Subversion Repositories HelenOS

Compare Revisions

No changes between revisions

Ignore whitespace Rev 4640 → Rev 4647

/branches/arm/kernel/generic/include/context.h
45,7 → 45,7
(c)->sp = ((uintptr_t) (stack)) + (size) - SP_DELTA;
#endif /* context_set */
 
extern int context_save_arch(context_t *c);
extern int context_save_arch(context_t *c) __attribute__ ((returns_twice));
extern void context_restore_arch(context_t *c) __attribute__ ((noreturn));
 
/** Save register context.
76,10 → 76,6
* corresponding call to context_save(), the only
* difference being return value.
*
* Note that content of any local variable defined by
* the caller of context_save() is undefined after
* context_restore().
*
* @param c Context structure.
*/
static inline void context_restore(context_t *c)
/branches/arm/kernel/generic/include/byteorder.h
26,7 → 26,7
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
 
/** @addtogroup generic
/** @addtogroup generic
* @{
*/
/** @file
35,32 → 35,48
#ifndef KERN_BYTEORDER_H_
#define KERN_BYTEORDER_H_
 
#include <arch/byteorder.h>
#include <arch/types.h>
 
#if !(defined(ARCH_IS_BIG_ENDIAN) ^ defined(ARCH_IS_LITTLE_ENDIAN))
#error The architecture must be either big-endian or little-endian.
#if !(defined(__BE__) ^ defined(__LE__))
#error The architecture must be either big-endian or little-endian.
#endif
 
#ifdef ARCH_IS_BIG_ENDIAN
#ifdef __BE__
 
#define uint16_t_le2host(n) uint16_t_byteorder_swap(n)
#define uint32_t_le2host(n) uint32_t_byteorder_swap(n)
#define uint64_t_le2host(n) uint64_t_byteorder_swap(n)
#define uint16_t_le2host(n) (uint16_t_byteorder_swap(n))
#define uint32_t_le2host(n) (uint32_t_byteorder_swap(n))
#define uint64_t_le2host(n) (uint64_t_byteorder_swap(n))
 
#define uint16_t_be2host(n) (n)
#define uint32_t_be2host(n) (n)
#define uint64_t_be2host(n) (n)
#define uint16_t_be2host(n) (n)
#define uint32_t_be2host(n) (n)
#define uint64_t_be2host(n) (n)
 
#define host2uint16_t_le(n) (uint16_t_byteorder_swap(n))
#define host2uint32_t_le(n) (uint32_t_byteorder_swap(n))
#define host2uint64_t_le(n) (uint64_t_byteorder_swap(n))
 
#define host2uint16_t_be(n) (n)
#define host2uint32_t_be(n) (n)
#define host2uint64_t_be(n) (n)
 
#else
 
#define uint16_t_le2host(n) (n)
#define uint32_t_le2host(n) (n)
#define uint64_t_le2host(n) (n)
#define uint16_t_le2host(n) (n)
#define uint32_t_le2host(n) (n)
#define uint64_t_le2host(n) (n)
 
#define uint16_t_be2host(n) uint16_t_byteorder_swap(n)
#define uint32_t_be2host(n) uint32_t_byteorder_swap(n)
#define uint64_t_be2host(n) uint64_t_byteorder_swap(n)
#define uint16_t_be2host(n) (uint16_t_byteorder_swap(n))
#define uint32_t_be2host(n) (uint32_t_byteorder_swap(n))
#define uint64_t_be2host(n) (uint64_t_byteorder_swap(n))
 
#define host2uint16_t_le(n) (n)
#define host2uint32_t_le(n) (n)
#define host2uint64_t_le(n) (n)
 
#define host2uint16_t_be(n) (uint16_t_byteorder_swap(n))
#define host2uint32_t_be(n) (uint32_t_byteorder_swap(n))
#define host2uint64_t_be(n) (uint64_t_byteorder_swap(n))
 
#endif
 
static inline uint64_t uint64_t_byteorder_swap(uint64_t n)
/branches/arm/kernel/generic/include/string.h
0,0 → 1,99
/*
* Copyright (c) 2001-2004 Jakub Jermar
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* - The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
 
/** @addtogroup generic
* @{
*/
/** @file
*/
 
#ifndef KERN_STRING_H_
#define KERN_STRING_H_
 
#include <typedefs.h>
 
/**< Common Unicode characters */
#define U_SPECIAL '?'
 
#define U_LEFT_ARROW 0x2190
#define U_UP_ARROW 0x2191
#define U_RIGHT_ARROW 0x2192
#define U_DOWN_ARROW 0x2193
 
#define U_PAGE_UP 0x21de
#define U_PAGE_DOWN 0x21df
 
#define U_HOME_ARROW 0x21f1
#define U_END_ARROW 0x21f2
 
#define U_NULL 0x2400
#define U_ESCAPE 0x241b
#define U_DELETE 0x2421
 
#define U_CURSOR 0x2588
 
/**< No size limit constant */
#define STR_NO_LIMIT ((size_t) -1)
 
/**< Maximum size of a string containing cnt characters */
#define STR_BOUNDS(cnt) (cnt << 2)
 
extern wchar_t str_decode(const char *str, size_t *offset, size_t sz);
extern int chr_encode(wchar_t ch, char *str, size_t *offset, size_t sz);
 
extern size_t str_size(const char *str);
extern size_t wstr_size(const wchar_t *str);
 
extern size_t str_lsize(const char *str, size_t max_len);
extern size_t wstr_lsize(const wchar_t *str, size_t max_len);
 
extern size_t str_length(const char *str);
extern size_t wstr_length(const wchar_t *wstr);
 
extern size_t str_nlength(const char *str, size_t size);
extern size_t wstr_nlength(const wchar_t *str, size_t size);
 
extern bool ascii_check(wchar_t ch);
extern bool chr_check(wchar_t ch);
 
extern int str_cmp(const char *s1, const char *s2);
extern int str_lcmp(const char *s1, const char *s2, size_t max_len);
 
extern void str_cpy(char *dest, size_t size, const char *src);
extern void str_ncpy(char *dest, size_t size, const char *src, size_t n);
extern void wstr_nstr(char *dst, const wchar_t *src, size_t size);
 
extern const char *str_chr(const char *str, wchar_t ch);
 
extern bool wstr_linsert(wchar_t *str, wchar_t ch, size_t pos, size_t max_pos);
extern bool wstr_remove(wchar_t *str, size_t pos);
 
#endif
 
/** @}
*/
/branches/arm/kernel/generic/include/symtab.h
26,7 → 26,7
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
 
/** @addtogroup generic
/** @addtogroup generic
* @{
*/
/** @file
44,15 → 44,20
char symbol_name[MAX_SYMBOL_NAME];
};
 
extern char * get_symtab_entry(unative_t addr);
extern uintptr_t get_symbol_addr(const char *name);
extern int symtab_name_lookup(unative_t addr, char **name);
extern char *symtab_fmt_name_lookup(unative_t addr);
extern int symtab_addr_lookup(const char *name, uintptr_t *addr);
extern void symtab_print_search(const char *name);
extern int symtab_compl(char *name);
extern int symtab_compl(char *input, size_t size);
 
#ifdef CONFIG_SYMTAB
 
/* Symtable linked together by build process */
extern struct symtab_entry symbol_table[];
 
#endif
 
#endif
 
/** @}
*/
/branches/arm/kernel/generic/include/config.h
26,7 → 26,7
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
 
/** @addtogroup generic
/** @addtogroup generic
* @{
*/
/** @file
38,17 → 38,19
#include <arch/types.h>
#include <arch/mm/page.h>
 
#define STACK_SIZE PAGE_SIZE
#define STACK_SIZE PAGE_SIZE
 
#define CONFIG_INIT_TASKS 32
#define CONFIG_INIT_TASKS 32
#define CONFIG_TASK_NAME_BUFLEN 32
 
typedef struct {
uintptr_t addr;
size_t size;
char name[CONFIG_TASK_NAME_BUFLEN];
} init_task_t;
 
typedef struct {
count_t cnt;
size_t cnt;
init_task_t tasks[CONFIG_INIT_TASKS];
} init_t;
 
63,14 → 65,14
} ballocs_t;
 
typedef struct {
count_t cpu_count; /**< Number of processors detected. */
volatile count_t cpu_active; /**< Number of processors that are up and running. */
 
size_t cpu_count; /**< Number of processors detected. */
volatile size_t cpu_active; /**< Number of processors that are up and running. */
uintptr_t base;
size_t kernel_size; /**< Size of memory in bytes taken by kernel and stack */
size_t kernel_size; /**< Size of memory in bytes taken by kernel and stack */
uintptr_t stack_base; /**< Base adddress of initial stack */
size_t stack_size; /**< Size of initial stack */
uintptr_t stack_base; /**< Base adddress of initial stack */
size_t stack_size; /**< Size of initial stack */
} config_t;
 
extern config_t config;
/branches/arm/kernel/generic/include/proc/scheduler.h
47,7 → 47,7
typedef struct {
SPINLOCK_DECLARE(lock);
link_t rq_head; /**< List of ready threads. */
count_t n; /**< Number of threads in rq_ready. */
size_t n; /**< Number of threads in rq_ready. */
} runq_t;
 
extern atomic_t nrdy;
/branches/arm/kernel/generic/include/proc/task.h
53,7 → 53,10
#include <mm/tlb.h>
#include <proc/scheduler.h>
#include <udebug/udebug.h>
#include <ipc/kbox.h>
 
#define TASK_NAME_BUFLEN 20
 
struct thread;
 
/** Task structure. */
67,8 → 70,8
* threads.
*/
SPINLOCK_DECLARE(lock);
char *name;
 
char name[TASK_NAME_BUFLEN];
/** List of threads contained in this task. */
link_t th_head;
/** Address space. */
96,19 → 99,13
atomic_t active_calls;
 
#ifdef CONFIG_UDEBUG
/** Debugging stuff */
/** Debugging stuff. */
udebug_task_t udebug;
 
/** Kernel answerbox */
answerbox_t kernel_box;
/** Thread used to service kernel answerbox */
struct thread *kb_thread;
/** Kbox thread creation vs. begin of cleanup mutual exclusion */
mutex_t kb_cleanup_lock;
/** True if cleanup of kbox has already started */
bool kb_finished;
/** Kernel answerbox. */
kbox_t kb;
#endif
 
/** Architecture specific task data. */
task_arch_t arch;
147,6 → 144,7
#endif
 
extern unative_t sys_task_get_id(task_id_t *uspace_task_id);
extern unative_t sys_task_set_name(const char *uspace_name, size_t name_len);
 
#endif
 
/branches/arm/kernel/generic/include/proc/program.h
52,12 → 52,14
 
extern void *program_loader;
 
extern void program_create(as_t *as, uintptr_t entry_addr, program_t *p);
extern int program_create_from_image(void *image_addr, program_t *p);
extern int program_create_loader(program_t *p);
extern void program_create(as_t *as, uintptr_t entry_addr, char *name,
program_t *p);
extern int program_create_from_image(void *image_addr, char *name,
program_t *p);
extern int program_create_loader(program_t *p, char *name);
extern void program_ready(program_t *p);
 
extern unative_t sys_program_spawn_loader(int *uspace_phone_id);
extern unative_t sys_program_spawn_loader(char *uspace_name, size_t name_len);
 
#endif
 
/branches/arm/kernel/generic/include/proc/thread.h
259,7 → 259,8
extern slab_cache_t *fpu_context_slab;
 
/* Thread syscall prototypes. */
extern unative_t sys_thread_create(uspace_arg_t *uspace_uarg, char *uspace_name, thread_id_t *uspace_thread_id);
extern unative_t sys_thread_create(uspace_arg_t *uspace_uarg,
char *uspace_name, size_t name_len, thread_id_t *uspace_thread_id);
extern unative_t sys_thread_exit(int uspace_status);
extern unative_t sys_thread_get_id(thread_id_t *uspace_thread_id);
 
/branches/arm/kernel/generic/include/cpu.h
51,18 → 51,18
SPINLOCK_DECLARE(lock);
 
tlb_shootdown_msg_t tlb_messages[TLB_MESSAGE_QUEUE_LEN];
count_t tlb_messages_count;
size_t tlb_messages_count;
context_t saved_context;
 
atomic_t nrdy;
runq_t rq[RQ_COUNT];
volatile count_t needs_relink;
volatile size_t needs_relink;
 
SPINLOCK_DECLARE(timeoutlock);
link_t timeout_active_head;
 
count_t missed_clock_ticks; /**< When system clock loses a tick, it is recorded here
size_t missed_clock_ticks; /**< When system clock loses a tick, it is recorded here
so that clock() can react. This variable is
CPU-local and can be only accessed when interrupts
are disabled. */
/branches/arm/kernel/generic/include/synch/futex.h
49,7 → 49,7
/** Futex hash table link. */
link_t ht_link;
/** Number of tasks that reference this futex. */
count_t refcount;
size_t refcount;
} futex_t;
 
extern void futex_init(void);
/branches/arm/kernel/generic/include/synch/rwlock.h
53,7 → 53,7
*/
mutex_t exclusive;
/** Number of readers in critical section. */
count_t readers_in;
size_t readers_in;
} rwlock_t;
 
#define rwlock_write_lock(rwl) \
/branches/arm/kernel/generic/include/synch/spinlock.h
36,6 → 36,7
#define KERN_SPINLOCK_H_
 
#include <arch/types.h>
#include <arch/barrier.h>
#include <preemption.h>
#include <atomic.h>
#include <debug.h>
106,7 → 107,7
extern int printf(const char *, ...);
 
#define DEADLOCK_THRESHOLD 100000000
#define DEADLOCK_PROBE_INIT(pname) count_t pname = 0
#define DEADLOCK_PROBE_INIT(pname) size_t pname = 0
#define DEADLOCK_PROBE(pname, value) \
if ((pname)++ > (value)) { \
(pname) = 0; \
/branches/arm/kernel/generic/include/ddi/irq.h
36,18 → 36,16
#define KERN_IRQ_H_
 
typedef enum {
CMD_MEM_READ_1 = 0,
CMD_MEM_READ_2,
CMD_MEM_READ_4,
CMD_MEM_READ_8,
CMD_MEM_WRITE_1,
CMD_MEM_WRITE_2,
CMD_MEM_WRITE_4,
CMD_MEM_WRITE_8,
CMD_PORT_READ_1,
CMD_PORT_WRITE_1,
CMD_IA64_GETCHAR,
CMD_PPC32_GETCHAR,
CMD_PIO_READ_8 = 1,
CMD_PIO_READ_16,
CMD_PIO_READ_32,
CMD_PIO_WRITE_8,
CMD_PIO_WRITE_16,
CMD_PIO_WRITE_32,
CMD_BTEST,
CMD_PREDICATE,
CMD_ACCEPT,
CMD_DECLINE,
CMD_LAST
} irq_cmd_type;
 
54,8 → 52,9
typedef struct {
irq_cmd_type cmd;
void *addr;
unsigned long long value;
int dstarg;
unsigned long long value;
unsigned int srcarg;
unsigned int dstarg;
} irq_cmd_t;
 
typedef struct {
67,8 → 66,10
 
#include <arch/types.h>
#include <adt/list.h>
#include <adt/hash_table.h>
#include <synch/spinlock.h>
#include <proc/task.h>
#include <ipc/ipc.h>
 
typedef enum {
IRQ_DECLINE, /**< Decline to service. */
81,8 → 82,11
} irq_trigger_t;
 
struct irq;
typedef void (* irq_handler_t)(struct irq *irq, void *arg, ...);
typedef void (* irq_handler_t)(struct irq *);
 
/** Type for function used to clear the interrupt. */
typedef void (* cir_t)(void *, inr_t);
 
/** IPC notification config structure.
*
* Primarily, this structure is encapsulated in the irq_t structure.
95,10 → 99,12
answerbox_t *answerbox;
/** Method to be used for the notification. */
unative_t method;
/** Arguments that will be sent if the IRQ is claimed. */
unative_t scratch[IPC_CALL_LEN];
/** Top-half pseudocode. */
irq_code_t *code;
/** Counter. */
count_t counter;
size_t counter;
/**
* Link between IRQs that are notifying the same answerbox. The list is
* protected by the answerbox irq_lock.
138,22 → 144,29
/** Trigger level of the IRQ. */
irq_trigger_t trigger;
/** Claim ownership of the IRQ. */
irq_ownership_t (* claim)(void);
irq_ownership_t (* claim)(struct irq *);
/** Handler for this IRQ and device. */
irq_handler_t handler;
/** Argument for the handler. */
void *arg;
/** Instance argument for the handler and the claim function. */
void *instance;
 
/** Clear interrupt routine. */
cir_t cir;
/** First argument to the clear interrupt routine. */
void *cir_arg;
 
/** Notification configuration structure. */
ipc_notif_cfg_t notif_cfg;
} irq_t;
 
extern void irq_init(count_t inrs, count_t chains);
extern void irq_initialize(irq_t *irq);
extern void irq_register(irq_t *irq);
extern irq_t *irq_dispatch_and_lock(inr_t inr);
extern irq_t *irq_find_and_lock(inr_t inr, devno_t devno);
SPINLOCK_EXTERN(irq_uspace_hash_table_lock);
extern hash_table_t irq_uspace_hash_table;
 
extern void irq_init(size_t, size_t);
extern void irq_initialize(irq_t *);
extern void irq_register(irq_t *);
extern irq_t *irq_dispatch_and_lock(inr_t);
 
#endif
 
#endif
/branches/arm/kernel/generic/include/ddi/device.h
39,6 → 39,7
#include <typedefs.h>
 
extern devno_t device_assign_devno(void);
extern unative_t sys_device_assign_devno(void);
 
#endif
 
/branches/arm/kernel/generic/include/ddi/ddi.h
38,13 → 38,14
#include <ddi/ddi_arg.h>
#include <arch/types.h>
#include <proc/task.h>
#include <adt/list.h>
 
/** Structure representing contiguous physical memory area. */
typedef struct {
uintptr_t pbase; /**< Physical base of the area. */
uintptr_t vbase; /**< Virtual base of the area. */
count_t frames; /**< Number of frames in the area. */
bool cacheable; /**< Cacheability. */
uintptr_t pbase; /**< Physical base of the area. */
pfn_t frames; /**< Number of frames in the area. */
link_t link; /**< Linked list link */
} parea_t;
 
extern void ddi_init(void);
/branches/arm/kernel/generic/include/console/chardev.h
39,41 → 39,63
#include <synch/waitq.h>
#include <synch/spinlock.h>
 
#define CHARDEV_BUFLEN 512
#define INDEV_BUFLEN 512
 
struct chardev;
struct indev;
 
/* Character device operations interface. */
/* Input character device operations interface. */
typedef struct {
/** Suspend pushing characters. */
void (* suspend)(struct chardev *);
/** Resume pushing characters. */
void (* resume)(struct chardev *);
/** Write character to stream. */
void (* write)(struct chardev *, char c);
/** Read character directly from device, assume interrupts disabled. */
char (* read)(struct chardev *);
} chardev_operations_t;
wchar_t (* poll)(struct indev *);
} indev_operations_t;
 
/** Character input device. */
typedef struct chardev {
typedef struct indev {
char *name;
waitq_t wq;
waitq_t wq;
/** Protects everything below. */
SPINLOCK_DECLARE(lock);
uint8_t buffer[CHARDEV_BUFLEN];
count_t counter;
/** Implementation of chardev operations. */
chardev_operations_t *op;
index_t index;
SPINLOCK_DECLARE(lock);
wchar_t buffer[INDEV_BUFLEN];
size_t counter;
/** Implementation of indev operations. */
indev_operations_t *op;
size_t index;
void *data;
} chardev_t;
} indev_t;
 
extern void chardev_initialize(char *name, chardev_t *chardev,
chardev_operations_t *op);
extern void chardev_push_character(chardev_t *chardev, uint8_t ch);
 
struct outdev;
 
/* Output character device operations interface. */
typedef struct {
/** Write character to output. */
void (* write)(struct outdev *, wchar_t, bool);
} outdev_operations_t;
 
/** Character input device. */
typedef struct outdev {
char *name;
/** Protects everything below. */
SPINLOCK_DECLARE(lock);
/** Implementation of outdev operations. */
outdev_operations_t *op;
void *data;
} outdev_t;
 
extern void indev_initialize(char *name, indev_t *indev,
indev_operations_t *op);
extern void indev_push_character(indev_t *indev, wchar_t ch);
extern wchar_t indev_pop_character(indev_t *indev);
 
extern void outdev_initialize(char *name, outdev_t *outdev,
outdev_operations_t *op);
 
extern bool check_poll(indev_t *indev);
 
#endif /* KERN_CHARDEV_H_ */
 
/** @}
/branches/arm/kernel/generic/include/console/kconsole.h
37,9 → 37,10
 
#include <adt/list.h>
#include <synch/spinlock.h>
#include <ipc/irq.h>
 
#define MAX_CMDLINE 256
#define KCONSOLE_HISTORY 10
#define MAX_CMDLINE 256
#define KCONSOLE_HISTORY 10
 
typedef enum {
ARG_TYPE_INVALID = 0,
46,7 → 47,7
ARG_TYPE_INT,
ARG_TYPE_STRING,
/** Variable type - either symbol or string. */
ARG_TYPE_VAR
ARG_TYPE_VAR
} cmd_arg_type_t;
 
/** Structure representing one argument of kconsole command line. */
76,7 → 77,7
/** Function implementing the command. */
int (* func)(cmd_arg_t *);
/** Number of arguments. */
count_t argc;
size_t argc;
/** Argument vector. */
cmd_arg_t *argv;
/** Function for printing detailed help. */
83,13 → 84,19
void (* help)(void);
} cmd_info_t;
 
extern bool kconsole_notify;
extern irq_t kconsole_irq;
 
SPINLOCK_EXTERN(cmd_lock);
extern link_t cmd_head;
 
extern void kconsole_init(void);
extern void kconsole(void *prompt);
extern void kconsole_notify_init(void);
extern bool kconsole_check_poll(void);
extern void kconsole(char *prompt, char *msg, bool kcon);
extern void kconsole_thread(void *data);
 
extern int cmd_register(cmd_info_t *cmd);
extern bool cmd_register(cmd_info_t *cmd);
 
#endif
 
/branches/arm/kernel/generic/include/console/console.h
38,17 → 38,26
#include <arch/types.h>
#include <console/chardev.h>
 
extern chardev_t *stdin;
extern chardev_t *stdout;
extern indev_t *stdin;
extern outdev_t *stdout;
extern bool silent;
 
extern indev_t *stdin_wire(void);
extern void console_init(void);
 
extern void klog_init(void);
extern void klog_update(void);
 
extern uint8_t getc(chardev_t *chardev);
uint8_t _getc(chardev_t *chardev);
extern count_t gets(chardev_t *chardev, char *buf, size_t buflen);
extern void putchar(char c);
extern wchar_t getc(indev_t *indev);
extern size_t gets(indev_t *indev, char *buf, size_t buflen);
extern unative_t sys_klog(int fd, const void *buf, size_t size);
 
extern void grab_console(void);
extern void release_console(void);
 
extern unative_t sys_debug_enable_console(void);
extern unative_t sys_debug_disable_console(void);
 
extern void arch_grab_console(void);
extern void arch_release_console(void);
 
/branches/arm/kernel/generic/include/arch.h
56,7 → 56,7
* the base address of the stack.
*/
typedef struct {
count_t preemption_disabled; /**< Preemption disabled counter. */
size_t preemption_disabled; /**< Preemption disabled counter. */
thread_t *thread; /**< Current thread. */
task_t *task; /**< Current task. */
cpu_t *cpu; /**< Executing cpu. */
63,12 → 63,11
as_t *as; /**< Current address space. */
} the_t;
 
#define THE ((the_t *)(get_stack_base()))
#define THE ((the_t * )(get_stack_base()))
 
extern void the_initialize(the_t *the);
extern void the_copy(the_t *src, the_t *dst);
 
extern void arch_pre_main(void);
extern void arch_pre_mm_init(void);
extern void arch_post_mm_init(void);
extern void arch_post_cpu_init(void);
79,6 → 78,7
 
extern void reboot(void);
extern void arch_reboot(void);
extern void *arch_construct_function(fncptr_t *fptr, void *addr, void *caller);
 
#endif
 
/branches/arm/kernel/generic/include/adt/hash_table.h
47,7 → 47,7
*
* @return Index into hash table.
*/
index_t (* hash)(unative_t key[]);
size_t (* hash)(unative_t key[]);
/** Hash table item comparison function.
*
56,7 → 56,7
*
* @return true if the keys match, false otherwise.
*/
bool (*compare)(unative_t key[], count_t keys, link_t *item);
bool (*compare)(unative_t key[], size_t keys, link_t *item);
 
/** Hash table item removal callback.
*
68,8 → 68,8
/** Hash table structure. */
typedef struct {
link_t *entry;
count_t entries;
count_t max_keys;
size_t entries;
size_t max_keys;
hash_table_operations_t *op;
} hash_table_t;
 
76,11 → 76,11
#define hash_table_get_instance(item, type, member) \
list_get_instance((item), type, member)
 
extern void hash_table_create(hash_table_t *h, count_t m, count_t max_keys,
extern void hash_table_create(hash_table_t *h, size_t m, size_t max_keys,
hash_table_operations_t *op);
extern void hash_table_insert(hash_table_t *h, unative_t key[], link_t *item);
extern link_t *hash_table_find(hash_table_t *h, unative_t key[]);
extern void hash_table_remove(hash_table_t *h, unative_t key[], count_t keys);
extern void hash_table_remove(hash_table_t *h, unative_t key[], size_t keys);
 
