(phone, phoneid, return ENOENT);
 
if (!(res = request_preprocess(&call, phone))) {
#ifdef CONFIG_UDEBUG
udebug_stoppable_begin();
#endif
rc = ipc_call_sync(phone, &call);
#ifdef CONFIG_UDEBUG
udebug_stoppable_end();
#endif
if (rc != EOK)
return rc;
if (!(res = request_preprocess(&call))) {
ipc_call_sync(phone, &call);
process_answer(&call);
} else
IPC_SET_RETVAL(call.data, res);
576,7 → 546,7
*/
IPC_SET_ARG5(call->data, 0);
 
if (!(res = request_preprocess(call, phone)))
if (!(res = request_preprocess(call)))
ipc_call(phone, call);
else
ipc_backsend_err(phone, call, res);
610,7 → 580,7
ipc_call_free(call);
return (unative_t) rc;
}
if (!(res = request_preprocess(call, phone)))
if (!(res = request_preprocess(call)))
ipc_call(phone, call);
else
ipc_backsend_err(phone, call, res);
618,8 → 588,7
return (unative_t) call;
}
 
/** Forward a received call to another destination - common code for both the
* fast and the slow version.
/** Forward a received call to another destination.
*
* @param callid Hash of the call to forward.
* @param phoneid Phone handle to use for forwarding.
626,21 → 595,23
* @param method New method to use for the forwarded call.
* @param arg1 New value of the first argument for the forwarded call.
* @param arg2 New value of the second argument for the forwarded call.
* @param arg3 New value of the third argument for the forwarded call.
* @param arg4 New value of the fourth argument for the forwarded call.
* @param arg5 New value of the fifth argument for the forwarded call.
* @param mode Flags that specify mode of the forward operation.
* @param slow If true, arg3, arg4 and arg5 are considered. Otherwise
* the function considers only the fast version arguments:
* i.e. arg1 and arg2.
*
* @return Return 0 on succes, otherwise return an error code.
*
* Warning: Make sure that ARG5 is not rewritten for certain system IPC
* In case the original method is a system method, ARG1, ARG2 and ARG3 are
* overwritten in the forwarded message with the new method and the new arg1 and
* arg2, respectively. Otherwise the METHOD, ARG1 and ARG2 are rewritten with
* the new method, arg1 and arg2, respectively. Also note there is a set of
* immutable methods, for which the new method and argument is not set and
* these values are ignored.
*
* Warning: When implementing support for changing additional payload
* arguments, make sure that ARG5 is not rewritten for certain
* system IPC
*/
static unative_t sys_ipc_forward_common(unative_t callid, unative_t phoneid,
unative_t method, unative_t arg1, unative_t arg2, unative_t arg3,
unative_t arg4, unative_t arg5, int mode, bool slow)
unative_t sys_ipc_forward_fast(unative_t callid, unative_t phoneid,
unative_t method, unative_t arg1, unative_t arg2, int mode)
{
call_t *call;
phone_t *phone;
648,7 → 619,7
call = get_call(callid);
if (!call)
return ENOENT;
 
call->flags |= IPC_CALL_FORWARDED;
 
GET_CHECK_PHONE(phone, phoneid, {
655,7 → 626,7
IPC_SET_RETVAL(call->data, EFORWARD);
ipc_answer(&TASK->answerbox, call);
return ENOENT;
});
});
 
if (!method_is_forwardable(IPC_GET_METHOD(call->data))) {
IPC_SET_RETVAL(call->data, EFORWARD);
665,8 → 636,8
 
/*
* Userspace is not allowed to change method of system methods on
* forward, allow changing ARG1, ARG2, ARG3 and ARG4 by means of method,
* arg1, arg2 and arg3.
* forward, allow changing ARG1, ARG2 and ARG3 by means of method,
* arg1 and arg2.
* If the method is immutable, don't change anything.
*/
if (!method_is_immutable(IPC_GET_METHOD(call->data))) {
677,22 → 648,10
IPC_SET_ARG1(call->data, method);
IPC_SET_ARG2(call->data, arg1);
IPC_SET_ARG3(call->data, arg2);
if (slow) {
IPC_SET_ARG4(call->data, arg3);
/*
* For system methods we deliberately don't
* overwrite ARG5.
*/
}
} else {
IPC_SET_METHOD(call->data, method);
IPC_SET_ARG1(call->data, arg1);
IPC_SET_ARG2(call->data, arg2);
if (slow) {
IPC_SET_ARG3(call->data, arg3);
IPC_SET_ARG4(call->data, arg4);
IPC_SET_ARG5(call->data, arg5);
}
}
}
 
699,64 → 658,6
return ipc_forward(call, phone, &TASK->answerbox, mode);
}
 
/** Forward a received call to another destination - fast version.
*
* @param callid Hash of the call to forward.
* @param phoneid Phone handle to use for forwarding.
* @param method New method to use for the forwarded call.
* @param arg1 New value of the first argument for the forwarded call.
* @param arg2 New value of the second argument for the forwarded call.
* @param mode Flags that specify mode of the forward operation.
*
* @return Return 0 on succes, otherwise return an error code.
*
* In case the original method is a system method, ARG1, ARG2 and ARG3 are
* overwritten in the forwarded message with the new method and the new
* arg1 and arg2, respectively. Otherwise the METHOD, ARG1 and ARG2 are
* rewritten with the new method, arg1 and arg2, respectively. Also note there
* is a set of immutable methods, for which the new method and arguments are not
* set and these values are ignored.
*/
unative_t sys_ipc_forward_fast(unative_t callid, unative_t phoneid,
unative_t method, unative_t arg1, unative_t arg2, int mode)
{
return sys_ipc_forward_common(callid, phoneid, method, arg1, arg2, 0, 0,
0, mode, false);
}
 
/** Forward a received call to another destination - slow version.
*
* @param callid Hash of the call to forward.
* @param phoneid Phone handle to use for forwarding.
* @param data Userspace address of the new IPC data.
* @param mode Flags that specify mode of the forward operation.
*
* @return Return 0 on succes, otherwise return an error code.
*
* This function is the slow verision of the sys_ipc_forward_fast interface.
* It can copy all five new arguments and the new method from the userspace.
* It naturally extends the functionality of the fast version. For system
* methods, it additionally stores the new value of arg3 to ARG4. For non-system
* methods, it additionally stores the new value of arg3, arg4 and arg5,
* respectively, to ARG3, ARG4 and ARG5, respectively.
*/
unative_t sys_ipc_forward_slow(unative_t callid, unative_t phoneid,
ipc_data_t *data, int mode)
{
ipc_data_t newdata;
int rc;
 
rc = copy_from_uspace(&newdata.args, &data->args,
sizeof(newdata.args));
if (rc != 0)
return (unative_t) rc;
 
return sys_ipc_forward_common(callid, phoneid,
IPC_GET_METHOD(newdata), IPC_GET_ARG1(newdata),
IPC_GET_ARG2(newdata), IPC_GET_ARG3(newdata),
IPC_GET_ARG4(newdata), IPC_GET_ARG5(newdata), mode, true);
}
 
/** Answer an IPC call - fast version.
*
* This function can handle only two return arguments of payload, but is faster
880,17 → 781,9
{
call_t *call;
 
restart:
 
#ifdef CONFIG_UDEBUG
udebug_stoppable_begin();
#endif
restart:
call = ipc_wait_for_call(&TASK->answerbox, usec,
flags | SYNCH_FLAGS_INTERRUPTIBLE);
 
#ifdef CONFIG_UDEBUG
udebug_stoppable_end();
#endif
if (!call)
return 0;
 
912,16 → 805,11
 
ASSERT(! (call->flags & IPC_CALL_STATIC_ALLOC));
 
atomic_dec(&TASK->active_calls);
 
if (call->flags & IPC_CALL_DISCARD_ANSWER) {
ipc_call_free(call);
goto restart;
} else {
/*
* Decrement the counter of active calls only if the
* call is not an answer to IPC_M_PHONE_HUNGUP,
* which doesn't contribute to the counter.
*/
atomic_dec(&TASK->active_calls);
}
 
STRUCT_TO_USPACE(&calldata->args, &call->data.args);
936,21 → 824,6
/* Include phone address('id') of the caller in the request,
* copy whole call->data, not only call->data.args */
if (STRUCT_TO_USPACE(calldata, &call->data)) {
/*
* The callee will not receive this call and no one else has
* a chance to answer it. Reply with the EPARTY error code.
*/
ipc_data_t saved_data;
int saveddata = 0;
 
if (answer_need_old(call)) {
memcpy(&saved_data, &call->data, sizeof(call->data));
saveddata = 1;
}
IPC_SET_RETVAL(call->data, EPARTY);
(void) answer_preprocess(call, saveddata ? &saved_data : NULL);
ipc_answer(&TASK->answerbox, call);
return 0;
}
return (unative_t)call;
991,30 → 864,5
return 0;
}
 
#include <console/console.h>
 
/**
* Syscall connect to a task by id.
*
* @return Phone id on success, or negative error code.
*/
unative_t sys_ipc_connect_kbox(sysarg64_t *uspace_taskid_arg)
{
#ifdef CONFIG_UDEBUG
sysarg64_t taskid_arg;
int rc;
rc = copy_from_uspace(&taskid_arg, uspace_taskid_arg, sizeof(sysarg64_t));
if (rc != 0)
return (unative_t) rc;
 
LOG("sys_ipc_connect_kbox(%" PRIu64 ")\n", taskid_arg.value);
 
return ipc_connect_kbox(taskid_arg.value);
#else
return (unative_t) ENOTSUP;
#endif
}
 
/** @}
*/
/branches/dd/kernel/generic/src/ipc/ipc.c
43,7 → 43,6
#include <synch/waitq.h>
#include <synch/synch.h>
#include <ipc/ipc.h>
#include <ipc/kbox.h>
#include <errno.h>
#include <mm/slab.h>
#include <arch.h>
52,7 → 51,6
#include <debug.h>
 
#include <print.h>
#include <console/console.h>
#include <proc/thread.h>
#include <arch/interrupt.h>
#include <ipc/irq.h>
68,7 → 66,7
*/
static void _ipc_call_init(call_t *call)
{
memsetb(call, sizeof(*call), 0);
memsetb((uintptr_t) call, sizeof(*call), 0);
call->callerbox = &TASK->answerbox;
call->sender = TASK;
call->buffer = NULL;
89,8 → 87,7
call_t *call;
 
call = slab_alloc(ipc_call_slab, flags);
if (call)
_ipc_call_init(call);
_ipc_call_init(call);
 
return call;
}
163,7 → 160,7
*/
void ipc_phone_init(phone_t *phone)
{
mutex_initialize(&phone->lock, MUTEX_PASSIVE);
mutex_initialize(&phone->lock);
phone->callee = NULL;
phone->state = IPC_PHONE_FREE;
atomic_set(&phone->active_calls, 0);
173,10 → 170,8
*
* @param phone Destination kernel phone structure.
* @param request Call structure with request.
*
* @return EOK on success or EINTR if the sleep was interrupted.
*/
int ipc_call_sync(phone_t *phone, call_t *request)
void ipc_call_sync(phone_t *phone, call_t *request)
{
answerbox_t sync_box;
 
186,10 → 181,7
request->callerbox = &sync_box;
 
ipc_call(phone, request);
if (!ipc_wait_for_call(&sync_box, SYNCH_NO_TIMEOUT,
SYNCH_FLAGS_INTERRUPTIBLE))
return EINTR;
return EOK;
ipc_wait_for_call(&sync_box, SYNCH_NO_TIMEOUT, SYNCH_FLAGS_NONE);
}
 
/** Answer a message which was not dispatched and is not listed in any queue.
202,13 → 194,6
 
call->flags |= IPC_CALL_ANSWERED;
 
if (call->flags & IPC_CALL_FORWARDED) {
if (call->caller_phone) {
/* Demasquerade the caller phone. */
call->data.phone = call->caller_phone;
}
}
 
spinlock_lock(&callerbox->lock);
list_append(&call->link, &callerbox->answers);
spinlock_unlock(&callerbox->lock);
361,11 → 346,8
list_remove(&call->link);
spinlock_unlock(&oldbox->lock);
 
if (mode & IPC_FF_ROUTE_FROM_ME) {
if (!call->caller_phone)
call->caller_phone = call->data.phone;
if (mode & IPC_FF_ROUTE_FROM_ME)
call->data.phone = newphone;
}
 
return ipc_call(newphone, call);
}
429,7 → 411,7
*
* @param lst Head of the list to be cleaned up.
*/
void ipc_cleanup_call_list(link_t *lst)
static void ipc_cleanup_call_list(link_t *lst)
{
call_t *call;
 
444,31 → 426,33
}
}
 
/** Disconnects all phones connected to an answerbox.
/** Cleans up all IPC communication of the current task.
*
* @param box Answerbox to disconnect phones from.
* @param notify_box If true, the answerbox will get a hangup message for
* each disconnected phone.
* Note: ipc_hangup sets returning answerbox to TASK->answerbox, you
* have to change it as well if you want to cleanup other tasks than TASK.
*/
void ipc_answerbox_slam_phones(answerbox_t *box, bool notify_box)
void ipc_cleanup(void)
{
int i;
call_t *call;
phone_t *phone;
DEADLOCK_PROBE_INIT(p_phonelck);
ipl_t ipl;
call_t *call;
 
call = notify_box ? ipc_call_alloc(0) : NULL;
/* Disconnect all our phones ('ipc_phone_hangup') */
for (i = 0; i < IPC_MAX_PHONES; i++)
ipc_phone_hangup(&TASK->phones[i]);
 
/* Disconnect all connected irqs */
ipc_irq_cleanup(&TASK->answerbox);
 
/* Disconnect all phones connected to our answerbox */
restart_phones:
ipl = interrupts_disable();
spinlock_lock(&box->lock);
while (!list_empty(&box->connected_phones)) {
phone = list_get_instance(box->connected_phones.next,
spinlock_lock(&TASK->answerbox.lock);
while (!list_empty(&TASK->answerbox.connected_phones)) {
phone = list_get_instance(TASK->answerbox.connected_phones.next,
phone_t, link);
if (SYNCH_FAILED(mutex_trylock(&phone->lock))) {
spinlock_unlock(&box->lock);
interrupts_restore(ipl);
spinlock_unlock(&TASK->answerbox.lock);
DEADLOCK_PROBE(p_phonelck, DEADLOCK_THRESHOLD);
goto restart_phones;
}
475,70 → 459,13
/* Disconnect phone */
ASSERT(phone->state == IPC_PHONE_CONNECTED);
 
phone->state = IPC_PHONE_SLAMMED;
list_remove(&phone->link);
phone->state = IPC_PHONE_SLAMMED;
 
if (notify_box) {
mutex_unlock(&phone->lock);
spinlock_unlock(&box->lock);
interrupts_restore(ipl);
 
/*
* Send one message to the answerbox for each
* phone. Used to make sure the kbox thread
* wakes up after the last phone has been
* disconnected.
*/
IPC_SET_METHOD(call->data, IPC_M_PHONE_HUNGUP);
call->flags |= IPC_CALL_DISCARD_ANSWER;
_ipc_call(phone, box, call);
 
/* Allocate another call in advance */
call = ipc_call_alloc(0);
 
/* Must start again */
goto restart_phones;
}
 
mutex_unlock(&phone->lock);
}
 
spinlock_unlock(&box->lock);
interrupts_restore(ipl);
 
/* Free unused call */
if (call)
ipc_call_free(call);
}
 
/** Cleans up all IPC communication of the current task.
*
* Note: ipc_hangup sets returning answerbox to TASK->answerbox, you
* have to change it as well if you want to cleanup other tasks than TASK.
*/
void ipc_cleanup(void)
{
int i;
call_t *call;
 
/* Disconnect all our phones ('ipc_phone_hangup') */
for (i = 0; i < IPC_MAX_PHONES; i++)
ipc_phone_hangup(&TASK->phones[i]);
 
/* Disconnect all connected irqs */
ipc_irq_cleanup(&TASK->answerbox);
 
/* Disconnect all phones connected to our regular answerbox */
ipc_answerbox_slam_phones(&TASK->answerbox, false);
 
#ifdef CONFIG_UDEBUG
/* Clean up kbox thread and communications */
ipc_kbox_cleanup();
#endif
 
/* Answer all messages in 'calls' and 'dispatched_calls' queues */
spinlock_lock(&TASK->answerbox.lock);
ipc_cleanup_call_list(&TASK->answerbox.dispatched_calls);
ipc_cleanup_call_list(&TASK->answerbox.calls);
spinlock_unlock(&TASK->answerbox.lock);
574,13 → 501,7
(call->flags & IPC_CALL_NOTIF));
ASSERT(!(call->flags & IPC_CALL_STATIC_ALLOC));
/*
* Record the receipt of this call in the current task's counter
* of active calls. IPC_M_PHONE_HUNGUP calls do not contribute
* to this counter so do not record answers to them either.
*/
if (!(call->flags & IPC_CALL_DISCARD_ANSWER))
atomic_dec(&TASK->active_calls);
atomic_dec(&TASK->active_calls);
ipc_call_free(call);
}
}
641,7 → 562,7
default:
break;
}
printf("active: %ld\n",
printf("active: %d\n",
atomic_get(&task->phones[i].active_calls));
}
mutex_unlock(&task->phones[i].lock);
654,10 → 575,8
for (tmp = task->answerbox.calls.next; tmp != &task->answerbox.calls;
tmp = tmp->next) {
call = list_get_instance(tmp, call_t, link);
printf("Callid: %p Srctask:%" PRIu64 " M:%" PRIun
" A1:%" PRIun " A2:%" PRIun " A3:%" PRIun
" A4:%" PRIun " A5:%" PRIun " Flags:%x\n", call,
call->sender->taskid,
printf("Callid: %p Srctask:%llu M:%d A1:%d A2:%d A3:%d "
"A4:%d A5:%d Flags:%x\n", call, call->sender->taskid,
IPC_GET_METHOD(call->data), IPC_GET_ARG1(call->data),
IPC_GET_ARG2(call->data), IPC_GET_ARG3(call->data),
IPC_GET_ARG4(call->data), IPC_GET_ARG5(call->data),
665,14 → 584,12
}
/* Print answerbox - calls */
printf("ABOX - DISPATCHED CALLS:\n");
for (tmp = task->answerbox.dispatched_calls.next;
tmp != &task->answerbox.dispatched_calls;
tmp = tmp->next) {
for (tmp = task->answerbox.dispatched_calls.next;
tmp != &task->answerbox.dispatched_calls;
tmp = tmp->next) {
call = list_get_instance(tmp, call_t, link);
printf("Callid: %p Srctask:%" PRIu64 " M:%" PRIun
" A1:%" PRIun " A2:%" PRIun " A3:%" PRIun
" A4:%" PRIun " A5:%" PRIun " Flags:%x\n", call,
call->sender->taskid,
printf("Callid: %p Srctask:%llu M:%d A1:%d A2:%d A3:%d "
"A4:%d A5:%d Flags:%x\n", call, call->sender->taskid,
IPC_GET_METHOD(call->data), IPC_GET_ARG1(call->data),
IPC_GET_ARG2(call->data), IPC_GET_ARG3(call->data),
IPC_GET_ARG4(call->data), IPC_GET_ARG5(call->data),
680,12 → 597,10
}
/* Print answerbox - calls */
printf("ABOX - ANSWERS:\n");
for (tmp = task->answerbox.answers.next;
tmp != &task->answerbox.answers;
for (tmp = task->answerbox.answers.next; tmp != &task->answerbox.answers;
tmp = tmp->next) {
call = list_get_instance(tmp, call_t, link);
printf("Callid:%p M:%" PRIun " A1:%" PRIun " A2:%" PRIun
" A3:%" PRIun " A4:%" PRIun " A5:%" PRIun " Flags:%x\n",
printf("Callid:%p M:%d A1:%d A2:%d A3:%d A4:%d A5:%d Flags:%x\n",
call, IPC_GET_METHOD(call->data), IPC_GET_ARG1(call->data),
IPC_GET_ARG2(call->data), IPC_GET_ARG3(call->data),
IPC_GET_ARG4(call->data), IPC_GET_ARG5(call->data),
/branches/dd/kernel/generic/src/ipc/irq.c
44,28 → 44,8
* - ARG1: payload modified by a 'top-half' handler
* - ARG2: payload modified by a 'top-half' handler
* - ARG3: payload modified by a 'top-half' handler
* - ARG4: payload modified by a 'top-half' handler
* - ARG5: payload modified by a 'top-half' handler
* - in_phone_hash: interrupt counter (may be needed to assure correct order
* in multithreaded drivers)
*
* Note on synchronization for ipc_irq_register(), ipc_irq_unregister(),
* ipc_irq_cleanup() and IRQ handlers:
*
* By always taking all of the uspace IRQ hash table lock, IRQ structure lock
* and answerbox lock, we can rule out race conditions between the
* registration functions and also the cleanup function. Thus the observer can
* either see the IRQ structure present in both the hash table and the
* answerbox list or absent in both. Views in which the IRQ structure would be
* linked in the hash table but not in the answerbox list, or vice versa, are
* not possible.
*
* By always taking the hash table lock and the IRQ structure lock, we can
* rule out a scenario in which we would free up an IRQ structure, which is
* still referenced by, for example, an IRQ handler. The locking scheme forces
* us to lock the IRQ structure only after any progressing IRQs on that
* structure are finished. Because we hold the hash table lock, we prevent new
* IRQs from taking new references to the IRQ structure.
*/
 
#include <arch.h>
78,8 → 58,78
#include <console/console.h>
#include <print.h>
 
/** Free the top-half pseudocode.
/** Execute code associated with IRQ notification.
*
* @param call Notification call.
* @param code Top-half pseudocode.
*/
static void code_execute(call_t *call, irq_code_t *code)
{
unsigned int i;
unative_t dstval = 0;
if (!code)
return;
for (i = 0; i < code->cmdcount; i++) {
switch (code->cmds[i].cmd) {
case CMD_MEM_READ_1:
dstval = *((uint8_t *) code->cmds[i].addr);
break;
case CMD_MEM_READ_2:
dstval = *((uint16_t *) code->cmds[i].addr);
break;
case CMD_MEM_READ_4:
dstval = *((uint32_t *) code->cmds[i].addr);
break;
case CMD_MEM_READ_8:
dstval = *((uint64_t *) code->cmds[i].addr);
break;
case CMD_MEM_WRITE_1:
*((uint8_t *) code->cmds[i].addr) = code->cmds[i].value;
break;
case CMD_MEM_WRITE_2:
*((uint16_t *) code->cmds[i].addr) =
code->cmds[i].value;
break;
case CMD_MEM_WRITE_4:
*((uint32_t *) code->cmds[i].addr) =
code->cmds[i].value;
break;
case CMD_MEM_WRITE_8:
*((uint64_t *) code->cmds[i].addr) =
code->cmds[i].value;
break;
#if defined(ia32) || defined(amd64)
case CMD_PORT_READ_1:
dstval = inb((long) code->cmds[i].addr);
break;
case CMD_PORT_WRITE_1:
outb((long) code->cmds[i].addr, code->cmds[i].value);
break;
#endif
#if defined(ia64) && defined(SKI)
case CMD_IA64_GETCHAR:
dstval = _getc(&ski_uconsole);
break;
#endif
#if defined(ppc32)
case CMD_PPC32_GETCHAR:
dstval = cuda_get_scancode();
break;
#endif
default:
break;
}
if (code->cmds[i].dstarg && code->cmds[i].dstarg <
IPC_CALL_LEN) {
call->data.args[code->cmds[i].dstarg] = dstval;
}
}
}
 
/** Free top-half pseudocode.
*
* @param code Pointer to the top-half pseudocode.
*/
static void code_free(irq_code_t *code)
90,7 → 140,7
}
}
 
/** Copy the top-half pseudocode from userspace into the kernel.
/** Copy top-half pseudocode from userspace into the kernel.
*
* @param ucode Userspace address of the top-half pseudocode.
*
126,6 → 176,38
return code;
}
 
/** Unregister task from IRQ notification.
*
* @param box Answerbox associated with the notification.
* @param inr IRQ number.
* @param devno Device number.
*/
void ipc_irq_unregister(answerbox_t *box, inr_t inr, devno_t devno)
{
ipl_t ipl;
irq_t *irq;
 
ipl = interrupts_disable();
irq = irq_find_and_lock(inr, devno);
if (irq) {
if (irq->notif_cfg.answerbox == box) {
code_free(irq->notif_cfg.code);
irq->notif_cfg.notify = false;
irq->notif_cfg.answerbox = NULL;
irq->notif_cfg.code = NULL;
irq->notif_cfg.method = 0;
irq->notif_cfg.counter = 0;
 
spinlock_lock(&box->irq_lock);
list_remove(&irq->notif_cfg.link);
spinlock_unlock(&box->irq_lock);
spinlock_unlock(&irq->lock);
}
}
interrupts_restore(ipl);
}
 
/** Register an answerbox as a receiving end for IRQ notifications.
*
* @param box Receiving answerbox.
142,10 → 224,6
ipl_t ipl;
irq_code_t *code;
irq_t *irq;
unative_t key[] = {
(unative_t) inr,
(unative_t) devno
};
 
if (ucode) {
code = code_from_uspace(ucode);
155,15 → 233,21
code = NULL;
}
 
/*
* Allocate and populate the IRQ structure.
*/
irq = malloc(sizeof(irq_t), 0);
irq_initialize(irq);
irq->devno = devno;
irq->inr = inr;
irq->claim = ipc_irq_top_half_claim;
irq->handler = ipc_irq_top_half_handler;
ipl = interrupts_disable();
irq = irq_find_and_lock(inr, devno);
if (!irq) {
interrupts_restore(ipl);
code_free(code);
return ENOENT;
}
if (irq->notif_cfg.answerbox) {
spinlock_unlock(&irq->lock);
interrupts_restore(ipl);
code_free(code);
return EEXISTS;
}
irq->notif_cfg.notify = true;
irq->notif_cfg.answerbox = box;
irq->notif_cfg.method = method;
170,140 → 254,14
irq->notif_cfg.code = code;
irq->notif_cfg.counter = 0;
 
/*
* Enlist the IRQ structure in the uspace IRQ hash table and the
* answerbox's list.
*/
ipl = interrupts_disable();
spinlock_lock(&irq_uspace_hash_table_lock);
spinlock_lock(&irq->lock);
spinlock_lock(&box->irq_lock);
if (hash_table_find(&irq_uspace_hash_table, key)) {
code_free(code);
spinlock_unlock(&box->irq_lock);
spinlock_unlock(&irq->lock);
spinlock_unlock(&irq_uspace_hash_table_lock);
free(irq);
interrupts_restore(ipl);
return EEXISTS;
}
hash_table_insert(&irq_uspace_hash_table, key, &irq->link);
list_append(&irq->notif_cfg.link, &box->irq_head);
spinlock_unlock(&box->irq_lock);
spinlock_unlock(&irq->lock);
spinlock_unlock(&irq_uspace_hash_table_lock);
 
interrupts_restore(ipl);
return EOK;
}
 
/** Unregister task from IRQ notification.
*
* @param box Answerbox associated with the notification.
* @param inr IRQ number.
* @param devno Device number.
*/
int ipc_irq_unregister(answerbox_t *box, inr_t inr, devno_t devno)
{
ipl_t ipl;
unative_t key[] = {
(unative_t) inr,
(unative_t) devno
};
link_t *lnk;
irq_t *irq;
 
ipl = interrupts_disable();
spinlock_lock(&irq_uspace_hash_table_lock);
lnk = hash_table_find(&irq_uspace_hash_table, key);
if (!lnk) {
spinlock_unlock(&irq_uspace_hash_table_lock);
interrupts_restore(ipl);
return ENOENT;
}
irq = hash_table_get_instance(lnk, irq_t, link);
spinlock_lock(&irq->lock);
spinlock_lock(&box->irq_lock);
ASSERT(irq->notif_cfg.answerbox == box);
/* Free up the pseudo code and associated structures. */
code_free(irq->notif_cfg.code);
 
/* Remove the IRQ from the answerbox's list. */
list_remove(&irq->notif_cfg.link);
 
/* Remove the IRQ from the uspace IRQ hash table. */
hash_table_remove(&irq_uspace_hash_table, key, 2);
spinlock_unlock(&irq_uspace_hash_table_lock);
spinlock_unlock(&irq->lock);
spinlock_unlock(&box->irq_lock);
/* Free up the IRQ structure. */
free(irq);
interrupts_restore(ipl);
return EOK;
}
 
 
/** Disconnect all IRQ notifications from an answerbox.
*
* This function is effective because the answerbox contains
* list of all irq_t structures that are registered to
* send notifications to it.
*
* @param box Answerbox for which we want to carry out the cleanup.
*/
void ipc_irq_cleanup(answerbox_t *box)
{
ipl_t ipl;
loop:
ipl = interrupts_disable();
spinlock_lock(&irq_uspace_hash_table_lock);
spinlock_lock(&box->irq_lock);
while (box->irq_head.next != &box->irq_head) {
link_t *cur = box->irq_head.next;
irq_t *irq;
DEADLOCK_PROBE_INIT(p_irqlock);
unative_t key[2];
irq = list_get_instance(cur, irq_t, notif_cfg.link);
if (!spinlock_trylock(&irq->lock)) {
/*
* Avoid deadlock by trying again.
*/
spinlock_unlock(&box->irq_lock);
spinlock_unlock(&irq_uspace_hash_table_lock);
interrupts_restore(ipl);
DEADLOCK_PROBE(p_irqlock, DEADLOCK_THRESHOLD);
goto loop;
}
key[0] = irq->inr;
key[1] = irq->devno;
ASSERT(irq->notif_cfg.answerbox == box);
/* Unlist from the answerbox. */
list_remove(&irq->notif_cfg.link);
/* Remove from the hash table. */
hash_table_remove(&irq_uspace_hash_table, key, 2);
/* Free up the pseudo code and associated structures. */
code_free(irq->notif_cfg.code);
spinlock_unlock(&irq->lock);
free(irq);
}
spinlock_unlock(&box->irq_lock);
spinlock_unlock(&irq_uspace_hash_table_lock);
interrupts_restore(ipl);
return 0;
}
 
/** Add a call to the proper answerbox queue.
322,158 → 280,125
waitq_wakeup(&irq->notif_cfg.answerbox->wq, WAKEUP_FIRST);
}
 
/** Apply the top-half pseudo code to find out whether to accept the IRQ or not.
/** Send notification message.
*
* @param irq IRQ structure.
*
* @return IRQ_ACCEPT if the interrupt is accepted by the
* pseudocode. IRQ_DECLINE otherwise.
* @param a1 Driver-specific payload argument.
* @param a2 Driver-specific payload argument.
* @param a3 Driver-specific payload argument.
* @param a4 Driver-specific payload argument.
* @param a5 Driver-specific payload argument.
*/
irq_ownership_t ipc_irq_top_half_claim(irq_t *irq)
void ipc_irq_send_msg(irq_t *irq, unative_t a1, unative_t a2, unative_t a3,
unative_t a4, unative_t a5)
{
unsigned int i;
unative_t dstval;
irq_code_t *code = irq->notif_cfg.code;
unative_t *scratch = irq->notif_cfg.scratch;
call_t *call;
 
if (!irq->notif_cfg.notify)
return IRQ_DECLINE;
if (!code)
return IRQ_DECLINE;
for (i = 0; i < code->cmdcount; i++) {
unsigned int srcarg = code->cmds[i].srcarg;
unsigned int dstarg = code->cmds[i].dstarg;
spinlock_lock(&irq->lock);
 
if (irq->notif_cfg.answerbox) {
call = ipc_call_alloc(FRAME_ATOMIC);
if (!call) {
spinlock_unlock(&irq->lock);
return;
}
call->flags |= IPC_CALL_NOTIF;
IPC_SET_METHOD(call->data, irq->notif_cfg.method);
IPC_SET_ARG1(call->data, a1);
IPC_SET_ARG2(call->data, a2);
IPC_SET_ARG3(call->data, a3);
IPC_SET_ARG4(call->data, a4);
IPC_SET_ARG5(call->data, a5);
/* Put a counter to the message */
call->priv = ++irq->notif_cfg.counter;
if (srcarg >= IPC_CALL_LEN)
break;
if (dstarg >= IPC_CALL_LEN)
break;
switch (code->cmds[i].cmd) {
case CMD_PIO_READ_8:
dstval = pio_read_8((ioport8_t *) code->cmds[i].addr);
if (dstarg)
scratch[dstarg] = dstval;
break;
case CMD_PIO_READ_16:
dstval = pio_read_16((ioport16_t *) code->cmds[i].addr);
if (dstarg)
scratch[dstarg] = dstval;
break;
case CMD_PIO_READ_32:
dstval = pio_read_32((ioport32_t *) code->cmds[i].addr);
if (dstarg)
scratch[dstarg] = dstval;
break;
case CMD_PIO_WRITE_8:
pio_write_8((ioport8_t *) code->cmds[i].addr,
(uint8_t) code->cmds[i].value);
break;
case CMD_PIO_WRITE_16:
pio_write_16((ioport16_t *) code->cmds[i].addr,
(uint16_t) code->cmds[i].value);
break;
case CMD_PIO_WRITE_32:
pio_write_32((ioport32_t *) code->cmds[i].addr,
(uint32_t) code->cmds[i].value);
break;
case CMD_BTEST:
if (srcarg && dstarg) {
dstval = scratch[srcarg] & code->cmds[i].value;
scratch[dstarg] = dstval;
}
break;
case CMD_PREDICATE:
if (srcarg && !scratch[srcarg]) {
i += code->cmds[i].value;
continue;
}
break;
case CMD_ACCEPT:
return IRQ_ACCEPT;
break;
case CMD_DECLINE:
default:
return IRQ_DECLINE;
}
send_call(irq, call);
}
return IRQ_DECLINE;
spinlock_unlock(&irq->lock);
}
 
 
/* IRQ top-half handler.
/** Notify a task that an IRQ had occurred.
*
* We expect interrupts to be disabled and the irq->lock already held.
*
* @param irq IRQ structure.
*/
void ipc_irq_top_half_handler(irq_t *irq)
void ipc_irq_send_notif(irq_t *irq)
{
call_t *call;
 
ASSERT(irq);
 
if (irq->notif_cfg.answerbox) {
call_t *call;
 
call = ipc_call_alloc(FRAME_ATOMIC);
if (!call)
if (!call) {
return;
}
call->flags |= IPC_CALL_NOTIF;
/* Put a counter to the message */
call->priv = ++irq->notif_cfg.counter;
 
