Subversion Repositories HelenOS

Compare Revisions

Ignore whitespace Rev 4054 → Rev 4055

/branches/dd/boot/arch/sparc64/loader/main.c
36,34 → 36,87
#include <ofw_tree.h>
#include "ofwarch.h"
#include <align.h>
#include <macros.h>
#include <string.h>
 
bootinfo_t bootinfo;
 
component_t components[COMPONENTS];
 
char *release = RELEASE;
char *release = STRING(RELEASE);
 
#ifdef REVISION
char *revision = ", revision " REVISION;
char *revision = ", revision " STRING(REVISION);
#else
char *revision = "";
#endif
 
#ifdef TIMESTAMP
char *timestamp = "\nBuilt on " TIMESTAMP;
char *timestamp = "\nBuilt on " STRING(TIMESTAMP);
#else
char *timestamp = "";
#endif
 
/** UltraSPARC subarchitecture - 1 for US, 3 for US3 */
uint8_t subarchitecture;
 
/**
* mask of the MID field inside the ICBUS_CONFIG register shifted by
* MID_SHIFT bits to the right
*/
uint16_t mid_mask;
 
/** Print version information. */
static void version_print(void)
{
printf("HelenOS SPARC64 Bootloader\nRelease %s%s%s\nCopyright (c) 2006 HelenOS project\n", release, revision, timestamp);
printf("HelenOS SPARC64 Bootloader\nRelease %s%s%s\n"
"Copyright (c) 2006 HelenOS project\n",
release, revision, timestamp);
}
 
/* the lowest ID (read from the VER register) of some US3 CPU model */
#define FIRST_US3_CPU 0x14
 
/* the greatest ID (read from the VER register) of some US3 CPU model */
#define LAST_US3_CPU 0x19
 
/* UltraSPARC IIIi processor implementation code */
#define US_IIIi_CODE 0x15
 
/**
* Sets the global variables "subarchitecture" and "mid_mask" to
* correct values.
*/
static void detect_subarchitecture(void)
{
uint64_t v;
asm volatile ("rdpr %%ver, %0\n" : "=r" (v));
v = (v << 16) >> 48;
if ((v >= FIRST_US3_CPU) && (v <= LAST_US3_CPU)) {
subarchitecture = SUBARCH_US3;
if (v == US_IIIi_CODE)
mid_mask = (1 << 5) - 1;
else
mid_mask = (1 << 10) - 1;
} else if (v < FIRST_US3_CPU) {
subarchitecture = SUBARCH_US;
mid_mask = (1 << 5) - 1;
} else {
printf("\nThis CPU is not supported by HelenOS.");
}
}
 
void bootstrap(void)
{
void *base = (void *) KERNEL_VIRTUAL_ADDRESS;
void *balloc_base;
unsigned int top = 0;
int i, j;
 
version_print();
detect_subarchitecture();
init_components(components);
 
if (!ofw_get_physmem_start(&bootinfo.physmem_start)) {
75,34 → 128,103
printf("Error: unable to get memory map, halting.\n");
halt();
}
 
if (bootinfo.memmap.total == 0) {
printf("Error: no memory detected, halting.\n");
halt();
}
 
/*
* SILO for some reason adds 0x400000 and subtracts
* bootinfo.physmem_start to/from silo_ramdisk_image.
* We just need plain physical address so we fix it up.
*/
if (silo_ramdisk_image) {
silo_ramdisk_image += bootinfo.physmem_start;
silo_ramdisk_image -= 0x400000;
/* Install 1:1 mapping for the ramdisk. */
if (ofw_map((void *)((uintptr_t) silo_ramdisk_image),
(void *)((uintptr_t) silo_ramdisk_image),
silo_ramdisk_size, -1) != 0) {
printf("Failed to map ramdisk.\n");
halt();
}
}
printf("\nSystem info\n");
printf(" memory: %dM starting at %P\n",
bootinfo.memmap.total >> 20, bootinfo.physmem_start);
bootinfo.memmap.total >> 20, bootinfo.physmem_start);
 
printf("\nMemory statistics\n");
printf(" kernel entry point at %P\n", KERNEL_VIRTUAL_ADDRESS);
printf(" %P: boot info structure\n", &bootinfo);
unsigned int i;
for (i = 0; i < COMPONENTS; i++)
/*
* Figure out destination address for each component.
* In this phase, we don't copy the components yet because we want to
* to be careful not to overwrite anything, especially the components
* which haven't been copied yet.
*/
bootinfo.taskmap.count = 0;
for (i = 0; i < COMPONENTS; i++) {
printf(" %P: %s image (size %d bytes)\n", components[i].start,
components[i].name, components[i].size);
top = ALIGN_UP(top, PAGE_SIZE);
if (i > 0) {
if (bootinfo.taskmap.count == TASKMAP_MAX_RECORDS) {
printf("Skipping superfluous components.\n");
break;
}
bootinfo.taskmap.tasks[bootinfo.taskmap.count].addr =
base + top;
bootinfo.taskmap.tasks[bootinfo.taskmap.count].size =
components[i].size;
strncpy(bootinfo.taskmap.tasks[
bootinfo.taskmap.count].name, components[i].name,
BOOTINFO_TASK_NAME_BUFLEN);
bootinfo.taskmap.count++;
}
top += components[i].size;
}
 