#endif
 
/branches/arm/kernel/generic/include/adt/bitmap.h
41,14 → 41,23
 
typedef struct {
uint8_t *map;
count_t bits;
size_t bits;
} bitmap_t;
 
extern void bitmap_initialize(bitmap_t *bitmap, uint8_t *map, count_t bits);
extern void bitmap_set_range(bitmap_t *bitmap, index_t start, count_t bits);
extern void bitmap_clear_range(bitmap_t *bitmap, index_t start, count_t bits);
extern void bitmap_copy(bitmap_t *dst, bitmap_t *src, count_t bits);
extern void bitmap_initialize(bitmap_t *bitmap, uint8_t *map, size_t bits);
extern void bitmap_set_range(bitmap_t *bitmap, size_t start, size_t bits);
extern void bitmap_clear_range(bitmap_t *bitmap, size_t start, size_t bits);
extern void bitmap_copy(bitmap_t *dst, bitmap_t *src, size_t bits);
 
static inline int bitmap_get(bitmap_t *bitmap, size_t bit)
{
if(bit >= bitmap->bits)
return 0;
return !! ((bitmap->map)[bit/8] & (1 << (bit & 7)));
}
 
 
#endif
 
/** @}
/branches/arm/kernel/generic/include/adt/btree.h
46,7 → 46,7
/** B-tree node structure. */
typedef struct btree_node {
/** Number of keys. */
count_t keys;
size_t keys;
 
/**
* Keys. We currently support only single keys. Additional room for one
/branches/arm/kernel/generic/include/adt/fifo.h
59,9 → 59,9
#define FIFO_INITIALIZE_STATIC(name, t, itms) \
struct { \
t fifo[(itms)]; \
count_t items; \
index_t head; \
index_t tail; \
size_t items; \
size_t head; \
size_t tail; \
} name = { \
.items = (itms), \
.head = 0, \
80,9 → 80,9
#define FIFO_INITIALIZE_DYNAMIC(name, t, itms) \
struct { \
t *fifo; \
count_t items; \
index_t head; \
index_t tail; \
size_t items; \
size_t head; \
size_t tail; \
} name = { \
.fifo = NULL, \
.items = (itms), \
/branches/arm/kernel/generic/include/mm/frame.h
38,34 → 38,82
 
#include <arch/types.h>
#include <adt/list.h>
#include <mm/buddy.h>
#include <synch/spinlock.h>
#include <mm/buddy.h>
#include <arch/mm/page.h>
#include <arch/mm/frame.h>
 
#define ONE_FRAME 0
#define TWO_FRAMES 1
#define FOUR_FRAMES 2
#define ONE_FRAME 0
#define TWO_FRAMES 1
#define FOUR_FRAMES 2
 
 
#ifdef ARCH_STACK_FRAMES
#define STACK_FRAMES ARCH_STACK_FRAMES
#define STACK_FRAMES ARCH_STACK_FRAMES
#else
#define STACK_FRAMES ONE_FRAME
#define STACK_FRAMES ONE_FRAME
#endif
 
/** Maximum number of zones in system. */
#define ZONES_MAX 16
/** Maximum number of zones in the system. */
#define ZONES_MAX 32
 
/** Convert the frame address to kernel va. */
#define FRAME_KA 0x1
typedef uint8_t frame_flags_t;
 
/** Convert the frame address to kernel VA. */
#define FRAME_KA 0x01
/** Do not panic and do not sleep on failure. */
#define FRAME_ATOMIC 0x2
#define FRAME_ATOMIC 0x02
/** Do not start reclaiming when no free memory. */
#define FRAME_NO_RECLAIM 0x4
/** Do not allocate above 4 GiB. */
#define FRAME_LOW_4_GiB 0x8
#define FRAME_NO_RECLAIM 0x04
 
typedef uint8_t zone_flags_t;
 
/** Available zone (free for allocation) */
#define ZONE_AVAILABLE 0x00
/** Zone is reserved (not available for allocation) */
#define ZONE_RESERVED 0x08
/** Zone is used by firmware (not available for allocation) */
#define ZONE_FIRMWARE 0x10
 
/** Currently there is no equivalent zone flags
for frame flags */
#define FRAME_TO_ZONE_FLAGS(frame_flags) 0
 
typedef struct {
size_t refcount; /**< Tracking of shared frames */
uint8_t buddy_order; /**< Buddy system block order */
link_t buddy_link; /**< Link to the next free block inside
one order */
void *parent; /**< If allocated by slab, this points there */
} frame_t;
 
typedef struct {
pfn_t base; /**< Frame_no of the first frame
in the frames array */
size_t count; /**< Size of zone */
size_t free_count; /**< Number of free frame_t
structures */
size_t busy_count; /**< Number of busy frame_t
structures */
zone_flags_t flags; /**< Type of the zone */
frame_t *frames; /**< Array of frame_t structures
in this zone */
buddy_system_t *buddy_system; /**< Buddy system for the zone */
} zone_t;
 
/*
* The zoneinfo.lock must be locked when accessing zoneinfo structure.
* Some of the attributes in zone_t structures are 'read-only'
*/
typedef struct {
SPINLOCK_DECLARE(lock);
size_t count;
zone_t info[ZONES_MAX];
} zones_t;
 
extern zones_t zones;
 
static inline uintptr_t PFN2ADDR(pfn_t frame)
{
return (uintptr_t) (frame << FRAME_WIDTH);
76,43 → 124,49
return (pfn_t) (addr >> FRAME_WIDTH);
}
 
static inline count_t SIZE2FRAMES(size_t size)
static inline size_t SIZE2FRAMES(size_t size)
{
if (!size)
return 0;
return (count_t) ((size - 1) >> FRAME_WIDTH) + 1;
return (size_t) ((size - 1) >> FRAME_WIDTH) + 1;
}
 
static inline size_t FRAMES2SIZE(count_t frames)
static inline size_t FRAMES2SIZE(size_t frames)
{
return (size_t) (frames << FRAME_WIDTH);
}
 
#define IS_BUDDY_ORDER_OK(index, order) \
static inline bool zone_flags_available(zone_flags_t flags)
{
return ((flags & (ZONE_RESERVED | ZONE_FIRMWARE)) == 0);
}
 
#define IS_BUDDY_ORDER_OK(index, order) \
((~(((unative_t) -1) << (order)) & (index)) == 0)
#define IS_BUDDY_LEFT_BLOCK(zone, frame) \
(((frame_index((zone), (frame)) >> (frame)->buddy_order) & 0x1) == 0)
#define IS_BUDDY_RIGHT_BLOCK(zone, frame) \
(((frame_index((zone), (frame)) >> (frame)->buddy_order) & 0x1) == 1)
#define IS_BUDDY_LEFT_BLOCK_ABS(zone, frame) \
(((frame_index_abs((zone), (frame)) >> (frame)->buddy_order) & 0x1) == 0)
#define IS_BUDDY_RIGHT_BLOCK_ABS(zone, frame) \
(((frame_index_abs((zone), (frame)) >> (frame)->buddy_order) & 0x1) == 1)
#define IS_BUDDY_LEFT_BLOCK(zone, frame) \
(((frame_index((zone), (frame)) >> (frame)->buddy_order) & 0x01) == 0)
#define IS_BUDDY_RIGHT_BLOCK(zone, frame) \
(((frame_index((zone), (frame)) >> (frame)->buddy_order) & 0x01) == 1)
#define IS_BUDDY_LEFT_BLOCK_ABS(zone, frame) \
(((frame_index_abs((zone), (frame)) >> (frame)->buddy_order) & 0x01) == 0)
#define IS_BUDDY_RIGHT_BLOCK_ABS(zone, frame) \
(((frame_index_abs((zone), (frame)) >> (frame)->buddy_order) & 0x01) == 1)
 
#define frame_alloc(order, flags) \
#define frame_alloc(order, flags) \
frame_alloc_generic(order, flags, NULL)
 
extern void frame_init(void);
extern void *frame_alloc_generic(uint8_t, int, unsigned int *);
extern void *frame_alloc_generic(uint8_t, frame_flags_t, size_t *);
extern void frame_free(uintptr_t);
extern void frame_reference_add(pfn_t);
 
extern int zone_create(pfn_t, count_t, pfn_t, int);
extern void *frame_get_parent(pfn_t, unsigned int);
extern void frame_set_parent(pfn_t, void *, unsigned int);
extern void frame_mark_unavailable(pfn_t, count_t);
extern uintptr_t zone_conf_size(count_t);
extern void zone_merge(unsigned int, unsigned int);
extern size_t find_zone(pfn_t frame, size_t count, size_t hint);
extern size_t zone_create(pfn_t, size_t, pfn_t, zone_flags_t);
extern void *frame_get_parent(pfn_t, size_t);
extern void frame_set_parent(pfn_t, void *, size_t);
extern void frame_mark_unavailable(pfn_t, size_t);
extern uintptr_t zone_conf_size(size_t);
extern bool zone_merge(size_t, size_t);
extern void zone_merge_all(void);
extern uint64_t zone_total_size(void);
 
120,7 → 174,7
* Console functions
*/
extern void zone_print_list(void);
extern void zone_print_one(unsigned int);
extern void zone_print_one(size_t);
 
#endif
 
/branches/arm/kernel/generic/include/mm/slab.h
41,40 → 41,40
#include <mm/frame.h>
 
/** Minimum size to be allocated by malloc */
#define SLAB_MIN_MALLOC_W 4
#define SLAB_MIN_MALLOC_W 4
 
/** Maximum size to be allocated by malloc */
#define SLAB_MAX_MALLOC_W 18
#define SLAB_MAX_MALLOC_W 22
 
/** Initial Magazine size (TODO: dynamically growing magazines) */
#define SLAB_MAG_SIZE 4
 
/** If object size is less, store control structure inside SLAB */
#define SLAB_INSIDE_SIZE (PAGE_SIZE >> 3)
#define SLAB_INSIDE_SIZE (PAGE_SIZE >> 3)
 
/** Maximum wasted space we allow for cache */
#define SLAB_MAX_BADNESS(cache) \
#define SLAB_MAX_BADNESS(cache) \
(((unsigned int) PAGE_SIZE << (cache)->order) >> 2)
 
/* slab_reclaim constants */
 
/** Reclaim all possible memory, because we are in memory stress */
#define SLAB_RECLAIM_ALL 0x1
#define SLAB_RECLAIM_ALL 0x01
 
/* cache_create flags */
 
/** Do not use per-cpu cache */
#define SLAB_CACHE_NOMAGAZINE 0x1
#define SLAB_CACHE_NOMAGAZINE 0x01
/** Have control structure inside SLAB */
#define SLAB_CACHE_SLINSIDE 0x2
#define SLAB_CACHE_SLINSIDE 0x02
/** We add magazine cache later, if we have this flag */
#define SLAB_CACHE_MAGDEFERRED (0x4 | SLAB_CACHE_NOMAGAZINE)
#define SLAB_CACHE_MAGDEFERRED (0x04 | SLAB_CACHE_NOMAGAZINE)
 
typedef struct {
link_t link;
count_t busy; /**< Count of full slots in magazine */
count_t size; /**< Number of slots in magazine */
void *objs[]; /**< Slots in magazine */
size_t busy; /**< Count of full slots in magazine */
size_t size; /**< Number of slots in magazine */
void *objs[]; /**< Slots in magazine */
} slab_magazine_t;
 
typedef struct {
86,23 → 86,23
 
typedef struct {
char *name;
 
link_t link;
 
/* Configuration */
/** Size of slab position - align_up(sizeof(obj)) */
size_t size;
 
int (*constructor)(void *obj, int kmflag);
int (*destructor)(void *obj);
 
/** Flags changing behaviour of cache */
int flags;
 
/* Computed values */
uint8_t order; /**< Order of frames to be allocated */
unsigned int objects; /**< Number of objects that fit in */
 
uint8_t order; /**< Order of frames to be allocated */
unsigned int objects; /**< Number of objects that fit in */
/* Statistics */
atomic_t allocated_slabs;
atomic_t allocated_objs;
109,15 → 109,15
atomic_t cached_objs;
/** How many magazines in magazines list */
atomic_t magazine_counter;
 
/* Slabs */
link_t full_slabs; /**< List of full slabs */
link_t partial_slabs; /**< List of partial slabs */
link_t full_slabs; /**< List of full slabs */
link_t partial_slabs; /**< List of partial slabs */
SPINLOCK_DECLARE(slablock);
/* Magazines */
link_t magazines; /**< List o full magazines */
/* Magazines */
link_t magazines; /**< List o full magazines */
SPINLOCK_DECLARE(maglock);
 
/** CPU cache */
slab_mag_cache_t *mag_cache;
} slab_cache_t;
128,7 → 128,7
 
extern void * slab_alloc(slab_cache_t *, int);
extern void slab_free(slab_cache_t *, void *);
extern count_t slab_reclaim(int);
extern size_t slab_reclaim(int);
 
/* slab subsytem initialization */
extern void slab_cache_init(void);
141,6 → 141,7
extern void *malloc(unsigned int, int);
extern void *realloc(void *, unsigned int, int);
extern void free(void *);
 
#endif
 
/** @}
/branches/arm/kernel/generic/include/mm/tlb.h
61,7 → 61,7
tlb_invalidate_type_t type; /**< Message type. */
asid_t asid; /**< Address space identifier. */
uintptr_t page; /**< Page address. */
count_t count; /**< Number of pages to invalidate. */
size_t count; /**< Number of pages to invalidate. */
} tlb_shootdown_msg_t;
 
extern void tlb_init(void);
68,7 → 68,7
 
#ifdef CONFIG_SMP
extern void tlb_shootdown_start(tlb_invalidate_type_t type, asid_t asid,
uintptr_t page, count_t count);
uintptr_t page, size_t count);
extern void tlb_shootdown_finalize(void);
extern void tlb_shootdown_ipi_recv(void);
#else
84,7 → 84,7
 
extern void tlb_invalidate_all(void);
extern void tlb_invalidate_asid(asid_t asid);
extern void tlb_invalidate_pages(asid_t asid, uintptr_t page, count_t cnt);
extern void tlb_invalidate_pages(asid_t asid, uintptr_t page, size_t cnt);
#endif
 
/** @}
/branches/arm/kernel/generic/include/mm/as.h
94,7 → 94,7
* Number of processors on wich is this address space active.
* Protected by asidlock.
*/
count_t cpu_refcount;
size_t cpu_refcount;
/**
* Address space identifier.
* Constant on architectures that do not support ASIDs.
132,7 → 132,7
/** This lock must be acquired only when the as_area lock is held. */
mutex_t lock;
/** This structure can be deallocated if refcount drops to 0. */
count_t refcount;
size_t refcount;
/**
* B+tree containing complete map of anonymous pages of the shared area.
*/
156,7 → 156,7
};
struct { /**< phys_backend members */
uintptr_t base;
count_t frames;
size_t frames;
};
} mem_backend_data_t;
 
175,7 → 175,7
/** Attributes related to the address space area itself. */
int attributes;
/** Size of this area in multiples of PAGE_SIZE. */
count_t pages;
size_t pages;
/** Base address of this area. */
uintptr_t base;
/** Map of used space. */
225,8 → 225,8
extern int as_area_get_flags(as_area_t *area);
extern bool as_area_check_access(as_area_t *area, pf_access_t access);
extern size_t as_area_get_size(uintptr_t base);
extern int used_space_insert(as_area_t *a, uintptr_t page, count_t count);
extern int used_space_remove(as_area_t *a, uintptr_t page, count_t count);
extern int used_space_insert(as_area_t *a, uintptr_t page, size_t count);
extern int used_space_remove(as_area_t *a, uintptr_t page, size_t count);
 
 
/* Interface to be implemented by architectures. */
/branches/arm/kernel/generic/include/mm/page.h
42,7 → 42,7
/** Operations to manipulate page mappings. */
typedef struct {
void (* mapping_insert)(as_t *as, uintptr_t page, uintptr_t frame,
int flags);
int flags);
void (* mapping_remove)(as_t *as, uintptr_t page);
pte_t *(* mapping_find)(as_t *as, uintptr_t page);
} page_mapping_operations_t;
59,6 → 59,7
extern pte_t *page_table_create(int flags);
extern void page_table_destroy(pte_t *page_table);
extern void map_structure(uintptr_t s, size_t size);
 
extern uintptr_t hw_map(uintptr_t physaddr, size_t size);
 
#endif
/branches/arm/kernel/generic/include/mm/buddy.h
82,7 → 82,7
extern link_t *buddy_system_alloc(buddy_system_t *, uint8_t);
extern bool buddy_system_can_alloc(buddy_system_t *, uint8_t);
extern void buddy_system_free(buddy_system_t *, link_t *);
extern size_t buddy_conf_size(int);
extern size_t buddy_conf_size(size_t);
extern link_t *buddy_system_alloc_block(buddy_system_t *, link_t *);
 
#endif
/branches/arm/kernel/generic/include/ipc/event.h
0,0 → 1,79
/*
* Copyright (c) 2009 Jakub Jermar
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* - The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
 
/** @addtogroup generic
* @{
*/
/** @file
*/
 
#ifndef KERN_EVENT_H_
#define KERN_EVENT_H_
 
#include <ipc/event_types.h>
#include <arch/types.h>
#include <synch/spinlock.h>
#include <ipc/ipc.h>
 
/** Event notification structure. */
typedef struct {
SPINLOCK_DECLARE(lock);
/** Answerbox for notifications. */
answerbox_t *answerbox;
/** Method to be used for the notification. */
unative_t method;
/** Counter. */
size_t counter;
} event_t;
 
extern void event_init(void);
extern unative_t sys_event_subscribe(unative_t, unative_t);
extern bool event_is_subscribed(event_type_t);
extern void event_cleanup_answerbox(answerbox_t *);
 
#define event_notify_0(e) \
event_notify((e), 0, 0, 0, 0, 0)
#define event_notify_1(e, a1) \
event_notify((e), (a1), 0, 0, 0, 0)
#define event_notify_2(e, a1, a2) \
event_notify((e), (a1), (a2), 0, 0, 0)
#define event_notify_3(e, a1, a2, a3) \
event_notify((e), (a1), (a2), (a3), 0, 0)
#define event_notify_4(e, a1, a2, a3, a4) \
event_notify((e), (a1), (a2), (a3), (a4), 0)
#define event_notify_5(e, a1, a2, a3, a4, a5) \
event_notify((e), (a1), (a2), (a3), (a4), (a5))
 
extern void event_notify(event_type_t, unative_t, unative_t, unative_t,
unative_t, unative_t);
 
#endif
 
/** @}
*/
Property changes:
Added: svn:mergeinfo
/branches/arm/kernel/generic/include/ipc/event_types.h
0,0 → 1,53
/*
* Copyright (c) 2009 Jakub Jermar
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* - The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
 
/** @addtogroup generic
* @{
*/
/** @file
*/
 
#ifndef KERN_EVENT_TYPES_H_
#define KERN_EVENT_TYPES_H_
 
typedef enum event_type {
EVENT_KLOG = 0,
EVENT_KCONSOLE,
EVENT_WAIT,
EVENT_END
} event_type_t;
 
typedef enum wait_type {
TASK_CREATE = 0,
TASK_DESTROY
} wait_type_t;
 
#endif
 
/** @}
*/
Property changes:
Added: svn:mergeinfo
/branches/arm/kernel/generic/include/ipc/ipc.h
111,6 → 111,25
/* System-specific methods - only through special syscalls
* These methods have special behaviour
*/
/** Clone connection.
*
* The calling task clones one of its phones for the callee.
*
* - ARG1 - The caller sets ARG1 to the phone of the cloned connection.
* - The callee gets the new phone from ARG1.
* - on answer, the callee acknowledges the new connection by sending EOK back
* or the kernel closes it
*/
#define IPC_M_CONNECTION_CLONE 1
/** Protocol for CONNECT - ME
*
* Through this call, the recipient learns about the new cloned connection.
*
* - ARG5 - the kernel sets ARG5 to contain the hash of the used phone
* - on asnwer, the callee acknowledges the new connection by sending EOK back
* or the kernel closes it
*/
#define IPC_M_CONNECT_ME 2
/** Protocol for CONNECT - TO - ME
*
* Calling process asks the callee to create a callback connection,
127,7 → 146,7
* - the allocated phoneid is passed to userspace
* (on the receiving side) as ARG5 of the call.
*/
#define IPC_M_CONNECT_TO_ME 1
#define IPC_M_CONNECT_TO_ME 3
/** Protocol for CONNECT - ME - TO
*
* Calling process asks the callee to create for him a new connection.
145,11 → 164,11
* - recepient may forward message.
*
*/
#define IPC_M_CONNECT_ME_TO 2
#define IPC_M_CONNECT_ME_TO 4
/** This message is sent to answerbox when the phone
* is hung up
*/
#define IPC_M_PHONE_HUNGUP 3
#define IPC_M_PHONE_HUNGUP 5
 
/** Send as_area over IPC.
* - ARG1 - source as_area base address
159,7 → 178,7
* on answer, the recipient must set:
* - ARG1 - dst as_area base adress
*/
#define IPC_M_SHARE_OUT 4
#define IPC_M_SHARE_OUT 6
 
/** Receive as_area over IPC.
* - ARG1 - destination as_area base address
171,7 → 190,7
* - ARG1 - source as_area base address
* - ARG2 - flags that will be used for sharing
*/
#define IPC_M_SHARE_IN 5
#define IPC_M_SHARE_IN 7
 
/** Send data to another address space over IPC.
* - ARG1 - source address space virtual address
182,7 → 201,7
* - ARG1 - final destination address space virtual address
* - ARG2 - final size of data to be copied
*/
#define IPC_M_DATA_WRITE 6
#define IPC_M_DATA_WRITE 8
 
/** Receive data from another address space over IPC.
* - ARG1 - destination virtual address in the source address space
193,13 → 212,13
* - ARG1 - source virtual address in the destination address space
* - ARG2 - final size of data to be copied
*/
#define IPC_M_DATA_READ 7
#define IPC_M_DATA_READ 9
 
/** Debug the recipient.
* - ARG1 - specifies the debug method (from udebug_method_t)
* - other arguments are specific to the debug method
*/
#define IPC_M_DEBUG_ALL 8
#define IPC_M_DEBUG_ALL 10
 
/* Well-known methods */
#define IPC_M_LAST_SYSTEM 511
/branches/arm/kernel/generic/include/ipc/ipcrsc.h
35,8 → 35,11
#ifndef KERN_IPCRSC_H_
#define KERN_IPCRSC_H_
 
#include <proc/task.h>
#include <ipc/ipc.h>
 
extern call_t * get_call(unative_t callid);
extern int phone_alloc(void);
extern int phone_alloc(task_t *t);
extern void phone_connect(int phoneid, answerbox_t *box);
extern void phone_dealloc(int phoneid);
 
/branches/arm/kernel/generic/include/ipc/irq.h
36,7 → 36,7
#define KERN_IPC_IRQ_H_
 
/** Maximum length of IPC IRQ program */
#define IRQ_MAX_PROG_SIZE 10
#define IRQ_MAX_PROG_SIZE 20
 
#include <ipc/ipc.h>
#include <ddi/irq.h>
43,16 → 43,21
#include <arch/types.h>
#include <adt/list.h>
 
extern int ipc_irq_register(answerbox_t *box, inr_t inr, devno_t devno,
unative_t method, irq_code_t *ucode);
extern void ipc_irq_send_notif(irq_t *irq);
extern void ipc_irq_unregister(answerbox_t *box, inr_t inr, devno_t devno);
extern void ipc_irq_cleanup(answerbox_t *box);
extern int ipc_irq_register(answerbox_t *, inr_t, devno_t, unative_t,
irq_code_t *);
 
extern irq_ownership_t ipc_irq_top_half_claim(irq_t *);
extern void ipc_irq_top_half_handler(irq_t *);
 
extern int ipc_irq_unregister(answerbox_t *, inr_t, devno_t);
extern void ipc_irq_cleanup(answerbox_t *);
 
/*
* User friendly wrappers for ipc_irq_send_msg(). They are in the form
* ipc_irq_send_msg_m(), where m is the number of payload arguments.
*/
#define ipc_irq_send_msg_0(irq) \
ipc_irq_send_msg((irq), 0, 0, 0, 0, 0)
#define ipc_irq_send_msg_1(irq, a1) \
ipc_irq_send_msg((irq), (a1), 0, 0, 0, 0)
#define ipc_irq_send_msg_2(irq, a1, a2) \
64,8 → 69,8
#define ipc_irq_send_msg_5(irq, a1, a2, a3, a4, a5) \
ipc_irq_send_msg((irq), (a1), (a2), (a3), (a4), (a5))
 
extern void ipc_irq_send_msg(irq_t *irq, unative_t a1, unative_t a2,
unative_t a3, unative_t a4, unative_t a5);
extern void ipc_irq_send_msg(irq_t *, unative_t, unative_t, unative_t, unative_t,
unative_t);
 
#endif
 
/branches/arm/kernel/generic/include/ipc/sysipc.h
53,6 → 53,8
int nonblocking);
unative_t sys_ipc_forward_fast(unative_t callid, unative_t phoneid,
unative_t method, unative_t arg1, unative_t arg2, int mode);
unative_t sys_ipc_forward_slow(unative_t callid, unative_t phoneid,
ipc_data_t *data, int mode);
unative_t sys_ipc_hangup(int phoneid);
unative_t sys_ipc_register_irq(inr_t inr, devno_t devno, unative_t method,
irq_code_t *ucode);
/branches/arm/kernel/generic/include/ipc/kbox.h
37,6 → 37,18
 
#include <typedefs.h>
 
/** Kernel answerbox structure. */
typedef struct kbox {
/** The answerbox itself. */
answerbox_t box;
/** Thread used to service the answerbox. */
struct thread *thread;
/** Kbox thread creation vs. begin of cleanup mutual exclusion. */
mutex_t cleanup_lock;
/** True if cleanup of kbox has already started. */
bool finished;
} kbox_t;
 
extern int ipc_connect_kbox(task_id_t);
extern void ipc_kbox_cleanup(void);
 