/* Set up args */
IPC_SET_METHOD(call->data, irq->notif_cfg.method);
IPC_SET_ARG1(call->data, irq->notif_cfg.scratch[1]);
IPC_SET_ARG2(call->data, irq->notif_cfg.scratch[2]);
IPC_SET_ARG3(call->data, irq->notif_cfg.scratch[3]);
IPC_SET_ARG4(call->data, irq->notif_cfg.scratch[4]);
IPC_SET_ARG5(call->data, irq->notif_cfg.scratch[5]);
 
/* Execute code to handle irq */
code_execute(call, irq->notif_cfg.code);
send_call(irq, call);
}
}
 
/** Send notification message.
/** Disconnect all IRQ notifications from an answerbox.
*
* @param irq IRQ structure.
* @param a1 Driver-specific payload argument.
* @param a2 Driver-specific payload argument.
* @param a3 Driver-specific payload argument.
* @param a4 Driver-specific payload argument.
* @param a5 Driver-specific payload argument.
* This function is effective because the answerbox contains
* list of all irq_t structures that are registered to
* send notifications to it.
*
* @param box Answerbox for which we want to carry out the cleanup.
*/
void ipc_irq_send_msg(irq_t *irq, unative_t a1, unative_t a2, unative_t a3,
unative_t a4, unative_t a5)
void ipc_irq_cleanup(answerbox_t *box)
{
call_t *call;
 
spinlock_lock(&irq->lock);
 
if (irq->notif_cfg.answerbox) {
call = ipc_call_alloc(FRAME_ATOMIC);
if (!call) {
spinlock_unlock(&irq->lock);
return;
ipl_t ipl;
loop:
ipl = interrupts_disable();
spinlock_lock(&box->irq_lock);
while (box->irq_head.next != &box->irq_head) {
link_t *cur = box->irq_head.next;
irq_t *irq;
DEADLOCK_PROBE_INIT(p_irqlock);
irq = list_get_instance(cur, irq_t, notif_cfg.link);
if (!spinlock_trylock(&irq->lock)) {
/*
* Avoid deadlock by trying again.
*/
spinlock_unlock(&box->irq_lock);
interrupts_restore(ipl);
DEADLOCK_PROBE(p_irqlock, DEADLOCK_THRESHOLD);
goto loop;
}
call->flags |= IPC_CALL_NOTIF;
/* Put a counter to the message */
call->priv = ++irq->notif_cfg.counter;
ASSERT(irq->notif_cfg.answerbox == box);
list_remove(&irq->notif_cfg.link);
/*
* Don't forget to free any top-half pseudocode.
*/
code_free(irq->notif_cfg.code);
irq->notif_cfg.notify = false;
irq->notif_cfg.answerbox = NULL;
irq->notif_cfg.code = NULL;
irq->notif_cfg.method = 0;
irq->notif_cfg.counter = 0;
 
IPC_SET_METHOD(call->data, irq->notif_cfg.method);
IPC_SET_ARG1(call->data, a1);
IPC_SET_ARG2(call->data, a2);
IPC_SET_ARG3(call->data, a3);
IPC_SET_ARG4(call->data, a4);
IPC_SET_ARG5(call->data, a5);
send_call(irq, call);
spinlock_unlock(&irq->lock);
}
spinlock_unlock(&irq->lock);
spinlock_unlock(&box->irq_lock);
interrupts_restore(ipl);
}
 
/** @}
/branches/dd/kernel/generic/src/ipc/ipcrsc.c
170,6 → 170,7
int i;
 
spinlock_lock(&TASK->lock);
for (i = 0; i < IPC_MAX_PHONES; i++) {
if (TASK->phones[i].state == IPC_PHONE_HUNGUP &&
atomic_get(&TASK->phones[i].active_calls) == 0)
182,9 → 183,8
}
spinlock_unlock(&TASK->lock);
 
if (i == IPC_MAX_PHONES)
if (i >= IPC_MAX_PHONES)
return -1;
 
return i;
}
 
/branches/dd/kernel/generic/src/lib/string.c
File deleted
/branches/dd/kernel/generic/src/lib/elf.c
57,7 → 57,7
};
 
static int segment_header(elf_segment_header_t *entry, elf_header_t *elf,
as_t *as, int flags);
as_t *as);
static int section_header(elf_section_header_t *entry, elf_header_t *elf,
as_t *as);
static int load_segment(elf_segment_header_t *entry, elf_header_t *elf,
67,10 → 67,9
*
* @param header Pointer to ELF header in memory
* @param as Created and properly mapped address space
* @param flags A combination of ELD_F_*
* @return EE_OK on success
*/
unsigned int elf_load(elf_header_t *header, as_t * as, int flags)
unsigned int elf_load(elf_header_t *header, as_t * as)
{
int i, rc;
 
111,7 → 110,7
 
seghdr = &((elf_segment_header_t *)(((uint8_t *) header) +
header->e_phoff))[i];
rc = segment_header(seghdr, header, as, flags);
rc = segment_header(seghdr, header, as);
if (rc != EE_OK)
return rc;
}
152,10 → 151,8
* @return EE_OK on success, error code otherwise.
*/
static int segment_header(elf_segment_header_t *entry, elf_header_t *elf,
as_t *as, int flags)
as_t *as)
{
char *interp;
 
switch (entry->p_type) {
case PT_NULL:
case PT_PHDR:
165,16 → 162,6
break;
case PT_DYNAMIC:
case PT_INTERP:
interp = (char *)elf + entry->p_offset;
/* FIXME */
/*if (memcmp((uintptr_t)interp, (uintptr_t)ELF_INTERP_ZSTR,
ELF_INTERP_ZLEN) != 0) {
return EE_UNSUPPORTED;
}*/
if ((flags & ELD_F_LOADER) == 0) {
return EE_LOADER;
}
break;
case PT_SHLIB:
case PT_NOTE:
case PT_LOPROC:
/branches/dd/kernel/generic/src/lib/rd.c
42,6 → 42,7
#include <mm/frame.h>
#include <sysinfo/sysinfo.h>
#include <ddi/ddi.h>
#include <print.h>
#include <align.h>
 
static parea_t rd_parea; /**< Physical memory area for rd. */
48,14 → 49,14
 
/**
* RAM disk initialization routine. At this point, the RAM disk memory is shared
* and information about the share is provided as sysinfo values to the
* userspace tasks.
* and information about the share is provided as sysinfo values to the userspace
* tasks.
*/
int init_rd(rd_header_t *header, size_t size)
int init_rd(rd_header * header, size_t size)
{
/* Identify RAM disk */
if ((header->magic[0] != RD_MAG0) || (header->magic[1] != RD_MAG1) ||
(header->magic[2] != RD_MAG2) || (header->magic[3] != RD_MAG3))
(header->magic[2] != RD_MAG2) || (header->magic[3] != RD_MAG3))
return RE_INVALID;
/* Identify version */
79,7 → 80,10
if ((hsize % FRAME_SIZE) || (dsize % FRAME_SIZE))
return RE_UNSUPPORTED;
if (dsize % FRAME_SIZE)
return RE_UNSUPPORTED;
 
if (hsize > size)
return RE_INVALID;
86,16 → 90,17
if ((uint64_t) hsize + dsize > size)
dsize = size - hsize;
rd_parea.pbase = ALIGN_DOWN((uintptr_t) KA2PA((void *) header + hsize),
FRAME_SIZE);
rd_parea.pbase = ALIGN_DOWN((uintptr_t) KA2PA((void *) header + hsize), FRAME_SIZE);
rd_parea.vbase = (uintptr_t) ((void *) header + hsize);
rd_parea.frames = SIZE2FRAMES(dsize);
rd_parea.cacheable = true;
ddi_parea_register(&rd_parea);
 
sysinfo_set_item_val("rd", NULL, true);
sysinfo_set_item_val("rd.header_size", NULL, hsize);
sysinfo_set_item_val("rd.size", NULL, dsize);
sysinfo_set_item_val("rd.address.physical", NULL,
(unative_t) KA2PA((void *) header + hsize));
sysinfo_set_item_val("rd.address.physical", NULL, (unative_t)
KA2PA((void *) header + hsize));
 
return RE_OK;
}
/branches/dd/kernel/generic/src/lib/memstr.c
1,6 → 1,5
/*
* Copyright (c) 2001-2004 Jakub Jermar
* Copyright (c) 2008 Jiri Svoboda
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
35,10 → 34,12
* @file
* @brief Memory string operations.
*
* This file provides architecture independent functions to manipulate blocks of
* memory. These functions are optimized as much as generic functions of this
* type can be. However, architectures are free to provide even more optimized
* versions of these functions.
* This file provides architecture independent functions
* to manipulate blocks of memory. These functions
* are optimized as much as generic functions of
* this type can be. However, architectures are
* free to provide even more optimized versions of these
* functions.
*/
 
#include <memstr.h>
45,119 → 46,93
#include <arch/types.h>
#include <align.h>
 
/** Copy block of memory.
/** Copy block of memory
*
* Copy cnt bytes from src address to dst address. The copying is done
* word-by-word and then byte-by-byte. The source and destination memory areas
* cannot overlap.
* Copy cnt bytes from src address to dst address.
* The copying is done word-by-word and then byte-by-byte.
* The source and destination memory areas cannot overlap.
*
* @param src Source address to copy from.
* @param dst Destination address to copy to.
* @param cnt Number of bytes to copy.
* @param src Origin address to copy from.
* @param dst Origin address to copy to.
* @param cnt Number of bytes to copy.
*
* @return Destination address.
*/
void *_memcpy(void *dst, const void *src, size_t cnt)
void *_memcpy(void * dst, const void *src, size_t cnt)
{
unsigned int i, j;
if (ALIGN_UP((uintptr_t) src, sizeof(unative_t)) != (uintptr_t) src ||
ALIGN_UP((uintptr_t) dst, sizeof(unative_t)) != (uintptr_t) dst) {
ALIGN_UP((uintptr_t) dst, sizeof(unative_t)) != (uintptr_t) dst) {
for (i = 0; i < cnt; i++)
((uint8_t *) dst)[i] = ((uint8_t *) src)[i];
} else {
for (i = 0; i < cnt / sizeof(unative_t); i++)
for (i = 0; i < cnt/sizeof(unative_t); i++)
((unative_t *) dst)[i] = ((unative_t *) src)[i];
for (j = 0; j < cnt % sizeof(unative_t); j++)
((uint8_t *)(((unative_t *) dst) + i))[j] =
((uint8_t *)(((unative_t *) src) + i))[j];
for (j = 0; j < cnt%sizeof(unative_t); j++)
((uint8_t *)(((unative_t *) dst) + i))[j] = ((uint8_t *)(((unative_t *) src) + i))[j];
}
return (char *) dst;
return (char *) src;
}
 
/** Move memory block with possible overlapping.
/** Fill block of memory
*
* Copy cnt bytes from src address to dst address. The source and destination
* memory areas may overlap.
* Fill cnt bytes at dst address with the value x.
* The filling is done byte-by-byte.
*
* @param src Source address to copy from.
* @param dst Destination address to copy to.
* @param cnt Number of bytes to copy.
* @param dst Origin address to fill.
* @param cnt Number of bytes to fill.
* @param x Value to fill.
*
* @return Destination address.
*/
void *memmove(void *dst, const void *src, size_t n)
void _memsetb(uintptr_t dst, size_t cnt, uint8_t x)
{
const uint8_t *sp;
uint8_t *dp;
 
/* Nothing to do? */
if (src == dst)
return dst;
 
/* Non-overlapping? */
if (dst >= src + n || src >= dst + n) {
return memcpy(dst, src, n);
}
 
/* Which direction? */
if (src > dst) {
/* Forwards. */
sp = src;
dp = dst;
 
while (n-- != 0)
*dp++ = *sp++;
} else {
/* Backwards. */
sp = src + (n - 1);
dp = dst + (n - 1);
 
while (n-- != 0)
*dp-- = *sp--;
}
 
return dst;
unsigned int i;
uint8_t *p = (uint8_t *) dst;
for (i = 0; i < cnt; i++)
p[i] = x;
}
 
/** Fill block of memory
*
* Fill cnt bytes at dst address with the value x. The filling is done
* byte-by-byte.
* Fill cnt words at dst address with the value x.
* The filling is done word-by-word.
*
* @param dst Destination address to fill.
* @param cnt Number of bytes to fill.
* @param x Value to fill.
* @param dst Origin address to fill.
* @param cnt Number of words to fill.
* @param x Value to fill.
*
*/
void _memsetb(void *dst, size_t cnt, uint8_t x)
void _memsetw(uintptr_t dst, size_t cnt, uint16_t x)
{
unsigned int i;
uint8_t *p = (uint8_t *) dst;
uint16_t *p = (uint16_t *) dst;
for (i = 0; i < cnt; i++)
p[i] = x;
p[i] = x;
}
 
/** Fill block of memory.
/** Copy string
*
* Fill cnt words at dst address with the value x. The filling is done
* word-by-word.
* Copy string from src address to dst address.
* The copying is done char-by-char until the null
* character. The source and destination memory areas
* cannot overlap.
*
* @param dst Destination address to fill.
* @param cnt Number of words to fill.
* @param x Value to fill.
* @param src Origin string to copy from.
* @param dst Origin string to copy to.
*
*/
void _memsetw(void *dst, size_t cnt, uint16_t x)
char *strcpy(char *dest, const char *src)
{
unsigned int i;
uint16_t *p = (uint16_t *) dst;
char *orig = dest;
for (i = 0; i < cnt; i++)
p[i] = x;
while ((*(dest++) = *(src++)))
;
return orig;
}
 
/** @}
/branches/dd/kernel/generic/src/lib/func.c
55,6 → 55,8
#ifdef CONFIG_DEBUG
bool rundebugger = false;
 
// TODO test_and_set not defined on all arches
// if (!test_and_set(&haltstate))
if (!atomic_get(&haltstate)) {
atomic_set(&haltstate, 1);
rundebugger = true;
64,19 → 66,116
#endif
 
interrupts_disable();
#if (defined(CONFIG_DEBUG)) && (defined(CONFIG_KCONSOLE))
if (rundebugger)
kconsole("panic", "\nLast resort kernel console ready\n", false);
#endif
#ifdef CONFIG_DEBUG
if (rundebugger) {
printf("\n");
kconsole("panic"); /* Run kconsole as a last resort to user */
}
#endif
if (CPU)
printf("cpu%u: halted\n", CPU->id);
printf("cpu%d: halted\n", CPU->id);
else
printf("cpu: halted\n");
cpu_halt();
}
 
/** Return number of characters in a string.
*
* @param str NULL terminated string.
*
* @return Number of characters in str.
*/
size_t strlen(const char *str)
{
int i;
for (i = 0; str[i]; i++)
;
return i;
}
 
/** Compare two NULL terminated strings
*
* Do a char-by-char comparison of two NULL terminated strings.
* The strings are considered equal iff they consist of the same
* characters on the minimum of their lengths.
*
* @param src First string to compare.
* @param dst Second string to compare.
*
* @return 0 if the strings are equal, -1 if first is smaller, 1 if second smaller.
*
*/
int strcmp(const char *src, const char *dst)
{
for (; *src && *dst; src++, dst++) {
if (*src < *dst)
return -1;
if (*src > *dst)
return 1;
}
if (*src == *dst)
return 0;
if (!*src)
return -1;
return 1;
}
 
 
/** Compare two NULL terminated strings
*
* Do a char-by-char comparison of two NULL terminated strings.
* The strings are considered equal iff they consist of the same
* characters on the minimum of their lengths and specified maximal
* length.
*
* @param src First string to compare.
* @param dst Second string to compare.
* @param len Maximal length for comparison.
*
* @return 0 if the strings are equal, -1 if first is smaller, 1 if second smaller.
*
*/
int strncmp(const char *src, const char *dst, size_t len)
{
unsigned int i;
for (i = 0; (*src) && (*dst) && (i < len); src++, dst++, i++) {
if (*src < *dst)
return -1;
if (*src > *dst)
return 1;
}
if (i == len || *src == *dst)
return 0;
if (!*src)
return -1;
return 1;
}
 
 
 
/** Copy NULL terminated string.
*
* Copy at most 'len' characters from string 'src' to 'dest'.
* If 'src' is shorter than 'len', '\0' is inserted behind the
* last copied character.
*
* @param src Source string.
* @param dest Destination buffer.
* @param len Size of destination buffer.
*/
void strncpy(char *dest, const char *src, size_t len)
{
unsigned int i;
for (i = 0; i < len; i++) {
if (!(dest[i] = src[i]))
return;
}
dest[i-1] = '\0';
}
 
/** Convert ascii representation to unative_t
*
* Supports 0x for hexa & 0 for octal notation.
/branches/dd/kernel/generic/src/lib/objc.c
0,0 → 1,60
/*
* Copyright (c) 2007 Martin Decky
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* - The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
 
/** @addtogroup generic
* @{
*/
 
/**
* @file
* @brief Objective C run-time environment.
*
* This file containts the (growing subset of)
* Objective C run-time environment. The code currently
* relies on the external libobjc library, but this
* dependency will be removed eventually.
*/
 
#include <lib/objc.h>
 
@implementation base_t
 
+ (id) new
{
return class_create_instance(self);
}
 
- (id) dispose
{
return object_dispose(self);
}
 
@end
 
/** @}
*/
/branches/dd/kernel/generic/src/lib/objc_ext.c
0,0 → 1,174
/*
* Copyright (c) 2007 Martin Decky
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* - The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
 
/** @addtogroup generic
* @{
*/
 
/**
* @file
* @brief Objective C bindings.
*
* This file provides architecture independent binding
* functions which are needed to link with libobjc run-time
* library. Many of the functions are just dummy.
*/
 
#include <lib/objc_ext.h>
#include <panic.h>
#include <arch/memstr.h>
#include <mm/slab.h>
 
void *stderr;
 
static unsigned short __ctype_b[384] = {
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
2, 2, 2, 2, 2, 2, 2, 2,
2, 8195, 8194, 8194, 8194, 8194, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2,
24577, 49156, 49156, 49156, 49156, 49156, 49156, 49156,
49156, 49156, 49156, 49156, 49156, 49156, 49156, 49156,
55304, 55304, 55304, 55304, 55304, 55304, 55304, 55304,
55304, 55304, 49156, 49156, 49156, 49156, 49156, 49156,
49156, 54536, 54536, 54536, 54536, 54536, 54536, 50440,
50440, 50440, 50440, 50440, 50440, 50440, 50440, 50440,
50440, 50440, 50440, 50440, 50440, 50440, 50440, 50440,
50440, 50440, 50440, 49156, 49156, 49156, 49156, 49156,
49156, 54792, 54792, 54792, 54792, 54792, 54792, 50696,
50696, 50696, 50696, 50696, 50696, 50696, 50696, 50696,
50696, 50696, 50696, 50696, 50696, 50696, 50696, 50696,
50696, 50696, 50696, 49156, 49156, 49156, 49156, 2,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0
};
 
static const unsigned short *__ctype_b_ptr = __ctype_b + 128;
 
void __assert_fail(const char *assertion, const char *file, unsigned int line, const char *function)
{
panic("Run-time assertion (%s:%d:%s) failed (%s)", file, line, function ? function : "", assertion);
}
 
void abort(void)
{
panic("Run-time scheduled abort");
}
 
void *fopen(const char *path, const char *mode)
{
return NULL;
}
 
size_t fread(void *ptr, size_t size, size_t nmemb, void *stream)
{
return 0;
}
 
size_t fwrite(const void *ptr, size_t size, size_t nmemb, void *stream)
{
return 0;
}
 
int fflush(void *stream)
{
return 0;
}
 
int feof(void *stream)
{
return 1;
}
 
int fclose(void *stream)
{
return 0;
}
 
int vfprintf(void *stream, const char *format, va_list ap)
{
return 0;
}
 
int sscanf(const char *str, const char *format, ...)
{
return 0;
}
 
const unsigned short **__ctype_b_loc(void)
{
return &__ctype_b_ptr;
}
 
long int __strtol_internal(const char *__nptr, char **__endptr, int __base, int __group)
{
return 0;
}
 
void *memset(void *s, int c, size_t n)
{
memsetb((uintptr_t) s, n, c);
return s;
}
 
void *calloc(size_t nmemb, size_t size)
{
return malloc(nmemb * size, 0);
}
 
/** @}
*/
/branches/dd/kernel/generic/src/mm/backend_elf.c
48,7 → 48,6
#include <memstr.h>
#include <macros.h>
#include <arch.h>
#include <arch/barrier.h>
 
#ifdef CONFIG_VIRT_IDX_DCACHE
#include <arch/mm/cache.h>
68,13 → 67,12
*
* The address space area and page tables must be already locked.
*
* @param area Pointer to the address space area.
* @param addr Faulting virtual address.
* @param access Access mode that caused the fault (i.e.
* read/write/exec).
* @param area Pointer to the address space area.
* @param addr Faulting virtual address.
* @param access Access mode that caused the fault (i.e. read/write/exec).
*
* @return AS_PF_FAULT on failure (i.e. page fault) or AS_PF_OK
* on success (i.e. serviced).
* @return AS_PF_FAULT on failure (i.e. page fault) or AS_PF_OK on success (i.e.
* serviced).
*/
int elf_page_fault(as_area_t *area, uintptr_t addr, pf_access_t access)
{
118,7 → 116,7
*/
 
for (i = 0; i < leaf->keys; i++) {
if (leaf->key[i] == page - area->base) {
if (leaf->key[i] == page) {
found = true;
break;
}
129,7 → 127,7
page_mapping_insert(AS, addr, frame,
as_area_get_flags(area));
if (!used_space_insert(area, page, 1))
panic("Cannot insert used space.");
panic("Could not insert used space.\n");
mutex_unlock(&area->sh_info->lock);
return AS_PF_OK;
}
152,10 → 150,6
frame = (uintptr_t)frame_alloc(ONE_FRAME, 0);
memcpy((void *) PA2KA(frame),
(void *) (base + i * FRAME_SIZE), FRAME_SIZE);
if (entry->p_flags & PF_X) {
smc_coherence_block((void *) PA2KA(frame),
FRAME_SIZE);
}
dirty = true;
} else {
frame = KA2PA(base + i * FRAME_SIZE);
168,7 → 162,7
* and cleared.
*/
frame = (uintptr_t)frame_alloc(ONE_FRAME, 0);
memsetb((void *) PA2KA(frame), FRAME_SIZE, 0);
memsetb(PA2KA(frame), FRAME_SIZE, 0);
dirty = true;
} else {
size_t pad_lo, pad_hi;
193,13 → 187,8
memcpy((void *) (PA2KA(frame) + pad_lo),
(void *) (base + i * FRAME_SIZE + pad_lo),
FRAME_SIZE - pad_lo - pad_hi);
if (entry->p_flags & PF_X) {
smc_coherence_block((void *) (PA2KA(frame) + pad_lo),
FRAME_SIZE - pad_lo - pad_hi);
}
memsetb((void *) PA2KA(frame), pad_lo, 0);
memsetb((void *) (PA2KA(frame) + FRAME_SIZE - pad_hi), pad_hi,
0);
memsetb(PA2KA(frame), pad_lo, 0);
memsetb(PA2KA(frame) + FRAME_SIZE - pad_hi, pad_hi, 0);
dirty = true;
}
 
214,7 → 203,7
 
page_mapping_insert(AS, addr, frame, as_area_get_flags(area));
if (!used_space_insert(area, page, 1))
panic("Cannot insert used space.");
panic("Could not insert used space.\n");
 
return AS_PF_OK;
}
223,10 → 212,9
*
* The address space area and page tables must be already locked.
*
* @param area Pointer to the address space area.
* @param page Page that is mapped to frame. Must be aligned to
* PAGE_SIZE.
* @param frame Frame to be released.
* @param area Pointer to the address space area.
* @param page Page that is mapped to frame. Must be aligned to PAGE_SIZE.
* @param frame Frame to be released.
*
*/
void elf_frame_free(as_area_t *area, uintptr_t page, uintptr_t frame)
269,7 → 257,7
*
* The address space and address space area must be locked prior to the call.
*
* @param area Address space area.
* @param area Address space area.
*/
void elf_share(as_area_t *area)
{
/branches/dd/kernel/generic/src/mm/slab.c
167,19 → 167,19
* Allocate frames for slab space and initialize
*
*/
static slab_t *slab_space_alloc(slab_cache_t *cache, int flags)
static slab_t * slab_space_alloc(slab_cache_t *cache, int flags)
{
void *data;
slab_t *slab;
size_t fsize;
unsigned int i;
count_t zone = 0;
unsigned int zone = 0;
data = frame_alloc_generic(cache->order, FRAME_KA | flags, &zone);
if (!data) {
return NULL;
}
if (!(cache->flags & SLAB_CACHE_SLINSIDE)) {
if (! (cache->flags & SLAB_CACHE_SLINSIDE)) {
slab = slab_alloc(slab_extern_cache, flags);
if (!slab) {
frame_free(KA2PA(data));
200,7 → 200,7
slab->cache = cache;
 
for (i = 0; i < cache->objects; i++)
*((int *) (slab->start + i*cache->size)) = i + 1;
*((int *) (slab->start + i*cache->size)) = i+1;
 
atomic_inc(&cache->allocated_slabs);
return slab;
239,7 → 239,8
*
* @return Number of freed pages
*/
static count_t slab_obj_destroy(slab_cache_t *cache, void *obj, slab_t *slab)
static count_t slab_obj_destroy(slab_cache_t *cache, void *obj,
slab_t *slab)
{
int freed = 0;
 
255,7 → 256,7
ASSERT(slab->available < cache->objects);
 
*((int *)obj) = slab->nextavail;
slab->nextavail = (obj - slab->start) / cache->size;
slab->nextavail = (obj - slab->start)/cache->size;
slab->available++;
 
/* Move it to correct list */
280,7 → 281,7
*
* @return Object address or null
*/
static void *slab_obj_create(slab_cache_t *cache, int flags)
static void * slab_obj_create(slab_cache_t *cache, int flags)
{
slab_t *slab;
void *obj;
300,8 → 301,7
return NULL;
spinlock_lock(&cache->slablock);
} else {
slab = list_get_instance(cache->partial_slabs.next, slab_t,
link);
slab = list_get_instance(cache->partial_slabs.next, slab_t, link);
list_remove(&slab->link);
}
obj = slab->start + slab->nextavail * cache->size;
332,7 → 332,8
*
* @param first If true, return first, else last mag
*/
static slab_magazine_t *get_mag_from_cache(slab_cache_t *cache, int first)
static slab_magazine_t * get_mag_from_cache(slab_cache_t *cache,
int first)
{
slab_magazine_t *mag = NULL;
link_t *cur;
367,7 → 368,8
*
* @return Number of freed pages
*/
static count_t magazine_destroy(slab_cache_t *cache, slab_magazine_t *mag)
static count_t magazine_destroy(slab_cache_t *cache,
slab_magazine_t *mag)
{
unsigned int i;
count_t frames = 0;
387,7 → 389,7
*
* Assume cpu_magazine lock is held
*/
static slab_magazine_t *get_full_current_mag(slab_cache_t *cache)
static slab_magazine_t * get_full_current_mag(slab_cache_t *cache)
{
slab_magazine_t *cmag, *lastmag, *newmag;
 
421,7 → 423,7
*
* @return Pointer to object or NULL if not available
*/
static void *magazine_obj_get(slab_cache_t *cache)
static void * magazine_obj_get(slab_cache_t *cache)
{
slab_magazine_t *mag;
void *obj;
456,7 → 458,7
* allocate new, exchange last & current
*
*/
static slab_magazine_t *make_empty_current_mag(slab_cache_t *cache)
static slab_magazine_t * make_empty_current_mag(slab_cache_t *cache)
{
slab_magazine_t *cmag,*lastmag,*newmag;
 
528,8 → 530,7
static unsigned int comp_objects(slab_cache_t *cache)
{
if (cache->flags & SLAB_CACHE_SLINSIDE)
return ((PAGE_SIZE << cache->order) - sizeof(slab_t)) /
cache->size;
return ((PAGE_SIZE << cache->order) - sizeof(slab_t)) / cache->size;
else
return (PAGE_SIZE << cache->order) / cache->size;
}
556,25 → 557,28
ASSERT(_slab_initialized >= 2);
 
cache->mag_cache = malloc(sizeof(slab_mag_cache_t) * config.cpu_count,
0);
cache->mag_cache = malloc(sizeof(slab_mag_cache_t)*config.cpu_count,0);
for (i = 0; i < config.cpu_count; i++) {
memsetb(&cache->mag_cache[i], sizeof(cache->mag_cache[i]), 0);
spinlock_initialize(&cache->mag_cache[i].lock,
"slab_maglock_cpu");
memsetb((uintptr_t)&cache->mag_cache[i],
sizeof(cache->mag_cache[i]), 0);
spinlock_initialize(&cache->mag_cache[i].lock, "slab_maglock_cpu");
}
}
 
/** Initialize allocated memory as a slab cache */
static void
_slab_cache_create(slab_cache_t *cache, char *name, size_t size, size_t align,
int (*constructor)(void *obj, int kmflag), int (*destructor)(void *obj),
int flags)
_slab_cache_create(slab_cache_t *cache,
char *name,
size_t size,
size_t align,
int (*constructor)(void *obj, int kmflag),
int (*destructor)(void *obj),
int flags)
{
int pages;
ipl_t ipl;
 
memsetb(cache, sizeof(*cache), 0);
memsetb((uintptr_t)cache, sizeof(*cache), 0);
cache->name = name;
 
if (align < sizeof(unative_t))
592,7 → 596,7
list_initialize(&cache->magazines);
spinlock_initialize(&cache->slablock, "slab_lock");
spinlock_initialize(&cache->maglock, "slab_maglock");
if (!(cache->flags & SLAB_CACHE_NOMAGAZINE))
if (! (cache->flags & SLAB_CACHE_NOMAGAZINE))
make_magcache(cache);
 
/* Compute slab sizes, object counts in slabs etc. */
605,7 → 609,7
if (pages == 1)
cache->order = 0;
else
cache->order = fnzb(pages - 1) + 1;
cache->order = fnzb(pages-1)+1;
 
while (badness(cache) > SLAB_MAX_BADNESS(cache)) {
cache->order += 1;
626,16 → 630,18
}
 
/** Create slab cache */
slab_cache_t *
slab_cache_create(char *name, size_t size, size_t align,
int (*constructor)(void *obj, int kmflag), int (*destructor)(void *obj),
int flags)
slab_cache_t * slab_cache_create(char *name,
size_t size,
size_t align,
int (*constructor)(void *obj, int kmflag),
int (*destructor)(void *obj),
int flags)
{
slab_cache_t *cache;
 
cache = slab_alloc(&slab_cache_cache, 0);
_slab_cache_create(cache, name, size, align, constructor, destructor,
flags);
flags);
return cache;
}
 
659,7 → 665,7
* endless loop
*/
magcount = atomic_get(&cache->magazine_counter);
while (magcount-- && (mag=get_mag_from_cache(cache, 0))) {
while (magcount-- && (mag=get_mag_from_cache(cache,0))) {
frames += magazine_destroy(cache,mag);
if (!(flags & SLAB_RECLAIM_ALL) && frames)
break;
712,8 → 718,8
_slab_reclaim(cache, SLAB_RECLAIM_ALL);
 
/* All slabs must be empty */
if (!list_empty(&cache->full_slabs) ||
!list_empty(&cache->partial_slabs))
if (!list_empty(&cache->full_slabs) \
|| !list_empty(&cache->partial_slabs))
panic("Destroying cache that is not empty.");
 
if (!(cache->flags & SLAB_CACHE_NOMAGAZINE))
721,8 → 727,9
slab_free(&slab_cache_cache, cache);
}
 
/** Allocate new object from cache - if no flags given, always returns memory */
void *slab_alloc(slab_cache_t *cache, int flags)
/** Allocate new object from cache - if no flags given, always returns
memory */
void * slab_alloc(slab_cache_t *cache, int flags)
{
ipl_t ipl;
void *result = NULL;
751,8 → 758,9
 
ipl = interrupts_disable();
 
if ((cache->flags & SLAB_CACHE_NOMAGAZINE) ||
magazine_obj_put(cache, obj)) {
if ((cache->flags & SLAB_CACHE_NOMAGAZINE) \
|| magazine_obj_put(cache, obj)) {
 
slab_obj_destroy(cache, obj, slab);
 
}
779,8 → 787,7
* memory allocation from interrupts can deadlock.
*/
 
for (cur = slab_cache_list.next; cur != &slab_cache_list;
cur = cur->next) {
for (cur = slab_cache_list.next;cur!=&slab_cache_list; cur=cur->next) {
cache = list_get_instance(cur, slab_cache_t, link);
frames += _slab_reclaim(cache, flags);
}
794,77 → 801,22
/* Print list of slabs */
void slab_print_list(void)
{
int skip = 0;
 
printf("slab name size pages obj/pg slabs cached allocated"
" ctl\n");
printf("---------------- -------- ------ ------ ------ ------ ---------"
" ---\n");
 
while (true) {
slab_cache_t *cache;
link_t *cur;
ipl_t ipl;
int i;
 
/*
* We must not hold the slab_cache_lock spinlock when printing
* the statistics. Otherwise we can easily deadlock if the print
* needs to allocate memory.
*
* Therefore, we walk through the slab cache list, skipping some
* amount of already processed caches during each iteration and
* gathering statistics about the first unprocessed cache. For
* the sake of printing the statistics, we realese the
* slab_cache_lock and reacquire it afterwards. Then the walk
* starts again.
*
* This limits both the efficiency and also accuracy of the
* obtained statistics. The efficiency is decreased because the
* time complexity of the algorithm is quadratic instead of
* linear. The accuracy is impacted because we drop the lock
* after processing one cache. If there is someone else
* manipulating the cache list, we might omit an arbitrary
* number of caches or process one cache multiple times.
* However, we don't bleed for this algorithm for it is only
* statistics.
*/
 
ipl = interrupts_disable();
spinlock_lock(&slab_cache_lock);
 
for (i = 0, cur = slab_cache_list.next;
i < skip && cur != &slab_cache_list;
i++, cur = cur->next)
;
 
if (cur == &slab_cache_list) {
spinlock_unlock(&slab_cache_lock);
interrupts_restore(ipl);
break;
}
 
skip++;
 
slab_cache_t *cache;
link_t *cur;
ipl_t ipl;
ipl = interrupts_disable();
spinlock_lock(&slab_cache_lock);
printf("slab name size pages obj/pg slabs cached allocated ctl\n");
printf("---------------- -------- ------ ------ ------ ------ --------- ---\n");
for (cur = slab_cache_list.next; cur != &slab_cache_list; cur = cur->next) {
cache = list_get_instance(cur, slab_cache_t, link);
 
char *name = cache->name;
uint8_t order = cache->order;
size_t size = cache->size;
unsigned int objects = cache->objects;
long allocated_slabs = atomic_get(&cache->allocated_slabs);
long cached_objs = atomic_get(&cache->cached_objs);
long allocated_objs = atomic_get(&cache->allocated_objs);
int flags = cache->flags;
spinlock_unlock(&slab_cache_lock);
interrupts_restore(ipl);
printf("%-16s %8" PRIs " %6d %6u %6ld %6ld %9ld %-3s\n",
name, size, (1 << order), objects, allocated_slabs,
cached_objs, allocated_objs,
flags & SLAB_CACHE_SLINSIDE ? "in" : "out");
printf("%-16s %8zd %6zd %6zd %6zd %6zd %9zd %-3s\n", cache->name, cache->size, (1 << cache->order), cache->objects, atomic_get(&cache->allocated_slabs), atomic_get(&cache->cached_objs), atomic_get(&cache->allocated_objs), cache->flags & SLAB_CACHE_SLINSIDE ? "in" : "out");
}
spinlock_unlock(&slab_cache_lock);
interrupts_restore(ipl);
}
 
void slab_cache_init(void)
872,24 → 824,32
int i, size;
 