void * base = (void *) KERNEL_VIRTUAL_ADDRESS;
unsigned int top = 0;
j = bootinfo.taskmap.count - 1; /* do not consider ramdisk */
 
printf("\nCopying components\n");
bootinfo.taskmap.count = 0;
for (i = 0; i < COMPONENTS; i++) {
printf(" %s...", components[i].name);
if (silo_ramdisk_image) {
/* Treat the ramdisk as the last bootinfo task. */
if (bootinfo.taskmap.count == TASKMAP_MAX_RECORDS) {
printf("Skipping ramdisk.\n");
goto skip_ramdisk;
}
top = ALIGN_UP(top, PAGE_SIZE);
bootinfo.taskmap.tasks[bootinfo.taskmap.count].addr =
base + top;
bootinfo.taskmap.tasks[bootinfo.taskmap.count].size =
silo_ramdisk_size;
bootinfo.taskmap.count++;
printf("\nCopying ramdisk...");
/*
* Claim and map the whole ramdisk as it may exceed the area
* given to us by SILO.
*/
(void) ofw_claim_phys(base + top, silo_ramdisk_size);
(void) ofw_map(bootinfo.physmem_start + base + top, base + top,
silo_ramdisk_size, -1);
memmove(base + top, (void *)((uintptr_t)silo_ramdisk_image),
silo_ramdisk_size);
printf("done.\n");
top += silo_ramdisk_size;
}
skip_ramdisk:
 
/*
* Now we can proceed to copy the components. We do it in reverse order
* so that we don't overwrite anything even if the components overlap
* with base.
*/
printf("\nCopying bootinfo tasks\n");
for (i = COMPONENTS - 1; i > 0; i--, j--) {
printf(" %s...", components[i].name);
 
/*
* At this point, we claim the physical memory that we are
* going to use. We should be safe in case of the virtual
110,36 → 232,41
* SPARC binding, should restrict its use of virtual memory
* to addresses from [0xffd00000; 0xffefffff] and
* [0xfe000000; 0xfeffffff].
*
* XXX We don't map this piece of memory. We simply rely on
* SILO to have it done for us already in this case.
*/
(void) ofw_claim_phys(bootinfo.physmem_start + base + top,
(void) ofw_claim_phys(bootinfo.physmem_start +
bootinfo.taskmap.tasks[j].addr,
ALIGN_UP(components[i].size, PAGE_SIZE));
memcpy(base + top, components[i].start, components[i].size);
if (i > 0) {
bootinfo.taskmap.tasks[bootinfo.taskmap.count].addr =
base + top;
bootinfo.taskmap.tasks[bootinfo.taskmap.count].size =
components[i].size;
bootinfo.taskmap.count++;
}
top += components[i].size;
memcpy((void *)bootinfo.taskmap.tasks[j].addr,
components[i].start, components[i].size);
printf("done.\n");
}
 
printf("\nCopying kernel...");
(void) ofw_claim_phys(bootinfo.physmem_start + base,
ALIGN_UP(components[0].size, PAGE_SIZE));
memcpy(base, components[0].start, components[0].size);
printf("done.\n");
 
/*
* Claim the physical memory for the boot allocator.
* Claim and map the physical memory for the boot allocator.
* Initialize the boot allocator.
*/
(void) ofw_claim_phys(bootinfo.physmem_start +
base + ALIGN_UP(top, PAGE_SIZE), BALLOC_MAX_SIZE);
balloc_init(&bootinfo.ballocs, ALIGN_UP(((uintptr_t) base) + top,
PAGE_SIZE));
balloc_base = base + ALIGN_UP(top, PAGE_SIZE);
(void) ofw_claim_phys(bootinfo.physmem_start + balloc_base,
BALLOC_MAX_SIZE);
(void) ofw_map(bootinfo.physmem_start + balloc_base, balloc_base,
BALLOC_MAX_SIZE, -1);
balloc_init(&bootinfo.ballocs, (uintptr_t)balloc_base);
 
printf("\nCanonizing OpenFirmware device tree...");
bootinfo.ofw_root = ofw_tree_build();
printf("done.\n");
 
#ifdef CONFIG_SMP
#ifdef CONFIG_AP
printf("\nChecking for secondary processors...");
if (!ofw_cpu())
printf("Error: unable to get CPU properties\n");
146,9 → 273,10
printf("done.\n");
#endif
 
ofw_setup_palette();
 
printf("\nBooting the kernel...\n");
jump_to_kernel((void *) KERNEL_VIRTUAL_ADDRESS,
bootinfo.physmem_start | BSP_PROCESSOR, &bootinfo,
sizeof(bootinfo));
}