/branches/arm/kernel/generic/include/sort.h
40,8 → 40,8
/*
* sorting routines
*/
extern void bubblesort(void * data, count_t n, size_t e_size, int (* cmp) (void * a, void * b));
extern void qsort(void * data, count_t n, size_t e_size, int (* cmp) (void * a, void * b));
extern void bubblesort(void * data, size_t n, size_t e_size, int (* cmp) (void * a, void * b));
extern void qsort(void * data, size_t n, size_t e_size, int (* cmp) (void * a, void * b));
 
/*
* default sorting comparators
/branches/arm/kernel/generic/include/macros.h
26,7 → 26,7
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
 
/** @addtogroup generic
/** @addtogroup generic
* @{
*/
/** @file
35,47 → 35,73
#ifndef KERN_MACROS_H_
#define KERN_MACROS_H_
 
#ifndef __ASM__
 
#include <arch/types.h>
 
#define isdigit(d) (((d) >= '0') && ((d) <= '9'))
#define islower(c) (((c) >= 'a') && ((c) <= 'z'))
#define isupper(c) (((c) >= 'A') && ((c) <= 'Z'))
#define isalpha(c) (is_lower((c)) || is_upper((c)))
#define isalphanum(c) (is_alpha((c)) || is_digit((c)))
#define isspace(c) (((c) == ' ') || ((c) == '\t') || ((c) == '\n') || \
((c) == '\r'))
 
#define min(a,b) ((a) < (b) ? (a) : (b))
#define max(a,b) ((a) > (b) ? (a) : (b))
 
/** Return true if the intervals overlap.
*
* @param s1 Start address of the first interval.
* @param sz1 Size of the first interval.
* @param s2 Start address of the second interval.
* @param sz2 Size of the second interval.
* @param s1 Start address of the first interval.
* @param sz1 Size of the first interval.
* @param s2 Start address of the second interval.
* @param sz2 Size of the second interval.
*/
static inline int overlaps(uintptr_t s1, size_t sz1, uintptr_t s2, size_t sz2)
{
uintptr_t e1 = s1 + sz1;
uintptr_t e2 = s2 + sz2;
 
return (s1 < e2) && (s2 < e1);
return ((s1 < e2) && (s2 < e1));
}
 
#endif /* __ASM__ */
 
#define isdigit(d) (((d) >= '0') && ((d) <= '9'))
#define islower(c) (((c) >= 'a') && ((c) <= 'z'))
#define isupper(c) (((c) >= 'A') && ((c) <= 'Z'))
#define isalpha(c) (is_lower((c)) || is_upper((c)))
#define isalphanum(c) (is_alpha((c)) || is_digit((c)))
#define isspace(c) \
(((c) == ' ') || ((c) == '\t') || ((c) == '\n') || ((c) == '\r'))
 
#define min(a, b) ((a) < (b) ? (a) : (b))
#define max(a, b) ((a) > (b) ? (a) : (b))
 
#define min3(a, b, c) ((a) < (b) ? (min(a, c)) : (min(b, c)))
#define max3(a, b, c) ((a) > (b) ? (max(a, c)) : (max(b, c)))
 
/* Compute overlapping of physical addresses */
#define PA_overlaps(x, szx, y, szy) \
#define PA_overlaps(x, szx, y, szy) \
overlaps(KA2PA((x)), (szx), KA2PA((y)), (szy))
 
#define SIZE2KB(size) ((size) >> 10)
#define SIZE2MB(size) ((size) >> 20)
#define SIZE2KB(size) ((size) >> 10)
#define SIZE2MB(size) ((size) >> 20)
 
#define KB2SIZE(kb) ((kb) << 10)
#define MB2SIZE(mb) ((mb) << 20)
#define KB2SIZE(kb) ((kb) << 10)
#define MB2SIZE(mb) ((mb) << 20)
 
#define STRING(arg) STRING_ARG(arg)
#define STRING_ARG(arg) #arg
#define STRING(arg) STRING_ARG(arg)
#define STRING_ARG(arg) #arg
 
#define LOWER32(arg) ((arg) & 0xffffffff)
#define UPPER32(arg) (((arg) >> 32) & 0xffffffff)
 
#define MERGE_LOUP32(lo, up) \
((((uint64_t) (lo)) & 0xffffffff) \
| ((((uint64_t) (up)) & 0xffffffff) << 32))
 
/** Pseudorandom generator
*
* A pretty standard linear congruential pseudorandom
* number generator (m = 2^32 or 2^64 depending on architecture).
*
*/
#define RANDI(seed) \
({ \
(seed) = 1103515245 * (seed) + 12345; \
(seed); \
})
 
#endif
 
/** @}
/branches/arm/kernel/generic/include/sysinfo/sysinfo.h
26,7 → 26,7
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
 
/** @addtogroup generic
/** @addtogroup generic
* @{
*/
/** @file
36,6 → 36,7
#define KERN_SYSINFO_H_
 
#include <arch/types.h>
#include <string.h>
 
typedef union sysinfo_item_val {
unative_t val;
59,13 → 60,13
int subinfo_type;
} sysinfo_item_t;
 
#define SYSINFO_VAL_VAL 0
#define SYSINFO_VAL_FUNCTION 1
#define SYSINFO_VAL_UNDEFINED '?'
#define SYSINFO_VAL_VAL 0
#define SYSINFO_VAL_FUNCTION 1
#define SYSINFO_VAL_UNDEFINED U_SPECIAL
 
#define SYSINFO_SUBINFO_NONE 0
#define SYSINFO_SUBINFO_TABLE 1
#define SYSINFO_SUBINFO_FUNCTION 2
#define SYSINFO_SUBINFO_NONE 0
#define SYSINFO_SUBINFO_TABLE 1
#define SYSINFO_SUBINFO_FUNCTION 2
 
typedef unative_t (*sysinfo_val_fn_t)(sysinfo_item_t *root);
typedef unative_t (*sysinfo_subinfo_fn_t)(const char *subname);
/branches/arm/kernel/generic/include/printf/printf_core.h
26,7 → 26,7
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
 
/** @addtogroup generic
/** @addtogroup generic
* @{
*/
/** @file
35,20 → 35,23
#ifndef KERN_PRINTF_CORE_H_
#define KERN_PRINTF_CORE_H_
 
#include <arch/types.h>
#include <typedefs.h>
#include <arch/arg.h>
 
/** Structure for specifying output methods for different printf clones. */
struct printf_spec {
/* Output function, returns count of printed characters or EOF */
int (*write)(void *, size_t, void *);
/* Support data - output stream specification, its state, locks,... */
typedef struct {
/* String output function, returns number of printed characters or EOF */
int (*str_write)(const char *, size_t, void *);
/* Wide string output function, returns number of printed characters or EOF */
int (*wstr_write)(const wchar_t *, size_t, void *);
/* User data - output stream specification, state, locks, etc. */
void *data;
} printf_spec_t;
 
};
int printf_core(const char *fmt, printf_spec_t *ps, va_list ap);
 
int printf_core(const char *fmt, struct printf_spec *ps, va_list ap);
 
#endif
 
/** @}
/branches/arm/kernel/generic/include/print.h
26,7 → 26,7
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
 
/** @addtogroup generic
/** @addtogroup generic
* @{
*/
/** @file
46,11 → 46,9
 
extern int puts(const char *s);
extern int printf(const char *fmt, ...);
extern int sprintf(char *str, const char *fmt, ...);
extern int snprintf(char *str, size_t size, const char *fmt, ...);
 
extern int vprintf(const char *fmt, va_list ap);
extern int vsprintf(char *str, const char *fmt, va_list ap);
extern int vsnprintf(char *str, size_t size, const char *fmt, va_list ap);
 
#endif
/branches/arm/kernel/generic/include/putchar.h
26,7 → 26,7
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
 
/** @addtogroup generic
/** @addtogroup generic
* @{
*/
/** @file
35,7 → 35,7
#ifndef KERN_PUTCHAR_H_
#define KERN_PUTCHAR_H_
 
extern void putchar(const char ch);
extern void putchar(const wchar_t ch);
 
#endif
 
/branches/arm/kernel/generic/include/syscall/syscall.h
44,6 → 44,7
SYS_THREAD_GET_ID,
SYS_TASK_GET_ID,
SYS_TASK_SET_NAME,
SYS_PROGRAM_SPAWN_LOADER,
SYS_FUTEX_SLEEP,
62,14 → 63,18
SYS_IPC_ANSWER_FAST,
SYS_IPC_ANSWER_SLOW,
SYS_IPC_FORWARD_FAST,
SYS_IPC_FORWARD_SLOW,
SYS_IPC_WAIT,
SYS_IPC_HANGUP,
SYS_IPC_REGISTER_IRQ,
SYS_IPC_UNREGISTER_IRQ,
 
SYS_EVENT_SUBSCRIBE,
SYS_CAP_GRANT,
SYS_CAP_REVOKE,
SYS_DEVICE_ASSIGN_DEVNO,
SYS_PHYSMEM_MAP,
SYS_IOSPACE_ENABLE,
SYS_PREEMPT_CONTROL,
78,6 → 83,7
SYS_SYSINFO_VALUE,
SYS_DEBUG_ENABLE_CONSOLE,
SYS_DEBUG_DISABLE_CONSOLE,
SYS_IPC_CONNECT_KBOX,
SYSCALL_END
} syscall_t;
/branches/arm/kernel/generic/include/typedefs.h
26,7 → 26,7
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
 
/** @addtogroup generic
/** @addtogroup generic
* @{
*/
/** @file
51,6 → 51,12
typedef int32_t inr_t;
typedef int32_t devno_t;
 
typedef int32_t wchar_t;
 
typedef volatile uint8_t ioport8_t;
typedef volatile uint16_t ioport16_t;
typedef volatile uint32_t ioport32_t;
 
#endif
 
/** @}
/branches/arm/kernel/generic/include/errno.h
48,15 → 48,18
* sys_ipc_hangup() to close the connection.
* Used by answerbox to close the connection.
*/
#define EEXISTS -8 /* Entry already exists */
#define EBADMEM -9 /* Bad memory pointer */
#define ENOTSUP -10 /* Not supported */
#define EADDRNOTAVAIL -11 /* Address not available. */
#define ETIMEOUT -12 /* Timeout expired */
#define EINVAL -13 /* Invalid value */
#define EBUSY -14 /* Resource is busy */
#define EOVERFLOW -15 /* The result does not fit its size. */
#define EINTR -16 /* Operation was interrupted. */
#define EPARTY -8 /* The other party encountered an error when
* receiving the call.
*/
#define EEXISTS -9 /* Entry already exists */
#define EBADMEM -10 /* Bad memory pointer */
#define ENOTSUP -11 /* Not supported */
#define EADDRNOTAVAIL -12 /* Address not available. */
#define ETIMEOUT -13 /* Timeout expired */
#define EINVAL -14 /* Invalid value */
#define EBUSY -15 /* Resource is busy */
#define EOVERFLOW -16 /* The result does not fit its size. */
#define EINTR -17 /* Operation was interrupted. */
 
#endif
 
/branches/arm/kernel/generic/include/func.h
41,11 → 41,6
extern atomic_t haltstate;
 
extern void halt(void);
 
extern size_t strlen(const char *str);
extern int strcmp(const char *src, const char *dst);
extern int strncmp(const char *src, const char *dst, size_t len);
extern void strncpy(char *dest, const char *src, size_t len);
extern unative_t atoi(const char *text);
extern void order(const uint64_t val, uint64_t *rv, char *suffix);
 
/branches/arm/kernel/generic/include/memstr.h
44,7 → 44,7
extern void *_memcpy(void *dst, const void *src, size_t cnt);
extern void _memsetb(void *dst, size_t cnt, uint8_t x);
extern void _memsetw(void *dst, size_t cnt, uint16_t x);
extern char *strcpy(char *dest, const char *src);
extern void *memmove(void *dst, const void *src, size_t cnt);
 
#endif
 
/branches/arm/kernel/generic/include/main/main.h
35,8 → 35,13
#ifndef KERN_MAIN_H_
#define KERN_MAIN_H_
 
#include <arch/types.h>
 
extern uintptr_t stack_safe;
 
extern void main_bsp(void);
extern void main_ap(void);
 
#endif
 
/** @}
/branches/arm/kernel/generic/include/align.h
26,13 → 26,13
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
 
/** @addtogroup generic
/** @addtogroup generic
* @ingroup others
* @{
*/
/**
* @file
* @brief Macros for making values and addresses aligned.
* @brief Macros for making values and addresses aligned.
*/
 
#ifndef KERN_ALIGN_H_
43,7 → 43,7
* @param s Address or size to be aligned.
* @param a Size of alignment, must be power of 2.
*/
#define ALIGN_DOWN(s, a) ((s) & ~((a) - 1))
#define ALIGN_DOWN(s, a) ((s) & ~((a) - 1))
 
 
/** Align to the nearest higher address.
51,7 → 51,7
* @param s Address or size to be aligned.
* @param a Size of alignment, must be power of 2.
*/
#define ALIGN_UP(s, a) (((s) + ((a) - 1)) & ~((a) - 1))
#define ALIGN_UP(s, a) (((s) + ((a) - 1)) & ~((a) - 1))
 
#endif
 
/branches/arm/kernel/generic/include/fpu_context.h
37,10 → 37,6
 
#include <arch/fpu_context.h>
 
#if defined(CONFIG_FPU_LAZY) && !defined(ARCH_HAS_FPU)
# error "CONFIG_FPU_LAZY defined, but no ARCH_HAS_FPU"
#endif
 
extern void fpu_context_save(fpu_context_t *);
extern void fpu_context_restore(fpu_context_t *);
extern void fpu_init(void);
/branches/arm/kernel/generic/include/interrupt.h
44,12 → 44,12
 
typedef void (* iroutine)(int n, istate_t *istate);
 
#define fault_if_from_uspace(istate, cmd, ...) \
#define fault_if_from_uspace(istate, fmt, ...) \
{ \
if (istate_from_uspace(istate)) { \
task_t *task = TASK; \
printf("Task %" PRIu64 " killed due to an exception at %p.", task->taskid, istate_get_pc(istate)); \
printf(" " cmd, ##__VA_ARGS__); \
printf("Task %s (%" PRIu64 ") killed due to an exception at %p: ", task->name, task->taskid, istate_get_pc(istate)); \
printf(fmt "\n", ##__VA_ARGS__); \
task_kill(task->taskid); \
thread_exit(); \
} \
/branches/arm/kernel/generic/include/debug.h
57,21 → 57,21
#ifdef CONFIG_DEBUG
# define ASSERT(expr) \
if (!(expr)) { \
panic("assertion failed (%s), caller=%p\n", #expr, CALLER); \
panic("Assertion failed (%s), caller=%p.", #expr, CALLER); \
}
#else
# define ASSERT(expr)
#endif
 
/** Extensive debugging output macro
/** Extensive logging output macro
*
* If CONFIG_EDEBUG is set, the LOG() macro
* If CONFIG_LOG is set, the LOG() macro
* will print whatever message is indicated plus
* an information about the location.
*
*/
 
#ifdef CONFIG_EDEBUG
#ifdef CONFIG_LOG
# define LOG(format, ...) \
printf("%s() at %s:%u: " format "\n", __func__, __FILE__, \
__LINE__, ##__VA_ARGS__);
79,15 → 79,15
# define LOG(format, ...)
#endif
 
/** Extensive debugging execute macro
/** Extensive logging execute macro
*
* If CONFIG_EDEBUG is set, the LOG_EXEC() macro
* If CONFIG_LOG is set, the LOG_EXEC() macro
* will print an information about calling a given
* function and call it.
*
*/
 
#ifdef CONFIG_EDEBUG
#ifdef CONFIG_LOG
# define LOG_EXEC(fnc) \
{ \
printf("%s() at %s:%u: " #fnc "\n", __func__, __FILE__, \
/branches/arm/kernel/generic/include/panic.h
37,11 → 37,11
 
#ifdef CONFIG_DEBUG
# define panic(format, ...) \
panic_printf("Kernel panic in %s() at %s:%u: " format, __func__, \
__FILE__, __LINE__, ##__VA_ARGS__);
panic_printf("Kernel panic in %s() at %s:%u: " format "\n", \
__func__, __FILE__, __LINE__, ##__VA_ARGS__);
#else
# define panic(format, ...) \
panic_printf("Kernel panic: " format, ##__VA_ARGS__);
panic_printf("Kernel panic: " format "\n", ##__VA_ARGS__);
#endif
 
extern void panic_printf(char *fmt, ...) __attribute__((noreturn));
/branches/arm/kernel/generic/include/udebug/udebug.h
147,9 → 147,7
/** BEGIN operation in progress (waiting for threads to stop) */
UDEBUG_TS_BEGINNING,
/** Debugger fully connected */
UDEBUG_TS_ACTIVE,
/** Task is shutting down, no more debug activities allowed */
UDEBUG_TS_SHUTDOWN
UDEBUG_TS_ACTIVE
} udebug_task_state_t;
 
/** Debugging part of task_t structure.
169,25 → 167,19
/** Debugging part of thread_t structure.
*/
typedef struct {
/**
* Prevent deadlock with udebug_before_thread_runs() in interrupt
* handler, without actually disabling interrupts.
* ==0 means "unlocked", >0 means "locked"
*/
atomic_t int_lock;
 
/** Synchronize debug ops on this thread / access to this structure */
/** Synchronize debug ops on this thread / access to this structure. */
mutex_t lock;
 
waitq_t go_wq;
call_t *go_call;
unative_t syscall_args[6];
istate_t *uspace_state;
 
/** What type of event are we stopped in or 0 if none */
udebug_event_t cur_event;
bool stop;
bool stoppable;
bool debug_active; /**< In a debugging session */
/** What type of event are we stopped in or 0 if none. */
udebug_event_t cur_event;
bool go; /**< thread is GO */
bool stoppable; /**< thread is stoppable */
bool active; /**< thread is in a debugging session */
} udebug_thread_t;
 
struct task;
200,7 → 192,7
unative_t a4, unative_t a5, unative_t a6, unative_t id, unative_t rc,
bool end_variant);
 
void udebug_thread_b_event(struct thread *t);
void udebug_thread_b_event_attach(struct thread *t, struct task *ta);
void udebug_thread_e_event(void);
 
void udebug_stoppable_begin(void);
/branches/arm/kernel/generic/include/stdarg.h
45,7 → 45,7
#define va_start(ap, last) __builtin_va_start(ap, last)
#define va_arg(ap, type) __builtin_va_arg(ap, type)
#define va_end(ap) __builtin_va_end(ap)
#define va_copy(dst,src) __builtin_va_copy(dst,src)
#define va_copy(dst, src) __builtin_va_copy(dst, src)
 
#endif
 
/branches/arm/kernel/generic/src/main/uinit.c
79,6 → 79,14
uarg.uspace_thread_arg = NULL;
 
free((uspace_arg_t *) arg);
/*
* Disable interrupts so that the execution of userspace() is not
* disturbed by any interrupts as some of the userspace()
* implementations will switch to the userspace stack before switching
* the mode.
*/
(void) interrupts_disable();
userspace(&uarg);
}
 
/branches/arm/kernel/generic/src/main/kinit.c
32,7 → 32,7
 
/**
* @file
* @brief Kernel initialization thread.
* @brief Kernel initialization thread.
*
* This file contains kinit kernel thread which carries out
* high level system initialization.
64,6 → 64,8
#include <security/cap.h>
#include <lib/rd.h>
#include <ipc/ipc.h>
#include <debug.h>
#include <string.h>
 
#ifdef CONFIG_SMP
#include <smp/smp.h>
72,6 → 74,15
#include <synch/waitq.h>
#include <synch/spinlock.h>
 
#define ALIVE_CHARS 4
 
#ifdef CONFIG_KCONSOLE
static char alive[ALIVE_CHARS] = "-\\|/";
#endif
 
#define INIT_PREFIX "init:"
#define INIT_PREFIX_LEN 5
 
/** Kernel initialization thread.
*
* kinit takes care of higher level kernel
82,16 → 93,19
*/
void kinit(void *arg)
{
thread_t *t;
 
#if defined(CONFIG_SMP) || defined(CONFIG_KCONSOLE)
thread_t *thread;
#endif
/*
* Detach kinit as nobody will call thread_join_timeout() on it.
*/
thread_detach(THREAD);
 
interrupts_disable();
 
#ifdef CONFIG_SMP
#ifdef CONFIG_SMP
if (config.cpu_count > 1) {
waitq_initialize(&ap_completion_wq);
/*
100,78 → 114,90
* not mess together with kcpulb threads.
* Just a beautification.
*/
if ((t = thread_create(kmp, NULL, TASK, THREAD_FLAG_WIRED,
"kmp", true))) {
spinlock_lock(&t->lock);
t->cpu = &cpus[0];
spinlock_unlock(&t->lock);
thread_ready(t);
thread = thread_create(kmp, NULL, TASK, THREAD_FLAG_WIRED, "kmp", true);
if (thread != NULL) {
spinlock_lock(&thread->lock);
thread->cpu = &cpus[0];
spinlock_unlock(&thread->lock);
thread_ready(thread);
} else
panic("thread_create/kmp\n");
thread_join(t);
thread_detach(t);
panic("Unable to create kmp thread.");
thread_join(thread);
thread_detach(thread);
}
#endif /* CONFIG_SMP */
/*
* Now that all CPUs are up, we can report what we've found.
*/
cpu_list();
 
#ifdef CONFIG_SMP
if (config.cpu_count > 1) {
count_t i;
size_t i;
/*
* For each CPU, create its load balancing thread.
*/
for (i = 0; i < config.cpu_count; i++) {
 
if ((t = thread_create(kcpulb, NULL, TASK,
THREAD_FLAG_WIRED, "kcpulb", true))) {
spinlock_lock(&t->lock);
t->cpu = &cpus[i];
spinlock_unlock(&t->lock);
thread_ready(t);
thread = thread_create(kcpulb, NULL, TASK, THREAD_FLAG_WIRED, "kcpulb", true);
if (thread != NULL) {
spinlock_lock(&thread->lock);
thread->cpu = &cpus[i];
spinlock_unlock(&thread->lock);
thread_ready(thread);
} else
panic("thread_create/kcpulb\n");
 
printf("Unable to create kcpulb thread for cpu" PRIs "\n", i);
}
}
#endif /* CONFIG_SMP */
 
/*
* At this point SMP, if present, is configured.
*/
arch_post_smp_init();
 
/*
* Create kernel console.
*/
t = thread_create(kconsole, (void *) "kconsole", TASK, 0, "kconsole",
false);
if (t)
thread_ready(t);
else
panic("thread_create/kconsole\n");
 
#ifdef CONFIG_KCONSOLE
if (stdin) {
/*
* Create kernel console.
*/
thread = thread_create(kconsole_thread, NULL, TASK, 0, "kconsole", false);
if (thread != NULL)
thread_ready(thread);
else
printf("Unable to create kconsole thread\n");
}
#endif /* CONFIG_KCONSOLE */
interrupts_enable();
/*
* Create user tasks, load RAM disk images.
*/
count_t i;
size_t i;
program_t programs[CONFIG_INIT_TASKS];
for (i = 0; i < init.cnt; i++) {
if (init.tasks[i].addr % FRAME_SIZE) {
printf("init[%" PRIc "].addr is not frame aligned", i);
printf("init[%" PRIs "].addr is not frame aligned\n", i);
continue;
}
/*
* Construct task name from the 'init:' prefix and the
* name stored in the init structure (if any).
*/
char namebuf[TASK_NAME_BUFLEN];
char *name;
name = init.tasks[i].name;
if (name[0] == 0)
name = "<unknown>";
ASSERT(TASK_NAME_BUFLEN >= INIT_PREFIX_LEN);
str_cpy(namebuf, TASK_NAME_BUFLEN, INIT_PREFIX);
str_cpy(namebuf + INIT_PREFIX_LEN,
TASK_NAME_BUFLEN - INIT_PREFIX_LEN, name);
 
int rc = program_create_from_image((void *) init.tasks[i].addr,
&programs[i]);
 
if (rc == 0 && programs[i].task != NULL) {
namebuf, &programs[i]);
if ((rc == 0) && (programs[i].task != NULL)) {
/*
* Set capabilities to init userspace tasks.
*/
184,31 → 210,34
/* It was the program loader and was registered */
} else {
/* RAM disk image */
int rd = init_rd((rd_header_t *) init.tasks[i].addr,
init.tasks[i].size);
int rd = init_rd((rd_header_t *) init.tasks[i].addr, init.tasks[i].size);
if (rd != RE_OK)
printf("Init binary %" PRIc " not used, error "
"code %d.\n", i, rd);
printf("Init binary %" PRIs " not used (error %d)\n", i, rd);
}
}
/*
* Run user tasks with reasonable delays
* Run user tasks.
*/
for (i = 0; i < init.cnt; i++) {
if (programs[i].task != NULL) {
thread_usleep(50000);
if (programs[i].task != NULL)
program_ready(&programs[i]);
}
}
 
#ifdef CONFIG_KCONSOLE
if (!stdin) {
while (1) {
thread_sleep(10);
printf("kinit: No stdin\nKernel alive: .");
unsigned int i = 0;
while (true) {
printf("\b%c", alive[i % ALIVE_CHARS]);
thread_sleep(1);
printf("kinit... ");
i++;
}
}
#endif /* CONFIG_KCONSOLE */
}
 
/** @}
/branches/arm/kernel/generic/src/main/main.c
32,7 → 32,7
 
/**
* @file
* @brief Main initialization kernel function for all processors.
* @brief Main initialization kernel function for all processors.
*
* During kernel boot, all processors, after architecture dependent
* initialization, start executing code found in this file. After
81,8 → 81,9
#include <adt/btree.h>
#include <smp/smp.h>
#include <ddi/ddi.h>
#include <main/main.h>
#include <ipc/event.h>
 