/* Initialize magazine cache */
_slab_cache_create(&mag_cache, "slab_magazine",
sizeof(slab_magazine_t) + SLAB_MAG_SIZE * sizeof(void*),
sizeof(uintptr_t), NULL, NULL, SLAB_CACHE_NOMAGAZINE |
SLAB_CACHE_SLINSIDE);
_slab_cache_create(&mag_cache,
"slab_magazine",
sizeof(slab_magazine_t)+SLAB_MAG_SIZE*sizeof(void*),
sizeof(uintptr_t),
NULL, NULL,
SLAB_CACHE_NOMAGAZINE | SLAB_CACHE_SLINSIDE);
/* Initialize slab_cache cache */
_slab_cache_create(&slab_cache_cache, "slab_cache",
sizeof(slab_cache_cache), sizeof(uintptr_t), NULL, NULL,
SLAB_CACHE_NOMAGAZINE | SLAB_CACHE_SLINSIDE);
_slab_cache_create(&slab_cache_cache,
"slab_cache",
sizeof(slab_cache_cache),
sizeof(uintptr_t),
NULL, NULL,
SLAB_CACHE_NOMAGAZINE | SLAB_CACHE_SLINSIDE);
/* Initialize external slab cache */
slab_extern_cache = slab_cache_create("slab_extern", sizeof(slab_t), 0,
NULL, NULL, SLAB_CACHE_SLINSIDE | SLAB_CACHE_MAGDEFERRED);
slab_extern_cache = slab_cache_create("slab_extern",
sizeof(slab_t),
0, NULL, NULL,
SLAB_CACHE_SLINSIDE | SLAB_CACHE_MAGDEFERRED);
 
/* Initialize structures for malloc */
for (i = 0, size = (1 << SLAB_MIN_MALLOC_W);
i < (SLAB_MAX_MALLOC_W - SLAB_MIN_MALLOC_W + 1);
i++, size <<= 1) {
malloc_caches[i] = slab_cache_create(malloc_names[i], size, 0,
NULL, NULL, SLAB_CACHE_MAGDEFERRED);
for (i=0, size=(1<<SLAB_MIN_MALLOC_W);
i < (SLAB_MAX_MALLOC_W-SLAB_MIN_MALLOC_W+1);
i++, size <<= 1) {
malloc_caches[i] = slab_cache_create(malloc_names[i],
size, 0,
NULL,NULL, SLAB_CACHE_MAGDEFERRED);
}
#ifdef CONFIG_DEBUG
_slab_initialized = 1;
914,11 → 874,9
 
spinlock_lock(&slab_cache_lock);
for (cur = slab_cache_list.next; cur != &slab_cache_list;
cur = cur->next){
for (cur=slab_cache_list.next; cur != &slab_cache_list;cur=cur->next){
s = list_get_instance(cur, slab_cache_t, link);
if ((s->flags & SLAB_CACHE_MAGDEFERRED) !=
SLAB_CACHE_MAGDEFERRED)
if ((s->flags & SLAB_CACHE_MAGDEFERRED) != SLAB_CACHE_MAGDEFERRED)
continue;
make_magcache(s);
s->flags &= ~SLAB_CACHE_MAGDEFERRED;
929,7 → 887,7
 
/**************************************/
/* kalloc/kfree functions */
void *malloc(unsigned int size, int flags)
void * malloc(unsigned int size, int flags)
{
ASSERT(_slab_initialized);
ASSERT(size && size <= (1 << SLAB_MAX_MALLOC_W));
942,7 → 900,7
return slab_alloc(malloc_caches[idx], flags);
}
 
void *realloc(void *ptr, unsigned int size, int flags)
void * realloc(void *ptr, unsigned int size, int flags)
{
ASSERT(_slab_initialized);
ASSERT(size <= (1 << SLAB_MAX_MALLOC_W));
/branches/dd/kernel/generic/src/mm/tlb.c
173,7 → 173,7
tlb_invalidate_pages(asid, page, count);
break;
default:
panic("Unknown type (%d).", type);
panic("unknown type (%d)\n", type);
break;
}
if (type == TLB_INVL_ALL)
/branches/dd/kernel/generic/src/mm/backend_anon.c
78,6 → 78,7
int anon_page_fault(as_area_t *area, uintptr_t addr, pf_access_t access)
{
uintptr_t frame;
bool dirty = false;
 
if (!as_area_check_access(area, access))
return AS_PF_FAULT;
105,7 → 106,7
*/
for (i = 0; i < leaf->keys; i++) {
if (leaf->key[i] ==
ALIGN_DOWN(addr, PAGE_SIZE) - area->base) {
ALIGN_DOWN(addr, PAGE_SIZE)) {
allocate = false;
break;
}
112,7 → 113,8
}
if (allocate) {
frame = (uintptr_t) frame_alloc(ONE_FRAME, 0);
memsetb((void *) PA2KA(frame), FRAME_SIZE, 0);
memsetb(PA2KA(frame), FRAME_SIZE, 0);
dirty = true;
/*
* Insert the address of the newly allocated
142,7 → 144,8
* the different causes
*/
frame = (uintptr_t) frame_alloc(ONE_FRAME, 0);
memsetb((void *) PA2KA(frame), FRAME_SIZE, 0);
memsetb(PA2KA(frame), FRAME_SIZE, 0);
dirty = true;
}
/*
152,7 → 155,7
*/
page_mapping_insert(AS, addr, frame, as_area_get_flags(area));
if (!used_space_insert(area, ALIGN_DOWN(addr, PAGE_SIZE), 1))
panic("Cannot insert used space.");
panic("Could not insert used space.\n");
return AS_PF_OK;
}
/branches/dd/kernel/generic/src/mm/as.c
82,6 → 82,7
#include <arch/mm/cache.h>
#endif /* CONFIG_VIRT_IDX_DCACHE */
 
#ifndef __OBJC__
/**
* Each architecture decides what functions will be used to carry out
* address space operations such as creating or locking page tables.
92,6 → 93,7
* Slab for as_t objects.
*/
static slab_cache_t *as_slab;
#endif
 
/**
* This lock serializes access to the ASID subsystem.
111,11 → 113,13
/** Kernel address space. */
as_t *AS_KERNEL = NULL;
 
static int area_flags_to_page_flags(int);
static as_area_t *find_area_and_lock(as_t *, uintptr_t);
static bool check_area_conflicts(as_t *, uintptr_t, size_t, as_area_t *);
static void sh_info_remove_reference(share_info_t *);
static int area_flags_to_page_flags(int aflags);
static as_area_t *find_area_and_lock(as_t *as, uintptr_t va);
static bool check_area_conflicts(as_t *as, uintptr_t va, size_t size,
as_area_t *avoid_area);
static void sh_info_remove_reference(share_info_t *sh_info);
 
#ifndef __OBJC__
static int as_constructor(void *obj, int flags)
{
as_t *as = (as_t *) obj;
122,7 → 126,7
int rc;
 
link_initialize(&as->inactive_as_with_asid_link);
mutex_initialize(&as->lock, MUTEX_PASSIVE);
mutex_initialize(&as->lock);
rc = as_constructor_arch(as, flags);
135,6 → 139,7
 
return as_destructor_arch(as);
}
#endif
 
/** Initialize address space subsystem. */
void as_init(void)
141,29 → 146,33
{
as_arch_init();
 
#ifndef __OBJC__
as_slab = slab_cache_create("as_slab", sizeof(as_t), 0,
as_constructor, as_destructor, SLAB_CACHE_MAGDEFERRED);
#endif
AS_KERNEL = as_create(FLAG_AS_KERNEL);
if (!AS_KERNEL)
panic("Cannot create kernel address space.");
panic("can't create kernel address space\n");
/* Make sure the kernel address space
* reference count never drops to zero.
*/
atomic_set(&AS_KERNEL->refcount, 1);
}
 
/** Create address space.
*
* @param flags Flags that influence the way in wich the address space
* is created.
* @param flags Flags that influence way in wich the address space is created.
*/
as_t *as_create(int flags)
{
as_t *as;
 
#ifdef __OBJC__
as = [as_t new];
link_initialize(&as->inactive_as_with_asid_link);
mutex_initialize(&as->lock);
(void) as_constructor_arch(as, flags);
#else
as = (as_t *) slab_alloc(as_slab, 0);
#endif
(void) as_create_arch(as, 0);
btree_create(&as->as_area_btree);
180,7 → 189,7
#else
page_table_create(flags);
#endif
 
return as;
}
 
190,8 → 199,6
* zero), the address space can be destroyed.
*
* We know that we don't hold any spinlock.
*
* @param as Address space to be destroyed.
*/
void as_destroy(as_t *as)
{
256,7 → 263,11
 
interrupts_restore(ipl);
 
#ifdef __OBJC__
[as free];
#else
slab_free(as_slab, as);
#endif
}
 
/** Create address space area of common attributes.
263,19 → 274,19
*
* The created address space area is added to the target address space.
*
* @param as Target address space.
* @param flags Flags of the area memory.
* @param size Size of area.
* @param base Base address of area.
* @param attrs Attributes of the area.
* @param backend Address space area backend. NULL if no backend is used.
* @param backend_data NULL or a pointer to an array holding two void *.
* @param as Target address space.
* @param flags Flags of the area memory.
* @param size Size of area.
* @param base Base address of area.
* @param attrs Attributes of the area.
* @param backend Address space area backend. NULL if no backend is used.
* @param backend_data NULL or a pointer to an array holding two void *.
*
* @return Address space area on success or NULL on failure.
* @return Address space area on success or NULL on failure.
*/
as_area_t *
as_area_create(as_t *as, int flags, size_t size, uintptr_t base, int attrs,
mem_backend_t *backend, mem_backend_data_t *backend_data)
mem_backend_t *backend, mem_backend_data_t *backend_data)
{
ipl_t ipl;
as_area_t *a;
301,7 → 312,7
a = (as_area_t *) malloc(sizeof(as_area_t), 0);
 
mutex_initialize(&a->lock, MUTEX_PASSIVE);
mutex_initialize(&a->lock);
a->as = as;
a->flags = flags;
313,7 → 324,8
if (backend_data)
a->backend_data = *backend_data;
else
memsetb(&a->backend_data, sizeof(a->backend_data), 0);
memsetb((uintptr_t) &a->backend_data, sizeof(a->backend_data),
0);
 
btree_create(&a->used_space);
327,14 → 339,13
 
/** Find address space area and change it.
*
* @param as Address space.
* @param address Virtual address belonging to the area to be changed.
* Must be page-aligned.
* @param size New size of the virtual memory block starting at
* address.
* @param flags Flags influencing the remap operation. Currently unused.
* @param as Address space.
* @param address Virtual address belonging to the area to be changed. Must be
* page-aligned.
* @param size New size of the virtual memory block starting at address.
* @param flags Flags influencing the remap operation. Currently unused.
*
* @return Zero on success or a value from @ref errno.h otherwise.
* @return Zero on success or a value from @ref errno.h otherwise.
*/
int as_area_resize(as_t *as, uintptr_t address, size_t size, int flags)
{
389,7 → 400,7
if (pages < area->pages) {
bool cond;
uintptr_t start_free = area->base + pages * PAGE_SIZE;
uintptr_t start_free = area->base + pages*PAGE_SIZE;
 
/*
* Shrinking the area.
399,7 → 410,7
/*
* Start TLB shootdown sequence.
*/
tlb_shootdown_start(TLB_INVL_PAGES, as->asid, area->base +
tlb_shootdown_start(TLB_INVL_PAGES, AS->asid, area->base +
pages * PAGE_SIZE, area->pages - pages);
 
/*
444,8 → 455,8
i = (start_free - b) >> PAGE_WIDTH;
if (!used_space_remove(area, start_free,
c - i))
panic("Cannot remove used "
"space.");
panic("Could not remove used "
"space.\n");
} else {
/*
* The interval of used space can be
452,8 → 463,8
* completely removed.
*/
if (!used_space_remove(area, b, c))
panic("Cannot remove used "
"space.");
panic("Could not remove used "
"space.\n");
}
for (; i < c; i++) {
515,10 → 526,10
 
/** Destroy address space area.
*
* @param as Address space.
* @param address Address within the area to be deleted.
* @param as Address space.
* @param address Address withing the area to be deleted.
*
* @return Zero on success or a value from @ref errno.h on failure.
* @return Zero on success or a value from @ref errno.h on failure.
*/
int as_area_destroy(as_t *as, uintptr_t address)
{
615,19 → 626,18
* sh_info of the source area. The process of duplicating the
* mapping is done through the backend share function.
*
* @param src_as Pointer to source address space.
* @param src_base Base address of the source address space area.
* @param acc_size Expected size of the source area.
* @param dst_as Pointer to destination address space.
* @param dst_base Target base address.
* @param src_as Pointer to source address space.
* @param src_base Base address of the source address space area.
* @param acc_size Expected size of the source area.
* @param dst_as Pointer to destination address space.
* @param dst_base Target base address.
* @param dst_flags_mask Destination address space area flags mask.
*
* @return Zero on success or ENOENT if there is no such task or if
* there is no such address space area, EPERM if there was
* a problem in accepting the area or ENOMEM if there was a
* problem in allocating destination address space area.
* ENOTSUP is returned if the address space area backend
* does not support sharing.
* @return Zero on success or ENOENT if there is no such task or if there is no
* such address space area, EPERM if there was a problem in accepting the area
* or ENOMEM if there was a problem in allocating destination address space
* area. ENOTSUP is returned if the address space area backend does not support
* sharing.
*/
int as_area_share(as_t *src_as, uintptr_t src_base, size_t acc_size,
as_t *dst_as, uintptr_t dst_base, int dst_flags_mask)
688,7 → 698,7
sh_info = src_area->sh_info;
if (!sh_info) {
sh_info = (share_info_t *) malloc(sizeof(share_info_t), 0);
mutex_initialize(&sh_info->lock, MUTEX_PASSIVE);
mutex_initialize(&sh_info->lock);
sh_info->refcount = 2;
btree_create(&sh_info->pagemap);
src_area->sh_info = sh_info;
746,11 → 756,10
*
* The address space area must be locked prior to this call.
*
* @param area Address space area.
* @param access Access mode.
* @param area Address space area.
* @param access Access mode.
*
* @return False if access violates area's permissions, true
* otherwise.
* @return False if access violates area's permissions, true otherwise.
*/
bool as_area_check_access(as_area_t *area, pf_access_t access)
{
766,183 → 775,21
return true;
}
 
/** Change adress space area flags.
*
* The idea is to have the same data, but with a different access mode.
* This is needed e.g. for writing code into memory and then executing it.
* In order for this to work properly, this may copy the data
* into private anonymous memory (unless it's already there).
*
* @param as Address space.
* @param flags Flags of the area memory.
* @param address Address within the area to be changed.
*
* @return Zero on success or a value from @ref errno.h on failure.
*
*/
int as_area_change_flags(as_t *as, int flags, uintptr_t address)
{
as_area_t *area;
uintptr_t base;
link_t *cur;
ipl_t ipl;
int page_flags;
uintptr_t *old_frame;
index_t frame_idx;
count_t used_pages;
/* Flags for the new memory mapping */
page_flags = area_flags_to_page_flags(flags);
 
ipl = interrupts_disable();
mutex_lock(&as->lock);
 
area = find_area_and_lock(as, address);
if (!area) {
mutex_unlock(&as->lock);
interrupts_restore(ipl);
return ENOENT;
}
 
if ((area->sh_info) || (area->backend != &anon_backend)) {
/* Copying shared areas not supported yet */
/* Copying non-anonymous memory not supported yet */
mutex_unlock(&area->lock);
mutex_unlock(&as->lock);
interrupts_restore(ipl);
return ENOTSUP;
}
 
base = area->base;
 
/*
* Compute total number of used pages in the used_space B+tree
*/
used_pages = 0;
 
for (cur = area->used_space.leaf_head.next;
cur != &area->used_space.leaf_head; cur = cur->next) {
btree_node_t *node;
unsigned int i;
node = list_get_instance(cur, btree_node_t, leaf_link);
for (i = 0; i < node->keys; i++) {
used_pages += (count_t) node->value[i];
}
}
 
/* An array for storing frame numbers */
old_frame = malloc(used_pages * sizeof(uintptr_t), 0);
 
/*
* Start TLB shootdown sequence.
*/
tlb_shootdown_start(TLB_INVL_PAGES, as->asid, area->base, area->pages);
 
/*
* Remove used pages from page tables and remember their frame
* numbers.
*/
frame_idx = 0;
 
for (cur = area->used_space.leaf_head.next;
cur != &area->used_space.leaf_head; cur = cur->next) {
btree_node_t *node;
unsigned int i;
node = list_get_instance(cur, btree_node_t, leaf_link);
for (i = 0; i < node->keys; i++) {
uintptr_t b = node->key[i];
count_t j;
pte_t *pte;
for (j = 0; j < (count_t) node->value[i]; j++) {
page_table_lock(as, false);
pte = page_mapping_find(as, b + j * PAGE_SIZE);
ASSERT(pte && PTE_VALID(pte) &&
PTE_PRESENT(pte));
old_frame[frame_idx++] = PTE_GET_FRAME(pte);
 
/* Remove old mapping */
page_mapping_remove(as, b + j * PAGE_SIZE);
page_table_unlock(as, false);
}
}
}
 
/*
* Finish TLB shootdown sequence.
*/
 
tlb_invalidate_pages(as->asid, area->base, area->pages);
/*
* Invalidate potential software translation caches (e.g. TSB on
* sparc64).
*/
as_invalidate_translation_cache(as, area->base, area->pages);
tlb_shootdown_finalize();
 
/*
* Set the new flags.
*/
area->flags = flags;
 
/*
* Map pages back in with new flags. This step is kept separate
* so that the memory area could not be accesed with both the old and
* the new flags at once.
*/
frame_idx = 0;
 
for (cur = area->used_space.leaf_head.next;
cur != &area->used_space.leaf_head; cur = cur->next) {
btree_node_t *node;
unsigned int i;
node = list_get_instance(cur, btree_node_t, leaf_link);
for (i = 0; i < node->keys; i++) {
uintptr_t b = node->key[i];
count_t j;
for (j = 0; j < (count_t) node->value[i]; j++) {
page_table_lock(as, false);
 
/* Insert the new mapping */
page_mapping_insert(as, b + j * PAGE_SIZE,
old_frame[frame_idx++], page_flags);
 
page_table_unlock(as, false);
}
}
}
 
free(old_frame);
 
mutex_unlock(&area->lock);
mutex_unlock(&as->lock);
interrupts_restore(ipl);
 
return 0;
}
 
 
/** Handle page fault within the current address space.
*
* This is the high-level page fault handler. It decides whether the page fault
* can be resolved by any backend and if so, it invokes the backend to resolve
* the page fault.
* This is the high-level page fault handler. It decides
* whether the page fault can be resolved by any backend
* and if so, it invokes the backend to resolve the page
* fault.
*
* Interrupts are assumed disabled.
*
* @param page Faulting page.
* @param access Access mode that caused the page fault (i.e.
* read/write/exec).
* @param istate Pointer to the interrupted state.
* @param page Faulting page.
* @param access Access mode that caused the fault (i.e. read/write/exec).
* @param istate Pointer to interrupted state.
*
* @return AS_PF_FAULT on page fault, AS_PF_OK on success or
* AS_PF_DEFER if the fault was caused by copy_to_uspace()
* or copy_from_uspace().
* @return AS_PF_FAULT on page fault, AS_PF_OK on success or AS_PF_DEFER if the
* fault was caused by copy_to_uspace() or copy_from_uspace().
*/
int as_page_fault(uintptr_t page, pf_access_t access, istate_t *istate)
{
988,8 → 835,9
page_table_lock(AS, false);
/*
* To avoid race condition between two page faults on the same address,
* we need to make sure the mapping has not been already inserted.
* To avoid race condition between two page faults
* on the same address, we need to make sure
* the mapping has not been already inserted.
*/
if ((pte = page_mapping_find(AS, page))) {
if (PTE_PRESENT(pte)) {
1043,8 → 891,8
*
* When this function is enetered, no spinlocks may be held.
*
* @param old Old address space or NULL.
* @param new New address space.
* @param old Old address space or NULL.
* @param new New address space.
*/
void as_switch(as_t *old_as, as_t *new_as)
{
1115,9 → 963,9
 
/** Convert address space area flags to page flags.
*
* @param aflags Flags of some address space area.
* @param aflags Flags of some address space area.
*
* @return Flags to be passed to page_mapping_insert().
* @return Flags to be passed to page_mapping_insert().
*/
int area_flags_to_page_flags(int aflags)
{
1145,9 → 993,9
* The address space area must be locked.
* Interrupts must be disabled.
*
* @param a Address space area.
* @param a Address space area.
*
* @return Flags to be used in page_mapping_insert().
* @return Flags to be used in page_mapping_insert().
*/
int as_area_get_flags(as_area_t *a)
{
1156,20 → 1004,23
 
/** Create page table.
*
* Depending on architecture, create either address space private or global page
* table.
* Depending on architecture, create either address space
* private or global page table.
*
* @param flags Flags saying whether the page table is for the kernel
* address space.
* @param flags Flags saying whether the page table is for kernel address space.
*
* @return First entry of the page table.
* @return First entry of the page table.
*/
pte_t *page_table_create(int flags)
{
#ifdef __OBJC__
return [as_t page_table_create: flags];
#else
ASSERT(as_operations);
ASSERT(as_operations->page_table_create);
return as_operations->page_table_create(flags);
#endif
}
 
/** Destroy page table.
1176,14 → 1027,18
*
* Destroy page table in architecture specific way.
*
* @param page_table Physical address of PTL0.
* @param page_table Physical address of PTL0.
*/
void page_table_destroy(pte_t *page_table)
{
#ifdef __OBJC__
return [as_t page_table_destroy: page_table];
#else
ASSERT(as_operations);
ASSERT(as_operations->page_table_destroy);
as_operations->page_table_destroy(page_table);
#endif
}
 
/** Lock page table.
1195,28 → 1050,36
* prior to this call. Address space can be locked prior to this
* call in which case the lock argument is false.
*
* @param as Address space.
* @param lock If false, do not attempt to lock as->lock.
* @param as Address space.
* @param lock If false, do not attempt to lock as->lock.
*/
void page_table_lock(as_t *as, bool lock)
{
#ifdef __OBJC__
[as page_table_lock: lock];
#else
ASSERT(as_operations);
ASSERT(as_operations->page_table_lock);
as_operations->page_table_lock(as, lock);
#endif
}
 
/** Unlock page table.
*
* @param as Address space.
* @param unlock If false, do not attempt to unlock as->lock.
* @param as Address space.
* @param unlock If false, do not attempt to unlock as->lock.
*/
void page_table_unlock(as_t *as, bool unlock)
{
#ifdef __OBJC__
[as page_table_unlock: unlock];
#else
ASSERT(as_operations);
ASSERT(as_operations->page_table_unlock);
as_operations->page_table_unlock(as, unlock);
#endif
}
 
 
1224,11 → 1087,11
*
* The address space must be locked and interrupts must be disabled.
*
* @param as Address space.
* @param va Virtual address.
* @param as Address space.
* @param va Virtual address.
*
* @return Locked address space area containing va on success or
* NULL on failure.
* @return Locked address space area containing va on success or NULL on
* failure.
*/
as_area_t *find_area_and_lock(as_t *as, uintptr_t va)
{
1280,15 → 1143,15
*
* The address space must be locked and interrupts must be disabled.
*
* @param as Address space.
* @param va Starting virtual address of the area being tested.
* @param size Size of the area being tested.
* @param avoid_area Do not touch this area.
* @param as Address space.
* @param va Starting virtual address of the area being tested.
* @param size Size of the area being tested.
* @param avoid_area Do not touch this area.
*
* @return True if there is no conflict, false otherwise.
* @return True if there is no conflict, false otherwise.
*/
bool
check_area_conflicts(as_t *as, uintptr_t va, size_t size, as_area_t *avoid_area)
bool check_area_conflicts(as_t *as, uintptr_t va, size_t size,
as_area_t *avoid_area)
{
as_area_t *a;
btree_node_t *leaf, *node;
1377,7 → 1240,7
 
ipl = interrupts_disable();
src_area = find_area_and_lock(AS, base);
if (src_area) {
if (src_area){
size = src_area->pages * PAGE_SIZE;
mutex_unlock(&src_area->lock);
} else {
1391,11 → 1254,11
*
* The address space area must be already locked.
*
* @param a Address space area.
* @param page First page to be marked.
* @param count Number of page to be marked.
* @param a Address space area.
* @param page First page to be marked.
* @param count Number of page to be marked.
*
* @return Zero on failure and non-zero on success.
* @return 0 on failure and 1 on success.
*/
int used_space_insert(as_area_t *a, uintptr_t page, count_t count)
{
1665,8 → 1528,8
}
}
 
panic("Inconsistency detected while adding %" PRIc " pages of used "
"space at %p.", count, page);
panic("Inconsistency detected while adding %d pages of used space at "
"%p.\n", count, page);
}
 
/** Mark portion of address space area as unused.
1673,11 → 1536,11
*
* The address space area must be already locked.
*
* @param a Address space area.
* @param page First page to be marked.
* @param count Number of page to be marked.
* @param a Address space area.
* @param page First page to be marked.
* @param count Number of page to be marked.
*
* @return Zero on failure and non-zero on success.
* @return 0 on failure and 1 on success.
*/
int used_space_remove(as_area_t *a, uintptr_t page, count_t count)
{
1844,8 → 1707,8
}
 
error:
panic("Inconsistency detected while removing %" PRIc " pages of used "
"space from %p.", count, page);
panic("Inconsistency detected while removing %d pages of used space "
"from %p.\n", count, page);
}
 
/** Remove reference to address space area share info.
1852,7 → 1715,7
*
* If the reference count drops to 0, the sh_info is deallocated.
*
* @param sh_info Pointer to address space area share info.
* @param sh_info Pointer to address space area share info.
*/
void sh_info_remove_reference(share_info_t *sh_info)
{
1907,12 → 1770,6
return (unative_t) as_area_resize(AS, address, size, 0);
}
 
/** Wrapper for as_area_change_flags(). */
unative_t sys_as_area_change_flags(uintptr_t address, int flags)
{
return (unative_t) as_area_change_flags(AS, flags, address);
}
 
/** Wrapper for as_area_destroy(). */
unative_t sys_as_area_destroy(uintptr_t address)
{
1921,7 → 1778,7
 
/** Print out information about address space.
*
* @param as Address space.
* @param as Address space.
*/
void as_print(as_t *as)
{
1943,9 → 1800,9
as_area_t *area = node->value[i];
mutex_lock(&area->lock);
printf("as_area: %p, base=%p, pages=%" PRIc
" (%p - %p)\n", area, area->base, area->pages,
area->base, area->base + FRAMES2SIZE(area->pages));
printf("as_area: %p, base=%p, pages=%d (%p - %p)\n",
area, area->base, area->pages, area->base,
area->base + area->pages*PAGE_SIZE);
mutex_unlock(&area->lock);
}
}
/branches/dd/kernel/generic/src/mm/frame.c
1,7 → 1,6
/*
* Copyright (c) 2001-2005 Jakub Jermar
* Copyright (c) 2005 Sergey Bondari
* Copyright (c) 2009 Martin Decky
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
34,7 → 33,7
 
/**
* @file
* @brief Physical frame allocator.
* @brief Physical frame allocator.
*
* This file contains the physical frame allocator and memory zone management.
* The frame allocator is built on top of the buddy allocator.
42,6 → 41,16
* @see buddy.c
*/
 
/*
* Locking order
*
* In order to access particular zone, the process must first lock
* the zones.lock, then lock the zone and then unlock the zones.lock.
* This insures, that we can fiddle with the zones in runtime without
* affecting the processes.
*
*/
 
#include <arch/types.h>
#include <mm/frame.h>
#include <mm/as.h>
48,8 → 57,7
#include <panic.h>
#include <debug.h>
#include <adt/list.h>
#include <synch/mutex.h>
#include <synch/condvar.h>
#include <synch/spinlock.h>
#include <arch/asm.h>
#include <arch.h>
#include <print.h>
59,17 → 67,43
#include <macros.h>
#include <config.h>
 
zones_t zones;
typedef struct {
count_t refcount; /**< tracking of shared frames */
uint8_t buddy_order; /**< buddy system block order */
link_t buddy_link; /**< link to the next free block inside one
order */
void *parent; /**< If allocated by slab, this points there */
} frame_t;
 
typedef struct {
SPINLOCK_DECLARE(lock); /**< this lock protects everything below */
pfn_t base; /**< frame_no of the first frame in the frames
array */
count_t count; /**< Size of zone */
 
frame_t *frames; /**< array of frame_t structures in this
zone */
count_t free_count; /**< number of free frame_t structures */
count_t busy_count; /**< number of busy frame_t structures */
buddy_system_t *buddy_system; /**< buddy system for the zone */
int flags;
} zone_t;
 
/*
* Synchronization primitives used to sleep when there is no memory
* available.
* The zoneinfo.lock must be locked when accessing zoneinfo structure.
* Some of the attributes in zone_t structures are 'read-only'
*/
mutex_t mem_avail_mtx;
condvar_t mem_avail_cv;
count_t mem_avail_req = 0; /**< Number of frames requested. */
count_t mem_avail_gen = 0; /**< Generation counter. */
 
typedef struct {
SPINLOCK_DECLARE(lock);
unsigned int count;
zone_t *info[ZONES_MAX];
} zones_t;
 
static zones_t zones;
 
 
/********************/
/* Helper functions */
/********************/
84,20 → 118,22
return (index_t) (frame - zone->frames) + zone->base;
}
 
static inline bool frame_index_valid(zone_t *zone, index_t index)
static inline int frame_index_valid(zone_t *zone, index_t index)
{
return (index < zone->count);
}
 
static inline index_t make_frame_index(zone_t *zone, frame_t *frame)
/** Compute pfn_t from frame_t pointer & zone pointer */
static index_t make_frame_index(zone_t *zone, frame_t *frame)
{
return (frame - zone->frames);
}
 
/** Initialize frame structure.
/** Initialize frame structure
*
* Initialize frame structure.
*
* @param frame Frame structure to be initialized.
*
*/
static void frame_initialize(frame_t *frame)
{
105,145 → 141,142
frame->buddy_order = 0;
}
 
/*******************/
/* Zones functions */
/*******************/
/**********************/
/* Zoneinfo functions */
/**********************/
 
/** Insert-sort zone into zones list.
/**
* Insert-sort zone into zones list
*
* Assume interrupts are disabled and zones lock is
* locked.
*
* @param base Base frame of the newly inserted zone.
* @param count Number of frames of the newly inserted zone.
*
* @return Zone number on success, -1 on error.
*
* @param newzone New zone to be inserted into zone list
* @return zone number on success, -1 on error
*/
static count_t zones_insert_zone(pfn_t base, count_t count)
static int zones_add_zone(zone_t *newzone)
{
unsigned int i, j;
ipl_t ipl;
zone_t *z;
 
ipl = interrupts_disable();
spinlock_lock(&zones.lock);
/* Try to merge */
if (zones.count + 1 == ZONES_MAX) {
printf("Maximum zone count %u exceeded!\n", ZONES_MAX);
return (count_t) -1;
spinlock_unlock(&zones.lock);
interrupts_restore(ipl);
return -1;
}
count_t i;
for (i = 0; i < zones.count; i++) {
/* Check for overlap */
if (overlaps(base, count,
zones.info[i].base, zones.info[i].count)) {
/* Check for overflow */
z = zones.info[i];
if (overlaps(newzone->base, newzone->count, z->base, z->count)) {
printf("Zones overlap!\n");
return (count_t) -1;
return -1;
}
if (base < zones.info[i].base)
if (newzone->base < z->base)
break;
}
/* Move other zones up */
count_t j;
for (j = zones.count; j > i; j--) {
zones.info[j] = zones.info[j - 1];
zones.info[j].buddy_system->data =
(void *) &zones.info[j - 1];
}
for (j = i; j < zones.count; j++)
zones.info[j + 1] = zones.info[j];
zones.info[i] = newzone;
zones.count++;
spinlock_unlock(&zones.lock);
interrupts_restore(ipl);
 
return i;
}
 
/** Get total available frames.
/**
* Try to find a zone where can we find the frame
*
* Assume interrupts are disabled and zones lock is
* locked.
* Assume interrupts are disabled.
*
* @return Total number of available frames.
*
* @param frame Frame number contained in zone
* @param pzone If not null, it is used as zone hint. Zone index
* is filled into the variable on success.
* @return Pointer to locked zone containing frame
*/
#ifdef CONFIG_DEBUG
static count_t total_frames_free(void)
static zone_t * find_zone_and_lock(pfn_t frame, unsigned int *pzone)
{
count_t total = 0;
count_t i;
for (i = 0; i < zones.count; i++)
total += zones.info[i].free_count;
unsigned int i;
unsigned int hint = pzone ? *pzone : 0;
zone_t *z;
return total;
}
#endif
spinlock_lock(&zones.lock);
 
/** Find a zone with a given frames.
*
* Assume interrupts are disabled and zones lock is
* locked.
*
* @param frame Frame number contained in zone.
* @param count Number of frames to look for.
* @param hint Used as zone hint.
*
* @return Zone index or -1 if not found.
*
*/
count_t find_zone(pfn_t frame, count_t count, count_t hint)
{
if (hint >= zones.count)
hint = 0;
count_t i = hint;
i = hint;
do {
if ((zones.info[i].base <= frame)
&& (zones.info[i].base + zones.info[i].count >= frame + count))
return i;
z = zones.info[i];
spinlock_lock(&z->lock);
if (z->base <= frame && z->base + z->count > frame) {
/* Unlock the global lock */
spinlock_unlock(&zones.lock);
if (pzone)
*pzone = i;
return z;
}
spinlock_unlock(&z->lock);
 
i++;
if (i >= zones.count)
i = 0;
} while (i != hint);
return (count_t) -1;
} while(i != hint);
 
spinlock_unlock(&zones.lock);
return NULL;
}
 
/** @return True if zone can allocate specified order */
static bool zone_can_alloc(zone_t *zone, uint8_t order)
static int zone_can_alloc(zone_t *z, uint8_t order)
{
return (zone_flags_available(zone->flags)
&& buddy_system_can_alloc(zone->buddy_system, order));
return buddy_system_can_alloc(z->buddy_system, order);
}
 
/** Find a zone that can allocate order frames.
/** Find and lock zone that can allocate order frames.
*
* Assume interrupts are disabled and zones lock is
* locked.
* Assume interrupts are disabled.
*
* @param order Size (2^order) of free space we are trying to find.
* @param flags Required flags of the target zone.
* @param hind Preferred zone.
*
* @param order Size (2^order) of free space we are trying to find
* @param pzone Pointer to preferred zone or NULL, on return contains zone
* number
*/
static count_t find_free_zone(uint8_t order, zone_flags_t flags, count_t hint)
static zone_t * find_free_zone_and_lock(uint8_t order, unsigned int *pzone)
{
unsigned int i;
zone_t *z;
unsigned int hint = pzone ? *pzone : 0;
spinlock_lock(&zones.lock);
if (hint >= zones.count)
hint = 0;
count_t i = hint;
i = hint;
do {
/*
* Check whether the zone meets the search criteria.
*/
if ((zones.info[i].flags & flags) == flags) {
/*
* Check if the zone has 2^order frames area available.
*/
if (zone_can_alloc(&zones.info[i], order))
return i;
z = zones.info[i];
spinlock_lock(&z->lock);
 
/* Check if the zone has 2^order frames area available */
if (zone_can_alloc(z, order)) {
spinlock_unlock(&zones.lock);
if (pzone)
*pzone = i;
return z;
}
i++;
if (i >= zones.count)
spinlock_unlock(&z->lock);
if (++i >= zones.count)
i = 0;
} while (i != hint);
return (count_t) -1;
} while(i != hint);
spinlock_unlock(&zones.lock);
return NULL;
}
 
/**************************/
250,146 → 283,167
/* Buddy system functions */
/**************************/
 
/** Buddy system find_block implementation.
/** Buddy system find_block implementation
*
* Find block that is parent of current list.
* That means go to lower addresses, until such block is found
*
* @param order Order of parent must be different then this
* parameter!!
*
* @param order - Order of parent must be different then this parameter!!
*/
static link_t *zone_buddy_find_block(buddy_system_t *buddy, link_t *child,
static link_t *zone_buddy_find_block(buddy_system_t *b, link_t *child,
uint8_t order)
{
frame_t *frame = list_get_instance(child, frame_t, buddy_link);
zone_t *zone = (zone_t *) buddy->data;
frame_t *frame;
zone_t *zone;
index_t index;
index_t index = frame_index(zone, frame);
frame = list_get_instance(child, frame_t, buddy_link);
zone = (zone_t *) b->data;
 
index = frame_index(zone, frame);
do {
if (zone->frames[index].buddy_order != order)
if (zone->frames[index].buddy_order != order) {
return &zone->frames[index].buddy_link;
} while (index-- > 0);
}
} while(index-- > 0);
return NULL;
}
 
/** Buddy system find_buddy implementation.
static void zone_buddy_print_id(buddy_system_t *b, link_t *block)
{
frame_t *frame;
zone_t *zone;
index_t index;
 
frame = list_get_instance(block, frame_t, buddy_link);
zone = (zone_t *) b->data;
index = frame_index(zone, frame);
printf("%zd", index);
}
 
/** Buddy system find_buddy implementation
*
* @param buddy Buddy system.
* @param block Block for which buddy should be found.
* @param b Buddy system.
* @param block Block for which buddy should be found
*
* @return Buddy for given block if found.
*
* @return Buddy for given block if found
*/
static link_t *zone_buddy_find_buddy(buddy_system_t *buddy, link_t *block)
static link_t *zone_buddy_find_buddy(buddy_system_t *b, link_t *block)
{
frame_t *frame = list_get_instance(block, frame_t, buddy_link);
zone_t *zone = (zone_t *) buddy->data;
frame_t *frame;
zone_t *zone;
index_t index;
bool is_left, is_right;
 
frame = list_get_instance(block, frame_t, buddy_link);
zone = (zone_t *) b->data;
ASSERT(IS_BUDDY_ORDER_OK(frame_index_abs(zone, frame),
frame->buddy_order));
bool is_left = IS_BUDDY_LEFT_BLOCK_ABS(zone, frame);
index_t index;
is_left = IS_BUDDY_LEFT_BLOCK_ABS(zone, frame);
is_right = IS_BUDDY_RIGHT_BLOCK_ABS(zone, frame);
 
ASSERT(is_left ^ is_right);
if (is_left) {
index = (frame_index(zone, frame)) +
(1 << frame->buddy_order);
} else { /* is_right */
index = (frame_index(zone, frame)) -
(1 << frame->buddy_order);
index = (frame_index(zone, frame)) + (1 << frame->buddy_order);
} else { /* if (is_right) */
index = (frame_index(zone, frame)) - (1 << frame->buddy_order);
}
if (frame_index_valid(zone, index)) {
if ((zone->frames[index].buddy_order == frame->buddy_order) &&
(zone->frames[index].refcount == 0)) {
if (zone->frames[index].buddy_order == frame->buddy_order &&
zone->frames[index].refcount == 0) {
return &zone->frames[index].buddy_link;
}
}
return NULL;
 
return NULL;
}
 
/** Buddy system bisect implementation.
/** Buddy system bisect implementation
*
* @param buddy Buddy system.
* @param block Block to bisect.
* @param b Buddy system.
* @param block Block to bisect
*
* @return Right block.
*
* @return right block
*/
static link_t *zone_buddy_bisect(buddy_system_t *buddy, link_t *block)
{
frame_t *frame_l = list_get_instance(block, frame_t, buddy_link);
frame_t *frame_r = (frame_l + (1 << (frame_l->buddy_order - 1)));
static link_t * zone_buddy_bisect(buddy_system_t *b, link_t *block) {
frame_t *frame_l, *frame_r;
 
frame_l = list_get_instance(block, frame_t, buddy_link);
frame_r = (frame_l + (1 << (frame_l->buddy_order - 1)));
return &frame_r->buddy_link;
}
 
/** Buddy system coalesce implementation.
/** Buddy system coalesce implementation
*
* @param buddy Buddy system.
* @param block_1 First block.
* @param block_2 First block's buddy.
* @param b Buddy system.
* @param block_1 First block
* @param block_2 First block's buddy
*
* @return Coalesced block (actually block that represents lower
* address).
*
* @return Coalesced block (actually block that represents lower address)
*/
static link_t *zone_buddy_coalesce(buddy_system_t *buddy, link_t *block_1,
link_t *block_2)
static link_t *zone_buddy_coalesce(buddy_system_t *b, link_t *block_1,
link_t *block_2)
{
frame_t *frame1 = list_get_instance(block_1, frame_t, buddy_link);
frame_t *frame2 = list_get_instance(block_2, frame_t, buddy_link);
frame_t *frame1, *frame2;
return ((frame1 < frame2) ? block_1 : block_2);
frame1 = list_get_instance(block_1, frame_t, buddy_link);
frame2 = list_get_instance(block_2, frame_t, buddy_link);
return frame1 < frame2 ? block_1 : block_2;
}
 
/** Buddy system set_order implementation.
/** Buddy system set_order implementation
*
* @param buddy Buddy system.
* @param block Buddy system block.
* @param order Order to set.
*
* @param b Buddy system.
* @param block Buddy system block
* @param order Order to set
*/
static void zone_buddy_set_order(buddy_system_t *buddy, link_t *block,
uint8_t order)
{
list_get_instance(block, frame_t, buddy_link)->buddy_order = order;
static void zone_buddy_set_order(buddy_system_t *b, link_t *block,
uint8_t order) {
frame_t *frame;
frame = list_get_instance(block, frame_t, buddy_link);
frame->buddy_order = order;
}
 
/** Buddy system get_order implementation.
/** Buddy system get_order implementation
*
* @param buddy Buddy system.
* @param block Buddy system block.
* @param b Buddy system.
* @param block Buddy system block
*
* @return Order of block.
*
* @return Order of block
*/
static uint8_t zone_buddy_get_order(buddy_system_t *buddy, link_t *block)
{
return list_get_instance(block, frame_t, buddy_link)->buddy_order;
static uint8_t zone_buddy_get_order(buddy_system_t *b, link_t *block) {
frame_t *frame;
frame = list_get_instance(block, frame_t, buddy_link);
return frame->buddy_order;
}
 
/** Buddy system mark_busy implementation.
/** Buddy system mark_busy implementation
*
* @param buddy Buddy system.
* @param block Buddy system block.
* @param b Buddy system
* @param block Buddy system block
*
*/
static void zone_buddy_mark_busy(buddy_system_t *buddy, link_t * block)
{
list_get_instance(block, frame_t, buddy_link)->refcount = 1;
static void zone_buddy_mark_busy(buddy_system_t *b, link_t * block) {
frame_t * frame;
 
frame = list_get_instance(block, frame_t, buddy_link);
frame->refcount = 1;
}
 
/** Buddy system mark_available implementation.
/** Buddy system mark_available implementation
*
* @param buddy Buddy system.
* @param block Buddy system block.
* @param b Buddy system
* @param block Buddy system block
*
*/
static void zone_buddy_mark_available(buddy_system_t *buddy, link_t *block)
{
list_get_instance(block, frame_t, buddy_link)->refcount = 0;
static void zone_buddy_mark_available(buddy_system_t *b, link_t *block) {
frame_t *frame;
frame = list_get_instance(block, frame_t, buddy_link);
frame->refcount = 0;
}
 
static buddy_system_operations_t zone_buddy_system_operations = {
400,7 → 454,8
.get_order = zone_buddy_get_order,
.mark_busy = zone_buddy_mark_busy,
.mark_available = zone_buddy_mark_available,
.find_block = zone_buddy_find_block
.find_block = zone_buddy_find_block,
.print_id = zone_buddy_print_id
};
 
/******************/
407,59 → 462,62
/* Zone functions */
/******************/
 
/** Allocate frame in particular zone.
/** Allocate frame in particular zone
*
* Assume zone is locked and is available for allocation.
* Assume zone is locked
* Panics if allocation is impossible.
*
* @param zone Zone to allocate from.
* @param order Allocate exactly 2^order frames.
*
* @return Frame index in zone.
* @return Frame index in zone
*
*/
static pfn_t zone_frame_alloc(zone_t *zone, uint8_t order)
{
ASSERT(zone_flags_available(zone->flags));
pfn_t v;
link_t *tmp;
frame_t *frame;
 
/* Allocate frames from zone buddy system */
link_t *link = buddy_system_alloc(zone->buddy_system, order);
tmp = buddy_system_alloc(zone->buddy_system, order);
ASSERT(link);
ASSERT(tmp);
/* Update zone information. */
zone->free_count -= (1 << order);
zone->busy_count += (1 << order);
 
/* Frame will be actually a first frame of the block. */
frame_t *frame = list_get_instance(link, frame_t, buddy_link);
frame = list_get_instance(tmp, frame_t, buddy_link);
/* Get frame address */
return make_frame_index(zone, frame);
/* get frame address */
v = make_frame_index(zone, frame);
return v;
}
 
/** Free frame from zone.
/** Free frame from zone
*
* Assume zone is locked and is available for deallocation.
* Assume zone is locked
*
* @param zone Pointer to zone from which the frame is to be freed.
* @param frame_idx Frame index relative to zone.
*
* @param zone Pointer to zone from which the frame is to be freed
* @param frame_idx Frame index relative to zone
*/
static void zone_frame_free(zone_t *zone, index_t frame_idx)
{
ASSERT(zone_flags_available(zone->flags));
frame_t *frame;
uint8_t order;
 
frame = &zone->frames[frame_idx];
frame_t *frame = &zone->frames[frame_idx];
/* Remember frame order */
uint8_t order = frame->buddy_order;
/* remember frame order */
order = frame->buddy_order;
 
ASSERT(frame->refcount);
 
if (!--frame->refcount) {
buddy_system_free(zone->buddy_system, &frame->buddy_link);
/* Update zone information. */
zone->free_count += (1 << order);
zone->busy_count -= (1 << order);
466,643 → 524,521
}
}
 
/** Return frame from zone. */
static frame_t *zone_get_frame(zone_t *zone, index_t frame_idx)
/** Return frame from zone */
static frame_t * zone_get_frame(zone_t *zone, index_t frame_idx)
{
ASSERT(frame_idx < zone->count);
return &zone->frames[frame_idx];
}
 
/** Mark frame in zone unavailable to allocation. */
/** Mark frame in zone unavailable to allocation */
static void zone_mark_unavailable(zone_t *zone, index_t frame_idx)
{
ASSERT(zone_flags_available(zone->flags));
frame_t *frame = zone_get_frame(zone, frame_idx);
frame_t *frame;
link_t *link;
 
frame = zone_get_frame(zone, frame_idx);
if (frame->refcount)
return;
link_t *link __attribute__ ((unused));
link = buddy_system_alloc_block(zone->buddy_system,
&frame->buddy_link);
ASSERT(link);
zone->free_count--;
}
 
/** Merge two zones.
/**
* Join 2 zones
*
* Expect buddy to point to space at least zone_conf_size large.
* Assume z1 & z2 are locked and compatible and zones lock is
* locked.
* Expect zone_t *z to point to space at least zone_conf_size large
*
* @param z1 First zone to merge.
* @param z2 Second zone to merge.
* @param old_z1 Original date of the first zone.
* @param buddy Merged zone buddy.
* Assume z1 & z2 are locked
*
* @param z Target zone structure pointer
* @param z1 Zone to merge
* @param z2 Zone to merge
*/
static void zone_merge_internal(count_t z1, count_t z2, zone_t *old_z1, buddy_system_t *buddy)
static void _zone_merge(zone_t *z, zone_t *z1, zone_t *z2)
{
ASSERT(zone_flags_available(zones.info[z1].flags));
ASSERT(zone_flags_available(zones.info[z2].flags));
ASSERT(zones.info[z1].flags == zones.info[z2].flags);
ASSERT(zones.info[z1].base < zones.info[z2].base);
ASSERT(!overlaps(zones.info[z1].base, zones.info[z1].count,
zones.info[z2].base, zones.info[z2].count));
uint8_t max_order;
unsigned int i;
int z2idx;
pfn_t frame_idx;
frame_t *frame;
 
ASSERT(!overlaps(z1->base, z1->count, z2->base, z2->count));
ASSERT(z1->base < z2->base);
 
spinlock_initialize(&z->lock, "zone_lock");
z->base = z1->base;
z->count = z2->base + z2->count - z1->base;
z->flags = z1->flags & z2->flags;
 
z->free_count = z1->free_count + z2->free_count;
z->busy_count = z1->busy_count + z2->busy_count;
/* Difference between zone bases */
pfn_t base_diff = zones.info[z2].base - zones.info[z1].base;
zones.info[z1].count = base_diff + zones.info[z2].count;
zones.info[z1].free_count += zones.info[z2].free_count;
zones.info[z1].busy_count += zones.info[z2].busy_count;
zones.info[z1].buddy_system = buddy;
uint8_t order = fnzb(zones.info[z1].count);
buddy_system_create(zones.info[z1].buddy_system, order,
&zone_buddy_system_operations, (void *) &zones.info[z1]);
zones.info[z1].frames =
(frame_t *) ((uint8_t *) zones.info[z1].buddy_system
+ buddy_conf_size(order));
/* This marks all frames busy */
count_t i;
for (i = 0; i < zones.info[z1].count; i++)
frame_initialize(&zones.info[z1].frames[i]);
max_order = fnzb(z->count);
 
z->buddy_system = (buddy_system_t *) &z[1];
buddy_system_create(z->buddy_system, max_order,
&zone_buddy_system_operations, (void *) z);
 
z->frames = (frame_t *)((uint8_t *) z->buddy_system +
buddy_conf_size(max_order));
for (i = 0; i < z->count; i++) {
/* This marks all frames busy */
frame_initialize(&z->frames[i]);
}
/* Copy frames from both zones to preserve full frame orders,
* parents etc. Set all free frames with refcount = 0 to 1, because
* we add all free frames to buddy allocator later again, clearing
* order to 0. Don't set busy frames with refcount = 0, as they
* parents etc. Set all free frames with refcount=0 to 1, because
* we add all free frames to buddy allocator later again, clear
* order to 0. Don't set busy frames with refcount=0, as they
* will not be reallocated during merge and it would make later
* problems with allocation/free.
*/
for (i = 0; i < old_z1->count; i++)
zones.info[z1].frames[i] = old_z1->frames[i];
for (i = 0; i < zones.info[z2].count; i++)
zones.info[z1].frames[base_diff + i]
= zones.info[z2].frames[i];
for (i = 0; i < z1->count; i++)
z->frames[i] = z1->frames[i];
for (i = 0; i < z2->count; i++) {
z2idx = i + (z2->base - z1->base);
z->frames[z2idx] = z2->frames[i];
}
i = 0;
while (i < zones.info[z1].count) {
if (zones.info[z1].frames[i].refcount) {
/* Skip busy frames */
i += 1 << zones.info[z1].frames[i].buddy_order;
} else {
/* Free frames, set refcount = 1
* (all free frames have refcount == 0, we need not
* to check the order)
*/
zones.info[z1].frames[i].refcount = 1;
zones.info[z1].frames[i].buddy_order = 0;
while (i < z->count) {
if (z->frames[i].refcount) {
/* skip busy frames */
i += 1 << z->frames[i].buddy_order;
} else { /* Free frames, set refcount=1 */
/* All free frames have refcount=0, we need not
* to check the order */
z->frames[i].refcount = 1;
z->frames[i].buddy_order = 0;
i++;
}
}
/* Add free blocks from the original zone z1 */
while (zone_can_alloc(old_z1, 0)) {
/* Allocate from the original zone */
pfn_t frame_idx = zone_frame_alloc(old_z1, 0);
/* Free the frame from the merged zone */
frame_t *frame = &zones.info[z1].frames[frame_idx];
/* Add free blocks from the 2 original zones */
while (zone_can_alloc(z1, 0)) {
frame_idx = zone_frame_alloc(z1, 0);
frame = &z->frames[frame_idx];
frame->refcount = 0;
buddy_system_free(zones.info[z1].buddy_system, &frame->buddy_link);
buddy_system_free(z->buddy_system, &frame->buddy_link);
}
/* Add free blocks from the original zone z2 */
while (zone_can_alloc(&zones.info[z2], 0)) {
/* Allocate from the original zone */
pfn_t frame_idx = zone_frame_alloc(&zones.info[z2], 0);
/* Free the frame from the merged zone */
frame_t *frame = &zones.info[z1].frames[base_diff + frame_idx];
while (zone_can_alloc(z2, 0)) {
frame_idx = zone_frame_alloc(z2, 0);
frame = &z->frames[frame_idx + (z2->base - z1->base)];
frame->refcount = 0;
buddy_system_free(zones.info[z1].buddy_system, &frame->buddy_link);
buddy_system_free(z->buddy_system, &frame->buddy_link);
}
}
 
/** Return old configuration frames into the zone.
/** Return old configuration frames into the zone
*
* We have two cases:
* - The configuration data is outside the zone
* -> do nothing (perhaps call frame_free?)
* - The configuration data was created by zone_create
* or updated by reduce_region -> free every frame
* We have several cases
* - the conf. data is outside of zone -> exit, shall we call frame_free??
* - the conf. data was created by zone_create or
* updated with reduce_region -> free every frame
*
* @param znum The actual zone where freeing should occur.
* @param pfn Old zone configuration frame.
* @param count Old zone frame count.
*
* @param newzone The actual zone where freeing should occur
* @param oldzone Pointer to old zone configuration data that should
* be freed from new zone
*/
static void return_config_frames(count_t znum, pfn_t pfn, count_t count)
static void return_config_frames(zone_t *newzone, zone_t *oldzone)
{
ASSERT(zone_flags_available(zones.info[znum].flags));
pfn_t pfn;
frame_t *frame;
count_t cframes;
unsigned int i;
 
pfn = ADDR2PFN((uintptr_t)KA2PA(oldzone));
cframes = SIZE2FRAMES(zone_conf_size(oldzone->count));
count_t cframes = SIZE2FRAMES(zone_conf_size(count));
if ((pfn < zones.info[znum].base)
|| (pfn >= zones.info[znum].base + zones.info[znum].count))
if (pfn < newzone->base || pfn >= newzone->base + newzone->count)
return;
frame_t *frame __attribute__ ((unused));
 
frame = &zones.info[znum].frames[pfn - zones.info[znum].base];
frame = &newzone->frames[pfn - newzone->base];
ASSERT(!frame->buddy_order);
count_t i;
 
for (i = 0; i < cframes; i++) {
zones.info[znum].busy_count++;
zone_frame_free(&zones.info[znum],
pfn - zones.info[znum].base + i);
newzone->busy_count++;
zone_frame_free(newzone, pfn+i-newzone->base);
}
}
 
/** Reduce allocated block to count of order 0 frames.
/** Reduce allocated block to count of order 0 frames
*
* The allocated block needs 2^order frames. Reduce all frames
* in the block to order 0 and free the unneeded frames. This means that
* when freeing the previously allocated block starting with frame_idx,
* The allocated block need 2^order frames of space. Reduce all frames
* in block to order 0 and free the unneeded frames. This means, that
* when freeing the previously allocated block starting with frame_idx,
* you have to free every frame.
*
* @param znum Zone.
* @param frame_idx Index the first frame of the block.
* @param count Allocated frames in block.
*
* @param zone
* @param frame_idx Index to block
* @param count Allocated space in block
*/
static void zone_reduce_region(count_t znum, pfn_t frame_idx, count_t count)
static void zone_reduce_region(zone_t *zone, pfn_t frame_idx, count_t count)
{
ASSERT(zone_flags_available(zones.info[znum].flags));
ASSERT(frame_idx + count < zones.info[znum].count);
count_t i;
uint8_t order;
frame_t *frame;
uint8_t order = zones.info[znum].frames[frame_idx].buddy_order;
ASSERT(frame_idx + count < zone->count);
 
order = zone->frames[frame_idx].buddy_order;
ASSERT((count_t) (1 << order) >= count);
 
/* Reduce all blocks to order 0 */
count_t i;
for (i = 0; i < (count_t) (1 << order); i++) {
frame_t *frame = &zones.info[znum].frames[i + frame_idx];
frame = &zone->frames[i + frame_idx];
frame->buddy_order = 0;
if (!frame->refcount)
frame->refcount = 1;
ASSERT(frame->refcount == 1);
}
/* Free unneeded frames */
for (i = count; i < (count_t) (1 << order); i++)
zone_frame_free(&zones.info[znum], i + frame_idx);
for (i = count; i < (count_t) (1 << order); i++) {
zone_frame_free(zone, i + frame_idx);
}
}
 
/** Merge zones z1 and z2.
/** Merge zones z1 and z2
*
* The merged zones must be 2 zones with no zone existing in between
* (which means that z2 = z1 + 1). Both zones must be available zones
* with the same flags.
* - the zones must be 2 zones with no zone existing in between,
* which means that z2 = z1+1
*
* When you create a new zone, the frame allocator configuration does
* not to be 2^order size. Once the allocator is running it is no longer
* possible, merged configuration data occupies more space :-/
*
* The function uses
*
* - When you create a new zone, the frame allocator configuration does
* not to be 2^order size. Once the allocator is running it is no longer
* possible, merged configuration data occupies more space :-/
*/
bool zone_merge(count_t z1, count_t z2)
void zone_merge(unsigned int z1, unsigned int z2)
{
ipl_t ipl = interrupts_disable();
ipl_t ipl;
zone_t *zone1, *zone2, *newzone;
unsigned int cframes;
uint8_t order;
unsigned int i;
pfn_t pfn;
 
ipl = interrupts_disable();
spinlock_lock(&zones.lock);
bool ret = true;
/* We can join only 2 zones with none existing inbetween,
* the zones have to be available and with the same
* set of flags
*/
if ((z1 >= zones.count) || (z2 >= zones.count)
|| (z2 - z1 != 1)
|| (!zone_flags_available(zones.info[z1].flags))
|| (!zone_flags_available(zones.info[z2].flags))
|| (zones.info[z1].flags != zones.info[z2].flags)) {
ret = false;
 
if ((z1 >= zones.count) || (z2 >= zones.count))
goto errout;
}
pfn_t cframes = SIZE2FRAMES(zone_conf_size(
zones.info[z2].base - zones.info[z1].base
+ zones.info[z2].count));
uint8_t order;
/* We can join only 2 zones with none existing inbetween */
if (z2-z1 != 1)
goto errout;
 
zone1 = zones.info[z1];
zone2 = zones.info[z2];
spinlock_lock(&zone1->lock);
spinlock_lock(&zone2->lock);
 
cframes = SIZE2FRAMES(zone_conf_size(zone2->base + zone2->count -
zone1->base));
if (cframes == 1)
order = 0;
else
order = fnzb(cframes - 1) + 1;
 
/* Allocate zonedata inside one of the zones */
if (zone_can_alloc(zone1, order))
pfn = zone1->base + zone_frame_alloc(zone1, order);
else if (zone_can_alloc(zone2, order))
pfn = zone2->base + zone_frame_alloc(zone2, order);
else
order = fnzb(cframes - 1) + 1;
/* Allocate merged zone data inside one of the zones */
pfn_t pfn;
if (zone_can_alloc(&zones.info[z1], order)) {
pfn = zones.info[z1].base + zone_frame_alloc(&zones.info[z1], order);
} else if (zone_can_alloc(&zones.info[z2], order)) {
pfn = zones.info[z2].base + zone_frame_alloc(&zones.info[z2], order);
} else {
ret = false;
goto errout;
}
/* Preserve original data from z1 */
zone_t old_z1 = zones.info[z1];
old_z1.buddy_system->data = (void *) &old_z1;
/* Do zone merging */
buddy_system_t *buddy = (buddy_system_t *) PA2KA(PFN2ADDR(pfn));
zone_merge_internal(z1, z2, &old_z1, buddy);
goto errout2;
 
newzone = (zone_t *) PA2KA(PFN2ADDR(pfn));
 
_zone_merge(newzone, zone1, zone2);
 
/* Free unneeded config frames */
zone_reduce_region(z1, pfn - zones.info[z1].base, cframes);
zone_reduce_region(newzone, pfn - newzone->base, cframes);
/* Subtract zone information from busy frames */
zones.info[z1].busy_count -= cframes;
/* Free old zone information */
return_config_frames(z1,
ADDR2PFN(KA2PA((uintptr_t) old_z1.frames)), old_z1.count);
return_config_frames(z1,
ADDR2PFN(KA2PA((uintptr_t) zones.info[z2].frames)),
zones.info[z2].count);
/* Move zones down */
count_t i;
for (i = z2 + 1; i < zones.count; i++) {
newzone->busy_count -= cframes;
 
/* Replace existing zones in zoneinfo list */
zones.info[z1] = newzone;
for (i = z2 + 1; i < zones.count; i++)
zones.info[i - 1] = zones.info[i];
zones.info[i - 1].buddy_system->data =
(void *) &zones.info[i - 1];
}
zones.count--;
 
/* Free old zone information */
return_config_frames(newzone, zone1);
return_config_frames(newzone, zone2);
errout2:
/* Nobody is allowed to enter to zone, so we are safe
* to touch the spinlocks last time */
spinlock_unlock(&zone1->lock);
spinlock_unlock(&zone2->lock);
errout:
spinlock_unlock(&zones.lock);
interrupts_restore(ipl);
return ret;
}
 
/** Merge all mergeable zones into one big zone.
/**
* Merge all zones into one big zone
*
* It is reasonable to do this on systems where
* BIOS reports parts in chunks, so that we could
* have 1 zone (it's faster).
*
* It is reasonable to do this on systems whose bios reports parts in chunks,
* so that we could have 1 zone (it's faster).
*/
void zone_merge_all(void)
{
count_t i = 0;
while (i < zones.count) {
if (!zone_merge(i, i + 1))
i++;
int count = zones.count;
 
while (zones.count > 1 && --count) {
zone_merge(0,1);
break;
}
}
 
/** Create new frame zone.
/** Create frame zone
*
* @param zone Zone to construct.
* @param buddy Address of buddy system configuration information.
* Create new frame zone.
*
* @param start Physical address of the first frame within the zone.
* @param count Count of frames in zone.
* @param count Count of frames in zone
* @param z Address of configuration information of zone
* @param flags Zone flags.
*
* @return Initialized zone.
*
*/
static void zone_construct(zone_t *zone, buddy_system_t *buddy, pfn_t start, count_t count, zone_flags_t flags)
static void zone_construct(pfn_t start, count_t count, zone_t *z, int flags)
{
zone->base = start;
zone->count = count;
zone->flags = flags;
zone->free_count = count;
zone->busy_count = 0;
zone->buddy_system = buddy;
unsigned int i;
uint8_t max_order;
 
spinlock_initialize(&z->lock, "zone_lock");
z->base = start;
z->count = count;
z->flags = flags;
z->free_count = count;
z->busy_count = 0;
 
/*
* Compute order for buddy system, initialize
*/
max_order = fnzb(count);
z->buddy_system = (buddy_system_t *)&z[1];
if (zone_flags_available(flags)) {
/*
* Compute order for buddy system and initialize
*/
uint8_t order = fnzb(count);
buddy_system_create(zone->buddy_system, order,
&zone_buddy_system_operations, (void *) zone);
/* Allocate frames _after_ the confframe */
/* Check sizes */
zone->frames = (frame_t *) ((uint8_t *) zone->buddy_system +
buddy_conf_size(order));
count_t i;
for (i = 0; i < count; i++)
frame_initialize(&zone->frames[i]);
/* Stuffing frames */
for (i = 0; i < count; i++) {
zone->frames[i].refcount = 0;
buddy_system_free(zone->buddy_system, &zone->frames[i].buddy_link);
}
} else
zone->frames = NULL;
buddy_system_create(z->buddy_system, max_order,
&zone_buddy_system_operations,
(void *) z);
/* Allocate frames _after_ the conframe */
/* Check sizes */
z->frames = (frame_t *)((uint8_t *) z->buddy_system +
buddy_conf_size(max_order));
for (i = 0; i < count; i++) {
frame_initialize(&z->frames[i]);
}
/* Stuffing frames */
for (i = 0; i < count; i++) {
z->frames[i].refcount = 0;
buddy_system_free(z->buddy_system, &z->frames[i].buddy_link);
}
}
 
/** Compute configuration data size for zone.
/** Compute configuration data size for zone
*
* @param count Size of zone in frames.
*
* @return Size of zone configuration info (in bytes).
*
* @param count Size of zone in frames
* @return Size of zone configuration info (in bytes)
*/
uintptr_t zone_conf_size(count_t count)
{
return (count * sizeof(frame_t) + buddy_conf_size(fnzb(count)));
int size = sizeof(zone_t) + count*sizeof(frame_t);
int max_order;
 
max_order = fnzb(count);
size += buddy_conf_size(max_order);
return size;
}
 
/** Create and add zone to system.
/** Create and add zone to system
*
* @param start First frame number (absolute).
* @param count Size of zone in frames.
* @param start First frame number (absolute)
* @param count Size of zone in frames
* @param confframe Where configuration frames are supposed to be.
* Automatically checks, that we will not disturb the
* kernel and possibly init. If confframe is given
* _outside_ this zone, it is expected, that the area is
* already marked BUSY and big enough to contain
* zone_conf_size() amount of data. If the confframe is
* inside the area, the zone free frame information is
* modified not to include it.
* Automatically checks, that we will not disturb the
* kernel and possibly init.
* If confframe is given _outside_ this zone, it is expected,
* that the area is already marked BUSY and big enough
* to contain zone_conf_size() amount of data.
* If the confframe is inside the area, the zone free frame
* information is modified not to include it.
*
* @return Zone number or -1 on error.
*
* @return Zone number or -1 on error
*/
count_t zone_create(pfn_t start, count_t count, pfn_t confframe, zone_flags_t flags)
int zone_create(pfn_t start, count_t count, pfn_t confframe, int flags)
{
ipl_t ipl = interrupts_disable();
spinlock_lock(&zones.lock);
if (zone_flags_available(flags)) { /* Create available zone */
/* Theoretically we could have NULL here, practically make sure
* nobody tries to do that. If some platform requires, remove
* the assert
*/
ASSERT(confframe != NULL);
/* If confframe is supposed to be inside our zone, then make sure
* it does not span kernel & init
*/
count_t confcount = SIZE2FRAMES(zone_conf_size(count));
if ((confframe >= start) && (confframe < start + count)) {
for (; confframe < start + count; confframe++) {
uintptr_t addr = PFN2ADDR(confframe);
zone_t *z;
uintptr_t addr;
count_t confcount;
unsigned int i;
int znum;
 
/* Theoretically we could have here 0, practically make sure
* nobody tries to do that. If some platform requires, remove
* the assert
*/
ASSERT(confframe);
/* If conframe is supposed to be inside our zone, then make sure
* it does not span kernel & init
*/
confcount = SIZE2FRAMES(zone_conf_size(count));
if (confframe >= start && confframe < start+count) {
for (;confframe < start + count; confframe++) {
addr = PFN2ADDR(confframe);
if (overlaps(addr, PFN2ADDR(confcount),
KA2PA(config.base), config.kernel_size))
continue;
if (overlaps(addr, PFN2ADDR(confcount),
KA2PA(config.stack_base), config.stack_size))
continue;
bool overlap = false;
count_t i;
for (i = 0; i < init.cnt; i++)
if (overlaps(addr, PFN2ADDR(confcount),
KA2PA(config.base), config.kernel_size))
continue;
if (overlaps(addr, PFN2ADDR(confcount),
KA2PA(config.stack_base), config.stack_size))
continue;
bool overlap = false;
count_t i;
for (i = 0; i < init.cnt; i++)
if (overlaps(addr, PFN2ADDR(confcount),
KA2PA(init.tasks[i].addr),
init.tasks[i].size)) {
overlap = true;
break;
}
if (overlap)
continue;
break;
}
KA2PA(init.tasks[i].addr),
init.tasks[i].size)) {
overlap = true;
break;
}
if (overlap)
continue;
if (confframe >= start + count)
panic("Cannot find configuration data for zone.");
break;
}
count_t znum = zones_insert_zone(start, count);
if (znum == (count_t) -1) {
spinlock_unlock(&zones.lock);
interrupts_restore(ipl);
return (count_t) -1;
if (confframe >= start + count)
panic("Cannot find configuration data for zone.");
}
 
z = (zone_t *) PA2KA(PFN2ADDR(confframe));
zone_construct(start, count, z, flags);
znum = zones_add_zone(z);
if (znum == -1)
return -1;
 