 
/** Global configuration structure. */
config_t config;
 
105,18 → 106,15
* appropriate sizes and addresses.
*/
 
/**< Virtual address of where the kernel is loaded. */
/** Virtual address of where the kernel is loaded. */
uintptr_t hardcoded_load_address = 0;
/**< Size of the kernel code in bytes. */
/** Size of the kernel code in bytes. */
size_t hardcoded_ktext_size = 0;
/**< Size of the kernel data in bytes. */
/** Size of the kernel data in bytes. */
size_t hardcoded_kdata_size = 0;
/**< Lowest safe stack virtual address. */
/** Lowest safe stack virtual address. */
uintptr_t stack_safe = 0;
 
void main_bsp(void);
void main_ap(void);
 
/*
* These two functions prevent stack from underflowing during the
* kernel boot phase when SP is set to the very top of the reserved
155,7 → 153,7
config.stack_base = config.base + config.kernel_size;
/* Avoid placing stack on top of init */
count_t i;
size_t i;
for (i = 0; i < init.cnt; i++) {
if (PA_overlaps(config.stack_base, config.stack_size,
init.tasks[i].addr, init.tasks[i].size))
191,8 → 189,6
{
/* Keep this the first thing. */
the_initialize(THE);
 
LOG();
version_print();
201,7 → 197,7
config.base, config.kernel_size, config.stack_base,
config.stack_size);
 
#ifdef CONFIG_KCONSOLE
/*
* kconsole data structures must be initialized very early
* because other subsystems will register their respective
208,6 → 204,7
* commands.
*/
LOG_EXEC(kconsole_init());
#endif
/*
* Exception handler initialization, before architecture
214,7 → 211,7
* starts adding its own handlers
*/
LOG_EXEC(exc_init());
 
/*
* Memory management subsystems initialization.
*/
236,7 → 233,7
/* Slab must be initialized after we know the number of processors. */
LOG_EXEC(slab_enable_cpucache());
printf("Detected %" PRIc " CPU(s), %" PRIu64" MiB free memory\n",
printf("Detected %" PRIs " CPU(s), %" PRIu64" MiB free memory\n",
config.cpu_count, SIZE2MB(zone_total_size()));
LOG_EXEC(cpu_init());
250,31 → 247,32
LOG_EXEC(futex_init());
if (init.cnt > 0) {
count_t i;
size_t i;
for (i = 0; i < init.cnt; i++)
printf("init[%" PRIc "].addr=%#" PRIp ", init[%" PRIc
"].size=%#" PRIs "\n", i, init.tasks[i].addr, i,
LOG("init[%" PRIs "].addr=%#" PRIp ", init[%" PRIs
"].size=%#" PRIs, i, init.tasks[i].addr, i,
init.tasks[i].size);
} else
printf("No init binaries found\n");
printf("No init binaries found.\n");
LOG_EXEC(ipc_init());
LOG_EXEC(event_init());
LOG_EXEC(klog_init());
 
/*
* Create kernel task.
*/
task_t *kernel = task_create(AS_KERNEL, "kernel");
if (!kernel)
panic("Can't create kernel task\n");
panic("Cannot create kernel task.");
/*
* Create the first thread.
*/
thread_t *kinit_thread = thread_create(kinit, NULL, kernel, 0, "kinit",
true);
thread_t *kinit_thread
= thread_create(kinit, NULL, kernel, 0, "kinit", true);
if (!kinit_thread)
panic("Can't create kinit thread\n");
panic("Cannot create kinit thread.");
LOG_EXEC(thread_ready(kinit_thread));
/*
328,6 → 326,7
* collide with another CPU coming up. To prevent this, we
* switch to this cpu's private stack prior to waking kmp up.
*/
context_save(&CPU->saved_context);
context_set(&CPU->saved_context, FADDR(main_ap_separated_stack),
(uintptr_t) CPU->stack, CPU_STACK_SIZE);
context_restore(&CPU->saved_context);
/branches/arm/kernel/generic/src/main/shutdown.c
32,10 → 32,11
 
/**
* @file
* @brief Shutdown procedures.
* @brief Shutdown procedures.
*/
 
#include <arch.h>
#include <func.h>
#include <print.h>
 
void reboot(void)
47,6 → 48,7
#endif
arch_reboot();
halt();
}
 
/** @}
/branches/arm/kernel/generic/src/main/version.c
34,21 → 34,22
 
#include <main/version.h>
#include <print.h>
#include <macros.h>
 
char *project = "SPARTAN kernel";
char *copyright = "Copyright (c) 2001-2009 HelenOS project";
char *release = RELEASE;
char *name = NAME;
char *arch = ARCH;
char *release = STRING(RELEASE);
char *name = STRING(NAME);
char *arch = STRING(KARCH);
 
#ifdef REVISION
char *revision = ", revision " REVISION;
char *revision = ", revision " STRING(REVISION);
#else
char *revision = "";
#endif
 
#ifdef TIMESTAMP
char *timestamp = " on " TIMESTAMP;
char *timestamp = " on " STRING(TIMESTAMP);
#else
char *timestamp = "";
#endif
/branches/arm/kernel/generic/src/printf/sprintf.c
File deleted
/branches/arm/kernel/generic/src/printf/vsprintf.c
File deleted
/branches/arm/kernel/generic/src/printf/printf_core.c
1,6 → 1,7
/*
* Copyright (c) 2001-2004 Jakub Jermar
* Copyright (c) 2006 Josef Cejka
* Copyright (c) 2009 Martin Decky
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
27,38 → 28,37
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
 
/** @addtogroup generic
/** @addtogroup generic
* @{
*/
/**
* @file
* @brief Printing functions.
* @brief Printing functions.
*/
 
#include <printf/printf_core.h>
#include <putchar.h>
#include <print.h>
#include <arch/arg.h>
#include <macros.h>
#include <func.h>
#include <string.h>
#include <arch.h>
 
/** show prefixes 0x or 0 */
#define __PRINTF_FLAG_PREFIX 0x00000001
#define __PRINTF_FLAG_PREFIX 0x00000001
/** signed / unsigned number */
#define __PRINTF_FLAG_SIGNED 0x00000002
#define __PRINTF_FLAG_SIGNED 0x00000002
/** print leading zeroes */
#define __PRINTF_FLAG_ZEROPADDED 0x00000004
#define __PRINTF_FLAG_ZEROPADDED 0x00000004
/** align to left */
#define __PRINTF_FLAG_LEFTALIGNED 0x00000010
#define __PRINTF_FLAG_LEFTALIGNED 0x00000010
/** always show + sign */
#define __PRINTF_FLAG_SHOWPLUS 0x00000020
#define __PRINTF_FLAG_SHOWPLUS 0x00000020
/** print space instead of plus */
#define __PRINTF_FLAG_SPACESIGN 0x00000040
#define __PRINTF_FLAG_SPACESIGN 0x00000040
/** show big characters */
#define __PRINTF_FLAG_BIGCHARS 0x00000080
#define __PRINTF_FLAG_BIGCHARS 0x00000080
/** number has - sign */
#define __PRINTF_FLAG_NEGATIVE 0x00000100
#define __PRINTF_FLAG_NEGATIVE 0x00000100
 
/**
* Buffer big enough for 64-bit number printed in base 2, sign, prefix and 0
65,7 → 65,7
* to terminate string... (last one is only for better testing end of buffer by
* zero-filling subroutine)
*/
#define PRINT_NUMBER_BUFFER_SIZE (64 + 5)
#define PRINT_NUMBER_BUFFER_SIZE (64 + 5)
 
/** Enumeration of possible arguments types.
*/
78,69 → 78,103
PrintfQualifierPointer
} qualifier_t;
 
static char nullstr[] = "(NULL)";
static char digits_small[] = "0123456789abcdef";
static char digits_big[] = "0123456789ABCDEF";
static char invalch = U_SPECIAL;
 
/** Print one or more characters without adding newline.
*
* @param buf Buffer with size at least count bytes. NULL pointer is
* not allowed!
* @param count Number of characters to print.
* @param ps Output method and its data.
* @return Number of characters printed.
* @param buf Buffer holding characters with size of
* at least size bytes. NULL is not allowed!
* @param size Size of the buffer in bytes.
* @param ps Output method and its data.
*
* @return Number of characters printed.
*
*/
static int printf_putnchars(const char * buf, size_t count,
struct printf_spec *ps)
static int printf_putnchars(const char *buf, size_t size,
printf_spec_t *ps)
{
return ps->write((void *) buf, count, ps->data);
return ps->str_write((void *) buf, size, ps->data);
}
 
/** Print a string without adding a newline.
/** Print one or more wide characters without adding newline.
*
* @param str String to print.
* @param ps Write function specification and support data.
* @return Number of characters printed.
* @param buf Buffer holding wide characters with size of
* at least size bytes. NULL is not allowed!
* @param size Size of the buffer in bytes.
* @param ps Output method and its data.
*
* @return Number of wide characters printed.
*
*/
static int printf_putstr(const char * str, struct printf_spec *ps)
static int printf_wputnchars(const wchar_t *buf, size_t size,
printf_spec_t *ps)
{
size_t count;
return ps->wstr_write((void *) buf, size, ps->data);
}
 
/** Print string without adding a newline.
*
* @param str String to print.
* @param ps Write function specification and support data.
*
* @return Number of characters printed.
*
*/
static int printf_putstr(const char *str, printf_spec_t *ps)
{
if (str == NULL)
return printf_putnchars(nullstr, str_size(nullstr), ps);
if (str == NULL) {
char *nullstr = "(NULL)";
return printf_putnchars(nullstr, strlen(nullstr), ps);
}
return ps->str_write((void *) str, str_size(str), ps->data);
}
 
count = strlen(str);
 
return ps->write((void *) str, count, ps->data);
/** Print one ASCII character.
*
* @param c ASCII character to be printed.
* @param ps Output method.
*
* @return Number of characters printed.
*
*/
static int printf_putchar(const char ch, printf_spec_t *ps)
{
if (!ascii_check(ch))
return ps->str_write((void *) &invalch, 1, ps->data);
return ps->str_write(&ch, 1, ps->data);
}
 
/** Print one character.
/** Print one wide character.
*
* @param c Character to be printed.
* @param ps Output method.
* @param c Wide character to be printed.
* @param ps Output method.
*
* @return Number of characters printed.
* @return Number of characters printed.
*
*/
static int printf_putchar(int c, struct printf_spec *ps)
static int printf_putwchar(const wchar_t ch, printf_spec_t *ps)
{
unsigned char ch = c;
if (!chr_check(ch))
return ps->str_write((void *) &invalch, 1, ps->data);
return ps->write((void *) &ch, 1, ps->data);
return ps->wstr_write(&ch, sizeof(wchar_t), ps->data);
}
 
/** Print one formatted character.
/** Print one formatted ASCII character.
*
* @param c Character to print.
* @param width Width modifier.
* @param flags Flags that change the way the character is printed.
* @param ch Character to print.
* @param width Width modifier.
* @param flags Flags that change the way the character is printed.
*
* @return Number of characters printed, negative value on failure.
* @return Number of characters printed, negative value on failure.
*
*/
static int print_char(char c, int width, uint64_t flags, struct printf_spec *ps)
static int print_char(const char ch, int width, uint32_t flags, printf_spec_t *ps)
{
int counter = 0;
size_t counter = 0;
if (!(flags & __PRINTF_FLAG_LEFTALIGNED)) {
while (--width > 0) {
/*
147,106 → 181,190
* One space is consumed by the character itself, hence
* the predecrement.
*/
if (printf_putchar(' ', ps) > 0)
++counter;
if (printf_putchar(' ', ps) > 0)
counter++;
}
}
if (printf_putchar(c, ps) > 0)
if (printf_putchar(ch, ps) > 0)
counter++;
while (--width > 0) {
/*
* One space is consumed by the character itself, hence
* the predecrement.
*/
if (printf_putchar(' ', ps) > 0)
counter++;
}
return (int) (counter + 1);
}
 
while (--width > 0) {
/** Print one formatted wide character.
*
* @param ch Character to print.
* @param width Width modifier.
* @param flags Flags that change the way the character is printed.
*
* @return Number of characters printed, negative value on failure.
*
*/
static int print_wchar(const wchar_t ch, int width, uint32_t flags, printf_spec_t *ps)
{
size_t counter = 0;
if (!(flags & __PRINTF_FLAG_LEFTALIGNED)) {
while (--width > 0) {
/*
* One space is consumed by the character itself, hence
* the predecrement.
*/
if (printf_putchar(' ', ps) > 0)
counter++;
}
}
if (printf_putwchar(ch, ps) > 0)
counter++;
while (--width > 0) {
/*
* One space is consumed by the character itself, hence
* the predecrement.
*/
if (printf_putchar(' ', ps) > 0)
++counter;
counter++;
}
return ++counter;
return (int) (counter + 1);
}
 
/** Print string.
*
* @param s String to be printed.
* @param width Width modifier.
* @param precision Precision modifier.
* @param flags Flags that modify the way the string is printed.
* @param str String to be printed.
* @param width Width modifier.
* @param precision Precision modifier.
* @param flags Flags that modify the way the string is printed.
*
* @return Number of characters printed, negative value on failure.
*/
static int print_string(char *s, int width, unsigned int precision,
uint64_t flags, struct printf_spec *ps)
* @return Number of characters printed, negative value on failure.
*/
static int print_str(char *str, int width, unsigned int precision,
uint32_t flags, printf_spec_t *ps)
{
int counter = 0;
size_t size;
if (str == NULL)
return printf_putstr(nullstr, ps);
 
/* Print leading spaces. */
size_t strw = str_length(str);
if (precision == 0)
precision = strw;
 
/* Left padding */
size_t counter = 0;
width -= precision;
if (!(flags & __PRINTF_FLAG_LEFTALIGNED)) {
while (width-- > 0) {
if (printf_putchar(' ', ps) == 1)
counter++;
}
}
 
/* Part of @a str fitting into the alloted space. */
int retval;
size_t size = str_lsize(str, precision);
if ((retval = printf_putnchars(str, size, ps)) < 0)
return -counter;
 
if (s == NULL) {
return printf_putstr("(NULL)", ps);
counter += retval;
 
/* Right padding */
while (width-- > 0) {
if (printf_putchar(' ', ps) == 1)
counter++;
}
size = strlen(s);
 
/* print leading spaces */
return ((int) counter);
 
if (precision == 0)
precision = size;
}
 
/** Print wide string.
*
* @param str Wide string to be printed.
* @param width Width modifier.
* @param precision Precision modifier.
* @param flags Flags that modify the way the string is printed.
*
* @return Number of wide characters printed, negative value on failure.
*/
static int print_wstr(wchar_t *str, int width, unsigned int precision,
uint32_t flags, printf_spec_t *ps)
{
if (str == NULL)
return printf_putstr(nullstr, ps);
/* Print leading spaces. */
size_t strw = wstr_length(str);
if (precision == 0)
precision = strw;
/* Left padding */
size_t counter = 0;
width -= precision;
if (!(flags & __PRINTF_FLAG_LEFTALIGNED)) {
while (width-- > 0) {
if (printf_putchar(' ', ps) == 1)
while (width-- > 0) {
if (printf_putchar(' ', ps) == 1)
counter++;
}
}
 
if ((retval = printf_putnchars(s, min(size, precision), ps)) < 0) {
/* Part of @a wstr fitting into the alloted space. */
int retval;
size_t size = wstr_lsize(str, precision);
if ((retval = printf_wputnchars(str, size, ps)) < 0)
return -counter;
counter += retval;
/* Right padding */
while (width-- > 0) {
if (printf_putchar(' ', ps) == 1)
counter++;
}
counter += retval;
 
while (width-- > 0) {
if (printf_putchar(' ', ps) == 1)
++counter;
}
return counter;
return ((int) counter);
}
 
 
/** Print a number in a given base.
*
* Print significant digits of a number in given base.
*
* @param num Number to print.
* @param widt Width modifier.h
* @param precision Precision modifier.
* @param base Base to print the number in (must be between 2 and 16).
* @param flags Flags that modify the way the number is printed.
* @param num Number to print.
* @param width Width modifier.
* @param precision Precision modifier.
* @param base Base to print the number in (must be between 2 and 16).
* @param flags Flags that modify the way the number is printed.
*
* @return Number of characters printed.
* @return Number of characters printed.
*
*/
static int print_number(uint64_t num, int width, int precision, int base,
uint64_t flags, struct printf_spec *ps)
uint32_t flags, printf_spec_t *ps)
{
char *digits = digits_small;
char d[PRINT_NUMBER_BUFFER_SIZE];
char *ptr = &d[PRINT_NUMBER_BUFFER_SIZE - 1];
int size = 0; /* size of number with all prefixes and signs */
int number_size; /* size of plain number */
char sgn;
int retval;
int counter = 0;
char *digits;
if (flags & __PRINTF_FLAG_BIGCHARS)
digits = digits_big;
else
digits = digits_small;
if (flags & __PRINTF_FLAG_BIGCHARS)
digits = digits_big;
char data[PRINT_NUMBER_BUFFER_SIZE];
char *ptr = &data[PRINT_NUMBER_BUFFER_SIZE - 1];
*ptr-- = 0; /* Put zero at end of string */
 
/* Size of number with all prefixes and signs */
int size = 0;
/* Put zero at end of string */
*ptr-- = 0;
if (num == 0) {
*ptr-- = '0';
size++;
257,15 → 375,17
} while (num /= base);
}
number_size = size;
 
/* Size of plain number */
int number_size = size;
/*
* Collect the sum of all prefixes/signs/... to calculate padding and
* Collect the sum of all prefixes/signs/etc. to calculate padding and
* leading zeroes.
*/
if (flags & __PRINTF_FLAG_PREFIX) {
switch(base) {
case 2: /* Binary formating is not standard, but usefull */
case 2:
/* Binary formating is not standard, but usefull */
size += 2;
break;
case 8:
276,8 → 396,8
break;
}
}
 
sgn = 0;
char sgn = 0;
if (flags & __PRINTF_FLAG_SIGNED) {
if (flags & __PRINTF_FLAG_NEGATIVE) {
sgn = '-';
290,48 → 410,46
size++;
}
}
 
if (flags & __PRINTF_FLAG_LEFTALIGNED) {
if (flags & __PRINTF_FLAG_LEFTALIGNED)
flags &= ~__PRINTF_FLAG_ZEROPADDED;
}
 
/*
* If the number is leftaligned or precision is specified then
* zeropadding is ignored.
* If the number is left-aligned or precision is specified then
* padding with zeros is ignored.
*/
if (flags & __PRINTF_FLAG_ZEROPADDED) {
if ((precision == 0) && (width > size)) {
if ((precision == 0) && (width > size))
precision = width - size + number_size;
}
}
 
/* print leading spaces */
/* Print leading spaces */
if (number_size > precision) {
/* print the whole number not only a part */
/* Print the whole number, not only a part */
precision = number_size;
}
 
width -= precision + size - number_size;
size_t counter = 0;
if (!(flags & __PRINTF_FLAG_LEFTALIGNED)) {
while (width-- > 0) {
if (printf_putchar(' ', ps) == 1)
while (width-- > 0) {
if (printf_putchar(' ', ps) == 1)
counter++;
}
}
/* print sign */
/* Print sign */
if (sgn) {
if (printf_putchar(sgn, ps) == 1)
counter++;
}
/* print prefix */
/* Print prefix */
if (flags & __PRINTF_FLAG_PREFIX) {
switch(base) {
case 2: /* Binary formating is not standard, but usefull */
case 2:
/* Binary formating is not standard, but usefull */
if (printf_putchar('0', ps) == 1)
counter++;
if (flags & __PRINTF_FLAG_BIGCHARS) {
359,150 → 477,154
break;
}
}
 
/* print leading zeroes */
/* Print leading zeroes */
precision -= number_size;
while (precision-- > 0) {
while (precision-- > 0) {
if (printf_putchar('0', ps) == 1)
counter++;
}
 
/* print number itself */
 
if ((retval = printf_putstr(++ptr, ps)) > 0) {
/* Print the number itself */
int retval;
if ((retval = printf_putstr(++ptr, ps)) > 0)
counter += retval;
}
/* print ending spaces */
/* Print tailing spaces */
while (width-- > 0) {
if (printf_putchar(' ', ps) == 1)
while (width-- > 0) {
if (printf_putchar(' ', ps) == 1)
counter++;
}
 
return counter;
return ((int) counter);
}
 
 
/** Print formatted string.
*
* Print string formatted according to the fmt parameter and variadic arguments.
* Each formatting directive must have the following form:
*
* \% [ FLAGS ] [ WIDTH ] [ .PRECISION ] [ TYPE ] CONVERSION
*
* \% [ FLAGS ] [ WIDTH ] [ .PRECISION ] [ TYPE ] CONVERSION
*
* FLAGS:@n
* - "#" Force to print prefix.For \%o conversion, the prefix is 0, for
* \%x and \%X prefixes are 0x and 0X and for conversion \%b the
* prefix is 0b.
* - "#" Force to print prefix. For \%o conversion, the prefix is 0, for
* \%x and \%X prefixes are 0x and 0X and for conversion \%b the
* prefix is 0b.
*
* - "-" Align to left.
* - "-" Align to left.
*
* - "+" Print positive sign just as negative.
* - "+" Print positive sign just as negative.
*
* - " " If the printed number is positive and "+" flag is not set,
* print space in place of sign.
* - " " If the printed number is positive and "+" flag is not set,
* print space in place of sign.
*
* - "0" Print 0 as padding instead of spaces. Zeroes are placed between
* sign and the rest of the number. This flag is ignored if "-"
* flag is specified.
*
* - "0" Print 0 as padding instead of spaces. Zeroes are placed between
* sign and the rest of the number. This flag is ignored if "-"
* flag is specified.
*
* WIDTH:@n
* - Specify the minimal width of a printed argument. If it is bigger,
* width is ignored. If width is specified with a "*" character instead of
* number, width is taken from parameter list. And integer parameter is
* expected before parameter for processed conversion specification. If
* this value is negative its absolute value is taken and the "-" flag is
* set.
* - Specify the minimal width of a printed argument. If it is bigger,
* width is ignored. If width is specified with a "*" character instead of
* number, width is taken from parameter list. And integer parameter is
* expected before parameter for processed conversion specification. If
* this value is negative its absolute value is taken and the "-" flag is
* set.
*
* PRECISION:@n
* - Value precision. For numbers it specifies minimum valid numbers.
* Smaller numbers are printed with leading zeroes. Bigger numbers are not
* affected. Strings with more than precision characters are cut off. Just
* as with width, an "*" can be used used instead of a number. An integer
* value is then expected in parameters. When both width and precision are
* specified using "*", the first parameter is used for width and the
* second one for precision.
*
* - Value precision. For numbers it specifies minimum valid numbers.
* Smaller numbers are printed with leading zeroes. Bigger numbers are not
* affected. Strings with more than precision characters are cut off. Just
* as with width, an "*" can be used used instead of a number. An integer
* value is then expected in parameters. When both width and precision are
* specified using "*", the first parameter is used for width and the
* second one for precision.
*
* TYPE:@n
* - "hh" Signed or unsigned char.@n
* - "h" Signed or unsigned short.@n
* - "" Signed or unsigned int (default value).@n
* - "l" Signed or unsigned long int.@n
* - "ll" Signed or unsigned long long int.@n
*
*
* - "hh" Signed or unsigned char.@n
* - "h" Signed or unsigned short.@n
* - "" Signed or unsigned int (default value).@n
* - "l" Signed or unsigned long int.@n
* If conversion is "c", the character is wchar_t (wide character).@n
* If conversion is "s", the string is wchar_t * (wide string).@n
* - "ll" Signed or unsigned long long int.@n
*
* CONVERSION:@n
* - % Print percentile character itself.
* - % Print percentile character itself.
*
* - c Print single character.
* - c Print single character. The character is expected to be plain
* ASCII (e.g. only values 0 .. 127 are valid).@n
* If type is "l", then the character is expected to be wide character
* (e.g. values 0 .. 0x10ffff are valid).
*
* - s Print zero terminated string. If a NULL value is passed as
* value, "(NULL)" is printed instead.
*
* - P, p Print value of a pointer. Void * value is expected and it is
* printed in hexadecimal notation with prefix (as with \%#X / \%#x
* for 32-bit or \%#X / \%#x for 64-bit long pointers).
* - s Print zero terminated string. If a NULL value is passed as
* value, "(NULL)" is printed instead.@n
* If type is "l", then the string is expected to be wide string.
*
* - b Print value as unsigned binary number. Prefix is not printed by
* default. (Nonstandard extension.)
*
* - o Print value as unsigned octal number. Prefix is not printed by
* default.
* - P, p Print value of a pointer. Void * value is expected and it is
* printed in hexadecimal notation with prefix (as with \%#X / \%#x
* for 32-bit or \%#X / \%#x for 64-bit long pointers).
*
* - d, i Print signed decimal number. There is no difference between d
* and i conversion.
* - b Print value as unsigned binary number. Prefix is not printed by
* default. (Nonstandard extension.)
*
* - u Print unsigned decimal number.
* - o Print value as unsigned octal number. Prefix is not printed by
* default.
*
* - X, x Print hexadecimal number with upper- or lower-case. Prefix is
* not printed by default.
*
* All other characters from fmt except the formatting directives are printed in
* - d, i Print signed decimal number. There is no difference between d
* and i conversion.
*
* - u Print unsigned decimal number.
*
* - X, x Print hexadecimal number with upper- or lower-case. Prefix is
* not printed by default.
*
* All other characters from fmt except the formatting directives are printed
* verbatim.
*
* @param fmt Formatting NULL terminated string.
* @return Number of characters printed, negative value on failure.
* @param fmt Format NULL-terminated string.
*
* @return Number of characters printed, negative value on failure.
*
*/
int printf_core(const char *fmt, struct printf_spec *ps, va_list ap)
int printf_core(const char *fmt, printf_spec_t *ps, va_list ap)
{
int i = 0; /* index of the currently processed char from fmt */
int j = 0; /* index to the first not printed nonformating character */
int end;
int counter; /* counter of printed characters */
int retval; /* used to store return values from called functions */
char c;
qualifier_t qualifier; /* type of argument */
int base; /* base in which a numeric parameter will be printed */
uint64_t number; /* argument value */
size_t size; /* byte size of integer parameter */
int width, precision;
uint64_t flags;
size_t i; /* Index of the currently processed character from fmt */
size_t nxt = 0; /* Index of the next character from fmt */
size_t j = 0; /* Index to the first not printed nonformating character */
counter = 0;
size_t counter = 0; /* Number of characters printed */
int retval; /* Return values from nested functions */
while (true) {
i = nxt;
wchar_t uc = str_decode(fmt, &nxt, STR_NO_LIMIT);
while ((c = fmt[i])) {
/* control character */
if (c == '%') {
/* print common characters if any processed */
if (uc == 0)
break;
/* Control character */
if (uc == '%') {
/* Print common characters if any processed */
if (i > j) {
if ((retval = printf_putnchars(&fmt[j],
(size_t)(i - j), ps)) < 0) { /* error */
if ((retval = printf_putnchars(&fmt[j], i - j, ps)) < 0) {
/* Error */
counter = -counter;
goto out;
}
counter += retval;
}
j = i;
/* parse modifiers */
flags = 0;
end = 0;
/* Parse modifiers */
uint32_t flags = 0;
bool end = false;
do {
++i;
switch (c = fmt[i]) {
i = nxt;
uc = str_decode(fmt, &nxt, STR_NO_LIMIT);
switch (uc) {
case '#':
flags |= __PRINTF_FLAG_PREFIX;
break;
519,116 → 641,145
flags |= __PRINTF_FLAG_ZEROPADDED;
break;
default:
end = 1;
};
} while (end == 0);
end = true;
};
} while (!end);
/* width & '*' operator */
width = 0;
if (isdigit(fmt[i])) {
while (isdigit(fmt[i])) {
/* Width & '*' operator */
int width = 0;
if (isdigit(uc)) {
while (true) {
width *= 10;
width += fmt[i++] - '0';
width += uc - '0';
i = nxt;
uc = str_decode(fmt, &nxt, STR_NO_LIMIT);
if (uc == 0)
break;
if (!isdigit(uc))
break;
}
} else if (fmt[i] == '*') {
/* get width value from argument list */
i++;
} else if (uc == '*') {
/* Get width value from argument list */
i = nxt;
uc = str_decode(fmt, &nxt, STR_NO_LIMIT);
width = (int) va_arg(ap, int);
if (width < 0) {
/* negative width sets '-' flag */
/* Negative width sets '-' flag */
width *= -1;
flags |= __PRINTF_FLAG_LEFTALIGNED;
}
}
/* precision and '*' operator */
precision = 0;
if (fmt[i] == '.') {
++i;
if (isdigit(fmt[i])) {
while (isdigit(fmt[i])) {
/* Precision and '*' operator */
int precision = 0;
if (uc == '.') {
i = nxt;
uc = str_decode(fmt, &nxt, STR_NO_LIMIT);
if (isdigit(uc)) {
while (true) {
precision *= 10;
precision += fmt[i++] - '0';
precision += uc - '0';
i = nxt;
uc = str_decode(fmt, &nxt, STR_NO_LIMIT);
if (uc == 0)
break;
if (!isdigit(uc))
break;
}
} else if (fmt[i] == '*') {
/*
* Get precision value from the argument
* list.
*/
i++;
} else if (uc == '*') {
/* Get precision value from the argument list */
i = nxt;
uc = str_decode(fmt, &nxt, STR_NO_LIMIT);
precision = (int) va_arg(ap, int);
if (precision < 0) {
/* ignore negative precision */
/* Ignore negative precision */
precision = 0;
}
}
}
 