/* If confdata in zone, mark as unavailable */
if (confframe >= start && confframe < start + count)
for (i = confframe; i < confframe + confcount; i++) {
zone_mark_unavailable(z, i - z->base);
}
buddy_system_t *buddy = (buddy_system_t *) PA2KA(PFN2ADDR(confframe));
zone_construct(&zones.info[znum], buddy, start, count, flags);
/* If confdata in zone, mark as unavailable */
if ((confframe >= start) && (confframe < start + count)) {
count_t i;
for (i = confframe; i < confframe + confcount; i++)
zone_mark_unavailable(&zones.info[znum],
i - zones.info[znum].base);
}
spinlock_unlock(&zones.lock);
interrupts_restore(ipl);
return znum;
}
/* Non-available zone */
count_t znum = zones_insert_zone(start, count);
if (znum == (count_t) -1) {
spinlock_unlock(&zones.lock);
interrupts_restore(ipl);
return (count_t) -1;
}
zone_construct(&zones.info[znum], NULL, start, count, flags);
spinlock_unlock(&zones.lock);
interrupts_restore(ipl);
return znum;
}
 
/*******************/
/***************************************/
/* Frame functions */
/*******************/
 
/** Set parent of frame. */
void frame_set_parent(pfn_t pfn, void *data, count_t hint)
/** Set parent of frame */
void frame_set_parent(pfn_t pfn, void *data, unsigned int hint)
{
ipl_t ipl = interrupts_disable();
spinlock_lock(&zones.lock);
count_t znum = find_zone(pfn, 1, hint);
ASSERT(znum != (count_t) -1);
zone_get_frame(&zones.info[znum],
pfn - zones.info[znum].base)->parent = data;
spinlock_unlock(&zones.lock);
interrupts_restore(ipl);
zone_t *zone = find_zone_and_lock(pfn, &hint);
 
ASSERT(zone);
 
zone_get_frame(zone, pfn-zone->base)->parent = data;
spinlock_unlock(&zone->lock);
}
 
void *frame_get_parent(pfn_t pfn, count_t hint)
void *frame_get_parent(pfn_t pfn, unsigned int hint)
{
ipl_t ipl = interrupts_disable();
spinlock_lock(&zones.lock);
zone_t *zone = find_zone_and_lock(pfn, &hint);
void *res;
 
ASSERT(zone);
res = zone_get_frame(zone, pfn - zone->base)->parent;
count_t znum = find_zone(pfn, 1, hint);
ASSERT(znum != (count_t) -1);
void *res = zone_get_frame(&zones.info[znum],
pfn - zones.info[znum].base)->parent;
spinlock_unlock(&zones.lock);
interrupts_restore(ipl);
spinlock_unlock(&zone->lock);
return res;
}
 
/** Allocate power-of-two frames of physical memory.
*
* @param order Allocate exactly 2^order frames.
* @param flags Flags for host zone selection and address processing.
* @param pzone Preferred zone.
* @param order Allocate exactly 2^order frames.
* @param flags Flags for host zone selection and address processing.
* @param pzone Preferred zone
*
* @return Physical address of the allocated frame.
*
*/
void *frame_alloc_generic(uint8_t order, frame_flags_t flags, count_t *pzone)
void * frame_alloc_generic(uint8_t order, int flags, unsigned int *pzone)
{
count_t size = ((count_t) 1) << order;
ipl_t ipl;
count_t hint = pzone ? (*pzone) : 0;
int freed;
pfn_t v;
zone_t *zone;
loop:
ipl = interrupts_disable();
spinlock_lock(&zones.lock);
/*
* First, find suitable frame zone.
*/
count_t znum = find_free_zone(order,
FRAME_TO_ZONE_FLAGS(flags), hint);
zone = find_free_zone_and_lock(order, pzone);
/* If no memory, reclaim some slab memory,
if it does not help, reclaim all */
if ((znum == (count_t) -1) && (!(flags & FRAME_NO_RECLAIM))) {
count_t freed = slab_reclaim(0);
if (freed > 0)
znum = find_free_zone(order,
FRAME_TO_ZONE_FLAGS(flags), hint);
if (znum == (count_t) -1) {
if (!zone && !(flags & FRAME_NO_RECLAIM)) {
freed = slab_reclaim(0);
if (freed)
zone = find_free_zone_and_lock(order, pzone);
if (!zone) {
freed = slab_reclaim(SLAB_RECLAIM_ALL);
if (freed > 0)
znum = find_free_zone(order,
FRAME_TO_ZONE_FLAGS(flags), hint);
if (freed)
zone = find_free_zone_and_lock(order, pzone);
}
}
if (znum == (count_t) -1) {
if (flags & FRAME_ATOMIC) {
spinlock_unlock(&zones.lock);
interrupts_restore(ipl);
return NULL;
}
#ifdef CONFIG_DEBUG
count_t avail = total_frames_free();
#endif
spinlock_unlock(&zones.lock);
interrupts_restore(ipl);
if (!zone) {
/*
* Sleep until some frames are available again.
* TODO: Sleep until frames are available again.
*/
interrupts_restore(ipl);
 
if (flags & FRAME_ATOMIC)
return 0;
#ifdef CONFIG_DEBUG
printf("Thread %" PRIu64 " waiting for %" PRIc " frames, "
"%" PRIc " available.\n", THREAD->tid, size, avail);
#endif
mutex_lock(&mem_avail_mtx);
if (mem_avail_req > 0)
mem_avail_req = min(mem_avail_req, size);
else
mem_avail_req = size;
count_t gen = mem_avail_gen;
while (gen == mem_avail_gen)
condvar_wait(&mem_avail_cv, &mem_avail_mtx);
mutex_unlock(&mem_avail_mtx);
#ifdef CONFIG_DEBUG
printf("Thread %" PRIu64 " woken up.\n", THREAD->tid);
#endif
panic("Sleep not implemented.\n");
goto loop;
}
pfn_t pfn = zone_frame_alloc(&zones.info[znum], order)
+ zones.info[znum].base;
spinlock_unlock(&zones.lock);
v = zone_frame_alloc(zone, order);
v += zone->base;
 
spinlock_unlock(&zone->lock);
interrupts_restore(ipl);
if (pzone)
*pzone = znum;
 
if (flags & FRAME_KA)
return (void *) PA2KA(PFN2ADDR(pfn));
return (void *) PFN2ADDR(pfn);
return (void *)PA2KA(PFN2ADDR(v));
return (void *)PFN2ADDR(v);
}
 
/** Free a frame.
*
* Find respective frame structure for supplied physical frame address.
* Decrement frame reference count. If it drops to zero, move the frame
* structure to free list.
* Decrement frame reference count.
* If it drops to zero, move the frame structure to free list.
*
* @param frame Physical Address of of the frame to be freed.
*
* @param Frame Physical Address of of the frame to be freed.
*/
void frame_free(uintptr_t frame)
{
ipl_t ipl = interrupts_disable();
spinlock_lock(&zones.lock);
ipl_t ipl;
zone_t *zone;
pfn_t pfn = ADDR2PFN(frame);
 
ipl = interrupts_disable();
/*
* First, find host frame zone for addr.
*/
pfn_t pfn = ADDR2PFN(frame);
count_t znum = find_zone(pfn, 1, NULL);
zone = find_zone_and_lock(pfn,NULL);
ASSERT(zone);
ASSERT(znum != (count_t) -1);
zone_frame_free(zone, pfn-zone->base);
zone_frame_free(&zones.info[znum], pfn - zones.info[znum].base);
spinlock_unlock(&zones.lock);
spinlock_unlock(&zone->lock);
interrupts_restore(ipl);
/*
* Signal that some memory has been freed.
*/
mutex_lock(&mem_avail_mtx);
if (mem_avail_req > 0)
mem_avail_req--;
if (mem_avail_req == 0) {
mem_avail_gen++;
condvar_broadcast(&mem_avail_cv);
}
mutex_unlock(&mem_avail_mtx);
}
 
/** Add reference to frame.
1111,56 → 1047,55
* increment frame reference count.
*
* @param pfn Frame number of the frame to be freed.
*
*/
void frame_reference_add(pfn_t pfn)
{
ipl_t ipl = interrupts_disable();
spinlock_lock(&zones.lock);
ipl_t ipl;
zone_t *zone;
frame_t *frame;
 
ipl = interrupts_disable();
/*
* First, find host frame zone for addr.
*/
count_t znum = find_zone(pfn, 1, NULL);
zone = find_zone_and_lock(pfn,NULL);
ASSERT(zone);
ASSERT(znum != (count_t) -1);
frame = &zone->frames[pfn-zone->base];
frame->refcount++;
zones.info[znum].frames[pfn - zones.info[znum].base].refcount++;
spinlock_unlock(&zones.lock);
spinlock_unlock(&zone->lock);
interrupts_restore(ipl);
}
 
/** Mark given range unavailable in frame zones. */
/** Mark given range unavailable in frame zones */
void frame_mark_unavailable(pfn_t start, count_t count)
{
ipl_t ipl = interrupts_disable();
spinlock_lock(&zones.lock);
unsigned int i;
zone_t *zone;
unsigned int prefzone = 0;
count_t i;
for (i = 0; i < count; i++) {
count_t znum = find_zone(start + i, 1, 0);
if (znum == (count_t) -1) /* PFN not found */
zone = find_zone_and_lock(start + i, &prefzone);
if (!zone) /* PFN not found */
continue;
zone_mark_unavailable(&zones.info[znum],
start + i - zones.info[znum].base);
zone_mark_unavailable(zone, start + i - zone->base);
 
spinlock_unlock(&zone->lock);
}
spinlock_unlock(&zones.lock);
interrupts_restore(ipl);
}
 
/** Initialize physical memory management. */
/** Initialize physical memory management
*
* Initialize physical memory managemnt.
*/
void frame_init(void)
{
if (config.cpu_active == 1) {
zones.count = 0;
spinlock_initialize(&zones.lock, "zones.lock");
mutex_initialize(&mem_avail_mtx, MUTEX_ACTIVE);
condvar_initialize(&mem_avail_cv);
}
/* Tell the architecture to create some memory */
frame_arch_init();
if (config.cpu_active == 1) {
1175,28 → 1110,36
frame_mark_unavailable(pfn,
SIZE2FRAMES(init.tasks[i].size));
}
 
if (ballocs.size)
frame_mark_unavailable(ADDR2PFN(KA2PA(ballocs.base)),
SIZE2FRAMES(ballocs.size));
 
/* Black list first frame, as allocating NULL would
* fail in some places
*/
* fail in some places */
frame_mark_unavailable(0, 1);
}
}
 
/** Return total size of all zones. */
uint64_t zone_total_size(void)
{
ipl_t ipl = interrupts_disable();
 
/** Return total size of all zones
*
*/
uint64_t zone_total_size(void) {
zone_t *zone = NULL;
unsigned int i;
ipl_t ipl;
uint64_t total = 0;
 
ipl = interrupts_disable();
spinlock_lock(&zones.lock);
uint64_t total = 0;
count_t i;
for (i = 0; i < zones.count; i++)
total += (uint64_t) FRAMES2SIZE(zones.info[i].count);
for (i = 0; i < zones.count; i++) {
zone = zones.info[i];
spinlock_lock(&zone->lock);
total += (uint64_t) FRAMES2SIZE(zone->count);
spinlock_unlock(&zone->lock);
}
spinlock_unlock(&zones.lock);
interrupts_restore(ipl);
1204,128 → 1147,86
return total;
}
 
/** Prints list of zones. */
void zone_print_list(void)
{
#ifdef __32_BITS__
printf("# base address frames flags free frames busy frames\n");
printf("-- ------------ ------------ -------- ------------ ------------\n");
#endif
 
#ifdef __64_BITS__
printf("# base address frames flags free frames busy frames\n");
printf("-- -------------------- ------------ -------- ------------ ------------\n");
#endif
 
/** Prints list of zones
*
*/
void zone_print_list(void) {
zone_t *zone = NULL;
unsigned int i;
ipl_t ipl;
 
ipl = interrupts_disable();
spinlock_lock(&zones.lock);
/*
* Because printing may require allocation of memory, we may not hold
* the frame allocator locks when printing zone statistics. Therefore,
* we simply gather the statistics under the protection of the locks and
* print the statistics when the locks have been released.
*
* When someone adds/removes zones while we are printing the statistics,
* we may end up with inaccurate output (e.g. a zone being skipped from
* the listing).
*/
if (sizeof(void *) == 4) {
printf("# base address free frames busy frames\n");
printf("-- ------------ ------------ ------------\n");
} else {
printf("# base address free frames busy frames\n");
printf("-- -------------------- ------------ ------------\n");
}
count_t i;
for (i = 0;; i++) {
ipl_t ipl = interrupts_disable();
spinlock_lock(&zones.lock);
for (i = 0; i < zones.count; i++) {
zone = zones.info[i];
spinlock_lock(&zone->lock);
if (i >= zones.count) {
spinlock_unlock(&zones.lock);
interrupts_restore(ipl);
break;
}
if (sizeof(void *) == 4)
printf("%-2d %#10zx %12zd %12zd\n", i, PFN2ADDR(zone->base),
zone->free_count, zone->busy_count);
else
printf("%-2d %#18zx %12zd %12zd\n", i, PFN2ADDR(zone->base),
zone->free_count, zone->busy_count);
uintptr_t base = PFN2ADDR(zones.info[i].base);
count_t count = zones.info[i].count;
zone_flags_t flags = zones.info[i].flags;
count_t free_count = zones.info[i].free_count;
count_t busy_count = zones.info[i].busy_count;
spinlock_unlock(&zones.lock);
interrupts_restore(ipl);
bool available = zone_flags_available(flags);
printf("%-2" PRIc, i);
#ifdef __32_BITS__
printf(" %10p", base);
#endif
#ifdef __64_BITS__
printf(" %18p", base);
#endif
printf(" %12" PRIc " %c%c%c ", count,
available ? 'A' : ' ',
(flags & ZONE_RESERVED) ? 'R' : ' ',
(flags & ZONE_FIRMWARE) ? 'F' : ' ');
if (available)
printf("%12" PRIc " %12" PRIc,
free_count, busy_count);
printf("\n");
spinlock_unlock(&zone->lock);
}
spinlock_unlock(&zones.lock);
interrupts_restore(ipl);
}
 
/** Prints zone details.
*
* @param num Zone base address or zone number.
*
*/
void zone_print_one(count_t num)
{
ipl_t ipl = interrupts_disable();
void zone_print_one(unsigned int num) {
zone_t *zone = NULL;
ipl_t ipl;
unsigned int i;
 
ipl = interrupts_disable();
spinlock_lock(&zones.lock);
count_t znum = (count_t) -1;
count_t i;
 
for (i = 0; i < zones.count; i++) {
if ((i == num) || (PFN2ADDR(zones.info[i].base) == num)) {
znum = i;
if ((i == num) || (PFN2ADDR(zones.info[i]->base) == num)) {
zone = zones.info[i];
break;
}
}
if (znum == (count_t) -1) {
spinlock_unlock(&zones.lock);
interrupts_restore(ipl);
if (!zone) {
printf("Zone not found.\n");
return;
goto out;
}
uintptr_t base = PFN2ADDR(zones.info[i].base);
zone_flags_t flags = zones.info[i].flags;
count_t count = zones.info[i].count;
count_t free_count = zones.info[i].free_count;
count_t busy_count = zones.info[i].busy_count;
spinlock_lock(&zone->lock);
printf("Memory zone information\n");
printf("Zone base address: %#.*p\n", sizeof(uintptr_t) * 2,
PFN2ADDR(zone->base));
printf("Zone size: %zd frames (%zd KB)\n", zone->count,
SIZE2KB(FRAMES2SIZE(zone->count)));
printf("Allocated space: %zd frames (%zd KB)\n", zone->busy_count,
SIZE2KB(FRAMES2SIZE(zone->busy_count)));
printf("Available space: %zd frames (%zd KB)\n", zone->free_count,
SIZE2KB(FRAMES2SIZE(zone->free_count)));
buddy_system_structure_print(zone->buddy_system, FRAME_SIZE);
spinlock_unlock(&zone->lock);
out:
spinlock_unlock(&zones.lock);
interrupts_restore(ipl);
bool available = zone_flags_available(flags);
printf("Zone number: %" PRIc "\n", znum);
printf("Zone base address: %p\n", base);
printf("Zone size: %" PRIc " frames (%" PRIs " KiB)\n", count,
SIZE2KB(FRAMES2SIZE(count)));
printf("Zone flags: %c%c%c\n",
available ? 'A' : ' ',
(flags & ZONE_RESERVED) ? 'R' : ' ',
(flags & ZONE_FIRMWARE) ? 'F' : ' ');
if (available) {
printf("Allocated space: %" PRIc " frames (%" PRIs " KiB)\n",
busy_count, SIZE2KB(FRAMES2SIZE(busy_count)));
printf("Available space: %" PRIc " frames (%" PRIs " KiB)\n",
free_count, SIZE2KB(FRAMES2SIZE(free_count)));
}
}
 
/** @}
*/
 
/branches/dd/kernel/generic/src/mm/page.c
40,28 → 40,11
* They however, define the single interface.
*/
 
/*
* Note on memory prefetching and updating memory mappings, also described in:
* AMD x86-64 Architecture Programmer's Manual, Volume 2, System Programming,
* 7.2.1 Special Coherency Considerations.
*
* The processor which modifies a page table mapping can access prefetched data
* from the old mapping. In order to prevent this, we place a memory barrier
* after a mapping is updated.
*
* We assume that the other processors are either not using the mapping yet
* (i.e. during the bootstrap) or are executing the TLB shootdown code. While
* we don't care much about the former case, the processors in the latter case
* will do an implicit serialization by virtue of running the TLB shootdown
* interrupt handler.
*/
 
#include <mm/page.h>
#include <arch/mm/page.h>
#include <arch/mm/asid.h>
#include <mm/as.h>
#include <mm/frame.h>
#include <arch/barrier.h>
#include <arch/types.h>
#include <arch/asm.h>
#include <memstr.h>
82,8 → 65,8
* considering possible crossings
* of page boundaries.
*
* @param s Address of the structure.
* @param size Size of the structure.
* @param s Address of the structure.
* @param size Size of the structure.
*/
void map_structure(uintptr_t s, size_t size)
{
93,11 → 76,8
cnt = length / PAGE_SIZE + (length % PAGE_SIZE > 0);
 
for (i = 0; i < cnt; i++)
page_mapping_insert(AS_KERNEL, s + i * PAGE_SIZE,
s + i * PAGE_SIZE, PAGE_NOT_CACHEABLE | PAGE_WRITE);
page_mapping_insert(AS_KERNEL, s + i * PAGE_SIZE, s + i * PAGE_SIZE, PAGE_NOT_CACHEABLE | PAGE_WRITE);
 
/* Repel prefetched accesses to the old mapping. */
memory_barrier();
}
 
/** Insert mapping of page to frame.
107,11 → 87,10
*
* The page table must be locked and interrupts must be disabled.
*
* @param as Address space to wich page belongs.
* @param page Virtual address of the page to be mapped.
* @param frame Physical address of memory frame to which the mapping is
* done.
* @param flags Flags to be used for mapping.
* @param as Address space to wich page belongs.
* @param page Virtual address of the page to be mapped.
* @param frame Physical address of memory frame to which the mapping is done.
* @param flags Flags to be used for mapping.
*/
void page_mapping_insert(as_t *as, uintptr_t page, uintptr_t frame, int flags)
{
119,9 → 98,6
ASSERT(page_mapping_operations->mapping_insert);
page_mapping_operations->mapping_insert(as, page, frame, flags);
/* Repel prefetched accesses to the old mapping. */
memory_barrier();
}
 
/** Remove mapping of page.
132,8 → 108,8
*
* The page table must be locked and interrupts must be disabled.
*
* @param as Address space to wich page belongs.
* @param page Virtual address of the page to be demapped.
* @param as Address space to wich page belongs.
* @param page Virtual address of the page to be demapped.
*/
void page_mapping_remove(as_t *as, uintptr_t page)
{
141,9 → 117,6
ASSERT(page_mapping_operations->mapping_remove);
page_mapping_operations->mapping_remove(as, page);
 
/* Repel prefetched accesses to the old mapping. */
memory_barrier();
}
 
/** Find mapping for virtual page
152,11 → 125,10
*
* The page table must be locked and interrupts must be disabled.
*
* @param as Address space to wich page belongs.
* @param page Virtual page.
* @param as Address space to wich page belongs.
* @param page Virtual page.
*
* @return NULL if there is no such mapping; requested mapping
* otherwise.
* @return NULL if there is no such mapping; requested mapping otherwise.
*/
pte_t *page_mapping_find(as_t *as, uintptr_t page)
{
/branches/dd/kernel/generic/src/mm/backend_phys.c
77,7 → 77,7
page_mapping_insert(AS, addr, base + (addr - area->base),
as_area_get_flags(area));
if (!used_space_insert(area, ALIGN_DOWN(addr, PAGE_SIZE), 1))
panic("Cannot insert used space.");
panic("Could not insert used space.\n");
 
return AS_PF_OK;
}
/branches/dd/kernel/generic/src/mm/buddy.c
35,7 → 35,8
* @brief Buddy allocator framework.
*
* This file contains buddy system allocator framework.
* Specialized functions are needed for this abstract framework to be useful.
* Specialized functions are needed for this abstract framework
* to be useful.
*/
 
#include <mm/buddy.h>
43,29 → 44,29
#include <arch/types.h>
#include <debug.h>
#include <print.h>
#include <macros.h>
 
/** Return size needed for the buddy configuration data. */
size_t buddy_conf_size(size_t max_order)
/** Return size needed for the buddy configuration data */
size_t buddy_conf_size(int max_order)
{
return sizeof(buddy_system_t) + (max_order + 1) * sizeof(link_t);
}
 
 
/** Create buddy system.
/** Create buddy system
*
* Allocate memory for and initialize new buddy system.
*
* @param b Preallocated buddy system control data.
* @param max_order The biggest allocable size will be 2^max_order.
* @param op Operations for new buddy system.
* @param data Pointer to be used by implementation.
* @param b Preallocated buddy system control data.
* @param max_order The biggest allocable size will be 2^max_order.
* @param op Operations for new buddy system.
* @param data Pointer to be used by implementation.
*
* @return New buddy system.
* @return New buddy system.
*/
void
buddy_system_create(buddy_system_t *b, uint8_t max_order,
buddy_system_operations_t *op, void *data)
void buddy_system_create(buddy_system_t *b,
uint8_t max_order,
buddy_system_operations_t *op,
void *data)
{
int i;
 
79,7 → 80,7
ASSERT(op->mark_busy);
 
/*
* Use memory after our own structure.
* Use memory after our own structure
*/
b->order = (link_t *) (&b[1]);
91,15 → 92,14
b->data = data;
}
 
/** Check if buddy system can allocate block.
/** Check if buddy system can allocate block
*
* @param b Buddy system pointer.
* @param i Size of the block (2^i).
* @param b Buddy system pointer
* @param i Size of the block (2^i)
*
* @return True if block can be allocated.
* @return True if block can be allocated
*/
bool buddy_system_can_alloc(buddy_system_t *b, uint8_t i)
{
bool buddy_system_can_alloc(buddy_system_t *b, uint8_t i) {
uint8_t k;
/*
106,13 → 106,12
* If requested block is greater then maximal block
* we know immediatly that we cannot satisfy the request.
*/
if (i > b->max_order)
return false;
if (i > b->max_order) return false;
 
/*
* Check if any bigger or equal order has free elements
*/
for (k = i; k <= b->max_order; k++) {
for (k=i; k <= b->max_order; k++) {
if (!list_empty(&b->order[k])) {
return true;
}
119,11 → 118,12
}
return false;
}
 
/** Allocate PARTICULAR block from buddy system.
/** Allocate PARTICULAR block from buddy system
*
* @return Block of data or NULL if no such block was found.
* @ return Block of data or NULL if no such block was found
*/
link_t *buddy_system_alloc_block(buddy_system_t *b, link_t *block)
{
134,7 → 134,7
ASSERT(left);
list_remove(left);
while (1) {
if (!b->op->get_order(b, left)) {
if (! b->op->get_order(b,left)) {
b->op->mark_busy(b, left);
return left;
}
142,8 → 142,8
order = b->op->get_order(b, left);
 
right = b->op->bisect(b, left);
b->op->set_order(b, left, order - 1);
b->op->set_order(b, right, order - 1);
b->op->set_order(b, left, order-1);
b->op->set_order(b, right, order-1);
 
tmp = b->op->find_block(b, block, BUDDY_SYSTEM_INNER_BLOCK);
 
160,10 → 160,10
 
/** Allocate block from buddy system.
*
* @param b Buddy system pointer.
* @param i Returned block will be 2^i big.
* @param b Buddy system pointer.
* @param i Returned block will be 2^i big.
*
* @return Block of data represented by link_t.
* @return Block of data represented by link_t.
*/
link_t *buddy_system_alloc(buddy_system_t *b, uint8_t i)
{
217,12 → 217,13
buddy_system_free(b, hlp);
return res;
}
 
/** Return block to buddy system.
*
* @param b Buddy system pointer.
* @param block Block to return.
* @param b Buddy system pointer.
* @param block Block to return.
*/
void buddy_system_free(buddy_system_t *b, link_t *block)
{
266,8 → 267,7
b->op->set_order(b, hlp, i + 1);
 
/*
* Recursively add the coalesced block to the list of
* order i + 1.
* Recursively add the coalesced block to the list of order i + 1.
*/
buddy_system_free(b, hlp);
return;
278,7 → 278,46
* Insert block into the list of order i.
*/
list_append(block, &b->order[i]);
 
}
 
/** Prints out structure of buddy system
*
* @param b Pointer to buddy system
* @param elem_size Element size
*/
void buddy_system_structure_print(buddy_system_t *b, size_t elem_size) {
index_t i;
count_t cnt, elem_count = 0, block_count = 0;
link_t * cur;
 
printf("Order\tBlocks\tSize \tBlock size\tElems per block\n");
printf("-----\t------\t--------\t----------\t---------------\n");
for (i=0;i <= b->max_order; i++) {
cnt = 0;
if (!list_empty(&b->order[i])) {
for (cur = b->order[i].next; cur != &b->order[i]; cur = cur->next)
cnt++;
}
printf("#%zd\t%5zd\t%7zdK\t%8zdK\t%6zd\t", i, cnt, (cnt * (1 << i) * elem_size) >> 10, ((1 << i) * elem_size) >> 10, 1 << i);
if (!list_empty(&b->order[i])) {
for (cur = b->order[i].next; cur != &b->order[i]; cur = cur->next) {
b->op->print_id(b, cur);
printf(" ");
}
}
printf("\n");
block_count += cnt;
elem_count += (1 << i) * cnt;
}
printf("-----\t------\t--------\t----------\t---------------\n");
printf("Buddy system contains %zd free elements (%zd blocks)\n" , elem_count, block_count);
 
}
 
/** @}
*/
/branches/dd/kernel/generic/src/synch/smc.c
File deleted
/branches/dd/kernel/generic/src/synch/futex.c
115,7 → 115,6
uintptr_t paddr;
pte_t *t;
ipl_t ipl;
int rc;
ipl = interrupts_disable();
 
135,17 → 134,9
interrupts_restore(ipl);
 
futex = futex_find(paddr);
 
#ifdef CONFIG_UDEBUG
udebug_stoppable_begin();
#endif
rc = waitq_sleep_timeout(&futex->wq, usec, flags |
return (unative_t) waitq_sleep_timeout(&futex->wq, usec, flags |
SYNCH_FLAGS_INTERRUPTIBLE);
 
#ifdef CONFIG_UDEBUG
udebug_stoppable_end();
#endif
return (unative_t) rc;
}
 
/** Wakeup one thread waiting in futex wait queue.
/branches/dd/kernel/generic/src/synch/spinlock.c
106,8 → 106,9
continue;
#endif
if (i++ > DEADLOCK_THRESHOLD) {
printf("cpu%u: looping on spinlock %" PRIp ":%s, caller=%" PRIp,
CPU->id, sl, sl->name, CALLER);
printf("cpu%d: looping on spinlock %.*p:%s, "
"caller=%.*p", CPU->id, sizeof(uintptr_t) * 2, sl,
sl->name, sizeof(uintptr_t) * 2, CALLER);
symbol = get_symtab_entry(CALLER);
if (symbol)
printf("(%s)", symbol);
118,7 → 119,7
}
 
if (deadlock_reported)
printf("cpu%u: not deadlocked\n", CPU->id);
printf("cpu%d: not deadlocked\n", CPU->id);
 
/*
* Prevent critical section code from bleeding out this way up.
/branches/dd/kernel/generic/src/synch/rwlock.c
82,7 → 82,7
*/
void rwlock_initialize(rwlock_t *rwl) {
spinlock_initialize(&rwl->lock, "rwlock_t");
mutex_initialize(&rwl->exclusive, MUTEX_PASSIVE);
mutex_initialize(&rwl->exclusive);
rwl->readers_in = 0;
}
 
231,10 → 231,10
interrupts_restore(ipl);
break;
case ESYNCH_OK_ATOMIC:
panic("_mutex_lock_timeout() == ESYNCH_OK_ATOMIC.");
panic("_mutex_lock_timeout()==ESYNCH_OK_ATOMIC\n");
break;
default:
panic("Invalid ESYNCH.");
panic("invalid ESYNCH\n");
break;
}
return rc;
/branches/dd/kernel/generic/src/synch/condvar.c
43,7 → 43,7
 
/** Initialize condition variable.
*
* @param cv Condition variable.
* @param cv Condition variable.
*/
void condvar_initialize(condvar_t *cv)
{
50,10 → 50,11
waitq_initialize(&cv->wq);
}
 
/** Signal the condition has become true to the first waiting thread by waking
* it up.
/**
* Signal the condition has become true
* to the first waiting thread by waking it up.
*
* @param cv Condition variable.
* @param cv Condition variable.
*/
void condvar_signal(condvar_t *cv)
{
60,10 → 61,11
waitq_wakeup(&cv->wq, WAKEUP_FIRST);
}
 
/** Signal the condition has become true to all waiting threads by waking
* them up.
/**
* Signal the condition has become true
* to all waiting threads by waking them up.
*
* @param cv Condition variable.
* @param cv Condition variable.
*/
void condvar_broadcast(condvar_t *cv)
{
72,17 → 74,17
 
/** Wait for the condition becoming true.
*
* @param cv Condition variable.
* @param mtx Mutex.
* @param usec Timeout value in microseconds.
* @param flags Select mode of operation.
* @param cv Condition variable.
* @param mtx Mutex.
* @param usec Timeout value in microseconds.
* @param flags Select mode of operation.
*
* For exact description of meaning of possible combinations of usec and flags,
* see comment for waitq_sleep_timeout(). Note that when
* SYNCH_FLAGS_NON_BLOCKING is specified here, ESYNCH_WOULD_BLOCK is always
* returned.
* For exact description of meaning of possible combinations
* of usec and flags, see comment for waitq_sleep_timeout().
* Note that when SYNCH_FLAGS_NON_BLOCKING is specified here,
* ESYNCH_WOULD_BLOCK is always returned.
*
* @return See comment for waitq_sleep_timeout().
* @return See comment for waitq_sleep_timeout().
*/
int _condvar_wait_timeout(condvar_t *cv, mutex_t *mtx, uint32_t usec, int flags)
{
/branches/dd/kernel/generic/src/synch/mutex.c
38,54 → 38,42
#include <synch/mutex.h>
#include <synch/semaphore.h>
#include <synch/synch.h>
#include <debug.h>
 
/** Initialize mutex.
/** Initialize mutex
*
* @param mtx Mutex.
* @param type Type of the mutex.
* Initialize mutex.
*
* @param mtx Mutex.
*/
void mutex_initialize(mutex_t *mtx, mutex_type_t type)
void mutex_initialize(mutex_t *mtx)
{
mtx->type = type;
semaphore_initialize(&mtx->sem, 1);
}
 
/** Acquire mutex.
/** Acquire mutex
*
* Acquire mutex.
* Timeout mode and non-blocking mode can be requested.
*
* @param mtx Mutex.
* @param usec Timeout in microseconds.
* @param flags Specify mode of operation.
* @param mtx Mutex.
* @param usec Timeout in microseconds.
* @param flags Specify mode of operation.
*
* For exact description of possible combinations of
* usec and flags, see comment for waitq_sleep_timeout().
*
* @return See comment for waitq_sleep_timeout().
* @return See comment for waitq_sleep_timeout().
*/
int _mutex_lock_timeout(mutex_t *mtx, uint32_t usec, int flags)
{
int rc;
 
if (mtx->type == MUTEX_PASSIVE) {
rc = _semaphore_down_timeout(&mtx->sem, usec, flags);
} else {
ASSERT(mtx->type == MUTEX_ACTIVE);
ASSERT(usec == SYNCH_NO_TIMEOUT);
ASSERT(!(flags & SYNCH_FLAGS_INTERRUPTIBLE));
do {
rc = semaphore_trydown(&mtx->sem);
} while (SYNCH_FAILED(rc) &&
!(flags & SYNCH_FLAGS_NON_BLOCKING));
}
 
return rc;
return _semaphore_down_timeout(&mtx->sem, usec, flags);
}
 
/** Release mutex.
/** Release mutex
*
* @param mtx Mutex.
* Release mutex.
*
* @param mtx Mutex.
*/
void mutex_unlock(mutex_t *mtx)
{
/branches/dd/kernel/generic/src/time/timeout.c
113,7 → 113,7
spinlock_lock(&t->lock);
 
if (t->cpu)
panic("Unexpected: t->cpu != 0.");
panic("t->cpu != 0");
 
t->cpu = CPU;
t->ticks = us2ticks(time);
/branches/dd/kernel/generic/src/time/clock.c
79,7 → 79,7
 
faddr = frame_alloc(ONE_FRAME, FRAME_ATOMIC);
if (!faddr)
panic("Cannot allocate page for clock.");
panic("Cannot allocate page for clock");
uptime = (uptime_t *) PA2KA(faddr);
88,7 → 88,9
uptime->useconds = 0;
 
clock_parea.pbase = (uintptr_t) faddr;
clock_parea.vbase = (uintptr_t) uptime;
clock_parea.frames = 1;
clock_parea.cacheable = true;
ddi_parea_register(&clock_parea);
 