switch (fmt[i++]) {
/** @todo unimplemented qualifiers:
* t ptrdiff_t - ISO C 99
qualifier_t qualifier;
switch (uc) {
/** @todo Unimplemented qualifiers:
* t ptrdiff_t - ISO C 99
*/
case 'h': /* char or short */
case 'h':
/* Char or short */
qualifier = PrintfQualifierShort;
if (fmt[i] == 'h') {
i++;
i = nxt;
uc = str_decode(fmt, &nxt, STR_NO_LIMIT);
if (uc == 'h') {
i = nxt;
uc = str_decode(fmt, &nxt, STR_NO_LIMIT);
qualifier = PrintfQualifierByte;
}
break;
case 'l': /* long or long long*/
case 'l':
/* Long or long long */
qualifier = PrintfQualifierLong;
if (fmt[i] == 'l') {
i++;
i = nxt;
uc = str_decode(fmt, &nxt, STR_NO_LIMIT);
if (uc == 'l') {
i = nxt;
uc = str_decode(fmt, &nxt, STR_NO_LIMIT);
qualifier = PrintfQualifierLongLong;
}
break;
default:
/* default type */
qualifier = PrintfQualifierInt;
--i;
}
/* Default type */
qualifier = PrintfQualifierInt;
}
base = 10;
 
switch (c = fmt[i]) {
 
unsigned int base = 10;
switch (uc) {
/*
* String and character conversions.
*/
* String and character conversions.
*/
case 's':
if ((retval = print_string(va_arg(ap, char *),
width, precision, flags, ps)) < 0) {
if (qualifier == PrintfQualifierLong)
retval = print_wstr(va_arg(ap, wchar_t *), width, precision, flags, ps);
else
retval = print_str(va_arg(ap, char *), width, precision, flags, ps);
if (retval < 0) {
counter = -counter;
goto out;
};
 
}
counter += retval;
j = i + 1;
j = nxt;
goto next_char;
case 'c':
c = va_arg(ap, unsigned int);
retval = print_char(c, width, flags, ps);
if (qualifier == PrintfQualifierLong)
retval = print_wchar(va_arg(ap, wchar_t), width, flags, ps);
else
retval = print_char(va_arg(ap, unsigned int), width, flags, ps);
if (retval < 0) {
counter = -counter;
goto out;
};
counter += retval;
j = i + 1;
j = nxt;
goto next_char;
 
/*
/*
* Integer values
*/
case 'P': /* pointer */
case 'P':
/* Pointer */
flags |= __PRINTF_FLAG_BIGCHARS;
case 'p':
flags |= __PRINTF_FLAG_PREFIX;
base = 16;
qualifier = PrintfQualifierPointer;
break;
case 'b':
break;
case 'b':
base = 2;
break;
case 'o':
636,7 → 787,7
break;
case 'd':
case 'i':
flags |= __PRINTF_FLAG_SIGNED;
flags |= __PRINTF_FLAG_SIGNED;
case 'u':
break;
case 'X':
644,10 → 795,12
case 'x':
base = 16;
break;
/* percentile itself */
case '%':
/* Percentile itself */
case '%':
j = i;
goto next_char;
/*
* Bad formatting.
*/
656,12 → 809,12
* Unknown format. Now, j is the index of '%'
* so we will print whole bad format sequence.
*/
goto next_char;
goto next_char;
}
/* Print integers */
/* print number */
/* Print integers */
size_t size;
uint64_t number;
switch (qualifier) {
case PrintfQualifierByte:
size = sizeof(unsigned char);
687,7 → 840,8
size = sizeof(void *);
number = (uint64_t) (unsigned long) va_arg(ap, void *);
break;
default: /* Unknown qualifier */
default:
/* Unknown qualifier */
counter = -counter;
goto out;
}
695,7 → 849,7
if (flags & __PRINTF_FLAG_SIGNED) {
if (number & (0x1 << (size * 8 - 1))) {
flags |= __PRINTF_FLAG_NEGATIVE;
if (size == sizeof(uint64_t)) {
number = -((int64_t) number);
} else {
707,33 → 861,31
}
}
}
 
if ((retval = print_number(number, width, precision,
base, flags, ps)) < 0) {
counter = -counter;
goto out;
}
 
counter += retval;
j = i + 1;
}
j = nxt;
}
next_char:
++i;
;
}
if (i > j) {
if ((retval = printf_putnchars(&fmt[j], (unative_t) (i - j),
ps)) < 0) { /* error */
if ((retval = printf_putnchars(&fmt[j], i - j, ps)) < 0) {
/* Error */
counter = -counter;
goto out;
}
counter += retval;
}
 
out:
return counter;
return ((int) counter);
}
 
/** @}
/branches/arm/kernel/generic/src/printf/vprintf.c
26,7 → 26,7
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
 
/** @addtogroup generic
/** @addtogroup generic
* @{
*/
/** @file
39,36 → 39,66
#include <arch/asm.h>
#include <arch/types.h>
#include <typedefs.h>
#include <string.h>
 
SPINLOCK_INITIALIZE(printf_lock); /**< vprintf spinlock */
SPINLOCK_INITIALIZE(printf_lock); /**< vprintf spinlock */
 
static int vprintf_write(const char *str, size_t count, void *unused)
static int vprintf_str_write(const char *str, size_t size, void *data)
{
size_t i;
for (i = 0; i < count; i++)
putchar(str[i]);
return i;
size_t offset = 0;
size_t chars = 0;
while (offset < size) {
putchar(str_decode(str, &offset, size));
chars++;
}
return chars;
}
 
int puts(const char *s)
static int vprintf_wstr_write(const wchar_t *str, size_t size, void *data)
{
size_t i;
for (i = 0; s[i] != 0; i++)
putchar(s[i]);
return i;
size_t offset = 0;
size_t chars = 0;
while (offset < size) {
putchar(str[chars]);
chars++;
offset += sizeof(wchar_t);
}
return chars;
}
 
int puts(const char *str)
{
size_t offset = 0;
size_t chars = 0;
wchar_t uc;
while ((uc = str_decode(str, &offset, STR_NO_LIMIT)) != 0) {
putchar(uc);
chars++;
}
return chars;
}
 
int vprintf(const char *fmt, va_list ap)
{
struct printf_spec ps = {(int(*)(void *, size_t, void *)) vprintf_write, NULL};
printf_spec_t ps = {
vprintf_str_write,
vprintf_wstr_write,
NULL
};
int irqpri = interrupts_disable();
ipl_t ipl = interrupts_disable();
spinlock_lock(&printf_lock);
int ret = printf_core(fmt, &ps, ap);
spinlock_unlock(&printf_lock);
interrupts_restore(irqpri);
interrupts_restore(ipl);
return ret;
}
/branches/arm/kernel/generic/src/printf/vsnprintf.c
26,7 → 26,7
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
 
/** @addtogroup generic
/** @addtogroup generic
* @{
*/
/** @file
34,62 → 34,146
 
#include <print.h>
#include <printf/printf_core.h>
#include <string.h>
#include <memstr.h>
#include <errno.h>
 
struct vsnprintf_data {
size_t size; /* total space for string */
size_t len; /* count of currently used characters */
char *string; /* destination string */
};
typedef struct {
size_t size; /* Total size of the buffer (in bytes) */
size_t len; /* Number of already used bytes */
char *dst; /* Destination */
} vsnprintf_data_t;
 
/** Write string to given buffer.
* Write at most data->size characters including trailing zero. According to C99, snprintf() has to return number
* of characters that would have been written if enough space had been available. Hence the return value is not
* number of really printed characters but size of the input string. Number of really used characters
* is stored in data->len.
* @param str source string to print
* @param count size of source string
* @param data structure with destination string, counter of used space and total string size.
* @return number of characters to print (not characters really printed!)
*
* Write at most data->size plain characters including trailing zero.
* According to C99, snprintf() has to return number of characters that
* would have been written if enough space had been available. Hence
* the return value is not the number of actually printed characters
* but size of the input string.
*
* @param str Source string to print.
* @param size Number of plain characters in str.
* @param data Structure describing destination string, counter
* of used space and total string size.
*
* @return Number of characters to print (not characters actually
* printed).
*
*/
static int vsnprintf_write(const char *str, size_t count, struct vsnprintf_data *data)
static int vsnprintf_str_write(const char *str, size_t size, vsnprintf_data_t *data)
{
size_t i;
i = data->size - data->len;
 
if (i == 0) {
return count;
}
size_t left = data->size - data->len;
if (i == 1) {
/* We have only one free byte left in buffer => write there trailing zero */
data->string[data->size - 1] = 0;
if (left == 0)
return ((int) size);
if (left == 1) {
/* We have only one free byte left in buffer
* -> store trailing zero
*/
data->dst[data->size - 1] = 0;
data->len = data->size;
return count;
return ((int) size);
}
if (i <= count) {
/* We have not enought space for whole string with the trailing zero => print only a part of string */
memcpy((void *)(data->string + data->len), (void *)str, i - 1);
data->string[data->size - 1] = 0;
if (left <= size) {
/* We do not have enough space for the whole string
* with the trailing zero => print only a part
* of string
*/
size_t index = 0;
while (index < size) {
wchar_t uc = str_decode(str, &index, size);
if (chr_encode(uc, data->dst, &data->len, data->size - 1) != EOK)
break;
}
/* Put trailing zero at end, but not count it
* into data->len so it could be rewritten next time
*/
data->dst[data->len] = 0;
return ((int) size);
}
/* Buffer is big enought to print the whole string */
memcpy((void *)(data->dst + data->len), (void *) str, size);
data->len += size;
/* Put trailing zero at end, but not count it
* into data->len so it could be rewritten next time
*/
data->dst[data->len] = 0;
return ((int) size);
}
 
/** Write wide string to given buffer.
*
* Write at most data->size plain characters including trailing zero.
* According to C99, snprintf() has to return number of characters that
* would have been written if enough space had been available. Hence
* the return value is not the number of actually printed characters
* but size of the input string.
*
* @param str Source wide string to print.
* @param size Number of bytes in str.
* @param data Structure describing destination string, counter
* of used space and total string size.
*
* @return Number of wide characters to print (not characters actually
* printed).
*
*/
static int vsnprintf_wstr_write(const wchar_t *str, size_t size, vsnprintf_data_t *data)
{
size_t index = 0;
while (index < (size / sizeof(wchar_t))) {
size_t left = data->size - data->len;
if (left == 0)
return ((int) size);
if (left == 1) {
/* We have only one free byte left in buffer
* -> store trailing zero
*/
data->dst[data->size - 1] = 0;
data->len = data->size;
return count;
return ((int) size);
}
if (chr_encode(str[index], data->dst, &data->len, data->size - 1) != EOK)
break;
index++;
}
/* Buffer is big enought to print whole string */
memcpy((void *)(data->string + data->len), (void *)str, count);
data->len += count;
/* Put trailing zero at end, but not count it into data->len so it could be rewritten next time */
data->string[data->len] = 0;
 
return count;
/* Put trailing zero at end, but not count it
* into data->len so it could be rewritten next time
*/
data->dst[data->len] = 0;
return ((int) size);
}
 
int vsnprintf(char *str, size_t size, const char *fmt, va_list ap)
{
struct vsnprintf_data data = {size, 0, str};
struct printf_spec ps = {(int(*)(void *, size_t, void *))vsnprintf_write, &data};
 
vsnprintf_data_t data = {
size,
0,
str
};
printf_spec_t ps = {
(int(*) (const char *, size_t, void *)) vsnprintf_str_write,
(int(*) (const wchar_t *, size_t, void *)) vsnprintf_wstr_write,
&data
};
/* Print 0 at end of string - fix the case that nothing will be printed */
if (size > 0)
str[0] = 0;
/branches/arm/kernel/generic/src/printf/printf.c
26,7 → 26,7
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
 
/** @addtogroup generic
/** @addtogroup generic
* @{
*/
/** @file
33,19 → 33,18
*/
 
#include <print.h>
int printf(const char *fmt, ...);
 
int printf(const char *fmt, ...)
{
int ret;
va_list args;
 
va_start(args, fmt);
 
ret = vprintf(fmt, args);
va_end(args);
 
return ret;
}
 
/branches/arm/kernel/generic/src/printf/snprintf.c
26,7 → 26,7
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
 
/** @addtogroup generic
/** @addtogroup generic
* @{
*/
/** @file
42,9 → 42,9
va_start(args, fmt);
ret = vsnprintf(str, size, fmt, args);
 
va_end(args);
 
return ret;
}
 
/branches/arm/kernel/generic/src/synch/spinlock.c
32,9 → 32,9
 
/**
* @file
* @brief Spinlocks.
* @brief Spinlocks.
*/
 
#include <synch/spinlock.h>
#include <atomic.h>
#include <arch/barrier.h>
75,8 → 75,7
#ifdef CONFIG_DEBUG_SPINLOCK
void spinlock_lock_debug(spinlock_t *sl)
{
count_t i = 0;
char *symbol;
size_t i = 0;
bool deadlock_reported = false;
 
preemption_disable();
106,12 → 105,10
continue;
#endif
if (i++ > DEADLOCK_THRESHOLD) {
printf("cpu%u: looping on spinlock %" PRIp ":%s, caller=%" PRIp,
CPU->id, sl, sl->name, CALLER);
symbol = get_symtab_entry(CALLER);
if (symbol)
printf("(%s)", symbol);
printf("\n");
printf("cpu%u: looping on spinlock %" PRIp ":%s, "
"caller=%" PRIp "(%s)\n", CPU->id, sl, sl->name,
CALLER, symtab_fmt_name_lookup(CALLER));
i = 0;
deadlock_reported = true;
}
/branches/arm/kernel/generic/src/synch/waitq.c
415,7 → 415,7
void _waitq_wakeup_unsafe(waitq_t *wq, wakeup_mode_t mode)
{
thread_t *t;
count_t count = 0;
size_t count = 0;
 
loop:
if (list_empty(&wq->head)) {
/branches/arm/kernel/generic/src/synch/futex.c
59,8 → 59,8
static void futex_initialize(futex_t *futex);
 
static futex_t *futex_find(uintptr_t paddr);
static index_t futex_ht_hash(unative_t *key);
static bool futex_ht_compare(unative_t *key, count_t keys, link_t *item);
static size_t futex_ht_hash(unative_t *key);
static bool futex_ht_compare(unative_t *key, size_t keys, link_t *item);
static void futex_ht_remove_callback(link_t *item);
 
/**
115,6 → 115,7
uintptr_t paddr;
pte_t *t;
ipl_t ipl;
int rc;
ipl = interrupts_disable();
 
134,9 → 135,17
interrupts_restore(ipl);
 
futex = futex_find(paddr);
return (unative_t) waitq_sleep_timeout(&futex->wq, usec, flags |
 
#ifdef CONFIG_UDEBUG
udebug_stoppable_begin();
#endif
rc = waitq_sleep_timeout(&futex->wq, usec, flags |
SYNCH_FLAGS_INTERRUPTIBLE);
 
#ifdef CONFIG_UDEBUG
udebug_stoppable_end();
#endif
return (unative_t) rc;
}
 
/** Wakeup one thread waiting in futex wait queue.
279,9 → 288,9
*
* @return Index into futex hash table.
*/
index_t futex_ht_hash(unative_t *key)
size_t futex_ht_hash(unative_t *key)
{
return *key & (FUTEX_HT_SIZE-1);
return (*key & (FUTEX_HT_SIZE - 1));
}
 
/** Compare futex hash table item with a key.
291,7 → 300,7
*
* @return True if the item matches the key. False otherwise.
*/
bool futex_ht_compare(unative_t *key, count_t keys, link_t *item)
bool futex_ht_compare(unative_t *key, size_t keys, link_t *item)
{
futex_t *futex;
 
/branches/arm/kernel/generic/src/synch/rwlock.c
231,10 → 231,10
interrupts_restore(ipl);
break;
case ESYNCH_OK_ATOMIC:
panic("_mutex_lock_timeout() == ESYNCH_OK_ATOMIC\n");
panic("_mutex_lock_timeout() == ESYNCH_OK_ATOMIC.");
break;
default:
panic("invalid ESYNCH\n");
panic("Invalid ESYNCH.");
break;
}
return rc;
/branches/arm/kernel/generic/src/debug/symtab.c
32,171 → 32,222
 
/**
* @file
* @brief Kernel symbol resolver.
* @brief Kernel symbol resolver.
*/
 
#include <symtab.h>
#include <byteorder.h>
#include <func.h>
#include <string.h>
#include <print.h>
#include <arch/types.h>
#include <typedefs.h>
#include <errno.h>
 
/** Return entry that seems most likely to correspond to argument.
/** Get name of a symbol that seems most likely to correspond to address.
*
* Return entry that seems most likely to correspond
* to address passed in the argument.
*
* @param addr Address.
* @param name Place to store pointer to the symbol name.
*
* @return Pointer to respective symbol string on success, NULL otherwise.
* @return Zero on success or negative error code, ENOENT if not found,
* ENOTSUP if symbol table not available.
*
*/
char * get_symtab_entry(unative_t addr)
int symtab_name_lookup(unative_t addr, char **name)
{
count_t i;
 
for (i = 1; symbol_table[i].address_le; ++i) {
#ifdef CONFIG_SYMTAB
size_t i;
for (i = 1; symbol_table[i].address_le; i++) {
if (addr < uint64_t_le2host(symbol_table[i].address_le))
break;
}
if (addr >= uint64_t_le2host(symbol_table[i - 1].address_le))
return symbol_table[i - 1].symbol_name;
return NULL;
if (addr >= uint64_t_le2host(symbol_table[i - 1].address_le)) {
*name = symbol_table[i - 1].symbol_name;
return EOK;
}
*name = NULL;
return ENOENT;
#else
*name = NULL;
return ENOTSUP;
#endif
}
 
/** Find symbols that match the parameter forward and print them.
/** Lookup symbol by address and format for display.
*
* @param name - search string
* @param startpos - starting position, changes to found position
* @return Pointer to the part of string that should be completed or NULL
* Returns name of closest corresponding symbol, "Not found" if none exists
* or "N/A" if no symbol information is available.
*
* @param addr Address.
* @param name Place to store pointer to the symbol name.
*
* @return Pointer to a human-readable string.
*
*/
static char * symtab_search_one(const char *name, int *startpos)
char *symtab_fmt_name_lookup(unative_t addr)
{
unsigned int namelen = strlen(name);
char *curname;
int i, j;
int colonoffset = -1;
char *name;
int rc = symtab_name_lookup(addr, &name);
switch (rc) {
case EOK:
return name;
case ENOENT:
return "Not found";
default:
return "N/A";
}
}
 
for (i = 0; name[i]; i++)
if (name[i] == ':') {
colonoffset = i;
break;
}
#ifdef CONFIG_SYMTAB
 
for (i = *startpos; symbol_table[i].address_le; ++i) {
/* Find a ':' in name */
curname = symbol_table[i].symbol_name;
for (j = 0; curname[j] && curname[j] != ':'; j++)
;
if (!curname[j])
/** Find symbols that match the parameter forward and print them.
*
* @param name Search string
* @param startpos Starting position, changes to found position
*
* @return Pointer to the part of string that should be completed or NULL.
*
*/
static const char *symtab_search_one(const char *name, size_t *startpos)
{
size_t namelen = str_length(name);
size_t pos;
for (pos = *startpos; symbol_table[pos].address_le; pos++) {
const char *curname = symbol_table[pos].symbol_name;
/* Find a ':' in curname */
const char *colon = str_chr(curname, ':');
if (colon == NULL)
continue;
j -= colonoffset;
curname += j;
if (strlen(curname) < namelen)
if (str_length(curname) < namelen)
continue;
if (strncmp(curname, name, namelen) == 0) {
*startpos = i;
return curname + namelen;
if (str_lcmp(name, curname, namelen) == 0) {
*startpos = pos;
return (curname + str_lsize(curname, namelen));
}
}
return NULL;
}
 
/** Return address that corresponds to the entry
#endif
 
/** Return address that corresponds to the entry.
*
* Search symbol table, and if there is one match, return it
*
* @param name Name of the symbol
* @return 0 - Not found, -1 - Duplicate symbol, other - address of symbol
* @param addr Place to store symbol address
*
* @return Zero on success, ENOENT - not found, EOVERFLOW - duplicate
* symbol, ENOTSUP - no symbol information available.
*
*/
uintptr_t get_symbol_addr(const char *name)
int symtab_addr_lookup(const char *name, uintptr_t *addr)
{
count_t found = 0;
uintptr_t addr = NULL;
char *hint;
int i;
 
i = 0;
while ((hint = symtab_search_one(name, &i))) {
if (!strlen(hint)) {
addr = uint64_t_le2host(symbol_table[i].address_le);
#ifdef CONFIG_SYMTAB
size_t found = 0;
size_t pos = 0;
const char *hint;
while ((hint = symtab_search_one(name, &pos))) {
if (str_length(hint) == 0) {
*addr = uint64_t_le2host(symbol_table[pos].address_le);
found++;
}
i++;
pos++;
}
if (found > 1)
return ((uintptr_t) -1);
return addr;
return EOVERFLOW;
if (found < 1)
return ENOENT;
return EOK;
#else
return ENOTSUP;
#endif
}
 
/** Find symbols that match parameter and prints them */
/** Find symbols that match parameter and print them */
void symtab_print_search(const char *name)
{
int i;
uintptr_t addr;
char *realname;
 
 
i = 0;
while (symtab_search_one(name, &i)) {
addr = uint64_t_le2host(symbol_table[i].address_le);
realname = symbol_table[i].symbol_name;
#ifdef CONFIG_SYMTAB
size_t pos = 0;
while (symtab_search_one(name, &pos)) {
uintptr_t addr = uint64_t_le2host(symbol_table[pos].address_le);
char *realname = symbol_table[pos].symbol_name;
printf("%p: %s\n", addr, realname);
i++;
pos++;
}
#else
printf("No symbol information available.\n");
#endif
}
 