/*
187,19 → 189,7
spinlock_unlock(&THREAD->lock);
if (!ticks && !PREEMPTION_DISABLED) {
#ifdef CONFIG_UDEBUG
istate_t *istate;
#endif
scheduler();
#ifdef CONFIG_UDEBUG
/*
* Give udebug chance to stop the thread
* before it begins executing userspace code.
*/
istate = THREAD->udebug.uspace_state;
if (istate && istate_from_uspace(istate))
udebug_before_thread_runs();
#endif
}
}
 
/branches/dd/kernel/generic/src/proc/program.c
File deleted
/branches/dd/kernel/generic/src/proc/thread.c
67,13 → 67,9
#include <main/uinit.h>
#include <syscall/copy.h>
#include <errno.h>
#include <console/klog.h>
 
 
#ifndef LOADED_PROG_STACK_PAGES_NO
#define LOADED_PROG_STACK_PAGES_NO 1
#endif
 
 
/** Thread states */
char *thread_states[] = {
"Invalid",
102,7 → 98,7
thread_id_t last_tid = 0;
 
static slab_cache_t *thread_slab;
#ifdef CONFIG_FPU
#ifdef ARCH_HAS_FPU
slab_cache_t *fpu_context_slab;
#endif
 
161,7 → 157,7
/* call the architecture-specific part of the constructor */
thr_constructor_arch(t);
#ifdef CONFIG_FPU
#ifdef ARCH_HAS_FPU
#ifdef CONFIG_FPU_LAZY
t->saved_fpu_context = NULL;
#else
169,11 → 165,11
if (!t->saved_fpu_context)
return -1;
#endif
#endif
#endif
 
t->kstack = (uint8_t *) frame_alloc(STACK_FRAMES, FRAME_KA | kmflags);
if (!t->kstack) {
#ifdef CONFIG_FPU
#ifdef ARCH_HAS_FPU
if (t->saved_fpu_context)
slab_free(fpu_context_slab, t->saved_fpu_context);
#endif
180,10 → 176,6
return -1;
}
 
#ifdef CONFIG_UDEBUG
mutex_initialize(&t->udebug.lock, MUTEX_PASSIVE);
#endif
 
return 0;
}
 
196,7 → 188,7
thr_destructor_arch(t);
 
frame_free(KA2PA(t->kstack));
#ifdef CONFIG_FPU
#ifdef ARCH_HAS_FPU
if (t->saved_fpu_context)
slab_free(fpu_context_slab, t->saved_fpu_context);
#endif
211,11 → 203,11
void thread_init(void)
{
THREAD = NULL;
atomic_set(&nrdy, 0);
atomic_set(&nrdy,0);
thread_slab = slab_cache_create("thread_slab", sizeof(thread_t), 0,
thr_constructor, thr_destructor, 0);
 
#ifdef CONFIG_FPU
#ifdef ARCH_HAS_FPU
fpu_context_slab = slab_cache_create("fpu_slab", sizeof(fpu_context_t),
FPU_CONTEXT_ALIGN, NULL, NULL, 0);
#endif
279,7 → 271,7
* guarantee that the task won't cease to exist during the
* call. The task's lock may not be held.
* @param flags Thread flags.
* @param name Symbolic name (a copy is made).
* @param name Symbolic name.
* @param uncounted Thread's accounting doesn't affect accumulated task
* accounting.
*
297,7 → 289,8
return NULL;
/* Not needed, but good for debugging */
memsetb(t->kstack, THREAD_STACK_SIZE * 1 << STACK_FRAMES, 0);
memsetb((uintptr_t) t->kstack, THREAD_STACK_SIZE * 1 << STACK_FRAMES,
0);
ipl = interrupts_disable();
spinlock_lock(&tidlock);
316,7 → 309,6
interrupts_restore(ipl);
memcpy(t->name, name, THREAD_NAME_BUFLEN);
t->name[THREAD_NAME_BUFLEN - 1] = '\0';
t->thread_code = func;
t->thread_arg = arg;
352,11 → 344,6
avltree_node_initialize(&t->threads_tree_node);
t->threads_tree_node.key = (uintptr_t) t;
 
#ifdef CONFIG_UDEBUG
/* Init debugging stuff */
udebug_thread_initialize(&t->udebug);
#endif
 
/* might depend on previous initialization */
thread_create_arch(t);
 
419,17 → 406,12
ipl_t ipl;
 
/*
* Attach to the specified task.
* Attach to the current task.
*/
ipl = interrupts_disable();
spinlock_lock(&task->lock);
 
atomic_inc(&task->refcount);
 
/* Must not count kbox thread into lifecount */
if (t->flags & THREAD_FLAG_USPACE)
atomic_inc(&task->lifecount);
 
atomic_inc(&task->lifecount);
list_append(&t->th_link, &task->th_head);
spinlock_unlock(&task->lock);
 
452,22 → 434,18
{
ipl_t ipl;
 
if (THREAD->flags & THREAD_FLAG_USPACE) {
#ifdef CONFIG_UDEBUG
/* Generate udebug THREAD_E event */
udebug_thread_e_event();
#endif
if (atomic_predec(&TASK->lifecount) == 0) {
/*
* We are the last userspace thread in the task that
* still has not exited. With the exception of the
* moment the task was created, new userspace threads
* can only be created by threads of the same task.
* We are safe to perform cleanup.
*/
if (atomic_predec(&TASK->lifecount) == 0) {
/*
* We are the last thread in the task that still has not exited.
* With the exception of the moment the task was created, new
* threads can only be created by threads of the same task.
* We are safe to perform cleanup.
*/
if (THREAD->flags & THREAD_FLAG_USPACE) {
ipc_cleanup();
futex_cleanup();
LOG("Cleanup of task %" PRIu64" completed.", TASK->taskid);
futex_cleanup();
klog_printf("Cleanup of task %llu completed.",
TASK->taskid);
}
}
 
603,37 → 581,33
 
static bool thread_walker(avltree_node_t *node, void *arg)
{
thread_t *t = avltree_get_instance(node, thread_t, threads_tree_node);
thread_t *t;
t = avltree_get_instance(node, thread_t, threads_tree_node);
 
uint64_t cycles;
char suffix;
order(t->cycles, &cycles, &suffix);
 
#ifdef __32_BITS__
printf("%-6" PRIu64" %-10s %10p %-8s %10p %-3" PRIu32 " %10p %10p %9" PRIu64 "%c ",
t->tid, t->name, t, thread_states[t->state], t->task,
t->task->context, t->thread_code, t->kstack, cycles, suffix);
#endif
 
#ifdef __64_BITS__
printf("%-6" PRIu64" %-10s %18p %-8s %18p %-3" PRIu32 " %18p %18p %9" PRIu64 "%c ",
t->tid, t->name, t, thread_states[t->state], t->task,
t->task->context, t->thread_code, t->kstack, cycles, suffix);
#endif
if (sizeof(void *) == 4)
printf("%-6llu %-10s %#10zx %-8s %#10zx %-3ld %#10zx %#10zx %9llu%c ",
t->tid, t->name, t, thread_states[t->state], t->task,
t->task->context, t->thread_code, t->kstack, cycles, suffix);
else
printf("%-6llu %-10s %#18zx %-8s %#18zx %-3ld %#18zx %#18zx %9llu%c ",
t->tid, t->name, t, thread_states[t->state], t->task,
t->task->context, t->thread_code, t->kstack, cycles, suffix);
if (t->cpu)
printf("%-4u", t->cpu->id);
printf("%-4zd", t->cpu->id);
else
printf("none");
if (t->state == Sleeping) {
#ifdef __32_BITS__
printf(" %10p", t->sleep_queue);
#endif
 
#ifdef __64_BITS__
printf(" %18p", t->sleep_queue);
#endif
if (sizeof(uintptr_t) == 4)
printf(" %#10zx", t->sleep_queue);
else
printf(" %#18zx", t->sleep_queue);
}
printf("\n");
649,25 → 623,23
/* Messing with thread structures, avoid deadlock */
ipl = interrupts_disable();
spinlock_lock(&threads_lock);
if (sizeof(uintptr_t) == 4) {
printf("tid name address state task "
"ctx code stack cycles cpu "
"waitqueue\n");
printf("------ ---------- ---------- -------- ---------- "
"--- ---------- ---------- ---------- ---- "
"----------\n");
} else {
printf("tid name address state task "
"ctx code stack cycles cpu "
"waitqueue\n");
printf("------ ---------- ------------------ -------- ------------------ "
"--- ------------------ ------------------ ---------- ---- "
"------------------\n");
}
 
#ifdef __32_BITS__
printf("tid name address state task "
"ctx code stack cycles cpu "
"waitqueue\n");
printf("------ ---------- ---------- -------- ---------- "
"--- ---------- ---------- ---------- ---- "
"----------\n");
#endif
 
#ifdef __64_BITS__
printf("tid name address state task "
"ctx code stack cycles cpu "
"waitqueue\n");
printf("------ ---------- ------------------ -------- ------------------ "
"--- ------------------ ------------------ ---------- ---- "
"------------------\n");
#endif
 
avltree_walk(&threads_tree, thread_walker, NULL);
 
spinlock_unlock(&threads_lock);
692,6 → 664,7
return node != NULL;
}
 
 
/** Update accounting of current thread.
*
* Note that thread_lock on THREAD must be already held and
709,7 → 682,7
*
*/
unative_t sys_thread_create(uspace_arg_t *uspace_uarg, char *uspace_name,
size_t name_len, thread_id_t *uspace_thread_id)
thread_id_t *uspace_thread_id)
{
thread_t *t;
char namebuf[THREAD_NAME_BUFLEN];
716,15 → 689,10
uspace_arg_t *kernel_uarg;
int rc;
 
if (name_len > THREAD_NAME_BUFLEN - 1)
name_len = THREAD_NAME_BUFLEN - 1;
 
rc = copy_from_uspace(namebuf, uspace_name, name_len);
rc = copy_from_uspace(namebuf, uspace_name, THREAD_NAME_BUFLEN);
if (rc != 0)
return (unative_t) rc;
 
namebuf[name_len] = '\0';
 
/*
* In case of failure, kernel_uarg will be deallocated in this function.
* In case of success, kernel_uarg will be freed in uinit().
763,18 → 731,7
return (unative_t) rc;
}
}
#ifdef CONFIG_UDEBUG
/*
* Generate udebug THREAD_B event and attach the thread.
* This must be done atomically (with the debug locks held),
* otherwise we would either miss some thread or receive
* THREAD_B events for threads that already existed
* and could be detected with THREAD_READ before.
*/
udebug_thread_b_event_attach(t, TASK);
#else
thread_attach(t, TASK);
#endif
thread_ready(t);
 
return 0;
/branches/dd/kernel/generic/src/proc/task.c
35,8 → 35,10
* @brief Task management.
*/
 
#include <main/uinit.h>
#include <proc/thread.h>
#include <proc/task.h>
#include <proc/uarg.h>
#include <mm/as.h>
#include <mm/slab.h>
#include <atomic.h>
43,18 → 45,23
#include <synch/spinlock.h>
#include <synch/waitq.h>
#include <arch.h>
#include <arch/barrier.h>
#include <panic.h>
#include <adt/avl.h>
#include <adt/btree.h>
#include <adt/list.h>
#include <ipc/ipc.h>
#include <ipc/ipcrsc.h>
#include <security/cap.h>
#include <memstr.h>
#include <print.h>
#include <lib/elf.h>
#include <errno.h>
#include <func.h>
#include <string.h>
#include <syscall/copy.h>
 
#ifndef LOADED_PROG_STACK_PAGES_NO
#define LOADED_PROG_STACK_PAGES_NO 1
#endif
 
/** Spinlock protecting the tasks_tree AVL tree. */
SPINLOCK_INITIALIZE(tasks_lock);
 
72,7 → 79,11
 
static task_id_t task_counter = 0;
 
/** Initialize kernel tasks support. */
/** Initialize tasks
*
* Initialize kernel tasks support.
*
*/
void task_init(void)
{
TASK = NULL;
80,8 → 91,7
}
 
/*
* The idea behind this walker is to remember a single task different from
* TASK.
* The idea behind this walker is to remember a single task different from TASK.
*/
static bool task_done_walker(avltree_node_t *node, void *arg)
{
96,7 → 106,9
return true; /* continue the walk */
}
 
/** Kill all tasks except the current task. */
/** Kill all tasks except the current task.
*
*/
void task_done(void)
{
task_t *t;
116,7 → 128,7
interrupts_restore(ipl);
#ifdef CONFIG_DEBUG
printf("Killing task %" PRIu64 "\n", id);
printf("Killing task %llu\n", id);
#endif
task_kill(id);
thread_usleep(10000);
128,13 → 140,15
} while (t != NULL);
}
 
/** Create new task with no threads.
/** Create new task
*
* @param as Task's address space.
* @param name Symbolic name (a copy is made).
* Create new task with no threads.
*
* @return New task's structure.
* @param as Task's address space.
* @param name Symbolic name.
*
* @return New task's structure
*
*/
task_t *task_create(as_t *as, char *name)
{
149,10 → 163,7
spinlock_initialize(&ta->lock, "task_ta_lock");
list_initialize(&ta->th_head);
ta->as = as;
 
memcpy(ta->name, name, TASK_NAME_BUFLEN);
ta->name[TASK_NAME_BUFLEN - 1] = '\0';
 
ta->name = name;
atomic_set(&ta->refcount, 0);
atomic_set(&ta->lifecount, 0);
ta->context = CONTEXT;
159,18 → 170,7
 
ta->capabilities = 0;
ta->cycles = 0;
 
#ifdef CONFIG_UDEBUG
/* Init debugging stuff */
udebug_task_init(&ta->udebug);
 
/* Init kbox stuff */
ipc_answerbox_init(&ta->kb.box, ta);
ta->kb.thread = NULL;
mutex_initialize(&ta->kb.cleanup_lock, MUTEX_PASSIVE);
ta->kb.finished = false;
#endif
 
ipc_answerbox_init(&ta->answerbox, ta);
for (i = 0; i < IPC_MAX_PHONES; i++)
ipc_phone_init(&ta->phones[i]);
179,7 → 179,7
ipc_phone_connect(&ta->phones[0], ipc_phone_0);
atomic_set(&ta->active_calls, 0);
 
mutex_initialize(&ta->futexes_lock, MUTEX_PASSIVE);
mutex_initialize(&ta->futexes_lock);
btree_create(&ta->futexes);
ipl = interrupts_disable();
202,7 → 202,7
 
/** Destroy task.
*
* @param t Task to be destroyed.
* @param t Task to be destroyed.
*/
void task_destroy(task_t *t)
{
233,63 → 233,90
TASK = NULL;
}
 
/** Syscall for reading task ID from userspace.
/** Create new task with 1 thread and run it
*
* @param uspace_task_id userspace address of 8-byte buffer
* where to store current task ID.
* @param program_addr Address of program executable image.
* @param name Program name.
*
* @return Zero on success or an error code from @ref errno.h.
* @return Task of the running program or NULL on error.
*/
unative_t sys_task_get_id(task_id_t *uspace_task_id)
task_t *task_run_program(void *program_addr, char *name)
{
as_t *as;
as_area_t *a;
unsigned int rc;
thread_t *t;
task_t *task;
uspace_arg_t *kernel_uarg;
 
as = as_create(0);
ASSERT(as);
 
rc = elf_load((elf_header_t *) program_addr, as);
if (rc != EE_OK) {
as_destroy(as);
return NULL;
}
kernel_uarg = (uspace_arg_t *) malloc(sizeof(uspace_arg_t), 0);
kernel_uarg->uspace_entry =
(void *) ((elf_header_t *) program_addr)->e_entry;
kernel_uarg->uspace_stack = (void *) USTACK_ADDRESS;
kernel_uarg->uspace_thread_function = NULL;
kernel_uarg->uspace_thread_arg = NULL;
kernel_uarg->uspace_uarg = NULL;
task = task_create(as, name);
ASSERT(task);
 
/*
* No need to acquire lock on TASK because taskid remains constant for
* the lifespan of the task.
* Create the data as_area.
*/
return (unative_t) copy_to_uspace(uspace_task_id, &TASK->taskid,
sizeof(TASK->taskid));
a = as_area_create(as, AS_AREA_READ | AS_AREA_WRITE | AS_AREA_CACHEABLE,
LOADED_PROG_STACK_PAGES_NO * PAGE_SIZE, USTACK_ADDRESS,
AS_AREA_ATTR_NONE, &anon_backend, NULL);
 
/*
* Create the main thread.
*/
t = thread_create(uinit, kernel_uarg, task, THREAD_FLAG_USPACE,
"uinit", false);
ASSERT(t);
thread_ready(t);
 
return task;
}
 
/** Syscall for setting the task name.
/** Syscall for reading task ID from userspace.
*
* The name simplifies identifying the task in the task list.
* @param uspace_task_id Userspace address of 8-byte buffer where to store
* current task ID.
*
* @param name The new name for the task. (typically the same
* as the command used to execute it).
*
* @return 0 on success or an error code from @ref errno.h.
*/
unative_t sys_task_set_name(const char *uspace_name, size_t name_len)
unative_t sys_task_get_id(task_id_t *uspace_task_id)
{
int rc;
char namebuf[TASK_NAME_BUFLEN];
 
/* Cap length of name and copy it from userspace. */
 
if (name_len > TASK_NAME_BUFLEN - 1)
name_len = TASK_NAME_BUFLEN - 1;
 
rc = copy_from_uspace(namebuf, uspace_name, name_len);
if (rc != 0)
return (unative_t) rc;
 
namebuf[name_len] = '\0';
strncpy(TASK->name, namebuf, TASK_NAME_BUFLEN);
 
return EOK;
/*
* No need to acquire lock on TASK because taskid
* remains constant for the lifespan of the task.
*/
return (unative_t) copy_to_uspace(uspace_task_id, &TASK->taskid,
sizeof(TASK->taskid));
}
 
/** Find task structure corresponding to task ID.
*
* The tasks_lock must be already held by the caller of this function and
* interrupts must be disabled.
* The tasks_lock must be already held by the caller of this function
* and interrupts must be disabled.
*
* @param id Task ID.
* @param id Task ID.
*
* @return Task structure address or NULL if there is no such task
* ID.
* @return Task structure address or NULL if there is no such task ID.
*/
task_t *task_find_by_id(task_id_t id) { avltree_node_t *node;
task_t *task_find_by_id(task_id_t id)
{
avltree_node_t *node;
node = avltree_search(&tasks_tree, (avltree_key_t) id);
 
300,13 → 327,11
 
/** Get accounting data of given task.
*
* Note that task lock of 't' must be already held and interrupts must be
* already disabled.
* Note that task lock of 't' must be already held and
* interrupts must be already disabled.
*
* @param t Pointer to thread.
* @param t Pointer to thread.
*
* @return Number of cycles used by the task and all its threads
* so far.
*/
uint64_t task_get_accounting(task_t *t)
{
338,9 → 363,9
* This function is idempotent.
* It signals all the task's threads to bail it out.
*
* @param id ID of the task to be killed.
* @param id ID of the task to be killed.
*
* @return Zero on success or an error code from errno.h.
* @return 0 on success or an error code from errno.h
*/
int task_kill(task_id_t id)
{
361,7 → 386,7
spinlock_unlock(&tasks_lock);
/*
* Interrupt all threads.
* Interrupt all threads except ktaskclnp.
*/
spinlock_lock(&ta->lock);
for (cur = ta->th_head.next; cur != &ta->th_head; cur = cur->next) {
369,7 → 394,7
bool sleeping = false;
thr = list_get_instance(cur, thread_t, th_link);
spinlock_lock(&thr->lock);
thr->interrupted = true;
if (thr->state == Sleeping)
395,22 → 420,18
uint64_t cycles;
char suffix;
order(task_get_accounting(t), &cycles, &suffix);
 
#ifdef __32_BITS__
printf("%-6" PRIu64 " %-12s %-3" PRIu32 " %10p %10p %9" PRIu64
"%c %7ld %6ld", t->taskid, t->name, t->context, t, t->as, cycles,
suffix, atomic_get(&t->refcount), atomic_get(&t->active_calls));
#endif
 
#ifdef __64_BITS__
printf("%-6" PRIu64 " %-12s %-3" PRIu32 " %18p %18p %9" PRIu64
"%c %7ld %6ld", t->taskid, t->name, t->context, t, t->as, cycles,
suffix, atomic_get(&t->refcount), atomic_get(&t->active_calls));
#endif
 
if (sizeof(void *) == 4)
printf("%-6llu %-10s %-3ld %#10zx %#10zx %9llu%c %7zd %6zd",
t->taskid, t->name, t->context, t, t->as, cycles, suffix,
t->refcount, atomic_get(&t->active_calls));
else
printf("%-6llu %-10s %-3ld %#18zx %#18zx %9llu%c %7zd %6zd",
t->taskid, t->name, t->context, t, t->as, cycles, suffix,
t->refcount, atomic_get(&t->active_calls));
for (j = 0; j < IPC_MAX_PHONES; j++) {
if (t->phones[j].callee)
printf(" %d:%p", j, t->phones[j].callee);
printf(" %zd:%#zx", j, t->phones[j].callee);
}
printf("\n");
426,21 → 447,19
/* Messing with task structures, avoid deadlock */
ipl = interrupts_disable();
spinlock_lock(&tasks_lock);
if (sizeof(void *) == 4) {
printf("taskid name ctx address as "
"cycles threads calls callee\n");
printf("------ ---------- --- ---------- ---------- "
"---------- ------- ------ ------>\n");
} else {
printf("taskid name ctx address as "
"cycles threads calls callee\n");
printf("------ ---------- --- ------------------ ------------------ "
"---------- ------- ------ ------>\n");
}
 
#ifdef __32_BITS__
printf("taskid name ctx address as "
"cycles threads calls callee\n");
printf("------ ------------ --- ---------- ---------- "
"---------- ------- ------ ------>\n");
#endif
 
#ifdef __64_BITS__
printf("taskid name ctx address as "
"cycles threads calls callee\n");
printf("------ ------------ --- ------------------ ------------------ "
"---------- ------- ------ ------>\n");
#endif
 
avltree_walk(&tasks_tree, task_print_walker, NULL);
 
spinlock_unlock(&tasks_lock);
/branches/dd/kernel/generic/src/proc/tasklet.c
51,7 → 51,7
tasklet_list = malloc(sizeof(tasklet_descriptor_t *) * config.cpu_count, 0);
if (!tasklet_list)
panic("Error initializing tasklets.");
panic("Error initializing tasklets");
for (i = 0; i < config.cpu_count; i++)
tasklet_list[i] = NULL;
/branches/dd/kernel/generic/src/proc/scheduler.c
451,8 → 451,8
/*
* Entering state is unexpected.
*/
panic("tid%" PRIu64 ": unexpected state %s.",
THREAD->tid, thread_states[THREAD->state]);
panic("tid%llu: unexpected state %s\n", THREAD->tid,
thread_states[THREAD->state]);
break;
}
 
504,9 → 504,9
THREAD->state = Running;
 
#ifdef SCHEDULER_VERBOSE
printf("cpu%u: tid %" PRIu64 " (priority=%d, ticks=%" PRIu64
", nrdy=%ld)\n", CPU->id, THREAD->tid, THREAD->priority,
THREAD->ticks, atomic_get(&CPU->nrdy));
printf("cpu%d: tid %llu (priority=%d, ticks=%llu, nrdy=%ld)\n",
CPU->id, THREAD->tid, THREAD->priority, THREAD->ticks,
atomic_get(&CPU->nrdy));
#endif
 
/*
640,9 → 640,9
*/
spinlock_lock(&t->lock);
#ifdef KCPULB_VERBOSE
printf("kcpulb%u: TID %" PRIu64 " -> cpu%u, "
"nrdy=%ld, avg=%ld\n", CPU->id, t->tid,
CPU->id, atomic_get(&CPU->nrdy),
printf("kcpulb%d: TID %llu -> cpu%d, nrdy=%ld, "
"avg=%nd\n", CPU->id, t->tid, CPU->id,
atomic_get(&CPU->nrdy),
atomic_get(&nrdy) / config.cpu_active);
#endif
t->flags |= THREAD_FLAG_STOLEN;
708,7 → 708,7
continue;
 
spinlock_lock(&cpus[cpu].lock);
printf("cpu%u: address=%p, nrdy=%ld, needs_relink=%" PRIc "\n",
printf("cpu%d: address=%p, nrdy=%ld, needs_relink=%ld\n",
cpus[cpu].id, &cpus[cpu], atomic_get(&cpus[cpu].nrdy),
cpus[cpu].needs_relink);
719,11 → 719,11
spinlock_unlock(&r->lock);
continue;
}
printf("\trq[%u]: ", i);
printf("\trq[%d]: ", i);
for (cur = r->rq_head.next; cur != &r->rq_head;
cur = cur->next) {
t = list_get_instance(cur, thread_t, rq_link);
printf("%" PRIu64 "(%s) ", t->tid,
printf("%llu(%s) ", t->tid,
thread_states[t->state]);
}
printf("\n");
/branches/dd/kernel/generic/src/debug/symtab.c
37,10 → 37,8
 
#include <symtab.h>
#include <byteorder.h>
#include <string.h>
#include <func.h>
#include <print.h>
#include <arch/types.h>
#include <typedefs.h>
 
/** Return entry that seems most likely to correspond to argument.
*
141,7 → 139,7
while (symtab_search_one(name, &i)) {
addr = uint64_t_le2host(symbol_table[i].address_le);
realname = symbol_table[i].symbol_name;
printf("%p: %s\n", addr, realname);
printf("%.*p: %s\n", sizeof(uintptr_t) * 2, addr, realname);
i++;
}
}
/branches/dd/kernel/generic/src/main/main.c
61,7 → 61,6
#include <main/kinit.h>
#include <main/version.h>
#include <console/kconsole.h>
#include <console/console.h>
#include <cpu.h>
#include <align.h>
#include <interrupt.h>
79,9 → 78,9
#include <ipc/ipc.h>
#include <macros.h>
#include <adt/btree.h>
#include <console/klog.h>
#include <smp/smp.h>
#include <ddi/ddi.h>
#include <main/main.h>
 
/** Global configuration structure. */
config_t config;
105,15 → 104,18
* appropriate sizes and addresses.
*/
 
/** Virtual address of where the kernel is loaded. */
/**< Virtual address of where the kernel is loaded. */
uintptr_t hardcoded_load_address = 0;
/** Size of the kernel code in bytes. */
/**< Size of the kernel code in bytes. */
size_t hardcoded_ktext_size = 0;
/** Size of the kernel data in bytes. */
/**< Size of the kernel data in bytes. */
size_t hardcoded_kdata_size = 0;
/** Lowest safe stack virtual address. */
/**< Lowest safe stack virtual address. */
uintptr_t stack_safe = 0;
 
void main_bsp(void);
void main_ap(void);
 
/*
* These two functions prevent stack from underflowing during the
* kernel boot phase when SP is set to the very top of the reserved
129,11 → 131,9
 
/** Main kernel routine for bootstrap CPU.
*
* The code here still runs on the boot stack, which knows nothing about
* preemption counts. Because of that, this function cannot directly call
* functions that disable or enable preemption (e.g. spinlock_lock()). The
* primary task of this function is to calculate address of a new stack and
* switch to it.
* Initializes the kernel by bootstrap CPU.
* This function passes control directly to
* main_bsp_separated_stack().
*
* Assuming interrupts_disable().
*
186,97 → 186,90
*/
void main_bsp_separated_stack(void)
{
/* Keep this the first thing. */
task_t *k;
thread_t *t;
count_t i;
the_initialize(THE);
version_print();
LOG("\nconfig.base=%#" PRIp " config.kernel_size=%" PRIs
"\nconfig.stack_base=%#" PRIp " config.stack_size=%" PRIs,
config.base, config.kernel_size, config.stack_base,
config.stack_size);
#ifdef CONFIG_KCONSOLE
 
/*
* kconsole data structures must be initialized very early
* because other subsystems will register their respective
* commands.
*/
LOG_EXEC(kconsole_init());
#endif
kconsole_init();
/*
* Exception handler initialization, before architecture
* starts adding its own handlers
*/
LOG_EXEC(exc_init());
exc_init();
 
/*
* Memory management subsystems initialization.
*/
LOG_EXEC(arch_pre_mm_init());
LOG_EXEC(frame_init());
*/
arch_pre_mm_init();
frame_init();
/* Initialize at least 1 memory segment big enough for slab to work. */
LOG_EXEC(slab_cache_init());
LOG_EXEC(btree_init());
LOG_EXEC(as_init());
LOG_EXEC(page_init());
LOG_EXEC(tlb_init());
LOG_EXEC(ddi_init());
LOG_EXEC(tasklet_init());
LOG_EXEC(arch_post_mm_init());
LOG_EXEC(arch_pre_smp_init());
LOG_EXEC(smp_init());
slab_cache_init();
btree_init();
as_init();
page_init();
tlb_init();
ddi_init();
tasklet_init();
arch_post_mm_init();
version_print();
printf("kernel: %.*p hardcoded_ktext_size=%zd KB, "
"hardcoded_kdata_size=%zd KB\n", sizeof(uintptr_t) * 2,
config.base, SIZE2KB(hardcoded_ktext_size),
SIZE2KB(hardcoded_kdata_size));
printf("stack: %.*p size=%zd KB\n", sizeof(uintptr_t) * 2,
config.stack_base, SIZE2KB(config.stack_size));
arch_pre_smp_init();
smp_init();
/* Slab must be initialized after we know the number of processors. */
LOG_EXEC(slab_enable_cpucache());
slab_enable_cpucache();
printf("Detected %" PRIc " CPU(s), %" PRIu64" MiB free memory\n",
config.cpu_count, SIZE2MB(zone_total_size()));
printf("Detected %zu CPU(s), %llu MB free memory\n",
config.cpu_count, SIZE2MB(zone_total_size()));
cpu_init();
LOG_EXEC(cpu_init());
calibrate_delay_loop();
clock_counter_init();
timeout_init();
scheduler_init();
task_init();
thread_init();
futex_init();
klog_init();
LOG_EXEC(calibrate_delay_loop());
LOG_EXEC(clock_counter_init());
LOG_EXEC(timeout_init());
LOG_EXEC(scheduler_init());
LOG_EXEC(task_init());
LOG_EXEC(thread_init());
LOG_EXEC(futex_init());
if (init.cnt > 0) {
count_t i;
for (i = 0; i < init.cnt; i++)
LOG("init[%" PRIc "].addr=%#" PRIp ", init[%" PRIc
"].size=%#" PRIs "\n", i, init.tasks[i].addr, i,
printf("init[%zd].addr=%.*p, init[%zd].size=%zd\n", i,
sizeof(uintptr_t) * 2, init.tasks[i].addr, i,
init.tasks[i].size);
} else
printf("No init binaries found\n");
LOG_EXEC(ipc_init());
LOG_EXEC(klog_init());
LOG_EXEC(console_init());
#ifdef CONFIG_KCONSOLE
LOG_EXEC(kconsole_notify_init());
#endif
ipc_init();
 
/*
* Create kernel task.
*/
task_t *kernel = task_create(AS_KERNEL, "kernel");
if (!kernel)
panic("Cannot create kernel task.");
k = task_create(AS_KERNEL, "kernel");
if (!k)
panic("can't create kernel task\n");
/*
* Create the first thread.
*/
thread_t *kinit_thread
= thread_create(kinit, NULL, kernel, 0, "kinit", true);
if (!kinit_thread)
panic("Cannot create kinit thread.");
LOG_EXEC(thread_ready(kinit_thread));
t = thread_create(kinit, NULL, k, 0, "kinit", true);
if (!t)
panic("can't create kinit thread\n");
thread_ready(t);
/*
* This call to scheduler() will return to kinit,
329,7 → 322,6
* collide with another CPU coming up. To prevent this, we
* switch to this cpu's private stack prior to waking kmp up.
*/
context_save(&CPU->saved_context);
context_set(&CPU->saved_context, FADDR(main_ap_separated_stack),
(uintptr_t) CPU->stack, CPU_STACK_SIZE);
context_restore(&CPU->saved_context);
/branches/dd/kernel/generic/src/main/version.c
34,22 → 34,21
 
#include <main/version.h>
#include <print.h>
#include <macros.h>
 
char *project = "SPARTAN kernel";
char *copyright = "Copyright (c) 2001-2009 HelenOS project";
char *release = STRING(RELEASE);
char *name = STRING(NAME);
char *arch = STRING(KARCH);
char *copyright = "Copyright (c) 2001-2008 HelenOS project";
char *release = RELEASE;
char *name = NAME;
char *arch = ARCH;
 
#ifdef REVISION
char *revision = ", revision " STRING(REVISION);
char *revision = ", revision " REVISION;
#else
char *revision = "";
#endif
 
#ifdef TIMESTAMP
char *timestamp = " on " STRING(TIMESTAMP);
char *timestamp = " on " TIMESTAMP;
#else
char *timestamp = "";
#endif
/branches/dd/kernel/generic/src/main/uinit.c
46,9 → 46,7
#include <userspace.h>
#include <mm/slab.h>
#include <arch.h>
#include <udebug/udebug.h>
 
 
/** Thread used to bring up userspace thread.
*
* @param arg Pointer to structure containing userspace entry and stack
67,10 → 65,6
* deployed for the event of forceful task termination.
*/
thread_detach(THREAD);
 
#ifdef CONFIG_UDEBUG
udebug_stoppable_end();
#endif
uarg.uspace_entry = ((uspace_arg_t *) arg)->uspace_entry;
uarg.uspace_stack = ((uspace_arg_t *) arg)->uspace_stack;
/branches/dd/kernel/generic/src/main/kinit.c
32,7 → 32,7
 
/**
* @file
* @brief Kernel initialization thread.
* @brief Kernel initialization thread.
*
* This file contains kinit kernel thread which carries out
* high level system initialization.
47,7 → 47,6
#include <proc/scheduler.h>
#include <proc/task.h>
#include <proc/thread.h>
#include <proc/program.h>
#include <panic.h>
#include <func.h>
#include <cpu.h>
64,8 → 63,6
#include <security/cap.h>
#include <lib/rd.h>
#include <ipc/ipc.h>
#include <debug.h>
#include <string.h>
 
#ifdef CONFIG_SMP
#include <smp/smp.h>
74,15 → 71,6
#include <synch/waitq.h>
#include <synch/spinlock.h>
 
#define ALIVE_CHARS 4
 
#ifdef CONFIG_KCONSOLE
static char alive[ALIVE_CHARS] = "-\\|/";
#endif
 
#define INIT_PREFIX "init:"
#define INIT_PREFIX_LEN 5
 
/** Kernel initialization thread.
*
* kinit takes care of higher level kernel
93,19 → 81,16
*/
void kinit(void *arg)
{
thread_t *t;
 