/** Symtab completion
*
* @param input - Search string, completes to symbol name
* @returns - 0 - nothing found, 1 - success, >1 print duplicates
* @param input Search string, completes to symbol name
* @param size Input buffer size
*
* @return 0 - nothing found, 1 - success, >1 print duplicates
*
*/
int symtab_compl(char *input)
int symtab_compl(char *input, size_t size)
{
char output[MAX_SYMBOL_NAME + 1];
int startpos = 0;
char *foundtxt;
int found = 0;
int i;
char *name = input;
 
/* Allow completion of pointers */
if (name[0] == '*' || name[0] == '&')
#ifdef CONFIG_SYMTAB
const char *name = input;
/* Allow completion of pointers */
if ((name[0] == '*') || (name[0] == '&'))
name++;
 
/* Do not print everything */
if (!strlen(name))
/* Do not print all symbols */
if (str_length(name) == 0)
return 0;
 
output[0] = '\0';
 
while ((foundtxt = symtab_search_one(name, &startpos))) {
startpos++;
if (!found)
strncpy(output, foundtxt, strlen(foundtxt) + 1);
else {
for (i = 0; output[i] && foundtxt[i] &&
output[i] == foundtxt[i]; i++)
;
output[i] = '\0';
}
size_t found = 0;
size_t pos = 0;
const char *hint;
char output[MAX_SYMBOL_NAME];
output[0] = 0;
while ((hint = symtab_search_one(name, &pos))) {
if ((found == 0) || (str_length(output) > str_length(hint)))
str_cpy(output, MAX_SYMBOL_NAME, hint);
pos++;
found++;
}
if (!found)
return 0;
 
if (found > 1 && !strlen(output)) {
if ((found > 1) && (str_length(output) != 0)) {
printf("\n");
startpos = 0;
while ((foundtxt = symtab_search_one(name, &startpos))) {
printf("%s\n", symbol_table[startpos].symbol_name);
startpos++;
pos = 0;
while ((hint = symtab_search_one(name, &pos))) {
printf("%s\n", symbol_table[pos].symbol_name);
pos++;
}
}
strncpy(input, output, MAX_SYMBOL_NAME);
if (found > 0)
str_cpy(input, size, output);
return found;
#else
return 0;
#endif
}
 
/** @}
/branches/arm/kernel/generic/src/time/clock.c
79,7 → 79,7
 
faddr = frame_alloc(ONE_FRAME, FRAME_ATOMIC);
if (!faddr)
panic("Cannot allocate page for clock");
panic("Cannot allocate page for clock.");
uptime = (uptime_t *) PA2KA(faddr);
88,9 → 88,7
uptime->useconds = 0;
 
clock_parea.pbase = (uintptr_t) faddr;
clock_parea.vbase = (uintptr_t) uptime;
clock_parea.frames = 1;
clock_parea.cacheable = true;
ddi_parea_register(&clock_parea);
 
/*
136,7 → 134,7
timeout_t *h;
timeout_handler_t f;
void *arg;
count_t missed_clock_ticks = CPU->missed_clock_ticks;
size_t missed_clock_ticks = CPU->missed_clock_ticks;
unsigned int i;
 
/*
189,7 → 187,19
spinlock_unlock(&THREAD->lock);
if (!ticks && !PREEMPTION_DISABLED) {
#ifdef CONFIG_UDEBUG
istate_t *istate;
#endif
scheduler();
#ifdef CONFIG_UDEBUG
/*
* Give udebug chance to stop the thread
* before it begins executing userspace code.
*/
istate = THREAD->udebug.uspace_state;
if (istate && istate_from_uspace(istate))
udebug_before_thread_runs();
#endif
}
}
 
/branches/arm/kernel/generic/src/time/timeout.c
113,7 → 113,7
spinlock_lock(&t->lock);
 
if (t->cpu)
panic("t->cpu != 0");
panic("Unexpected: t->cpu != 0.");
 
t->cpu = CPU;
t->ticks = us2ticks(time);
/branches/arm/kernel/generic/src/ddi/ddi.c
29,10 → 29,10
/** @addtogroup genericddi
* @{
*/
 
/**
* @file
* @brief Device Driver Interface functions.
* @brief Device Driver Interface functions.
*
* This file contains functions that comprise the Device Driver Interface.
* These are the functions for mapping physical memory and enabling I/O
68,82 → 68,100
*
* @param parea Pointer to physical area structure.
*
* @todo This function doesn't check for overlaps. It depends on the kernel to
* create disjunct physical memory areas.
*/
void ddi_parea_register(parea_t *parea)
{
ipl_t ipl;
 
ipl = interrupts_disable();
ipl_t ipl = interrupts_disable();
spinlock_lock(&parea_lock);
/*
* TODO: we should really check for overlaps here.
* However, we should be safe because the kernel is pretty sane and
* memory of different devices doesn't overlap.
* We don't check for overlaps here as the kernel is pretty sane.
*/
btree_insert(&parea_btree, (btree_key_t) parea->pbase, parea, NULL);
 
spinlock_unlock(&parea_lock);
interrupts_restore(ipl);
interrupts_restore(ipl);
}
 
/** Map piece of physical memory into virtual address space of current task.
*
* @param pf Physical address of the starting frame.
* @param vp Virtual address of the starting page.
* @param pf Physical address of the starting frame.
* @param vp Virtual address of the starting page.
* @param pages Number of pages to map.
* @param flags Address space area flags for the mapping.
*
* @return 0 on success, EPERM if the caller lacks capabilities to use this
* syscall, ENOENT if there is no task matching the specified ID or the
* physical address space is not enabled for mapping and ENOMEM if there
* was a problem in creating address space area.
* syscall, EBADMEM if pf or vf is not page aligned, ENOENT if there
* is no task matching the specified ID or the physical address space
* is not enabled for mapping and ENOMEM if there was a problem in
* creating address space area.
*
*/
static int ddi_physmem_map(uintptr_t pf, uintptr_t vp, count_t pages, int flags)
static int ddi_physmem_map(uintptr_t pf, uintptr_t vp, size_t pages, int flags)
{
ipl_t ipl;
cap_t caps;
mem_backend_data_t backend_data;
 
backend_data.base = pf;
backend_data.frames = pages;
ASSERT(TASK);
ASSERT((pf % FRAME_SIZE) == 0);
ASSERT((vp % PAGE_SIZE) == 0);
/*
* Make sure the caller is authorised to make this syscall.
*/
caps = cap_get(TASK);
cap_t caps = cap_get(TASK);
if (!(caps & CAP_MEM_MANAGER))
return EPERM;
 
ipl = interrupts_disable();
 
/*
* Check if the physical memory area is enabled for mapping.
* If the architecture supports virtually indexed caches, intercept
* attempts to create an illegal address alias.
*/
spinlock_lock(&parea_lock);
parea_t *parea;
btree_node_t *nodep;
parea = (parea_t *) btree_search(&parea_btree, (btree_key_t) pf, &nodep);
if (!parea || parea->frames < pages || ((flags & AS_AREA_CACHEABLE) &&
!parea->cacheable) || (!(flags & AS_AREA_CACHEABLE) &&
parea->cacheable)) {
/*
* This physical memory area cannot be mapped.
mem_backend_data_t backend_data;
backend_data.base = pf;
backend_data.frames = pages;
ipl_t ipl = interrupts_disable();
/* Find the zone of the physical memory */
spinlock_lock(&zones.lock);
size_t znum = find_zone(ADDR2PFN(pf), pages, 0);
if (znum == (size_t) -1) {
/* Frames not found in any zones
* -> assume it is hardware device and allow mapping
*/
spinlock_unlock(&zones.lock);
goto map;
}
if (zones.info[znum].flags & ZONE_FIRMWARE) {
/* Frames are part of firmware */
spinlock_unlock(&zones.lock);
goto map;
}
if (zone_flags_available(zones.info[znum].flags)) {
/* Frames are part of physical memory, check if the memory
* region is enabled for mapping.
*/
spinlock_unlock(&zones.lock);
spinlock_lock(&parea_lock);
btree_node_t *nodep;
parea_t *parea = (parea_t *) btree_search(&parea_btree,
(btree_key_t) pf, &nodep);
if ((!parea) || (parea->frames < pages))
goto err;
spinlock_unlock(&parea_lock);
interrupts_restore(ipl);
return ENOENT;
goto map;
}
spinlock_unlock(&parea_lock);
 
err:
spinlock_unlock(&zones.lock);
interrupts_restore(ipl);
return ENOENT;
map:
spinlock_lock(&TASK->lock);
if (!as_area_create(TASK->as, flags, pages * PAGE_SIZE, vp, AS_AREA_ATTR_NONE,
&phys_backend, &backend_data)) {
if (!as_area_create(TASK->as, flags, pages * PAGE_SIZE, vp,
AS_AREA_ATTR_NONE, &phys_backend, &backend_data)) {
/*
* The address space area could not have been created.
* We report it using ENOMEM.
169,28 → 187,24
* @param size Size of the enabled I/O space..
*
* @return 0 on success, EPERM if the caller lacks capabilities to use this
* syscall, ENOENT if there is no task matching the specified ID.
* syscall, ENOENT if there is no task matching the specified ID.
*
*/
static int ddi_iospace_enable(task_id_t id, uintptr_t ioaddr, size_t size)
{
ipl_t ipl;
cap_t caps;
task_t *t;
int rc;
/*
* Make sure the caller is authorised to make this syscall.
*/
caps = cap_get(TASK);
cap_t caps = cap_get(TASK);
if (!(caps & CAP_IO_MANAGER))
return EPERM;
ipl = interrupts_disable();
ipl_t ipl = interrupts_disable();
spinlock_lock(&tasks_lock);
t = task_find_by_id(id);
task_t *task = task_find_by_id(id);
if ((!t) || (!context_check(CONTEXT, t->context))) {
if ((!task) || (!context_check(CONTEXT, task->context))) {
/*
* There is no task with the specified ID
* or the task belongs to a different security
200,15 → 214,16
interrupts_restore(ipl);
return ENOENT;
}
 
/* Lock the task and release the lock protecting tasks_btree. */
spinlock_lock(&t->lock);
spinlock_lock(&task->lock);
spinlock_unlock(&tasks_lock);
 
rc = ddi_iospace_enable_arch(t, ioaddr, size);
spinlock_unlock(&t->lock);
int rc = ddi_iospace_enable_arch(task, ioaddr, size);
spinlock_unlock(&task->lock);
interrupts_restore(ipl);
return rc;
}
 
220,13 → 235,14
* @param flags Flags of newly mapped pages
*
* @return 0 on success, otherwise it returns error code found in errno.h
*/
*
*/
unative_t sys_physmem_map(unative_t phys_base, unative_t virt_base,
unative_t pages, unative_t flags)
{
return (unative_t) ddi_physmem_map(ALIGN_DOWN((uintptr_t) phys_base,
FRAME_SIZE), ALIGN_DOWN((uintptr_t) virt_base, PAGE_SIZE),
(count_t) pages, (int) flags);
(size_t) pages, (int) flags);
}
 
/** Wrapper for SYS_ENABLE_IOSPACE syscall.
234,16 → 250,15
* @param uspace_io_arg User space address of DDI argument structure.
*
* @return 0 on success, otherwise it returns error code found in errno.h
*/
*
*/
unative_t sys_iospace_enable(ddi_ioarg_t *uspace_io_arg)
{
ddi_ioarg_t arg;
int rc;
rc = copy_from_uspace(&arg, uspace_io_arg, sizeof(ddi_ioarg_t));
int rc = copy_from_uspace(&arg, uspace_io_arg, sizeof(ddi_ioarg_t));
if (rc != 0)
return (unative_t) rc;
return (unative_t) ddi_iospace_enable((task_id_t) arg.task_id,
(uintptr_t) arg.ioaddr, (size_t) arg.size);
}
251,20 → 266,24
/** Disable or enable preemption.
*
* @param enable If non-zero, the preemption counter will be decremented,
* leading to potential enabling of preemption. Otherwise the preemption
* counter will be incremented, preventing preemption from occurring.
* leading to potential enabling of preemption. Otherwise
* the preemption counter will be incremented, preventing
* preemption from occurring.
*
* @return Zero on success or EPERM if callers capabilities are not sufficient.
*/
*
*/
unative_t sys_preempt_control(int enable)
{
if (!cap_get(TASK) & CAP_PREEMPT_CONTROL)
return EPERM;
if (enable)
preemption_enable();
else
preemption_disable();
return 0;
if (!cap_get(TASK) & CAP_PREEMPT_CONTROL)
return EPERM;
if (enable)
preemption_enable();
else
preemption_disable();
return 0;
}
 
/** @}
/branches/arm/kernel/generic/src/ddi/irq.c
39,7 → 39,8
*
* This code is designed to support:
* - multiple devices sharing single IRQ
* - multiple IRQs per signle device
* - multiple IRQs per single device
* - multiple instances of the same device
*
*
* Note about architectures.
68,8 → 69,11
 
#include <ddi/irq.h>
#include <adt/hash_table.h>
#include <mm/slab.h>
#include <arch/types.h>
#include <synch/spinlock.h>
#include <console/console.h>
#include <memstr.h>
#include <arch.h>
 
#define KEY_INR 0
76,23 → 80,33
#define KEY_DEVNO 1
 
/**
* Spinlock protecting the hash table.
* Spinlock protecting the kernel IRQ hash table.
* This lock must be taken only when interrupts are disabled.
*/
SPINLOCK_INITIALIZE(irq_hash_table_lock);
static hash_table_t irq_hash_table;
SPINLOCK_INITIALIZE(irq_kernel_hash_table_lock);
/** The kernel IRQ hash table. */
static hash_table_t irq_kernel_hash_table;
 
/**
* Spinlock protecting the uspace IRQ hash table.
* This lock must be taken only when interrupts are disabled.
*/
SPINLOCK_INITIALIZE(irq_uspace_hash_table_lock);
/** The uspace IRQ hash table. */
hash_table_t irq_uspace_hash_table;
 
/**
* Hash table operations for cases when we know that
* there will be collisions between different keys.
*/
static index_t irq_ht_hash(unative_t *key);
static bool irq_ht_compare(unative_t *key, count_t keys, link_t *item);
static size_t irq_ht_hash(unative_t *key);
static bool irq_ht_compare(unative_t *key, size_t keys, link_t *item);
static void irq_ht_remove(link_t *item);
 
static hash_table_operations_t irq_ht_ops = {
.hash = irq_ht_hash,
.compare = irq_ht_compare,
.remove_callback = NULL /* not used */
.remove_callback = irq_ht_remove,
};
 
/**
101,22 → 115,27
* However, there might be still collisions among
* elements with single key (sharing of one IRQ).
*/
static index_t irq_lin_hash(unative_t *key);
static bool irq_lin_compare(unative_t *key, count_t keys, link_t *item);
static size_t irq_lin_hash(unative_t *key);
static bool irq_lin_compare(unative_t *key, size_t keys, link_t *item);
static void irq_lin_remove(link_t *item);
 
static hash_table_operations_t irq_lin_ops = {
.hash = irq_lin_hash,
.compare = irq_lin_compare,
.remove_callback = NULL /* not used */
.remove_callback = irq_lin_remove,
};
 
/** Number of buckets in either of the hash tables. */
static size_t buckets;
 
/** Initialize IRQ subsystem.
*
* @param inrs Numbers of unique IRQ numbers or INRs.
* @param chains Number of chains in the hash table.
*/
void irq_init(count_t inrs, count_t chains)
void irq_init(size_t inrs, size_t chains)
{
buckets = chains;
/*
* Be smart about the choice of the hash table operations.
* In cases in which inrs equals the requested number of
123,10 → 142,17
* chains (i.e. where there is no collision between
* different keys), we can use optimized set of operations.
*/
if (inrs == chains)
hash_table_create(&irq_hash_table, chains, 2, &irq_lin_ops);
else
hash_table_create(&irq_hash_table, chains, 2, &irq_ht_ops);
if (inrs == chains) {
hash_table_create(&irq_uspace_hash_table, chains, 2,
&irq_lin_ops);
hash_table_create(&irq_kernel_hash_table, chains, 2,
&irq_lin_ops);
} else {
hash_table_create(&irq_uspace_hash_table, chains, 2,
&irq_ht_ops);
hash_table_create(&irq_kernel_hash_table, chains, 2,
&irq_ht_ops);
}
}
 
/** Initialize one IRQ structure.
136,21 → 162,12
*/
void irq_initialize(irq_t *irq)
{
memsetb(irq, sizeof(irq_t), 0);
link_initialize(&irq->link);
spinlock_initialize(&irq->lock, "irq.lock");
irq->preack = false;
link_initialize(&irq->notif_cfg.link);
irq->inr = -1;
irq->devno = -1;
irq->trigger = (irq_trigger_t) 0;
irq->claim = NULL;
irq->handler = NULL;
irq->arg = NULL;
irq->notif_cfg.notify = false;
irq->notif_cfg.answerbox = NULL;
irq->notif_cfg.code = NULL;
irq->notif_cfg.method = 0;
irq->notif_cfg.counter = 0;
link_initialize(&irq->notif_cfg.link);
}
 
/** Register IRQ for device.
157,9 → 174,10
*
* The irq structure must be filled with information
* about the interrupt source and with the claim()
* function pointer and irq_handler() function pointer.
* function pointer and handler() function pointer.
*
* @param irq IRQ structure belonging to a device.
* @param irq IRQ structure belonging to a device.
* @return True on success, false on failure.
*/
void irq_register(irq_t *irq)
{
170,88 → 188,101
};
ipl = interrupts_disable();
spinlock_lock(&irq_hash_table_lock);
hash_table_insert(&irq_hash_table, key, &irq->link);
spinlock_unlock(&irq_hash_table_lock);
spinlock_lock(&irq_kernel_hash_table_lock);
spinlock_lock(&irq->lock);
hash_table_insert(&irq_kernel_hash_table, key, &irq->link);
spinlock_unlock(&irq->lock);
spinlock_unlock(&irq_kernel_hash_table_lock);
interrupts_restore(ipl);
}
 
/** Dispatch the IRQ.
/** Search and lock the uspace IRQ hash table.
*
* We assume this function is only called from interrupt
* context (i.e. that interrupts are disabled prior to
* this call).
*
* This function attempts to lookup a fitting IRQ
* structure. In case of success, return with interrupts
* disabled and holding the respective structure.
*
* @param inr Interrupt number (aka inr or irq).
*
* @return IRQ structure of the respective device or NULL.
*/
irq_t *irq_dispatch_and_lock(inr_t inr)
static irq_t *irq_dispatch_and_lock_uspace(inr_t inr)
{
link_t *lnk;
unative_t key[] = {
(unative_t) inr,
(unative_t) -1 /* search will use claim() instead of devno */
(unative_t) -1 /* search will use claim() instead of devno */
};
spinlock_lock(&irq_hash_table_lock);
 
lnk = hash_table_find(&irq_hash_table, key);
spinlock_lock(&irq_uspace_hash_table_lock);
lnk = hash_table_find(&irq_uspace_hash_table, key);
if (lnk) {
irq_t *irq;
irq = hash_table_get_instance(lnk, irq_t, link);
 
spinlock_unlock(&irq_hash_table_lock);
spinlock_unlock(&irq_uspace_hash_table_lock);
return irq;
}
spinlock_unlock(&irq_uspace_hash_table_lock);
spinlock_unlock(&irq_hash_table_lock);
 
return NULL;
return NULL;
}
 
/** Find the IRQ structure corresponding to inr and devno.
/** Search and lock the kernel IRQ hash table.
*
* This functions attempts to lookup the IRQ structure
* corresponding to its arguments. On success, this
* function returns with interrups disabled, holding
* the lock of the respective IRQ structure.
*
* This function assumes interrupts are already disabled.
*
* @param inr INR being looked up.
* @param devno Devno being looked up.
*
* @return Locked IRQ structure on success or NULL on failure.
*/
irq_t *irq_find_and_lock(inr_t inr, devno_t devno)
static irq_t *irq_dispatch_and_lock_kernel(inr_t inr)
{
link_t *lnk;
unative_t keys[] = {
unative_t key[] = {
(unative_t) inr,
(unative_t) devno
(unative_t) -1 /* search will use claim() instead of devno */
};
spinlock_lock(&irq_hash_table_lock);
 
lnk = hash_table_find(&irq_hash_table, keys);
spinlock_lock(&irq_kernel_hash_table_lock);
lnk = hash_table_find(&irq_kernel_hash_table, key);
if (lnk) {
irq_t *irq;
irq = hash_table_get_instance(lnk, irq_t, link);
 
spinlock_unlock(&irq_hash_table_lock);
spinlock_unlock(&irq_kernel_hash_table_lock);
return irq;
}
spinlock_unlock(&irq_kernel_hash_table_lock);
spinlock_unlock(&irq_hash_table_lock);
return NULL;
}
 
return NULL;
/** Dispatch the IRQ.
*
* We assume this function is only called from interrupt
* context (i.e. that interrupts are disabled prior to
* this call).
*
* This function attempts to lookup a fitting IRQ
* structure. In case of success, return with interrupts
* disabled and holding the respective structure.
*
* @param inr Interrupt number (aka inr or irq).
*
* @return IRQ structure of the respective device or NULL.
*/
irq_t *irq_dispatch_and_lock(inr_t inr)
{
irq_t *irq;
/*
* If the kernel console is silenced,
* then try first the uspace handlers,
* eventually fall back to kernel handlers.
*
* If the kernel console is active,
* then do it the other way around.
*/
if (silent) {
irq = irq_dispatch_and_lock_uspace(inr);
if (irq)
return irq;
return irq_dispatch_and_lock_kernel(inr);
}
irq = irq_dispatch_and_lock_kernel(inr);
if (irq)
return irq;
return irq_dispatch_and_lock_uspace(inr);
}
 
/** Compute hash index for the key.
267,10 → 298,10
*
* @return Index into the hash table.
*/
index_t irq_ht_hash(unative_t key[])
size_t irq_ht_hash(unative_t key[])
{
inr_t inr = (inr_t) key[KEY_INR];
return inr % irq_hash_table.entries;
return inr % buckets;
}
 
/** Compare hash table element with a key.
293,7 → 324,7
*
* @return True on match or false otherwise.
*/
bool irq_ht_compare(unative_t key[], count_t keys, link_t *item)
bool irq_ht_compare(unative_t key[], size_t keys, link_t *item)
{
irq_t *irq = hash_table_get_instance(item, irq_t, link);
inr_t inr = (inr_t) key[KEY_INR];
304,7 → 335,8
spinlock_lock(&irq->lock);
if (devno == -1) {
/* Invoked by irq_dispatch_and_lock(). */
rv = ((irq->inr == inr) && (irq->claim() == IRQ_ACCEPT));
rv = ((irq->inr == inr) &&
(irq->claim(irq) == IRQ_ACCEPT));
} else {
/* Invoked by irq_find_and_lock(). */
rv = ((irq->inr == inr) && (irq->devno == devno));
317,6 → 349,17
return rv;
}
 
/** Unlock IRQ structure after hash_table_remove().
*
* @param lnk Link in the removed and locked IRQ structure.
*/
void irq_ht_remove(link_t *lnk)
{
irq_t *irq __attribute__((unused))
= hash_table_get_instance(lnk, irq_t, link);
spinlock_unlock(&irq->lock);
}
 
/** Compute hash index for the key.
*
* This function computes hash index into
328,7 → 371,7
*
* @return Index into the hash table.
*/
index_t irq_lin_hash(unative_t key[])
size_t irq_lin_hash(unative_t key[])
{
inr_t inr = (inr_t) key[KEY_INR];
return inr;
354,7 → 397,7
*
* @return True on match or false otherwise.
*/
bool irq_lin_compare(unative_t key[], count_t keys, link_t *item)
bool irq_lin_compare(unative_t key[], size_t keys, link_t *item)
{
irq_t *irq = list_get_instance(item, irq_t, link);
devno_t devno = (devno_t) key[KEY_DEVNO];
363,7 → 406,7
spinlock_lock(&irq->lock);
if (devno == -1) {
/* Invoked by irq_dispatch_and_lock() */
rv = (irq->claim() == IRQ_ACCEPT);
rv = (irq->claim(irq) == IRQ_ACCEPT);
} else {
/* Invoked by irq_find_and_lock() */
rv = (irq->devno == devno);
376,5 → 419,16
return rv;
}
 
/** Unlock IRQ structure after hash_table_remove().
*
* @param lnk Link in the removed and locked IRQ structure.
*/
void irq_lin_remove(link_t *lnk)
{
irq_t *irq __attribute__((unused))
= hash_table_get_instance(lnk, irq_t, link);
spinlock_unlock(&irq->lock);
}
 
/** @}
*/
/branches/arm/kernel/generic/src/ddi/device.c
31,7 → 31,7
*/
/**
* @file
* @brief Device numbers.
* @brief Device numbers.
*/
 
#include <arch/types.h>
47,13 → 47,16
*/
devno_t device_assign_devno(void)
{
devno_t devno;
 
devno = (devno_t) atomic_postinc(&last);
devno_t devno = (devno_t) atomic_postinc(&last);
ASSERT(devno >= 0);
 
return devno;
}
 
unative_t sys_device_assign_devno(void)
{
return (unative_t) device_assign_devno();
}
 
/** @}
*/
/branches/arm/kernel/generic/src/console/console.c
39,79 → 39,70
#include <synch/waitq.h>
#include <synch/spinlock.h>
#include <arch/types.h>
#include <ddi/device.h>
#include <ddi/irq.h>
#include <ddi/ddi.h>
#include <ipc/event.h>
#include <ipc/irq.h>
#include <arch.h>
#include <func.h>
#include <print.h>
#include <putchar.h>
#include <atomic.h>
#include <syscall/copy.h>
#include <errno.h>
#include <string.h>
 
#define KLOG_SIZE PAGE_SIZE
#define KLOG_LATENCY 8
#define KLOG_PAGES 4
#define KLOG_LENGTH (KLOG_PAGES * PAGE_SIZE / sizeof(wchar_t))
#define KLOG_LATENCY 8
 
/**< Kernel log cyclic buffer */
static char klog[KLOG_SIZE] __attribute__ ((aligned (PAGE_SIZE)));
/** Kernel log cyclic buffer */
static wchar_t klog[KLOG_LENGTH] __attribute__ ((aligned (PAGE_SIZE)));
 
/**< Kernel log initialized */
/** Kernel log initialized */
static bool klog_inited = false;
/**< First kernel log characters */
static index_t klog_start = 0;
/**< Number of valid kernel log characters */
/** First kernel log characters */
static size_t klog_start = 0;
/** Number of valid kernel log characters */
static size_t klog_len = 0;
/**< Number of stored (not printed) kernel log characters */
/** Number of stored (not printed) kernel log characters */
static size_t klog_stored = 0;
/**< Number of stored kernel log characters for uspace */
/** Number of stored kernel log characters for uspace */
static size_t klog_uspace = 0;
 
/**< Kernel log spinlock */
/** Kernel log spinlock */
SPINLOCK_INITIALIZE(klog_lock);
 
/** Physical memory area used for klog buffer */
static parea_t klog_parea;
/*
* For now, we use 0 as INR.
* However, it is therefore desirable to have architecture specific
* definition of KLOG_VIRT_INR in the future.
*/
#define KLOG_VIRT_INR 0
 
static irq_t klog_irq;
 
static chardev_operations_t null_stdout_ops = {
.suspend = NULL,
.resume = NULL,
.write = NULL,
.read = NULL
static indev_operations_t stdin_ops = {
.poll = NULL
};
 
chardev_t null_stdout = {
.name = "null",
.op = &null_stdout_ops
};
/** Silence output */
bool silent = false;
 
/** Allways refuse IRQ ownership.
*
* This is not a real IRQ, so we always decline.
*
* @return Always returns IRQ_DECLINE.
*/
static irq_ownership_t klog_claim(void)
/** Standard input and output character devices */
indev_t *stdin = NULL;
outdev_t *stdout = NULL;
 
indev_t *stdin_wire(void)
{
return IRQ_DECLINE;
if (stdin == NULL) {
stdin = malloc(sizeof(indev_t), FRAME_ATOMIC);
if (stdin != NULL)
indev_initialize("stdin", stdin, &stdin_ops);
}
return stdin;
}
 
/** Standard input character device */
chardev_t *stdin = NULL;
chardev_t *stdout = &null_stdout;
 
/** Initialize kernel logging facility
*
* The shared area contains kernel cyclic buffer. Userspace application may
* be notified on new data with indication of position and size
* of the data within the circular buffer.
*
*/
void klog_init(void)
{
118,26 → 109,13
void *faddr = (void *) KA2PA(klog);
ASSERT((uintptr_t) faddr % FRAME_SIZE == 0);
ASSERT(KLOG_SIZE % FRAME_SIZE == 0);
 
devno_t devno = device_assign_devno();
klog_parea.pbase = (uintptr_t) faddr;
klog_parea.vbase = (uintptr_t) klog;
klog_parea.frames = SIZE2FRAMES(KLOG_SIZE);
klog_parea.cacheable = true;
klog_parea.frames = SIZE2FRAMES(sizeof(klog));
ddi_parea_register(&klog_parea);
 
sysinfo_set_item_val("klog.faddr", NULL, (unative_t) faddr);
sysinfo_set_item_val("klog.pages", NULL, SIZE2FRAMES(KLOG_SIZE));
sysinfo_set_item_val("klog.devno", NULL, devno);
sysinfo_set_item_val("klog.inr", NULL, KLOG_VIRT_INR);
 
irq_initialize(&klog_irq);
klog_irq.devno = devno;
klog_irq.inr = KLOG_VIRT_INR;
klog_irq.claim = klog_claim;
irq_register(&klog_irq);
sysinfo_set_item_val("klog.pages", NULL, KLOG_PAGES);
spinlock_lock(&klog_lock);
klog_inited = true;
144,91 → 122,88
spinlock_unlock(&klog_lock);
}
 
/** Get character from character device. Do not echo character.
*
* @param chardev Character device.
*
* @return Character read.
*/
uint8_t _getc(chardev_t *chardev)
void grab_console(void)
{
uint8_t ch;
ipl_t ipl;
bool prev = silent;
silent = false;
arch_grab_console();
/* Force the console to print the prompt */
if ((stdin) && (prev))
indev_push_character(stdin, '\n');
}
 
if (atomic_get(&haltstate)) {
/* If we are here, we are hopefully on the processor, that
* issued the 'halt' command, so proceed to read the character
* directly from input
*/
if (chardev->op->read)
return chardev->op->read(chardev);
/* no other way of interacting with user, halt */
if (CPU)
printf("cpu%u: ", CPU->id);
else
printf("cpu: ");
printf("halted - no kconsole\n");
cpu_halt();
}
void release_console(void)
{
silent = true;
arch_release_console();
}
 
waitq_sleep(&chardev->wq);
ipl = interrupts_disable();
spinlock_lock(&chardev->lock);
ch = chardev->buffer[(chardev->index - chardev->counter) % CHARDEV_BUFLEN];
chardev->counter--;
spinlock_unlock(&chardev->lock);
interrupts_restore(ipl);
/** Tell kernel to get keyboard/console access again */
unative_t sys_debug_enable_console(void)
{
#ifdef CONFIG_KCONSOLE
grab_console();
return true;
#else
return false;
#endif
}
 
chardev->op->resume(chardev);
 
return ch;
/** Tell kernel to relinquish keyboard/console access */
unative_t sys_debug_disable_console(void)
{
release_console();
return true;
}
 
/** Get string from character device.
/** Get string from input character device.
*
* Read characters from character device until first occurrence
* Read characters from input character device until first occurrence
* of newline character.
*
* @param chardev Character device.
* @param buf Buffer where to store string terminated by '\0'.
* @param indev Input character device.
* @param buf Buffer where to store string terminated by NULL.
* @param buflen Size of the buffer.
*
* @return Number of characters read.
*
*/
count_t gets(chardev_t *chardev, char *buf, size_t buflen)
size_t gets(indev_t *indev, char *buf, size_t buflen)
{
index_t index = 0;
char ch;
 
while (index < buflen) {
ch = _getc(chardev);
size_t offset = 0;
size_t count = 0;
buf[offset] = 0;
wchar_t ch;
while ((ch = indev_pop_character(indev)) != '\n') {
if (ch == '\b') {
if (index > 0) {
index--;
/* Space backspace, space */
if (count > 0) {
/* Space, backspace, space */
putchar('\b');
putchar(' ');
putchar('\b');
count--;
offset = str_lsize(buf, count);
buf[offset] = 0;
}
continue;
}
putchar(ch);
 
if (ch == '\n') { /* end of string => write 0, return */
buf[index] = '\0';
return (count_t) index;
}
buf[index++] = ch;
if (chr_encode(ch, buf, &offset, buflen - 1) == EOK) {
putchar(ch);
count++;
buf[offset] = 0;
}
}
return (count_t) index;
return count;
}
 
/** Get character from device & echo it to screen */
uint8_t getc(chardev_t *chardev)
/** Get character from input device & echo it to screen */
wchar_t getc(indev_t *indev)
{
uint8_t ch;
 
ch = _getc(chardev);
wchar_t ch = indev_pop_character(indev);
putchar(ch);
return ch;
}
237,8 → 212,8
{
spinlock_lock(&klog_lock);
if ((klog_inited) && (klog_irq.notif_cfg.notify) && (klog_uspace > 0)) {
ipc_irq_send_msg_3(&klog_irq, klog_start, klog_len, klog_uspace);
if ((klog_inited) && (event_is_subscribed(EVENT_KLOG)) && (klog_uspace > 0)) {
event_notify_3(EVENT_KLOG, klog_start, klog_len, klog_uspace);
klog_uspace = 0;
}
245,27 → 220,27
spinlock_unlock(&klog_lock);
}
 
void putchar(char c)
void putchar(const wchar_t ch)
{
spinlock_lock(&klog_lock);
if ((klog_stored > 0) && (stdout->op->write)) {
if ((klog_stored > 0) && (stdout) && (stdout->op->write)) {
/* Print charaters stored in kernel log */
index_t i;
size_t i;
for (i = klog_len - klog_stored; i < klog_len; i++)
stdout->op->write(stdout, klog[(klog_start + i) % KLOG_SIZE]);
stdout->op->write(stdout, klog[(klog_start + i) % KLOG_LENGTH], silent);
klog_stored = 0;
}
/* Store character in the cyclic kernel log */
klog[(klog_start + klog_len) % KLOG_SIZE] = c;
if (klog_len < KLOG_SIZE)
klog[(klog_start + klog_len) % KLOG_LENGTH] = ch;
if (klog_len < KLOG_LENGTH)
klog_len++;
else
klog_start = (klog_start + 1) % KLOG_SIZE;
klog_start = (klog_start + 1) % KLOG_LENGTH;
if (stdout->op->write)
stdout->op->write(stdout, c);
if ((stdout) && (stdout->op->write))
stdout->op->write(stdout, ch, silent);
else {
/* The character is just in the kernel log */
if (klog_stored < klog_len)
278,7 → 253,7
/* Check notify uspace to update */
bool update;
if ((klog_uspace > KLOG_LATENCY) || (c == '\n'))
if ((klog_uspace > KLOG_LATENCY) || (ch == '\n'))
update = true;
else
update = false;
289,5 → 264,38
klog_update();
}
 
/** Print using kernel facility
*
* Print to kernel log.
*
*/
unative_t sys_klog(int fd, const void *buf, size_t size)
{
char *data;
int rc;
if (size > PAGE_SIZE)
return ELIMIT;
if (size > 0) {
data = (char *) malloc(size + 1, 0);
if (!data)
return ENOMEM;
rc = copy_from_uspace(data, buf, size);
if (rc) {
free(data);
return rc;
}
data[size] = 0;
printf("%s", data);
free(data);
} else
klog_update();
return size;
}
 
/** @}
*/
/branches/arm/kernel/generic/src/console/cmd.c
31,8 → 31,8
*/
 
/**
* @file cmd.c
* @brief Kernel console command wrappers.
* @file cmd.c
* @brief Kernel console command wrappers.
*
* This file is meant to contain all wrapper functions for
* all kconsole commands. The point is in separating
50,9 → 50,9
#include <arch.h>
#include <config.h>
#include <func.h>
#include <string.h>
#include <macros.h>
#include <debug.h>
#include <symtab.h>
#include <cpu.h>
#include <mm/tlb.h>
#include <arch/mm/tlb.h>
64,6 → 64,9
#include <proc/task.h>
#include <ipc/ipc.h>
#include <ipc/irq.h>
#include <ipc/event.h>
#include <symtab.h>
#include <errno.h>
 
#ifdef CONFIG_TEST
#include <test.h>
78,12 → 81,6
.argc = 0
};
 
static cmd_info_t exit_info = {
.name = "exit",
.description = "Exit kconsole.",
.argc = 0
};
 
static int cmd_reboot(cmd_arg_t *argv);
static cmd_info_t reboot_info = {
.name = "reboot",
456,7 → 453,6
&continue_info,
&cpus_info,
&desc_info,
&exit_info,
&reboot_info,
&uptime_info,
&halt_info,
501,7 → 497,7
for (i = 0; basic_commands[i]; i++) {
cmd_initialize(basic_commands[i]);
if (!cmd_register(basic_commands[i]))
panic("could not register command %s\n", basic_commands[i]->name);
printf("Cannot register command %s\n", basic_commands[i]->name);
}
}
 
514,23 → 510,31
*/
int cmd_help(cmd_arg_t *argv)
{
link_t *cur;
 
spinlock_lock(&cmd_lock);
link_t *cur;
size_t len = 0;
for (cur = cmd_head.next; cur != &cmd_head; cur = cur->next) {
cmd_info_t *hlp;
hlp = list_get_instance(cur, cmd_info_t, link);
spinlock_lock(&hlp->lock);
if (str_length(hlp->name) > len)
len = str_length(hlp->name);
spinlock_unlock(&hlp->lock);
}
for (cur = cmd_head.next; cur != &cmd_head; cur = cur->next) {
cmd_info_t *hlp;
hlp = list_get_instance(cur, cmd_info_t, link);
spinlock_lock(&hlp->lock);
printf("%s - %s\n", hlp->name, hlp->description);
 
printf("%-*s %s\n", len, hlp->name, hlp->description);
spinlock_unlock(&hlp->lock);
}
spinlock_unlock(&cmd_lock);
 
spinlock_unlock(&cmd_lock);
return 1;
}
 
578,7 → 582,7
int cmd_desc(cmd_arg_t *argv)
{
link_t *cur;
 
spinlock_lock(&cmd_lock);
for (cur = cmd_head.next; cur != &cmd_head; cur = cur->next) {
586,8 → 590,8
hlp = list_get_instance(cur, cmd_info_t, link);
spinlock_lock(&hlp->lock);
 
if (strncmp(hlp->name, (const char *) argv->buffer, strlen(hlp->name)) == 0) {
if (str_lcmp(hlp->name, (const char *) argv->buffer, str_length(hlp->name)) == 0) {
printf("%s - %s\n", hlp->name, hlp->description);
if (hlp->help)
hlp->help();
594,12 → 598,12
spinlock_unlock(&hlp->lock);
break;
}
 
spinlock_unlock(&hlp->lock);
}
spinlock_unlock(&cmd_lock);
 
return 1;
}
 
616,33 → 620,26
{
uintptr_t symaddr;
char *symbol;
unative_t (*f)(void);
#ifdef ia64
struct {
unative_t f;
unative_t gp;
} fptr;
#endif
unative_t (*fnc)(void);
fncptr_t fptr;
int rc;
 
symaddr = get_symbol_addr((char *) argv->buffer);
if (!symaddr)
printf("Symbol %s not found.\n", argv->buffer);
else if (symaddr == (uintptr_t) -1) {
symtab_print_search((char *) argv->buffer);
symbol = (char *) argv->buffer;
rc = symtab_addr_lookup(symbol, &symaddr);
 
if (rc == ENOENT)
printf("Symbol %s not found.\n", symbol);
else if (rc == EOVERFLOW) {
symtab_print_search(symbol);
printf("Duplicate symbol, be more specific.\n");
} else if (rc == EOK) {
fnc = (unative_t (*)(void)) arch_construct_function(&fptr,
(void *) symaddr, (void *) cmd_call0);
printf("Calling %s() (%p)\n", symbol, symaddr);
printf("Result: %#" PRIxn "\n", fnc());
} else {
symbol = get_symtab_entry(symaddr);
printf("Calling %s() (%p)\n", symbol, symaddr);
#ifdef ia64
fptr.f = symaddr;
fptr.gp = ((unative_t *)cmd_call2)[1];
f = (unative_t (*)(void)) &fptr;
#else
f = (unative_t (*)(void)) symaddr;
#endif
printf("Result: %#" PRIxn "\n", f());
printf("No symbol information available.\n");
}
return 1;
}
 
654,7 → 651,7
* call the function.
*/
count_t i;
size_t i;
for (i = 0; i < config.cpu_count; i++) {
if (!cpus[i].active)
continue;
680,35 → 677,27
{
uintptr_t symaddr;
char *symbol;
unative_t (*f)(unative_t,...);
unative_t (*fnc)(unative_t, ...);
unative_t arg1 = argv[1].intval;
#ifdef ia64
struct {
unative_t f;
unative_t gp;
} fptr;
#endif
fncptr_t fptr;
int rc;
 
symaddr = get_symbol_addr((char *) argv->buffer);
if (!symaddr)
printf("Symbol %s not found.\n", argv->buffer);
else if (symaddr == (uintptr_t) -1) {
symtab_print_search((char *) argv->buffer);
symbol = (char *) argv->buffer;
rc = symtab_addr_lookup(symbol, &symaddr);
 
if (rc == ENOENT) {
printf("Symbol %s not found.\n", symbol);
} else if (rc == EOVERFLOW) {
symtab_print_search(symbol);
printf("Duplicate symbol, be more specific.\n");
} else if (rc == EOK) {
fnc = (unative_t (*)(unative_t, ...)) arch_construct_function(&fptr, (void *) symaddr, (void *) cmd_call1);
printf("Calling f(%#" PRIxn "): %p: %s\n", arg1, symaddr, symbol);
printf("Result: %#" PRIxn "\n", fnc(arg1));
} else {
symbol = get_symtab_entry(symaddr);
printf("No symbol information available.\n");
}
 
printf("Calling f(%#" PRIxn "): %p: %s\n", arg1, symaddr, symbol);
#ifdef ia64
fptr.f = symaddr;
fptr.gp = ((unative_t *)cmd_call2)[1];
f = (unative_t (*)(unative_t,...)) &fptr;
#else
f = (unative_t (*)(unative_t,...)) symaddr;
#endif
printf("Result: %#" PRIxn "\n", f(arg1));
}
return 1;
}
 
717,36 → 706,28
{
uintptr_t symaddr;
char *symbol;
unative_t (*f)(unative_t,unative_t,...);
unative_t (*fnc)(unative_t, unative_t, ...);
unative_t arg1 = argv[1].intval;
unative_t arg2 = argv[2].intval;
#ifdef ia64
struct {
unative_t f;
unative_t gp;
}fptr;
#endif
fncptr_t fptr;
int rc;
 
symaddr = get_symbol_addr((char *) argv->buffer);
if (!symaddr)
printf("Symbol %s not found.\n", argv->buffer);
else if (symaddr == (uintptr_t) -1) {
symtab_print_search((char *) argv->buffer);
symbol = (char *) argv->buffer;
rc = symtab_addr_lookup(symbol, &symaddr);
 
if (rc == ENOENT) {
printf("Symbol %s not found.\n", symbol);
} else if (rc == EOVERFLOW) {
symtab_print_search(symbol);
printf("Duplicate symbol, be more specific.\n");
} else {
symbol = get_symtab_entry(symaddr);
} else if (rc == EOK) {
fnc = (unative_t (*)(unative_t, unative_t, ...)) arch_construct_function(&fptr, (void *) symaddr, (void *) cmd_call2);
printf("Calling f(%#" PRIxn ", %#" PRIxn "): %p: %s\n",
arg1, arg2, symaddr, symbol);
#ifdef ia64
fptr.f = symaddr;
fptr.gp = ((unative_t *)cmd_call2)[1];
f = (unative_t (*)(unative_t,unative_t,...)) &fptr;
#else
f = (unative_t (*)(unative_t,unative_t,...)) symaddr;
#endif
printf("Result: %#" PRIxn "\n", f(arg1, arg2));
printf("Result: %#" PRIxn "\n", fnc(arg1, arg2));
} else {
printf("No symbol information available.\n");
}
return 1;
}
 
755,37 → 736,29
{
uintptr_t symaddr;
char *symbol;
unative_t (*f)(unative_t,unative_t,unative_t,...);
unative_t (*fnc)(unative_t, unative_t, unative_t, ...);
unative_t arg1 = argv[1].intval;
unative_t arg2 = argv[2].intval;
unative_t arg3 = argv[3].intval;
#ifdef ia64
struct {
unative_t f;
unative_t gp;
}fptr;
#endif
fncptr_t fptr;
int rc;
symbol = (char *) argv->buffer;
rc = symtab_addr_lookup(symbol, &symaddr);
 
symaddr = get_symbol_addr((char *) argv->buffer);
if (!symaddr)
printf("Symbol %s not found.\n", argv->buffer);
else if (symaddr == (uintptr_t) -1) {
symtab_print_search((char *) argv->buffer);
if (rc == ENOENT) {
printf("Symbol %s not found.\n", symbol);
} else if (rc == EOVERFLOW) {
symtab_print_search(symbol);
printf("Duplicate symbol, be more specific.\n");
} else {
symbol = get_symtab_entry(symaddr);
} else if (rc == EOK) {
fnc = (unative_t (*)(unative_t, unative_t, unative_t, ...)) arch_construct_function(&fptr, (void *) symaddr, (void *) cmd_call3);
printf("Calling f(%#" PRIxn ",%#" PRIxn ", %#" PRIxn "): %p: %s\n",
arg1, arg2, arg3, symaddr, symbol);
#ifdef ia64
fptr.f = symaddr;
fptr.gp = ((unative_t *)cmd_call2)[1];
f = (unative_t (*)(unative_t,unative_t,unative_t,...)) &fptr;
#else
f = (unative_t (*)(unative_t,unative_t,unative_t,...)) symaddr;
#endif
printf("Result: %#" PRIxn "\n", f(arg1, arg2, arg3));
printf("Result: %#" PRIxn "\n", fnc(arg1, arg2, arg3));
} else {
printf("No symbol information available.\n");
}
return 1;
}
 
835,30 → 808,34
/** Write 4 byte value to address */
int cmd_set4(cmd_arg_t *argv)
{
uint32_t *addr;
uintptr_t addr;
uint32_t arg1 = argv[1].intval;
bool pointer = false;
int rc;
 
if (((char *)argv->buffer)[0] == '*') {
addr = (uint32_t *) get_symbol_addr((char *) argv->buffer + 1);
rc = symtab_addr_lookup((char *) argv->buffer + 1, &addr);
pointer = true;
} else if (((char *) argv->buffer)[0] >= '0' &&
((char *)argv->buffer)[0] <= '9')
addr = (uint32_t *)atoi((char *)argv->buffer);
else
addr = (uint32_t *)get_symbol_addr((char *) argv->buffer);
((char *)argv->buffer)[0] <= '9') {
rc = EOK;
addr = atoi((char *)argv->buffer);
} else {
rc = symtab_addr_lookup((char *) argv->buffer, &addr);
}
 
if (!addr)
if (rc == ENOENT)
printf("Symbol %s not found.\n", argv->buffer);
else if (addr == (uint32_t *) -1) {
else if (rc == EOVERFLOW) {
symtab_print_search((char *) argv->buffer);
printf("Duplicate symbol, be more specific.\n");
} else {
} else if (rc == EOK) {
if (pointer)
addr = (uint32_t *)(*(unative_t *)addr);
addr = *(uintptr_t *) addr;
printf("Writing %#" PRIx64 " -> %p\n", arg1, addr);
*addr = arg1;
*(uint32_t *) addr = arg1;
} else {
printf("No symbol information available.\n");
}
return 1;
976,8 → 953,11
int cmd_continue(cmd_arg_t *argv)
{
printf("The kernel will now relinquish the console.\n");
printf("Use userspace controls to redraw the screen.\n");
arch_release_console();
release_console();
event_notify_0(EVENT_KCONSOLE);
indev_pop_character(stdin);
return 1;
}
 
990,18 → 970,23
*/
int cmd_tests(cmd_arg_t *argv)
{
size_t len = 0;
test_t *test;
for (test = tests; test->name != NULL; test++) {
if (str_length(test->name) > len)
len = str_length(test->name);
}
for (test = tests; test->name != NULL; test++)
printf("%s\t\t%s%s\n", test->name, test->desc, (test->safe ? "" : " (unsafe)"));
printf("%-*s %s%s\n", len, test->name, test->desc, (test->safe ? "" : " (unsafe)"));
printf("*\t\tRun all safe tests\n");
printf("%-*s Run all safe tests\n", len, "*");
return 1;
}
 
static bool run_test(const test_t *test)
{
printf("%s\t\t%s\n", test->name, test->desc);
printf("%s (%s)\n", test->name, test->desc);
/* Update and read thread accounting
for benchmarking */
1012,7 → 997,8
interrupts_restore(ipl);
/* Execute the test */
char * ret = test->entry(false);
test_quiet = false;
char *ret = test->entry();
/* Update and read thread accounting */
ipl = interrupts_disable();
1064,7 → 1050,8
interrupts_restore(ipl);
/* Execute the test */
char * ret = test->entry(true);
test_quiet = true;
char * ret = test->entry();
/* Update and read thread accounting */
ipl = interrupts_disable();
1112,7 → 1099,7
{
test_t *test;
if (strcmp((char *) argv->buffer, "*") == 0) {
if (str_cmp((char *) argv->buffer, "*") == 0) {
for (test = tests; test->name != NULL; test++) {
if (test->safe) {
printf("\n");
1124,7 → 1111,7
bool fnd = false;
for (test = tests; test->name != NULL; test++) {
if (strcmp(test->name, (char *) argv->buffer) == 0) {
if (str_cmp(test->name, (char *) argv->buffer) == 0) {
fnd = true;
run_test(test);
break;
1149,24 → 1136,33
test_t *test;
uint32_t cnt = argv[1].intval;
bool fnd = false;
for (test = tests; test->name != NULL; test++) {
if (strcmp(test->name, (char *) argv->buffer) == 0) {
fnd = true;
if (test->safe)
run_bench(test, cnt);
else
printf("Unsafe test\n");
break;
if (str_cmp((char *) argv->buffer, "*") == 0) {
for (test = tests; test->name != NULL; test++) {
if (test->safe) {
if (!run_bench(test, cnt))
break;
}
}
} else {
bool fnd = false;
for (test = tests; test->name != NULL; test++) {
if (str_cmp(test->name, (char *) argv->buffer) == 0) {
fnd = true;
if (test->safe)
run_bench(test, cnt);
else
printf("Unsafe test\n");
break;
}
}
if (!fnd)
printf("Unknown test\n");
}
if (!fnd)
printf("Unknown test\n");
 
return 1;
}
 
/branches/arm/kernel/generic/src/console/kconsole.c
31,10 → 31,11
*/
 
/**
* @file kconsole.c
* @brief Kernel console.
* @file kconsole.c
* @brief Kernel console.
*
* This file contains kernel thread managing the kernel console.
*
*/
 