#if defined(CONFIG_SMP) || defined(CONFIG_KCONSOLE)
thread_t *thread;
#endif
/*
* Detach kinit as nobody will call thread_join_timeout() on it.
*/
thread_detach(THREAD);
 
interrupts_disable();
#ifdef CONFIG_SMP
 
#ifdef CONFIG_SMP
if (config.cpu_count > 1) {
waitq_initialize(&ap_completion_wq);
/*
114,18 → 99,24
* not mess together with kcpulb threads.
* Just a beautification.
*/
thread = thread_create(kmp, NULL, TASK, THREAD_FLAG_WIRED, "kmp", true);
if (thread != NULL) {
spinlock_lock(&thread->lock);
thread->cpu = &cpus[0];
spinlock_unlock(&thread->lock);
thread_ready(thread);
if ((t = thread_create(kmp, NULL, TASK, THREAD_FLAG_WIRED,
"kmp", true))) {
spinlock_lock(&t->lock);
t->cpu = &cpus[0];
spinlock_unlock(&t->lock);
thread_ready(t);
} else
panic("Unable to create kmp thread.");
thread_join(thread);
thread_detach(thread);
panic("thread_create/kmp\n");
thread_join(t);
thread_detach(t);
}
#endif /* CONFIG_SMP */
/*
* Now that all CPUs are up, we can report what we've found.
*/
cpu_list();
 
#ifdef CONFIG_SMP
if (config.cpu_count > 1) {
count_t i;
133,119 → 124,75
* For each CPU, create its load balancing thread.
*/
for (i = 0; i < config.cpu_count; i++) {
thread = thread_create(kcpulb, NULL, TASK, THREAD_FLAG_WIRED, "kcpulb", true);
if (thread != NULL) {
spinlock_lock(&thread->lock);
thread->cpu = &cpus[i];
spinlock_unlock(&thread->lock);
thread_ready(thread);
 
if ((t = thread_create(kcpulb, NULL, TASK,
THREAD_FLAG_WIRED, "kcpulb", true))) {
spinlock_lock(&t->lock);
t->cpu = &cpus[i];
spinlock_unlock(&t->lock);
thread_ready(t);
} else
printf("Unable to create kcpulb thread for cpu" PRIc "\n", i);
panic("thread_create/kcpulb\n");
 
}
}
#endif /* CONFIG_SMP */
 
/*
* At this point SMP, if present, is configured.
*/
arch_post_smp_init();
#ifdef CONFIG_KCONSOLE
if (stdin) {
/*
* Create kernel console.
*/
thread = thread_create(kconsole_thread, NULL, TASK, 0, "kconsole", false);
if (thread != NULL)
thread_ready(thread);
else
printf("Unable to create kconsole thread\n");
}
#endif /* CONFIG_KCONSOLE */
interrupts_enable();
 
/*
* Create user tasks, load RAM disk images.
* Create kernel console.
*/
t = thread_create(kconsole, (void *) "kconsole", TASK, 0, "kconsole", false);
if (t)
thread_ready(t);
else
panic("thread_create/kconsole\n");
 
interrupts_enable();
 
count_t i;
program_t programs[CONFIG_INIT_TASKS];
for (i = 0; i < init.cnt; i++) {
/*
* Run user tasks, load RAM disk images.
*/
if (init.tasks[i].addr % FRAME_SIZE) {
printf("init[%" PRIc "].addr is not frame aligned\n", i);
printf("init[%d].addr is not frame aligned", i);
continue;
}
 
task_t *utask = task_run_program((void *) init.tasks[i].addr,
"uspace");
/*
* Construct task name from the 'init:' prefix and the
* name stored in the init structure (if any).
*/
char namebuf[TASK_NAME_BUFLEN];
char *name;
name = init.tasks[i].name;
if (name[0] == '\0')
name = "<unknown>";
ASSERT(TASK_NAME_BUFLEN >= INIT_PREFIX_LEN);
strncpy(namebuf, INIT_PREFIX, TASK_NAME_BUFLEN);
strncpy(namebuf + INIT_PREFIX_LEN, name,
TASK_NAME_BUFLEN - INIT_PREFIX_LEN);
int rc = program_create_from_image((void *) init.tasks[i].addr,
namebuf, &programs[i]);
if ((rc == 0) && (programs[i].task != NULL)) {
if (utask) {
/*
* Set capabilities to init userspace tasks.
*/
cap_set(programs[i].task, CAP_CAP | CAP_MEM_MANAGER |
cap_set(utask, CAP_CAP | CAP_MEM_MANAGER |
CAP_IO_MANAGER | CAP_PREEMPT_CONTROL | CAP_IRQ_REG);
if (!ipc_phone_0)
ipc_phone_0 = &programs[i].task->answerbox;
} else if (rc == 0) {
/* It was the program loader and was registered */
if (!ipc_phone_0)
ipc_phone_0 = &utask->answerbox;
} else {
/* RAM disk image */
int rd = init_rd((rd_header_t *) init.tasks[i].addr, init.tasks[i].size);
int rd = init_rd((rd_header *) init.tasks[i].addr,
init.tasks[i].size);
if (rd != RE_OK)
printf("Init binary %" PRIc " not used (error %d)\n", i, rd);
printf("Init binary %zd not used, error code %d.\n", i, rd);
}
}
/*
* Run user tasks with small delays
* to avoid intermixed klog output.
*
* TODO: This certainly does not guarantee
* anything, it just works in most of the
* cases. Some better way how to achieve
* nice klog output should be found.
*/
for (i = 0; i < init.cnt; i++) {
if (programs[i].task != NULL) {
program_ready(&programs[i]);
thread_usleep(10000);
}
}
#ifdef CONFIG_KCONSOLE
 
 
if (!stdin) {
thread_sleep(10);
printf("kinit: No stdin\nKernel alive: .");
unsigned int i = 0;
while (true) {
printf("\b%c", alive[i % ALIVE_CHARS]);
while (1) {
thread_sleep(1);
i++;
printf("kinit... ");
}
}
#endif /* CONFIG_KCONSOLE */
}
 
/** @}
/branches/dd/kernel/generic/src/interrupt/interrupt.c
86,17 → 86,8
void exc_dispatch(int n, istate_t *istate)
{
ASSERT(n < IVT_ITEMS);
 
#ifdef CONFIG_UDEBUG
if (THREAD) THREAD->udebug.uspace_state = istate;
#endif
exc_table[n].f(n + IVT_FIRST, istate);
 
#ifdef CONFIG_UDEBUG
if (THREAD) THREAD->udebug.uspace_state = NULL;
#endif
 
/* This is a safe place to exit exiting thread */
if (THREAD && THREAD->interrupted && istate_from_uspace(istate))
thread_exit();
109,10 → 100,8
panic("Unhandled exception %d.", n);
}
 
#ifdef CONFIG_KCONSOLE
 
/** kconsole cmd - print all exceptions */
static int cmd_exc_print(cmd_arg_t *argv)
static int exc_print_cmd(cmd_arg_t *argv)
{
#if (IVT_ITEMS > 0)
unsigned int i;
119,32 → 108,27
char *symbol;
 
spinlock_lock(&exctbl_lock);
 
#ifdef __32_BITS__
printf("Exc Description Handler Symbol\n");
printf("--- -------------------- ---------- --------\n");
#endif
 
#ifdef __64_BITS__
printf("Exc Description Handler Symbol\n");
printf("--- -------------------- ------------------ --------\n");
#endif
if (sizeof(void *) == 4) {
printf("Exc Description Handler Symbol\n");
printf("--- -------------------- ---------- --------\n");
} else {
printf("Exc Description Handler Symbol\n");
printf("--- -------------------- ------------------ --------\n");
}
for (i = 0; i < IVT_ITEMS; i++) {
symbol = get_symtab_entry((unative_t) exc_table[i].f);
if (!symbol)
symbol = "not found";
 
#ifdef __32_BITS__
printf("%-3u %-20s %10p %s\n", i + IVT_FIRST, exc_table[i].name,
exc_table[i].f, symbol);
#endif
 
#ifdef __64_BITS__
printf("%-3u %-20s %18p %s\n", i + IVT_FIRST, exc_table[i].name,
exc_table[i].f, symbol);
#endif
if (sizeof(void *) == 4)
printf("%-3u %-20s %#10zx %s\n", i + IVT_FIRST, exc_table[i].name,
exc_table[i].f, symbol);
else
printf("%-3u %-20s %#18zx %s\n", i + IVT_FIRST, exc_table[i].name,
exc_table[i].f, symbol);
if (((i + 1) % 20) == 0) {
printf(" -- Press any key to continue -- ");
spinlock_unlock(&exctbl_lock);
160,31 → 144,26
return 1;
}
 
 
static cmd_info_t exc_info = {
.name = "exc",
.description = "Print exception table.",
.func = cmd_exc_print,
.func = exc_print_cmd,
.help = NULL,
.argc = 0,
.argv = NULL
};
 
#endif
 
/** Initialize generic exception handling support */
void exc_init(void)
{
int i;
 
for (i = 0; i < IVT_ITEMS; i++)
for (i=0;i < IVT_ITEMS; i++)
exc_register(i, "undef", (iroutine) exc_undef);
 
#ifdef CONFIG_KCONSOLE
cmd_initialize(&exc_info);
if (!cmd_register(&exc_info))
printf("Cannot register command %s\n", exc_info.name);
#endif
panic("could not register command %s\n", exc_info.name);
}
 
/** @}
/branches/dd/kernel/generic/src/printf/printf_core.c
40,7 → 40,7
#include <print.h>
#include <arch/arg.h>
#include <macros.h>
#include <string.h>
#include <func.h>
#include <arch.h>
 
/** show prefixes 0x or 0 */
75,6 → 75,7
PrintfQualifierInt,
PrintfQualifierLong,
PrintfQualifierLongLong,
PrintfQualifierNative,
PrintfQualifierPointer
} qualifier_t;
 
431,6 → 432,7
* - "" Signed or unsigned int (default value).@n
* - "l" Signed or unsigned long int.@n
* - "ll" Signed or unsigned long long int.@n
* - "z" unative_t (non-standard extension).@n
*
*
* CONVERSION:@n
484,7 → 486,7
while ((c = fmt[i])) {
/* control character */
if (c == '%') {
if (c == '%' ) {
/* print common characters if any processed */
if (i > j) {
if ((retval = printf_putnchars(&fmt[j],
534,7 → 536,7
} else if (fmt[i] == '*') {
/* get width value from argument list */
i++;
width = (int) va_arg(ap, int);
width = (int)va_arg(ap, int);
if (width < 0) {
/* negative width sets '-' flag */
width *= -1;
557,7 → 559,7
* list.
*/
i++;
precision = (int) va_arg(ap, int);
precision = (int)va_arg(ap, int);
if (precision < 0) {
/* ignore negative precision */
precision = 0;
583,6 → 585,9
qualifier = PrintfQualifierLongLong;
}
break;
case 'z': /* unative_t */
qualifier = PrintfQualifierNative;
break;
default:
/* default type */
qualifier = PrintfQualifierInt;
622,7 → 627,7
* Integer values
*/
case 'P': /* pointer */
flags |= __PRINTF_FLAG_BIGCHARS;
flags |= __PRINTF_FLAG_BIGCHARS;
case 'p':
flags |= __PRINTF_FLAG_PREFIX;
base = 16;
665,28 → 670,34
switch (qualifier) {
case PrintfQualifierByte:
size = sizeof(unsigned char);
number = (uint64_t) va_arg(ap, unsigned int);
number = (uint64_t)va_arg(ap, unsigned int);
break;
case PrintfQualifierShort:
size = sizeof(unsigned short);
number = (uint64_t) va_arg(ap, unsigned int);
number = (uint64_t)va_arg(ap, unsigned int);
break;
case PrintfQualifierInt:
size = sizeof(unsigned int);
number = (uint64_t) va_arg(ap, unsigned int);
number = (uint64_t)va_arg(ap, unsigned int);
break;
case PrintfQualifierLong:
size = sizeof(unsigned long);
number = (uint64_t) va_arg(ap, unsigned long);
number = (uint64_t)va_arg(ap, unsigned long);
break;
case PrintfQualifierLongLong:
size = sizeof(unsigned long long);
number = (uint64_t) va_arg(ap, unsigned long long);
number = (uint64_t)va_arg(ap,
unsigned long long);
break;
case PrintfQualifierPointer:
size = sizeof(void *);
number = (uint64_t) (unsigned long) va_arg(ap, void *);
number = (uint64_t)(unsigned long)va_arg(ap,
void *);
break;
case PrintfQualifierNative:
size = sizeof(unative_t);
number = (uint64_t)va_arg(ap, unative_t);
break;
default: /* Unknown qualifier */
counter = -counter;
goto out;
697,7 → 708,7
flags |= __PRINTF_FLAG_NEGATIVE;
if (size == sizeof(uint64_t)) {
number = -((int64_t) number);
number = -((int64_t)number);
} else {
number = ~number;
number &=
723,7 → 734,7
}
if (i > j) {
if ((retval = printf_putnchars(&fmt[j], (unative_t) (i - j),
if ((retval = printf_putnchars(&fmt[j], (unative_t)(i - j),
ps)) < 0) { /* error */
counter = -counter;
goto out;
733,6 → 744,7
}
 
out:
return counter;
}
 
/branches/dd/kernel/generic/src/printf/vprintf.c
37,8 → 37,6
#include <putchar.h>
#include <synch/spinlock.h>
#include <arch/asm.h>
#include <arch/types.h>
#include <typedefs.h>
 
SPINLOCK_INITIALIZE(printf_lock); /**< vprintf spinlock */
 
62,13 → 60,13
{
struct printf_spec ps = {(int(*)(void *, size_t, void *)) vprintf_write, NULL};
ipl_t ipl = interrupts_disable();
int irqpri = interrupts_disable();
spinlock_lock(&printf_lock);
int ret = printf_core(fmt, &ps, ap);
spinlock_unlock(&printf_lock);
interrupts_restore(ipl);
interrupts_restore(irqpri);
return ret;
}
/branches/dd/kernel/generic/src/console/cmd.c
50,7 → 50,6
#include <arch.h>
#include <config.h>
#include <func.h>
#include <string.h>
#include <macros.h>
#include <debug.h>
#include <symtab.h>
399,17 → 398,17
.argc = 0
};
 
/* Data and methods for 'ipc' command */
static int cmd_ipc(cmd_arg_t *argv);
static cmd_arg_t ipc_argv = {
/* Data and methods for 'ipc_task' command */
static int cmd_ipc_task(cmd_arg_t *argv);
static cmd_arg_t ipc_task_argv = {
.type = ARG_TYPE_INT,
};
static cmd_info_t ipc_info = {
.name = "ipc",
.description = "ipc <taskid> Show IPC information of given task.",
.func = cmd_ipc,
static cmd_info_t ipc_task_info = {
.name = "ipc_task",
.description = "ipc_task <taskid> Show IPC information of given task.",
.func = cmd_ipc_task,
.argc = 1,
.argv = &ipc_argv
.argv = &ipc_task_argv
};
 
/* Data and methods for 'zone' command */
462,7 → 461,7
&uptime_info,
&halt_info,
&help_info,
&ipc_info,
&ipc_task_info,
&set4_info,
&slabs_info,
&symaddr_info,
502,7 → 501,7
for (i = 0; basic_commands[i]; i++) {
cmd_initialize(basic_commands[i]);
if (!cmd_register(basic_commands[i]))
printf("Cannot register command %s\n", basic_commands[i]->name);
panic("could not register command %s\n", basic_commands[i]->name);
}
}
 
515,31 → 514,23
*/
int cmd_help(cmd_arg_t *argv)
{
link_t *cur;
 
spinlock_lock(&cmd_lock);
link_t *cur;
size_t len = 0;
for (cur = cmd_head.next; cur != &cmd_head; cur = cur->next) {
cmd_info_t *hlp;
hlp = list_get_instance(cur, cmd_info_t, link);
spinlock_lock(&hlp->lock);
if (strlen(hlp->name) > len)
len = strlen(hlp->name);
spinlock_unlock(&hlp->lock);
}
for (cur = cmd_head.next; cur != &cmd_head; cur = cur->next) {
cmd_info_t *hlp;
hlp = list_get_instance(cur, cmd_info_t, link);
spinlock_lock(&hlp->lock);
printf("%-*s %s\n", len, hlp->name, hlp->description);
printf("%s - %s\n", hlp->name, hlp->description);
 
spinlock_unlock(&hlp->lock);
}
spinlock_unlock(&cmd_lock);
spinlock_unlock(&cmd_lock);
 
return 1;
}
 
572,7 → 563,7
/* This doesn't have to be very accurate */
unative_t sec = uptime->seconds1;
printf("Up %" PRIun " days, %" PRIun " hours, %" PRIun " minutes, %" PRIun " seconds\n",
printf("Up %u days, %u hours, %u minutes, %u seconds\n",
sec / 86400, (sec % 86400) / 3600, (sec % 3600) / 60, sec % 60);
return 1;
625,9 → 616,14
{
uintptr_t symaddr;
char *symbol;
unative_t (*fnc)(void);
fncptr_t fptr;
unative_t (*f)(void);
#ifdef ia64
struct {
unative_t f;
unative_t gp;
} fptr;
#endif
 
symaddr = get_symbol_addr((char *) argv->buffer);
if (!symaddr)
printf("Symbol %s not found.\n", argv->buffer);
636,9 → 632,15
printf("Duplicate symbol, be more specific.\n");
} else {
symbol = get_symtab_entry(symaddr);
fnc = (unative_t (*)(void)) arch_construct_function(&fptr, (void *) symaddr, (void *) cmd_call0);
printf("Calling %s() (%p)\n", symbol, symaddr);
printf("Result: %#" PRIxn "\n", fnc());
printf("Calling %s() (%.*p)\n", symbol, sizeof(uintptr_t) * 2, symaddr);
#ifdef ia64
fptr.f = symaddr;
fptr.gp = ((unative_t *)cmd_call2)[1];
f = (unative_t (*)(void)) &fptr;
#else
f = (unative_t (*)(void)) symaddr;
#endif
printf("Result: %#zx\n", f());
}
return 1;
678,10 → 680,15
{
uintptr_t symaddr;
char *symbol;
unative_t (*fnc)(unative_t, ...);
unative_t (*f)(unative_t,...);
unative_t arg1 = argv[1].intval;
fncptr_t fptr;
#ifdef ia64
struct {
unative_t f;
unative_t gp;
}fptr;
#endif
 
symaddr = get_symbol_addr((char *) argv->buffer);
if (!symaddr)
printf("Symbol %s not found.\n", argv->buffer);
690,9 → 697,16
printf("Duplicate symbol, be more specific.\n");
} else {
symbol = get_symtab_entry(symaddr);
fnc = (unative_t (*)(unative_t, ...)) arch_construct_function(&fptr, (void *) symaddr, (void *) cmd_call1);
printf("Calling f(%#" PRIxn "): %p: %s\n", arg1, symaddr, symbol);
printf("Result: %#" PRIxn "\n", fnc(arg1));
 
printf("Calling f(%#zx): %.*p: %s\n", arg1, sizeof(uintptr_t) * 2, symaddr, symbol);
#ifdef ia64
fptr.f = symaddr;
fptr.gp = ((unative_t *)cmd_call2)[1];
f = (unative_t (*)(unative_t,...)) &fptr;
#else
f = (unative_t (*)(unative_t,...)) symaddr;
#endif
printf("Result: %#zx\n", f(arg1));
}
return 1;
703,11 → 717,16
{
uintptr_t symaddr;
char *symbol;
unative_t (*fnc)(unative_t, unative_t, ...);
unative_t (*f)(unative_t,unative_t,...);
unative_t arg1 = argv[1].intval;
unative_t arg2 = argv[2].intval;
fncptr_t fptr;
#ifdef ia64
struct {
unative_t f;
unative_t gp;
}fptr;
#endif
 
symaddr = get_symbol_addr((char *) argv->buffer);
if (!symaddr)
printf("Symbol %s not found.\n", argv->buffer);
716,10 → 735,16
printf("Duplicate symbol, be more specific.\n");
} else {
symbol = get_symtab_entry(symaddr);
fnc = (unative_t (*)(unative_t, unative_t, ...)) arch_construct_function(&fptr, (void *) symaddr, (void *) cmd_call2);
printf("Calling f(%#" PRIxn ", %#" PRIxn "): %p: %s\n",
arg1, arg2, symaddr, symbol);
printf("Result: %#" PRIxn "\n", fnc(arg1, arg2));
printf("Calling f(0x%zx,0x%zx): %.*p: %s\n",
arg1, arg2, sizeof(uintptr_t) * 2, symaddr, symbol);
#ifdef ia64
fptr.f = symaddr;
fptr.gp = ((unative_t *)cmd_call2)[1];
f = (unative_t (*)(unative_t,unative_t,...)) &fptr;
#else
f = (unative_t (*)(unative_t,unative_t,...)) symaddr;
#endif
printf("Result: %#zx\n", f(arg1, arg2));
}
return 1;
730,12 → 755,17
{
uintptr_t symaddr;
char *symbol;
unative_t (*fnc)(unative_t, unative_t, unative_t, ...);
unative_t (*f)(unative_t,unative_t,unative_t,...);
unative_t arg1 = argv[1].intval;
unative_t arg2 = argv[2].intval;
unative_t arg3 = argv[3].intval;
fncptr_t fptr;
#ifdef ia64
struct {
unative_t f;
unative_t gp;
}fptr;
#endif
 
symaddr = get_symbol_addr((char *) argv->buffer);
if (!symaddr)
printf("Symbol %s not found.\n", argv->buffer);
744,10 → 774,16
printf("Duplicate symbol, be more specific.\n");
} else {
symbol = get_symtab_entry(symaddr);
fnc = (unative_t (*)(unative_t, unative_t, unative_t, ...)) arch_construct_function(&fptr, (void *) symaddr, (void *) cmd_call3);
printf("Calling f(%#" PRIxn ",%#" PRIxn ", %#" PRIxn "): %p: %s\n",
arg1, arg2, arg3, symaddr, symbol);
printf("Result: %#" PRIxn "\n", fnc(arg1, arg2, arg3));
printf("Calling f(0x%zx,0x%zx, 0x%zx): %.*p: %s\n",
arg1, arg2, arg3, sizeof(uintptr_t) * 2, symaddr, symbol);
#ifdef ia64
fptr.f = symaddr;
fptr.gp = ((unative_t *)cmd_call2)[1];
f = (unative_t (*)(unative_t,unative_t,unative_t,...)) &fptr;
#else
f = (unative_t (*)(unative_t,unative_t,unative_t,...)) symaddr;
#endif
printf("Result: %#zx\n", f(arg1, arg2, arg3));
}
return 1;
820,7 → 856,7
} else {
if (pointer)
addr = (uint32_t *)(*(unative_t *)addr);
printf("Writing %#" PRIx64 " -> %p\n", arg1, addr);
printf("Writing 0x%x -> %.*p\n", arg1, sizeof(uintptr_t) * 2, addr);
*addr = arg1;
}
901,7 → 937,7
*
* return Always 1
*/
int cmd_ipc(cmd_arg_t * argv) {
int cmd_ipc_task(cmd_arg_t * argv) {
ipc_print_task(argv[0].intval);
return 1;
}
940,11 → 976,8
int cmd_continue(cmd_arg_t *argv)
{
printf("The kernel will now relinquish the console.\n");
release_console();
if ((kconsole_notify) && (kconsole_irq.notif_cfg.notify))
ipc_irq_send_msg_0(&kconsole_irq);
printf("Use userspace controls to redraw the screen.\n");
arch_release_console();
return 1;
}
 
957,23 → 990,18
*/
int cmd_tests(cmd_arg_t *argv)
{
size_t len = 0;
test_t *test;
for (test = tests; test->name != NULL; test++) {
if (strlen(test->name) > len)
len = strlen(test->name);
}
for (test = tests; test->name != NULL; test++)
printf("%-*s %s%s\n", len, test->name, test->desc, (test->safe ? "" : " (unsafe)"));
printf("%s\t\t%s%s\n", test->name, test->desc, (test->safe ? "" : " (unsafe)"));
printf("%-*s Run all safe tests\n", len, "*");
printf("*\t\tRun all safe tests\n");
return 1;
}
 
static bool run_test(const test_t *test)
{
printf("%s (%s)\n", test->name, test->desc);
printf("%s\t\t%s\n", test->name, test->desc);
/* Update and read thread accounting
for benchmarking */
997,7 → 1025,7
char suffix;
order(dt, &cycles, &suffix);
printf("Time: %" PRIu64 "%c cycles\n", cycles, suffix);
printf("Time: %llu%c cycles\n", cycles, suffix);
if (ret == NULL) {
printf("Test passed\n");
1025,7 → 1053,7
}
for (i = 0; i < cnt; i++) {
printf("%s (%u/%u) ... ", test->name, i + 1, cnt);
printf("%s (%d/%d) ... ", test->name, i + 1, cnt);
/* Update and read thread accounting
for benchmarking */
1053,7 → 1081,7
data[i] = dt;
order(dt, &cycles, &suffix);
printf("OK (%" PRIu64 "%c cycles)\n", cycles, suffix);
printf("OK (%llu%c cycles)\n", cycles, suffix);
}
if (ret) {
1066,7 → 1094,7
}
order(sum / (uint64_t) cnt, &cycles, &suffix);
printf("Average\t\t%" PRIu64 "%c\n", cycles, suffix);
printf("Average\t\t%llu%c\n", cycles, suffix);
}
free(data);
/branches/dd/kernel/generic/src/console/console.c
35,59 → 35,30
 
#include <console/console.h>
#include <console/chardev.h>
#include <sysinfo/sysinfo.h>
#include <synch/waitq.h>
#include <synch/spinlock.h>
#include <arch/types.h>
#include <ddi/device.h>
#include <ddi/irq.h>
#include <ddi/ddi.h>
#include <ipc/irq.h>
#include <arch.h>
#include <func.h>
#include <print.h>
#include <atomic.h>
 
#define KLOG_SIZE PAGE_SIZE
#define KLOG_LATENCY 8
 
/** Kernel log cyclic buffer */
static char klog[KLOG_SIZE] __attribute__ ((aligned (PAGE_SIZE)));
 
/** Kernel log initialized */
static bool klog_inited = false;
/** First kernel log characters */
static index_t klog_start = 0;
/** Number of valid kernel log characters */
static size_t klog_len = 0;
/** Number of stored (not printed) kernel log characters */
static size_t klog_stored = 0;
/** Number of stored kernel log characters for uspace */
static size_t klog_uspace = 0;
 
/** Silence output */
bool silent = false;
 
/** Kernel log spinlock */
SPINLOCK_INITIALIZE(klog_lock);
 
/** Physical memory area used for klog buffer */
static parea_t klog_parea;
 
/*
* For now, we use 0 as INR.
* However, it is therefore desirable to have architecture specific
* definition of KLOG_VIRT_INR in the future.
#define BUFLEN 2048
static char debug_buffer[BUFLEN];
static size_t offset = 0;
/** Initialize stdout to something that does not print, but does not fail
*
* Save data in some buffer so that it could be retrieved in the debugger
*/
#define KLOG_VIRT_INR 0
static void null_putchar(chardev_t *d, const char ch)
{
if (offset >= BUFLEN)
offset = 0;
debug_buffer[offset++] = ch;
}
 
static irq_t klog_irq;
 
static chardev_operations_t null_stdout_ops = {
.suspend = NULL,
.resume = NULL,
.write = NULL,
.read = NULL
.write = null_putchar
};
 
chardev_t null_stdout = {
95,88 → 66,10
.op = &null_stdout_ops
};
 
/** Allways refuse IRQ ownership.
*
* This is not a real IRQ, so we always decline.
*
* @return Always returns IRQ_DECLINE.
*/
static irq_ownership_t klog_claim(irq_t *irq)
{
return IRQ_DECLINE;
}
 
static void stdin_suspend(chardev_t *d)
{
}
 
static void stdin_resume(chardev_t *d)
{
}
 
static chardev_operations_t stdin_ops = {
.suspend = stdin_suspend,
.resume = stdin_resume,
};
 
/** Standard input character device */
static chardev_t _stdin;
/** Standard input character device. */
chardev_t *stdin = NULL;
chardev_t *stdout = &null_stdout;
 
void console_init(void)
{
chardev_initialize("stdin", &_stdin, &stdin_ops);
stdin = &_stdin;
}
 
/** Initialize kernel logging facility
*
* The shared area contains kernel cyclic buffer. Userspace application may
* be notified on new data with indication of position and size
* of the data within the circular buffer.
*/
void klog_init(void)
{
void *faddr = (void *) KA2PA(klog);
ASSERT((uintptr_t) faddr % FRAME_SIZE == 0);
ASSERT(KLOG_SIZE % FRAME_SIZE == 0);
 
devno_t devno = device_assign_devno();
klog_parea.pbase = (uintptr_t) faddr;
klog_parea.frames = SIZE2FRAMES(KLOG_SIZE);
ddi_parea_register(&klog_parea);
 
sysinfo_set_item_val("klog.faddr", NULL, (unative_t) faddr);
sysinfo_set_item_val("klog.pages", NULL, SIZE2FRAMES(KLOG_SIZE));
sysinfo_set_item_val("klog.devno", NULL, devno);
sysinfo_set_item_val("klog.inr", NULL, KLOG_VIRT_INR);
 
irq_initialize(&klog_irq);
klog_irq.devno = devno;
klog_irq.inr = KLOG_VIRT_INR;
klog_irq.claim = klog_claim;
irq_register(&klog_irq);
spinlock_lock(&klog_lock);
klog_inited = true;
spinlock_unlock(&klog_lock);
}
 
void grab_console(void)
{
silent = false;
arch_grab_console();
}
 
void release_console(void)
{
silent = true;
arch_release_console();
}
 
/** Get character from character device. Do not echo character.
*
* @param chardev Character device.
197,10 → 90,10
return chardev->op->read(chardev);
/* no other way of interacting with user, halt */
if (CPU)
printf("cpu%u: ", CPU->id);
printf("cpu%d: ", CPU->id);
else
printf("cpu: ");
printf("halted (no kconsole)\n");
printf("halted - no kconsole\n");
cpu_halt();
}
 
232,7 → 125,7
{
index_t index = 0;
char ch;
 
while (index < buflen) {
ch = _getc(chardev);
if (ch == '\b') {
246,7 → 139,7
continue;
}
putchar(ch);
 
if (ch == '\n') { /* end of string => write 0, return */
buf[index] = '\0';
return (count_t) index;
266,60 → 159,10
return ch;
}
 
void klog_update(void)
{
spinlock_lock(&klog_lock);
if ((klog_inited) && (klog_irq.notif_cfg.notify) && (klog_uspace > 0)) {
ipc_irq_send_msg_3(&klog_irq, klog_start, klog_len, klog_uspace);
klog_uspace = 0;
}
spinlock_unlock(&klog_lock);
}
 
void putchar(char c)
{
spinlock_lock(&klog_lock);
if ((klog_stored > 0) && (stdout->op->write)) {
/* Print charaters stored in kernel log */
index_t i;
for (i = klog_len - klog_stored; i < klog_len; i++)
stdout->op->write(stdout, klog[(klog_start + i) % KLOG_SIZE], silent);
klog_stored = 0;
}
/* Store character in the cyclic kernel log */
klog[(klog_start + klog_len) % KLOG_SIZE] = c;
if (klog_len < KLOG_SIZE)
klog_len++;
else
klog_start = (klog_start + 1) % KLOG_SIZE;
if (stdout->op->write)
stdout->op->write(stdout, c, silent);
else {
/* The character is just in the kernel log */
if (klog_stored < klog_len)
klog_stored++;
}
/* The character is stored for uspace */
if (klog_uspace < klog_len)
klog_uspace++;
/* Check notify uspace to update */
bool update;
if ((klog_uspace > KLOG_LATENCY) || (c == '\n'))
update = true;
else
update = false;
spinlock_unlock(&klog_lock);
if (update)
klog_update();
stdout->op->write(stdout, c);
}
 
/** @}
/branches/dd/kernel/generic/src/console/klog.c
0,0 → 1,154
/*
* Copyright (c) 2006 Ondrej Palkovsky
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* - The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
 
/** @addtogroup genericklog
* @{
*/
/** @file
*/
 
#include <mm/frame.h>
#include <sysinfo/sysinfo.h>
#include <console/klog.h>
#include <print.h>
#include <ddi/device.h>
#include <ddi/irq.h>
#include <ddi/ddi.h>
#include <ipc/irq.h>
 
/** Physical memory area used for klog. */
static parea_t klog_parea;
/*
* For now, we use 0 as INR.
* However, on some architectures 0 is the clock interrupt (e.g. amd64 and
* ia32). It is therefore desirable to have architecture specific definition of
* KLOG_VIRT_INR in the future.
*/
#define KLOG_VIRT_INR 0
 
/* Order of frame to be allocated for klog communication */
#define KLOG_ORDER 0
 
static char *klog;
static int klogsize;
static int klogpos;
 
SPINLOCK_INITIALIZE(klog_lock);
 
static irq_t klog_irq;
 
static irq_ownership_t klog_claim(void);
 
/** Initialize kernel logging facility
*
* Allocate pages that are to be shared with uspace for console data.
* The shared area is a circular buffer. Userspace application may
* be notified on new data with indication of position and size
* of the data within the circular buffer.
*/
void klog_init(void)
{
void *faddr;
 
faddr = frame_alloc(KLOG_ORDER, FRAME_ATOMIC);
if (!faddr)
panic("Cannot allocate page for klog");
klog = (char *) PA2KA(faddr);
devno_t devno = device_assign_devno();
klog_parea.pbase = (uintptr_t) faddr;
klog_parea.vbase = (uintptr_t) klog;
klog_parea.frames = 1 << KLOG_ORDER;
klog_parea.cacheable = true;
ddi_parea_register(&klog_parea);
 
sysinfo_set_item_val("klog.faddr", NULL, (unative_t) faddr);
sysinfo_set_item_val("klog.pages", NULL, 1 << KLOG_ORDER);
sysinfo_set_item_val("klog.devno", NULL, devno);
sysinfo_set_item_val("klog.inr", NULL, KLOG_VIRT_INR);
 
irq_initialize(&klog_irq);
klog_irq.devno = devno;
klog_irq.inr = KLOG_VIRT_INR;
klog_irq.claim = klog_claim;
irq_register(&klog_irq);
 
klogsize = PAGE_SIZE << KLOG_ORDER;
klogpos = 0;
}
 
/** Allways refuse IRQ ownership.
*
* This is not a real IRQ, so we always decline.
*
* @return Always returns IRQ_DECLINE.
*/
irq_ownership_t klog_claim(void)
{
return IRQ_DECLINE;
}
 
static void klog_vprintf(const char *fmt, va_list args)
{
int ret;
va_list atst;
 
va_copy(atst, args);
spinlock_lock(&klog_lock);
 
ret = vsnprintf(klog+klogpos, klogsize-klogpos, fmt, atst);
if (ret >= klogsize-klogpos) {
klogpos = 0;
if (ret >= klogsize)
goto out;
}
ipc_irq_send_msg_2(&klog_irq, klogpos, ret);
klogpos += ret;
if (klogpos >= klogsize)
klogpos = 0;
out:
spinlock_unlock(&klog_lock);
va_end(atst);
}
 
/** Printf a message to kernel-uspace log */
void klog_printf(const char *fmt, ...)
{
va_list args;
va_start(args, fmt);
klog_vprintf(fmt, args);
 
va_end(args);
}
 
/** @}
*/
/branches/dd/kernel/generic/src/console/kconsole.c
49,11 → 49,8
#include <macros.h>
#include <debug.h>
#include <func.h>
#include <string.h>
#include <symtab.h>
#include <macros.h>
#include <sysinfo/sysinfo.h>
#include <ddi/device.h>
 
/** Simple kernel console.
*
86,39 → 83,10
index_t *end);
static char history[KCONSOLE_HISTORY][MAX_CMDLINE] = {};
 
/*
* For now, we use 0 as INR.
* However, it is therefore desirable to have architecture specific
* definition of KCONSOLE_VIRT_INR in the future.
*/
#define KCONSOLE_VIRT_INR 0
 
bool kconsole_notify = false;
irq_t kconsole_irq;
 
 
/** Allways refuse IRQ ownership.
*
* This is not a real IRQ, so we always decline.
*
* @return Always returns IRQ_DECLINE.
*
*/
static irq_ownership_t kconsole_claim(irq_t *irq)
{
return IRQ_DECLINE;
}
 
 
/** Initialize kconsole data structures
*
* This is the most basic initialization, almost no
* other kernel subsystem is ready yet.
*
*/
/** Initialize kconsole data structures. */
void kconsole_init(void)
{
unsigned int i;
int i;
 
cmd_init();
for (i = 0; i < KCONSOLE_HISTORY; i++)
126,29 → 94,6
}
 
 
/** Initialize kconsole notification mechanism
*
* Initialize the virtual IRQ notification mechanism.
*
*/
void kconsole_notify_init(void)
{
devno_t devno = device_assign_devno();
sysinfo_set_item_val("kconsole.present", NULL, true);
sysinfo_set_item_val("kconsole.devno", NULL, devno);
sysinfo_set_item_val("kconsole.inr", NULL, KCONSOLE_VIRT_INR);
irq_initialize(&kconsole_irq);
kconsole_irq.devno = devno;
kconsole_irq.inr = KCONSOLE_VIRT_INR;
kconsole_irq.claim = kconsole_claim;
irq_register(&kconsole_irq);
kconsole_notify = true;
}
 
 
/** Register kconsole command.
*
* @param cmd Structure describing the command.
224,7 → 169,7
}
 
/** Try to find a command beginning with prefix */
static const char *cmdtab_search_one(const char *name,link_t **startpos)
static const char * cmdtab_search_one(const char *name,link_t **startpos)
{
size_t namelen = strlen(name);
const char *curname;
258,7 → 203,7
*/
static int cmdtab_compl(char *name)
{
static char output[MAX_SYMBOL_NAME + 1];
static char output[MAX_SYMBOL_NAME+1];
link_t *startpos = NULL;
const char *foundtxt;
int found = 0;
268,7 → 213,7
while ((foundtxt = cmdtab_search_one(name, &startpos))) {
startpos = startpos->next;
if (!found)
strncpy(output, foundtxt, strlen(foundtxt) + 1);
strncpy(output, foundtxt, strlen(foundtxt)+1);
else {
for (i = 0; output[i] && foundtxt[i] &&
output[i] == foundtxt[i]; i++)
295,11 → 240,11
}
 
static char *clever_readline(const char *prompt, chardev_t *input)
static char * clever_readline(const char *prompt, chardev_t *input)
{
static int histposition = 0;
 
static char tmp[MAX_CMDLINE + 1];
static char tmp[MAX_CMDLINE+1];
int curlen = 0, position = 0;
char *current = history[histposition];
int i;
312,8 → 257,7
if (c == '\n') {
putchar(c);
break;
}
if (c == '\b') { /* Backspace */
} if (c == '\b') { /* Backspace */
if (position == 0)
continue;
for (i = position; i < curlen; i++)
456,15 → 400,11
return current;
}
 
/** Kernel console prompt.
/** Kernel console managing thread.
*
* @param prompt Kernel console prompt (e.g kconsole/panic).
* @param msg Message to display in the beginning.
* @param kcon Wait for keypress to show the prompt
* and never exit.
*
*/
void kconsole(char *prompt, char *msg, bool kcon)
void kconsole(void *prompt)
{
cmd_info_t *cmd_info;
count_t len;
471,42 → 411,25
char *cmdline;
 
if (!stdin) {
LOG("No stdin for kernel console");
printf("%s: no stdin\n", __func__);
return;
}
if (msg)
printf("%s", msg);
if (kcon)
_getc(stdin);
while (true) {
cmdline = clever_readline((char *) prompt, stdin);
len = strlen(cmdline);
if (!len)
continue;
cmd_info = parse_cmdline(cmdline, len);
if (!cmd_info)
continue;
if ((!kcon)
&& (strncmp(cmd_info->name, "exit", min(strlen(cmd_info->name), 5)) == 0))
if (strncmp(cmd_info->name, "exit",
min(strlen(cmd_info->name), 5)) == 0)
break;
(void) cmd_info->func(cmd_info->argv);
}
}
 
/** Kernel console managing thread.
*
*/
void kconsole_thread(void *data)
{
kconsole("kconsole", "Kernel console ready (press any key to activate)\n", true);
}
 
static int parse_int_arg(char *text, size_t len, unative_t *result)
{
static char symname[MAX_SYMBOL_NAME];
620,8 → 543,7
buf = (char *) cmd->argv[i].buffer;
strncpy(buf, (const char *) &cmdline[start],
min((end - start) + 2, cmd->argv[i].len));
buf[min((end - start) + 1, cmd->argv[i].len - 1)] =
'\0';
buf[min((end - start) + 1, cmd->argv[i].len - 1)] = '\0';
break;
case ARG_TYPE_INT:
if (parse_int_arg(cmdline + start, end - start + 1,
638,8 → 560,8
'\0';
cmd->argv[i].intval = (unative_t) buf;
cmd->argv[i].vartype = ARG_TYPE_STRING;
} else if (!parse_int_arg(cmdline + start,
end - start + 1, &cmd->argv[i].intval)) {
} else if (!parse_int_arg(cmdline + start, end - start + 1,
&cmd->argv[i].intval)) {
cmd->argv[i].vartype = ARG_TYPE_INT;
} else {
printf("Unrecognized variable argument.\n");
/branches/dd/kernel/generic/src/console/chardev.c
42,7 → 42,7
* @param chardev Character device.
* @param op Implementation of character device operations.
*/
void chardev_initialize(char *name, chardev_t *chardev,
void chardev_initialize(char *name,chardev_t *chardev,
chardev_operations_t *op)
{
chardev->name = name;
/branches/dd/kernel/generic/src/syscall/syscall.c
38,7 → 38,6
#include <syscall/syscall.h>
#include <proc/thread.h>
#include <proc/task.h>
#include <proc/program.h>
#include <mm/as.h>
#include <print.h>
#include <putchar.h>
47,43 → 46,40
#include <debug.h>
#include <ipc/sysipc.h>
#include <synch/futex.h>
#include <synch/smc.h>
#include <ddi/ddi.h>
#include <security/cap.h>
#include <syscall/copy.h>
#include <sysinfo/sysinfo.h>
#include <console/console.h>
#include <udebug/udebug.h>
#include <console/klog.h>
 
/** Print using kernel facility
*
* Print to kernel log.
*
* Some simulators can print only through kernel. Userspace can use
* this syscall to facilitate it.
*/
static unative_t sys_klog(int fd, const void * buf, size_t count)
static unative_t sys_io(int fd, const void * buf, size_t count)
{
size_t i;
char *data;
int rc;
 
if (count > PAGE_SIZE)
return ELIMIT;
 
data = (char *) malloc(count, 0);
if (!data)
return ENOMEM;
if (count > 0) {
data = (char *) malloc(count + 1, 0);
if (!data)
return ENOMEM;
rc = copy_from_uspace(data, buf, count);
if (rc) {
free(data);
return rc;
}
data[count] = 0;
printf("%s", data);
rc = copy_from_uspace(data, buf, count);
if (rc) {
free(data);
} else
klog_update();
return rc;
}
 
for (i = 0; i < count; i++)
putchar(data[i]);
free(data);
return count;
}
91,21 → 87,10
/** Tell kernel to get keyboard/console access again */
static unative_t sys_debug_enable_console(void)
{
#ifdef CONFIG_KCONSOLE
grab_console();
return true;
#else
return false;
#endif
arch_grab_console();
return 0;
}
 
/** Tell kernel to relinquish keyboard/console access */
static unative_t sys_debug_disable_console(void)
{
release_console();
return true;
}
 
/** Dispatch system call */
unative_t syscall_handler(unative_t a1, unative_t a2, unative_t a3,
unative_t a4, unative_t a5, unative_t a6, unative_t id)
112,13 → 97,11
{
unative_t rc;
 
#ifdef CONFIG_UDEBUG
udebug_syscall_event(a1, a2, a3, a4, a5, a6, id, 0, false);
#endif
if (id < SYSCALL_END) {
if (id < SYSCALL_END)
rc = syscall_table[id](a1, a2, a3, a4, a5, a6);
} else {
printf("Task %" PRIu64": Unknown syscall %#" PRIxn, TASK->taskid, id);
else {
klog_printf("TASK %llu: Unknown syscall id %llx", TASK->taskid,
id);
task_kill(TASK->taskid);
thread_exit();
}
125,22 → 108,12
if (THREAD->interrupted)
thread_exit();
 
#ifdef CONFIG_UDEBUG
udebug_syscall_event(a1, a2, a3, a4, a5, a6, id, rc, true);
 
/*
* Stopping point needed for tasks that only invoke non-blocking
* system calls.
*/
udebug_stoppable_begin();
udebug_stoppable_end();
#endif
return rc;
}
 
syshandler_t syscall_table[SYSCALL_END] = {
(syshandler_t) sys_klog,
(syshandler_t) sys_io,
(syshandler_t) sys_tls_set,
/* Thread and task related syscalls. */
147,20 → 120,15
(syshandler_t) sys_thread_create,
(syshandler_t) sys_thread_exit,
(syshandler_t) sys_thread_get_id,
(syshandler_t) sys_task_get_id,
(syshandler_t) sys_task_set_name,
(syshandler_t) sys_program_spawn_loader,
/* Synchronization related syscalls. */
(syshandler_t) sys_futex_sleep_timeout,
(syshandler_t) sys_futex_wakeup,
(syshandler_t) sys_smc_coherence,
/* Address space related syscalls. */
(syshandler_t) sys_as_area_create,
(syshandler_t) sys_as_area_resize,
(syshandler_t) sys_as_area_change_flags,
(syshandler_t) sys_as_area_destroy,
/* IPC related syscalls. */
171,7 → 139,6
(syshandler_t) sys_ipc_answer_fast,
(syshandler_t) sys_ipc_answer_slow,
(syshandler_t) sys_ipc_forward_fast,
(syshandler_t) sys_ipc_forward_slow,
(syshandler_t) sys_ipc_wait_for_call,
(syshandler_t) sys_ipc_hangup,
(syshandler_t) sys_ipc_register_irq,
191,10 → 158,7
(syshandler_t) sys_sysinfo_value,
/* Debug calls */
(syshandler_t) sys_debug_enable_console,
(syshandler_t) sys_debug_disable_console,
(syshandler_t) sys_ipc_connect_kbox
(syshandler_t) sys_debug_enable_console
};
 
/** @}
/branches/dd/kernel/generic/src/adt/avl.c
43,7 → 43,7
*
* Every node has a pointer to its parent which allows insertion of multiple
* identical keys into the tree.
*
*
* Be careful when using this tree because of the base atribute which is added
* to every inserted node key. There is no rule in which order nodes with the
* same key are visited.
/branches/dd/kernel/generic/src/adt/btree.c
124,7 → 124,7
lnode = leaf_node;
if (!lnode) {
if (btree_search(t, key, &lnode)) {
panic("B-tree %p already contains key %" PRIu64 ".", t, key);
panic("B-tree %p already contains key %d\n", t, key);
}
}
224,7 → 224,7
lnode = leaf_node;
if (!lnode) {
if (!btree_search(t, key, &lnode)) {
panic("B-tree %p does not contain key %" PRIu64 ".", t, key);
panic("B-tree %p does not contain key %d\n", t, key);
}
}
524,7 → 524,7
return;
}
}
panic("Node %p does not contain key %" PRIu64 ".", node, key);
panic("node %p does not contain key %d\n", node, key);
}
 
/** Remove key and its right subtree pointer from B-tree node.
551,7 → 551,7
return;
}
}
panic("Node %p does not contain key %" PRIu64 ".", node, key);
panic("node %p does not contain key %d\n", node, key);
}
 
/** Split full B-tree node and insert new key-value-right-subtree triplet.
693,7 → 693,7
if (subtree == node->subtree[i])
return i - (int) (right != false);
}
panic("Node %p does not contain subtree %p.", node, subtree);
panic("node %p does not contain subtree %p\n", node, subtree);
}
 
/** Rotate one key-value-rsubtree triplet from the left sibling to the right sibling.
970,7 → 970,7
 
printf("(");
for (i = 0; i < node->keys; i++) {
printf("%" PRIu64 "%s", node->key[i], i < node->keys - 1 ? "," : "");
printf("%llu%s", node->key[i], i < node->keys - 1 ? "," : "");
if (node->depth && node->subtree[i]) {
list_append(&node->subtree[i]->bfs_link, &head);
}
992,7 → 992,7
 
printf("(");
for (i = 0; i < node->keys; i++)
printf("%" PRIu64 "%s", node->key[i], i < node->keys - 1 ? "," : "");
printf("%llu%s", node->key[i], i < node->keys - 1 ? "," : "");
printf(")");
}
printf("\n");
/branches/dd/kernel/generic/src/adt/hash_table.c
61,9 → 61,9
h->entry = (link_t *) malloc(m * sizeof(link_t), 0);
if (!h->entry) {
panic("Cannot allocate memory for hash table.");
panic("cannot allocate memory for hash table\n");
}
memsetb(h->entry, m * sizeof(link_t), 0);
memsetb((uintptr_t) h->entry, m * sizeof(link_t), 0);
for (i = 0; i < m; i++)
list_initialize(&h->entry[i]);
/branches/dd/kernel/generic/src/ddi/irq.c
39,8 → 39,7
*
* This code is designed to support:
* - multiple devices sharing single IRQ
* - multiple IRQs per single device
* - multiple instances of the same device
* - multiple IRQs per signle device
*
*
* Note about architectures.
69,11 → 68,8
 
#include <ddi/irq.h>
#include <adt/hash_table.h>
#include <mm/slab.h>
#include <arch/types.h>
#include <synch/spinlock.h>
#include <console/console.h>
#include <memstr.h>
#include <arch.h>
 
#define KEY_INR 0
80,22 → 76,13
#define KEY_DEVNO 1
 
/**
* Spinlock protecting the kernel IRQ hash table.
* Spinlock protecting the hash table.
* This lock must be taken only when interrupts are disabled.
*/
SPINLOCK_INITIALIZE(irq_kernel_hash_table_lock);
/** The kernel IRQ hash table. */
static hash_table_t irq_kernel_hash_table;
SPINLOCK_INITIALIZE(irq_hash_table_lock);
static hash_table_t irq_hash_table;
 
/**
* Spinlock protecting the uspace IRQ hash table.
* This lock must be taken only when interrupts are disabled.
*/
SPINLOCK_INITIALIZE(irq_uspace_hash_table_lock);
/** The uspace IRQ hash table. */
hash_table_t irq_uspace_hash_table;
 
/**
* Hash table operations for cases when we know that
* there will be collisions between different keys.
*/
123,9 → 110,6
.remove_callback = NULL /* not used */
};
 
/** Number of buckets in either of the hash tables. */
static count_t buckets;
 
/** Initialize IRQ subsystem.
*
* @param inrs Numbers of unique IRQ numbers or INRs.
133,7 → 117,6
*/
void irq_init(count_t inrs, count_t chains)
{
buckets = chains;
/*
* Be smart about the choice of the hash table operations.
* In cases in which inrs equals the requested number of
140,17 → 123,10
* chains (i.e. where there is no collision between
* different keys), we can use optimized set of operations.
*/
if (inrs == chains) {
hash_table_create(&irq_uspace_hash_table, chains, 2,
&irq_lin_ops);
hash_table_create(&irq_kernel_hash_table, chains, 2,
&irq_lin_ops);
} else {
hash_table_create(&irq_uspace_hash_table, chains, 2,
&irq_ht_ops);
hash_table_create(&irq_kernel_hash_table, chains, 2,
&irq_ht_ops);
}
if (inrs == chains)
hash_table_create(&irq_hash_table, chains, 2, &irq_lin_ops);
else
hash_table_create(&irq_hash_table, chains, 2, &irq_ht_ops);
}
 
/** Initialize one IRQ structure.
160,12 → 136,21
*/
void irq_initialize(irq_t *irq)
{
memsetb(irq, sizeof(irq_t), 0);
link_initialize(&irq->link);
spinlock_initialize(&irq->lock, "irq.lock");
link_initialize(&irq->notif_cfg.link);
irq->preack = false;
irq->inr = -1;
irq->devno = -1;
irq->trigger = (irq_trigger_t) 0;
irq->claim = NULL;
irq->handler = NULL;
irq->arg = NULL;
irq->notif_cfg.notify = false;
irq->notif_cfg.answerbox = NULL;
irq->notif_cfg.code = NULL;
irq->notif_cfg.method = 0;
irq->notif_cfg.counter = 0;
link_initialize(&irq->notif_cfg.link);
}
 
/** Register IRQ for device.
172,10 → 157,9
*
* The irq structure must be filled with information
* about the interrupt source and with the claim()
* function pointer and handler() function pointer.
* function pointer and irq_handler() function pointer.
*
* @param irq IRQ structure belonging to a device.
* @return True on success, false on failure.
* @param irq IRQ structure belonging to a device.
*/
void irq_register(irq_t *irq)
{
186,101 → 170,88
};
ipl = interrupts_disable();
spinlock_lock(&irq_kernel_hash_table_lock);
spinlock_lock(&irq->lock);
hash_table_insert(&irq_kernel_hash_table, key, &irq->link);
spinlock_unlock(&irq->lock);
spinlock_unlock(&irq_kernel_hash_table_lock);
spinlock_lock(&irq_hash_table_lock);
hash_table_insert(&irq_hash_table, key, &irq->link);
spinlock_unlock(&irq_hash_table_lock);
interrupts_restore(ipl);
}
 
/** Search and lock the uspace IRQ hash table.
/** Dispatch the IRQ.
*
* We assume this function is only called from interrupt
* context (i.e. that interrupts are disabled prior to
* this call).
*
* This function attempts to lookup a fitting IRQ
* structure. In case of success, return with interrupts
* disabled and holding the respective structure.
*
* @param inr Interrupt number (aka inr or irq).
*
* @return IRQ structure of the respective device or NULL.
*/
static irq_t *irq_dispatch_and_lock_uspace(inr_t inr)
irq_t *irq_dispatch_and_lock(inr_t inr)
{
link_t *lnk;
unative_t key[] = {
(unative_t) inr,
(unative_t) -1 /* search will use claim() instead of devno */
(unative_t) -1 /* search will use claim() instead of devno */
};
spinlock_lock(&irq_uspace_hash_table_lock);
lnk = hash_table_find(&irq_uspace_hash_table, key);
spinlock_lock(&irq_hash_table_lock);
 
lnk = hash_table_find(&irq_hash_table, key);
if (lnk) {
irq_t *irq;
irq = hash_table_get_instance(lnk, irq_t, link);
spinlock_unlock(&irq_uspace_hash_table_lock);
 
spinlock_unlock(&irq_hash_table_lock);
return irq;
}
spinlock_unlock(&irq_uspace_hash_table_lock);
return NULL;
spinlock_unlock(&irq_hash_table_lock);
 
return NULL;
}
 
/** Search and lock the kernel IRQ hash table.
/** Find the IRQ structure corresponding to inr and devno.
*
* This functions attempts to lookup the IRQ structure
* corresponding to its arguments. On success, this
* function returns with interrups disabled, holding
* the lock of the respective IRQ structure.
*
* This function assumes interrupts are already disabled.
*
* @param inr INR being looked up.
* @param devno Devno being looked up.
*
* @return Locked IRQ structure on success or NULL on failure.
*/
static irq_t *irq_dispatch_and_lock_kernel(inr_t inr)
irq_t *irq_find_and_lock(inr_t inr, devno_t devno)
{
link_t *lnk;
unative_t key[] = {
unative_t keys[] = {
(unative_t) inr,
(unative_t) -1 /* search will use claim() instead of devno */
(unative_t) devno
};
spinlock_lock(&irq_kernel_hash_table_lock);
lnk = hash_table_find(&irq_kernel_hash_table, key);
spinlock_lock(&irq_hash_table_lock);
 
lnk = hash_table_find(&irq_hash_table, keys);
if (lnk) {
irq_t *irq;
irq = hash_table_get_instance(lnk, irq_t, link);
spinlock_unlock(&irq_kernel_hash_table_lock);
 
spinlock_unlock(&irq_hash_table_lock);
return irq;
}
spinlock_unlock(&irq_kernel_hash_table_lock);
return NULL;
}
spinlock_unlock(&irq_hash_table_lock);
 
/** Dispatch the IRQ.
*
* We assume this function is only called from interrupt
* context (i.e. that interrupts are disabled prior to
* this call).
*
* This function attempts to lookup a fitting IRQ
* structure. In case of success, return with interrupts
* disabled and holding the respective structure.
*
* @param inr Interrupt number (aka inr or irq).
*
* @return IRQ structure of the respective device or NULL.
*/
irq_t *irq_dispatch_and_lock(inr_t inr)
{
irq_t *irq;
/*
* If the kernel console is silenced,
* then try first the uspace handlers,
* eventually fall back to kernel handlers.
*
* If the kernel console is active,
* then do it the other way around.
*/
if (silent) {
irq = irq_dispatch_and_lock_uspace(inr);
if (irq)
return irq;
return irq_dispatch_and_lock_kernel(inr);
}
irq = irq_dispatch_and_lock_kernel(inr);
if (irq)
return irq;
return irq_dispatch_and_lock_uspace(inr);
return NULL;
}
 
/** Compute hash index for the key.
299,7 → 270,7
index_t irq_ht_hash(unative_t key[])
{
inr_t inr = (inr_t) key[KEY_INR];
return inr % buckets;
return inr % irq_hash_table.entries;
}
 
/** Compare hash table element with a key.
333,8 → 304,7
spinlock_lock(&irq->lock);
if (devno == -1) {
/* Invoked by irq_dispatch_and_lock(). */
rv = ((irq->inr == inr) &&
(irq->claim(irq) == IRQ_ACCEPT));
rv = ((irq->inr == inr) && (irq->claim() == IRQ_ACCEPT));
} else {
/* Invoked by irq_find_and_lock(). */
rv = ((irq->inr == inr) && (irq->devno == devno));
393,7 → 363,7
spinlock_lock(&irq->lock);
if (devno == -1) {
/* Invoked by irq_dispatch_and_lock() */
rv = (irq->claim(irq) == IRQ_ACCEPT);
rv = (irq->claim() == IRQ_ACCEPT);
} else {
/* Invoked by irq_find_and_lock() */
rv = (irq->devno == devno);
/branches/dd/kernel/generic/src/ddi/ddi.c
29,10 → 29,10
/** @addtogroup genericddi
* @{
*/
 
/**
* @file
* @brief Device Driver Interface functions.
* @brief Device Driver Interface functions.
*
* This file contains functions that comprise the Device Driver Interface.
* These are the functions for mapping physical memory and enabling I/O
68,100 → 68,82
*
* @param parea Pointer to physical area structure.
*
* @todo This function doesn't check for overlaps. It depends on the kernel to
* create disjunct physical memory areas.
*/
void ddi_parea_register(parea_t *parea)
{
ipl_t ipl = interrupts_disable();
ipl_t ipl;
 
ipl = interrupts_disable();
spinlock_lock(&parea_lock);
/*
* We don't check for overlaps here as the kernel is pretty sane.
* TODO: we should really check for overlaps here.
* However, we should be safe because the kernel is pretty sane and
* memory of different devices doesn't overlap.
*/
btree_insert(&parea_btree, (btree_key_t) parea->pbase, parea, NULL);
 
spinlock_unlock(&parea_lock);
interrupts_restore(ipl);
interrupts_restore(ipl);
}
 
/** Map piece of physical memory into virtual address space of current task.
*
* @param pf Physical address of the starting frame.
* @param vp Virtual address of the starting page.
* @param pf Physical address of the starting frame.
* @param vp Virtual address of the starting page.
* @param pages Number of pages to map.
* @param flags Address space area flags for the mapping.
*
* @return 0 on success, EPERM if the caller lacks capabilities to use this
* syscall, EBADMEM if pf or vf is not page aligned, ENOENT if there
* is no task matching the specified ID or the physical address space
* is not enabled for mapping and ENOMEM if there was a problem in
* creating address space area.
*
* syscall, ENOENT if there is no task matching the specified ID or the
* physical address space is not enabled for mapping and ENOMEM if there
* was a problem in creating address space area.
*/
static int ddi_physmem_map(uintptr_t pf, uintptr_t vp, count_t pages, int flags)
{
ASSERT(TASK);
ASSERT((pf % FRAME_SIZE) == 0);
ASSERT((vp % PAGE_SIZE) == 0);
ipl_t ipl;
cap_t caps;
mem_backend_data_t backend_data;
 
backend_data.base = pf;
backend_data.frames = pages;
/*
* Make sure the caller is authorised to make this syscall.
*/
cap_t caps = cap_get(TASK);
caps = cap_get(TASK);
if (!(caps & CAP_MEM_MANAGER))
return EPERM;
mem_backend_data_t backend_data;
backend_data.base = pf;
backend_data.frames = pages;
ipl_t ipl = interrupts_disable();
/* Find the zone of the physical memory */
spinlock_lock(&zones.lock);
count_t znum = find_zone(ADDR2PFN(pf), pages, 0);
if (znum == (count_t) -1) {
/* Frames not found in any zones
* -> assume it is hardware device and allow mapping
 
ipl = interrupts_disable();
 
/*
* Check if the physical memory area is enabled for mapping.
* If the architecture supports virtually indexed caches, intercept
* attempts to create an illegal address alias.
*/
spinlock_lock(&parea_lock);
parea_t *parea;
btree_node_t *nodep;
parea = (parea_t *) btree_search(&parea_btree, (btree_key_t) pf, &nodep);
if (!parea || parea->frames < pages || ((flags & AS_AREA_CACHEABLE) &&
!parea->cacheable) || (!(flags & AS_AREA_CACHEABLE) &&
parea->cacheable)) {
/*
* This physical memory area cannot be mapped.
*/
spinlock_unlock(&zones.lock);
goto map;
}
if (zones.info[znum].flags & ZONE_FIRMWARE) {
/* Frames are part of firmware */
spinlock_unlock(&zones.lock);
goto map;
}
if (zone_flags_available(zones.info[znum].flags)) {
/* Frames are part of physical memory, check if the memory
* region is enabled for mapping.
*/
spinlock_unlock(&zones.lock);
spinlock_lock(&parea_lock);
btree_node_t *nodep;
parea_t *parea = (parea_t *) btree_search(&parea_btree,
(btree_key_t) pf, &nodep);
if ((!parea) || (parea->frames < pages))
goto err;
spinlock_unlock(&parea_lock);
goto map;
interrupts_restore(ipl);
return ENOENT;
}
err:
spinlock_unlock(&zones.lock);
interrupts_restore(ipl);
return ENOENT;
map:
spinlock_unlock(&parea_lock);
 
spinlock_lock(&TASK->lock);
if (!as_area_create(TASK->as, flags, pages * PAGE_SIZE, vp,
AS_AREA_ATTR_NONE, &phys_backend, &backend_data)) {
if (!as_area_create(TASK->as, flags, pages * PAGE_SIZE, vp, AS_AREA_ATTR_NONE,
&phys_backend, &backend_data)) {
/*
* The address space area could not have been created.
* We report it using ENOMEM.
187,24 → 169,28
* @param size Size of the enabled I/O space..
*
* @return 0 on success, EPERM if the caller lacks capabilities to use this
* syscall, ENOENT if there is no task matching the specified ID.
*
* syscall, ENOENT if there is no task matching the specified ID.
*/
static int ddi_iospace_enable(task_id_t id, uintptr_t ioaddr, size_t size)
{
ipl_t ipl;
cap_t caps;
task_t *t;
int rc;
/*
* Make sure the caller is authorised to make this syscall.
*/
cap_t caps = cap_get(TASK);
caps = cap_get(TASK);
if (!(caps & CAP_IO_MANAGER))
return EPERM;
ipl_t ipl = interrupts_disable();
ipl = interrupts_disable();
spinlock_lock(&tasks_lock);
task_t *task = task_find_by_id(id);
t = task_find_by_id(id);
if ((!task) || (!context_check(CONTEXT, task->context))) {
if ((!t) || (!context_check(CONTEXT, t->context))) {
/*
* There is no task with the specified ID
* or the task belongs to a different security
214,16 → 200,15
interrupts_restore(ipl);
return ENOENT;
}
 
/* Lock the task and release the lock protecting tasks_btree. */
spinlock_lock(&task->lock);
spinlock_lock(&t->lock);
spinlock_unlock(&tasks_lock);
 
rc = ddi_iospace_enable_arch(t, ioaddr, size);
int rc = ddi_iospace_enable_arch(task, ioaddr, size);
spinlock_unlock(&task->lock);
spinlock_unlock(&t->lock);
interrupts_restore(ipl);
return rc;
}
 
235,8 → 220,7
* @param flags Flags of newly mapped pages
*
* @return 0 on success, otherwise it returns error code found in errno.h
*
*/
*/
unative_t sys_physmem_map(unative_t phys_base, unative_t virt_base,
unative_t pages, unative_t flags)
{
250,15 → 234,16
* @param uspace_io_arg User space address of DDI argument structure.
*
* @return 0 on success, otherwise it returns error code found in errno.h
*
*/
*/
unative_t sys_iospace_enable(ddi_ioarg_t *uspace_io_arg)
{
ddi_ioarg_t arg;
int rc = copy_from_uspace(&arg, uspace_io_arg, sizeof(ddi_ioarg_t));
int rc;
rc = copy_from_uspace(&arg, uspace_io_arg, sizeof(ddi_ioarg_t));
if (rc != 0)
return (unative_t) rc;
return (unative_t) ddi_iospace_enable((task_id_t) arg.task_id,
(uintptr_t) arg.ioaddr, (size_t) arg.size);
}
266,24 → 251,20
/** Disable or enable preemption.
*
* @param enable If non-zero, the preemption counter will be decremented,
* leading to potential enabling of preemption. Otherwise
* the preemption counter will be incremented, preventing
* preemption from occurring.
* leading to potential enabling of preemption. Otherwise the preemption
* counter will be incremented, preventing preemption from occurring.
*
* @return Zero on success or EPERM if callers capabilities are not sufficient.
*
*/
*/
unative_t sys_preempt_control(int enable)
{
if (!cap_get(TASK) & CAP_PREEMPT_CONTROL)
return EPERM;
if (enable)
preemption_enable();
else
preemption_disable();
return 0;
if (!cap_get(TASK) & CAP_PREEMPT_CONTROL)
return EPERM;
if (enable)
preemption_enable();
else
preemption_disable();
return 0;
}
 
/** @}
/branches/dd/kernel/generic/src/cpu/cpu.c
64,10 → 64,10
cpus = (cpu_t *) malloc(sizeof(cpu_t) * config.cpu_count,
FRAME_ATOMIC);
if (!cpus)
panic("Cannot allocate CPU structures.");
panic("malloc/cpus");
 
/* initialize everything */
memsetb(cpus, sizeof(cpu_t) * config.cpu_count, 0);
memsetb((uintptr_t) cpus, sizeof(cpu_t) * config.cpu_count, 0);
 
for (i = 0; i < config.cpu_count; i++) {
cpus[i].stack = (uint8_t *) frame_alloc(STACK_FRAMES, FRAME_KA | FRAME_ATOMIC);
86,7 → 86,7
}
#endif /* CONFIG_SMP */
 
CPU = &cpus[config.cpu_active - 1];
CPU = &cpus[config.cpu_active-1];
CPU->active = 1;
CPU->tlb_active = 1;
104,7 → 104,7
if (cpus[i].active)
cpu_print_report(&cpus[i]);
else
printf("cpu%u: not active\n", i);
printf("cpu%d: not active\n", i);
}
}
 
/branches/dd/kernel/generic/src/sysinfo/sysinfo.c
163,8 → 163,7
i = 0;
}
}
 
panic("Not reached.");
panic("Not reached\n");
return NULL;
}
 
178,7 → 177,7
sysinfo_item_t *item = sysinfo_create_path(name, root);
if (item != NULL) { /* If in subsystem, unable to create or return so unable to set */
item->val.val = val;
item->val.val=val;
item->val_type = SYSINFO_VAL_VAL;
}
}
193,7 → 192,7
sysinfo_item_t *item = sysinfo_create_path(name, root);
if (item != NULL) { /* If in subsystem, unable to create or return so unable to set */
item->val.fn = fn;
item->val.fn=fn;
item->val_type = SYSINFO_VAL_FUNCTION;
}
}
245,7 → 244,7
break;
}
printf("%s %s val:%" PRIun "(%" PRIxn ") sub:%s\n", root->name, vtype, val,
printf("%s %s val:%d(%x) sub:%s\n", root->name, vtype, val,
val, (root->subinfo_type == SYSINFO_SUBINFO_NONE) ?
"NON" : ((root->subinfo_type == SYSINFO_SUBINFO_TABLE) ?
"TAB" : "FUN"));
282,15 → 281,10
return ret;
}
 
#define SYSINFO_MAX_LEN 1024
 
unative_t sys_sysinfo_valid(unative_t ptr, unative_t len)
{
char *str;
sysinfo_rettype_t ret = {0, 0};
 
if (len > SYSINFO_MAX_LEN)
return ret.valid;
str = malloc(len + 1, 0);
ASSERT(str);
305,9 → 299,6
{
char *str;
sysinfo_rettype_t ret = {0, 0};
if (len > SYSINFO_MAX_LEN)
return ret.val;
str = malloc(len + 1, 0);
ASSERT(str);