#include <console/kconsole.h>
49,8 → 50,14
#include <macros.h>
#include <debug.h>
#include <func.h>
#include <string.h>
#include <macros.h>
#include <sysinfo/sysinfo.h>
#include <ddi/device.h>
#include <symtab.h>
#include <macros.h>
#include <errno.h>
#include <putchar.h>
#include <string.h>
 
/** Simple kernel console.
*
59,7 → 66,7
* but makes it possible for other kernel subsystems to
* register their own commands.
*/
 
/** Locking.
*
* There is a list of cmd_info_t structures. This list
74,33 → 81,36
* When locking two cmd info structures, structure with
* lower address must be locked first.
*/
SPINLOCK_INITIALIZE(cmd_lock); /**< Lock protecting command list. */
LIST_INITIALIZE(cmd_head); /**< Command list. */
 
static cmd_info_t *parse_cmdline(char *cmdline, size_t len);
static bool parse_argument(char *cmdline, size_t len, index_t *start,
index_t *end);
static char history[KCONSOLE_HISTORY][MAX_CMDLINE] = {};
SPINLOCK_INITIALIZE(cmd_lock); /**< Lock protecting command list. */
LIST_INITIALIZE(cmd_head); /**< Command list. */
 
/** Initialize kconsole data structures. */
static wchar_t history[KCONSOLE_HISTORY][MAX_CMDLINE] = {};
static size_t history_pos = 0;
 
/** Initialize kconsole data structures
*
* This is the most basic initialization, almost no
* other kernel subsystem is ready yet.
*
*/
void kconsole_init(void)
{
int i;
 
unsigned int i;
cmd_init();
for (i = 0; i < KCONSOLE_HISTORY; i++)
history[i][0] = '\0';
history[i][0] = 0;
}
 
 
/** Register kconsole command.
*
* @param cmd Structure describing the command.
*
* @return 0 on failure, 1 on success.
* @return False on failure, true on success.
*
*/
int cmd_register(cmd_info_t *cmd)
bool cmd_register(cmd_info_t *cmd)
{
link_t *cur;
110,16 → 120,14
* Make sure the command is not already listed.
*/
for (cur = cmd_head.next; cur != &cmd_head; cur = cur->next) {
cmd_info_t *hlp;
cmd_info_t *hlp = list_get_instance(cur, cmd_info_t, link);
hlp = list_get_instance(cur, cmd_info_t, link);
 
if (hlp == cmd) {
/* The command is already there. */
spinlock_unlock(&cmd_lock);
return 0;
return false;
}
 
/* Avoid deadlock. */
if (hlp < cmd) {
spinlock_lock(&hlp->lock);
128,13 → 136,13
spinlock_lock(&cmd->lock);
spinlock_lock(&hlp->lock);
}
if ((strncmp(hlp->name, cmd->name, max(strlen(cmd->name),
strlen(hlp->name))) == 0)) {
if (str_cmp(hlp->name, cmd->name) == 0) {
/* The command is already there. */
spinlock_unlock(&hlp->lock);
spinlock_unlock(&cmd->lock);
spinlock_unlock(&cmd_lock);
return 0;
return false;
}
spinlock_unlock(&hlp->lock);
147,294 → 155,274
list_append(&cmd->link, &cmd_head);
spinlock_unlock(&cmd_lock);
return 1;
return true;
}
 
/** Print count times a character */
static void rdln_print_c(char ch, int count)
static void print_cc(wchar_t ch, size_t count)
{
int i;
size_t i;
for (i = 0; i < count; i++)
putchar(ch);
}
 
/** Insert character to string */
static void insert_char(char *str, char ch, int pos)
/** Try to find a command beginning with prefix */
static const char *cmdtab_search_one(const char *name, link_t **startpos)
{
int i;
size_t namelen = str_length(name);
for (i = strlen(str); i > pos; i--)
str[i] = str[i - 1];
str[pos] = ch;
}
 
/** Try to find a command beginning with prefix */
static const char *cmdtab_search_one(const char *name,link_t **startpos)
{
size_t namelen = strlen(name);
const char *curname;
 
spinlock_lock(&cmd_lock);
 
if (!*startpos)
if (*startpos == NULL)
*startpos = cmd_head.next;
 
for (; *startpos != &cmd_head; *startpos = (*startpos)->next) {
cmd_info_t *hlp;
hlp = list_get_instance(*startpos, cmd_info_t, link);
 
curname = hlp->name;
if (strlen(curname) < namelen)
cmd_info_t *hlp = list_get_instance(*startpos, cmd_info_t, link);
const char *curname = hlp->name;
if (str_length(curname) < namelen)
continue;
if (strncmp(curname, name, namelen) == 0) {
spinlock_unlock(&cmd_lock);
return curname+namelen;
if (str_lcmp(curname, name, namelen) == 0) {
spinlock_unlock(&cmd_lock);
return (curname + str_lsize(curname, namelen));
}
}
spinlock_unlock(&cmd_lock);
spinlock_unlock(&cmd_lock);
return NULL;
}
 
 
/** Command completion of the commands
/** Command completion of the commands
*
* @param name - string to match, changed to hint on exit
* @return number of found matches
* @param name String to match, changed to hint on exit
* @param size Input buffer size
*
* @return Number of found matches
*
*/
static int cmdtab_compl(char *name)
static int cmdtab_compl(char *input, size_t size)
{
static char output[MAX_SYMBOL_NAME + 1];
link_t *startpos = NULL;
const char *foundtxt;
int found = 0;
int i;
 
output[0] = '\0';
while ((foundtxt = cmdtab_search_one(name, &startpos))) {
startpos = startpos->next;
if (!found)
strncpy(output, foundtxt, strlen(foundtxt) + 1);
else {
for (i = 0; output[i] && foundtxt[i] &&
output[i] == foundtxt[i]; i++)
;
output[i] = '\0';
}
const char *name = input;
size_t found = 0;
link_t *pos = NULL;
const char *hint;
char output[MAX_CMDLINE];
output[0] = 0;
while ((hint = cmdtab_search_one(name, &pos))) {
if ((found == 0) || (str_length(output) > str_length(hint)))
str_cpy(output, MAX_CMDLINE, hint);
pos = pos->next;
found++;
}
if (!found)
return 0;
 
if (found > 1 && !strlen(output)) {
if ((found > 1) && (str_length(output) != 0)) {
printf("\n");
startpos = NULL;
while ((foundtxt = cmdtab_search_one(name, &startpos))) {
cmd_info_t *hlp;
hlp = list_get_instance(startpos, cmd_info_t, link);
printf("%s - %s\n", hlp->name, hlp->description);
startpos = startpos->next;
pos = NULL;
while ((hint = cmdtab_search_one(name, &pos))) {
cmd_info_t *hlp = list_get_instance(pos, cmd_info_t, link);
printf("%s (%s)\n", hlp->name, hlp->description);
pos = pos->next;
}
}
strncpy(name, output, MAX_SYMBOL_NAME);
if (found > 0)
str_cpy(input, size, output);
return found;
}
 
static char *clever_readline(const char *prompt, chardev_t *input)
static wchar_t *clever_readline(const char *prompt, indev_t *indev)
{
static int histposition = 0;
 
static char tmp[MAX_CMDLINE + 1];
int curlen = 0, position = 0;
char *current = history[histposition];
int i;
char mod; /* Command Modifier */
char c;
 
printf("%s> ", prompt);
while (1) {
c = _getc(input);
if (c == '\n') {
putchar(c);
size_t position = 0;
wchar_t *current = history[history_pos];
current[0] = 0;
while (true) {
wchar_t ch = indev_pop_character(indev);
if (ch == '\n') {
/* Enter */
putchar(ch);
break;
}
if (c == '\b') { /* Backspace */
if (ch == '\b') {
/* Backspace */
if (position == 0)
continue;
for (i = position; i < curlen; i++)
current[i - 1] = current[i];
curlen--;
position--;
putchar('\b');
for (i = position; i < curlen; i++)
putchar(current[i]);
putchar(' ');
rdln_print_c('\b', curlen - position + 1);
continue;
if (wstr_remove(current, position - 1)) {
position--;
putchar('\b');
printf("%ls ", current + position);
print_cc('\b', wstr_length(current) - position + 1);
continue;
}
}
if (c == '\t') { /* Tabulator */
int found;
 
if (ch == '\t') {
/* Tab completion */
/* Move to the end of the word */
for (; position < curlen && current[position] != ' ';
for (; (current[position] != 0) && (!isspace(current[position]));
position++)
putchar(current[position]);
/* Copy to tmp last word */
for (i = position - 1; i >= 0 && current[i] != ' '; i--)
;
/* If word begins with * or &, skip it */
if (tmp[0] == '*' || tmp[0] == '&')
for (i = 1; tmp[i]; i++)
tmp[i - 1] = tmp[i];
i++; /* I is at the start of the word */
strncpy(tmp, current + i, position - i + 1);
 
if (i == 0) { /* Command completion */
found = cmdtab_compl(tmp);
} else { /* Symtab completion */
found = symtab_compl(tmp);
if (position == 0)
continue;
/* Find the beginning of the word
and copy it to tmp */
size_t beg;
for (beg = position - 1; (beg > 0) && (!isspace(current[beg]));
beg--);
if (isspace(current[beg]))
beg++;
char tmp[STR_BOUNDS(MAX_CMDLINE)];
wstr_nstr(tmp, current + beg, position - beg + 1);
int found;
if (beg == 0) {
/* Command completion */
found = cmdtab_compl(tmp, STR_BOUNDS(MAX_CMDLINE));
} else {
/* Symbol completion */
found = symtab_compl(tmp, STR_BOUNDS(MAX_CMDLINE));
}
 
if (found == 0)
if (found == 0)
continue;
for (i = 0; tmp[i] && curlen < MAX_CMDLINE;
i++, curlen++)
insert_char(current, tmp[i], i + position);
 
if (strlen(tmp) || found == 1) { /* If we have a hint */
for (i = position; i < curlen; i++)
putchar(current[i]);
position += strlen(tmp);
/* Add space to end */
if (found == 1 && position == curlen &&
curlen < MAX_CMDLINE) {
current[position] = ' ';
curlen++;
if (found > 1) {
/* No unique hint, list was printed */
printf("%s> ", prompt);
printf("%ls", current);
print_cc('\b', wstr_length(current) - position);
continue;
}
/* We have a hint */
size_t off = 0;
size_t i = 0;
while ((ch = str_decode(tmp, &off, STR_NO_LIMIT)) != 0) {
if (!wstr_linsert(current, ch, position + i, MAX_CMDLINE))
break;
i++;
}
printf("%ls", current + position);
position += str_length(tmp);
print_cc('\b', wstr_length(current) - position);
if (position == wstr_length(current)) {
/* Insert a space after the last completed argument */
if (wstr_linsert(current, ' ', position, MAX_CMDLINE)) {
printf("%ls", current + position);
position++;
putchar(' ');
}
} else { /* No hint, table was printed */
printf("%s> ", prompt);
for (i = 0; i < curlen; i++)
putchar(current[i]);
position += strlen(tmp);
}
rdln_print_c('\b', curlen - position);
continue;
}
if (c == 0x1b) { /* Special command */
mod = _getc(input);
c = _getc(input);
 
if (mod != 0x5b && mod != 0x4f)
continue;
 
if (c == 0x33 && _getc(input) == 0x7e) {
/* Delete */
if (position == curlen)
continue;
for (i = position + 1; i < curlen; i++) {
putchar(current[i]);
current[i - 1] = current[i];
}
putchar(' ');
rdln_print_c('\b', curlen - position);
curlen--;
} else if (c == 0x48) { /* Home */
rdln_print_c('\b', position);
position = 0;
} else if (c == 0x46) { /* End */
for (i = position; i < curlen; i++)
putchar(current[i]);
position = curlen;
} else if (c == 0x44) { /* Left */
if (position > 0) {
putchar('\b');
position--;
}
continue;
} else if (c == 0x43) { /* Right */
if (position < curlen) {
putchar(current[position]);
position++;
}
continue;
} else if (c == 0x41 || c == 0x42) {
/* Up, down */
rdln_print_c('\b', position);
rdln_print_c(' ', curlen);
rdln_print_c('\b', curlen);
if (c == 0x41) /* Up */
histposition--;
if (ch == U_LEFT_ARROW) {
/* Left */
if (position > 0) {
putchar('\b');
position--;
}
continue;
}
if (ch == U_RIGHT_ARROW) {
/* Right */
if (position < wstr_length(current)) {
putchar(current[position]);
position++;
}
continue;
}
if ((ch == U_UP_ARROW) || (ch == U_DOWN_ARROW)) {
/* Up, down */
print_cc('\b', position);
print_cc(' ', wstr_length(current));
print_cc('\b', wstr_length(current));
if (ch == U_UP_ARROW) {
/* Up */
if (history_pos == 0)
history_pos = KCONSOLE_HISTORY - 1;
else
histposition++;
if (histposition < 0) {
histposition = KCONSOLE_HISTORY - 1;
} else {
histposition =
histposition % KCONSOLE_HISTORY;
}
current = history[histposition];
printf("%s", current);
curlen = strlen(current);
position = curlen;
history_pos--;
} else {
/* Down */
history_pos++;
history_pos = history_pos % KCONSOLE_HISTORY;
}
current = history[history_pos];
printf("%ls", current);
position = wstr_length(current);
continue;
}
if (ch == U_HOME_ARROW) {
/* Home */
print_cc('\b', position);
position = 0;
continue;
}
if (ch == U_END_ARROW) {
/* End */
printf("%ls", current + position);
position = wstr_length(current);
continue;
}
if (ch == U_DELETE) {
/* Delete */
if (position == wstr_length(current))
continue;
if (wstr_remove(current, position)) {
printf("%ls ", current + position);
print_cc('\b', wstr_length(current) - position + 1);
}
continue;
}
if (curlen >= MAX_CMDLINE)
continue;
 
insert_char(current, c, position);
 
curlen++;
for (i = position; i < curlen; i++)
putchar(current[i]);
position++;
rdln_print_c('\b',curlen - position);
}
if (curlen) {
histposition++;
histposition = histposition % KCONSOLE_HISTORY;
if (wstr_linsert(current, ch, position, MAX_CMDLINE)) {
printf("%ls", current + position);
position++;
print_cc('\b', wstr_length(current) - position);
}
}
current[curlen] = '\0';
if (wstr_length(current) > 0) {
history_pos++;
history_pos = history_pos % KCONSOLE_HISTORY;
}
return current;
}
 
/** Kernel console managing thread.
*
* @param prompt Kernel console prompt (e.g kconsole/panic).
*/
void kconsole(void *prompt)
bool kconsole_check_poll(void)
{
cmd_info_t *cmd_info;
count_t len;
char *cmdline;
 
if (!stdin) {
printf("%s: no stdin\n", __func__);
return;
}
while (true) {
cmdline = clever_readline((char *) prompt, stdin);
len = strlen(cmdline);
if (!len)
continue;
cmd_info = parse_cmdline(cmdline, len);
if (!cmd_info)
continue;
if (strncmp(cmd_info->name, "exit",
min(strlen(cmd_info->name), 5)) == 0)
break;
(void) cmd_info->func(cmd_info->argv);
}
return check_poll(stdin);
}
 
static int parse_int_arg(char *text, size_t len, unative_t *result)
static bool parse_int_arg(const char *text, size_t len, unative_t *result)
{
static char symname[MAX_SYMBOL_NAME];
uintptr_t symaddr;
bool isaddr = false;
bool isptr = false;
448,63 → 436,113
text++;
len--;
}
if (text[0] < '0' || text[0] > '9') {
strncpy(symname, text, min(len + 1, MAX_SYMBOL_NAME));
symaddr = get_symbol_addr(symname);
if (!symaddr) {
if ((text[0] < '0') || (text[0] > '9')) {
char symname[MAX_SYMBOL_NAME];
str_ncpy(symname, MAX_SYMBOL_NAME, text, len + 1);
uintptr_t symaddr;
int rc = symtab_addr_lookup(symname, &symaddr);
switch (rc) {
case ENOENT:
printf("Symbol %s not found.\n", symname);
return -1;
}
if (symaddr == (uintptr_t) -1) {
return false;
case EOVERFLOW:
printf("Duplicate symbol %s.\n", symname);
symtab_print_search(symname);
return -1;
return false;
case ENOTSUP:
printf("No symbol information available.\n");
return false;
}
if (isaddr)
*result = (unative_t)symaddr;
*result = (unative_t) symaddr;
else if (isptr)
*result = **((unative_t **)symaddr);
*result = **((unative_t **) symaddr);
else
*result = *((unative_t *)symaddr);
} else { /* It's a number - convert it */
*result = *((unative_t *) symaddr);
} else {
/* It's a number - convert it */
*result = atoi(text);
if (isptr)
*result = *((unative_t *)*result);
*result = *((unative_t *) *result);
}
return true;
}
 
return 0;
/** Parse argument.
*
* Find start and end positions of command line argument.
*
* @param cmdline Command line as read from the input device.
* @param size Size (in bytes) of the string.
* @param start On entry, 'start' contains pointer to the offset
* of the first unprocessed character of cmdline.
* On successful exit, it marks beginning of the next argument.
* @param end Undefined on entry. On exit, 'end' is the offset of the first
* character behind the next argument.
*
* @return False on failure, true on success.
*
*/
static bool parse_argument(const char *cmdline, size_t size, size_t *start, size_t *end)
{
ASSERT(start != NULL);
ASSERT(end != NULL);
bool found_start = false;
size_t offset = *start;
size_t prev = *start;
wchar_t ch;
while ((ch = str_decode(cmdline, &offset, size)) != 0) {
if (!found_start) {
if (!isspace(ch)) {
*start = prev;
found_start = true;
}
} else {
if (isspace(ch))
break;
}
prev = offset;
}
*end = prev;
return found_start;
}
 
/** Parse command line.
*
* @param cmdline Command line as read from input device.
* @param len Command line length.
* @param cmdline Command line as read from input device.
* @param size Size (in bytes) of the string.
*
* @return Structure describing the command.
*
*/
cmd_info_t *parse_cmdline(char *cmdline, size_t len)
static cmd_info_t *parse_cmdline(const char *cmdline, size_t size)
{
index_t start = 0, end = 0;
cmd_info_t *cmd = NULL;
link_t *cur;
count_t i;
int error = 0;
if (!parse_argument(cmdline, len, &start, &end)) {
size_t start = 0;
size_t end = 0;
if (!parse_argument(cmdline, size, &start, &end)) {
/* Command line did not contain alphanumeric word. */
return NULL;
}
 
spinlock_lock(&cmd_lock);
cmd_info_t *cmd = NULL;
link_t *cur;
for (cur = cmd_head.next; cur != &cmd_head; cur = cur->next) {
cmd_info_t *hlp;
hlp = list_get_instance(cur, cmd_info_t, link);
cmd_info_t *hlp = list_get_instance(cur, cmd_info_t, link);
spinlock_lock(&hlp->lock);
if (strncmp(hlp->name, &cmdline[start], max(strlen(hlp->name),
end - start + 1)) == 0) {
if (str_lcmp(hlp->name, cmdline + start,
max(str_length(hlp->name),
str_nlength(cmdline + start, (size_t) (end - start) - 1))) == 0) {
cmd = hlp;
break;
}
512,7 → 550,7
spinlock_unlock(&hlp->lock);
}
spinlock_unlock(&cmd_lock);
spinlock_unlock(&cmd_lock);
if (!cmd) {
/* Unknown command. */
519,7 → 557,7
printf("Unknown command.\n");
return NULL;
}
 
/* cmd == hlp is locked */
/*
528,52 → 566,54
* converted to those specified in the cmd info
* structure.
*/
 
bool error = false;
size_t i;
for (i = 0; i < cmd->argc; i++) {
char *buf;
start = end + 1;
if (!parse_argument(cmdline, len, &start, &end)) {
start = end;
if (!parse_argument(cmdline, size, &start, &end)) {
printf("Too few arguments.\n");
spinlock_unlock(&cmd->lock);
return NULL;
}
error = 0;
char *buf;
switch (cmd->argv[i].type) {
case ARG_TYPE_STRING:
buf = (char *) cmd->argv[i].buffer;
strncpy(buf, (const char *) &cmdline[start],
min((end - start) + 2, cmd->argv[i].len));
buf[min((end - start) + 1, cmd->argv[i].len - 1)] =
'\0';
str_ncpy(buf, cmd->argv[i].len, cmdline + start,
end - start);
break;
case ARG_TYPE_INT:
if (parse_int_arg(cmdline + start, end - start + 1,
case ARG_TYPE_INT:
if (!parse_int_arg(cmdline + start, end - start,
&cmd->argv[i].intval))
error = 1;
error = true;
break;
case ARG_TYPE_VAR:
if (start != end && cmdline[start] == '"' &&
cmdline[end] == '"') {
buf = (char *) cmd->argv[i].buffer;
strncpy(buf, (const char *) &cmdline[start + 1],
min((end-start), cmd->argv[i].len));
buf[min((end - start), cmd->argv[i].len - 1)] =
'\0';
cmd->argv[i].intval = (unative_t) buf;
cmd->argv[i].vartype = ARG_TYPE_STRING;
} else if (!parse_int_arg(cmdline + start,
end - start + 1, &cmd->argv[i].intval)) {
if ((start < end - 1) && (cmdline[start] == '"')) {
if (cmdline[end - 1] == '"') {
buf = (char *) cmd->argv[i].buffer;
str_ncpy(buf, cmd->argv[i].len,
cmdline + start + 1,
(end - start) - 1);
cmd->argv[i].intval = (unative_t) buf;
cmd->argv[i].vartype = ARG_TYPE_STRING;
} else {
printf("Wrong synxtax.\n");
error = true;
}
} else if (parse_int_arg(cmdline + start,
end - start, &cmd->argv[i].intval)) {
cmd->argv[i].vartype = ARG_TYPE_INT;
} else {
printf("Unrecognized variable argument.\n");
error = 1;
error = true;
}
break;
case ARG_TYPE_INVALID:
default:
printf("invalid argument type\n");
error = 1;
printf("Invalid argument type\n");
error = true;
break;
}
}
583,8 → 623,8
return NULL;
}
start = end + 1;
if (parse_argument(cmdline, len, &start, &end)) {
start = end;
if (parse_argument(cmdline, size, &start, &end)) {
printf("Too many arguments.\n");
spinlock_unlock(&cmd->lock);
return NULL;
594,42 → 634,55
return cmd;
}
 
/** Parse argument.
/** Kernel console prompt.
*
* Find start and end positions of command line argument.
* @param prompt Kernel console prompt (e.g kconsole/panic).
* @param msg Message to display in the beginning.
* @param kcon Wait for keypress to show the prompt
* and never exit.
*
* @param cmdline Command line as read from the input device.
* @param len Number of characters in cmdline.
* @param start On entry, 'start' contains pointer to the index
* of first unprocessed character of cmdline.
* On successful exit, it marks beginning of the next argument.
* @param end Undefined on entry. On exit, 'end' points to the last character
* of the next argument.
*
* @return false on failure, true on success.
*/
bool parse_argument(char *cmdline, size_t len, index_t *start, index_t *end)
void kconsole(char *prompt, char *msg, bool kcon)
{
index_t i;
bool found_start = false;
if (!stdin) {
LOG("No stdin for kernel console");
return;
}
ASSERT(start != NULL);
ASSERT(end != NULL);
if (msg)
printf("%s", msg);
for (i = *start; i < len; i++) {
if (!found_start) {
if (isspace(cmdline[i]))
(*start)++;
else
found_start = true;
} else {
if (isspace(cmdline[i]))
break;
}
if (kcon)
indev_pop_character(stdin);
else
printf("Type \"exit\" to leave the console.\n");
while (true) {
wchar_t *tmp = clever_readline((char *) prompt, stdin);
size_t len = wstr_length(tmp);
if (!len)
continue;
char cmdline[STR_BOUNDS(MAX_CMDLINE)];
wstr_nstr(cmdline, tmp, STR_BOUNDS(MAX_CMDLINE));
if ((!kcon) && (len == 4) && (str_lcmp(cmdline, "exit", 4) == 0))
break;
cmd_info_t *cmd_info = parse_cmdline(cmdline, STR_BOUNDS(MAX_CMDLINE));
if (!cmd_info)
continue;
(void) cmd_info->func(cmd_info->argv);
}
*end = i - 1;
}
 
return found_start;
/** Kernel console managing thread.
*
*/
void kconsole_thread(void *data)
{
kconsole("kconsole", "Kernel console ready (press any key to activate)\n", true);
}
 
/** @}
/branches/arm/kernel/generic/src/console/chardev.c
33,46 → 33,119
*/
 
#include <console/chardev.h>
#include <putchar.h>
#include <synch/waitq.h>
#include <synch/spinlock.h>
#include <print.h>
#include <func.h>
#include <arch.h>
 
/** Initialize character device.
/** Initialize input character device.
*
* @param chardev Character device.
* @param op Implementation of character device operations.
* @param indev Input character device.
* @param op Implementation of input character device operations.
*
*/
void chardev_initialize(char *name, chardev_t *chardev,
chardev_operations_t *op)
void indev_initialize(char *name, indev_t *indev,
indev_operations_t *op)
{
chardev->name = name;
 
waitq_initialize(&chardev->wq);
spinlock_initialize(&chardev->lock, "chardev");
chardev->counter = 0;
chardev->index = 0;
chardev->op = op;
indev->name = name;
waitq_initialize(&indev->wq);
spinlock_initialize(&indev->lock, "indev");
indev->counter = 0;
indev->index = 0;
indev->op = op;
}
 
/** Push character read from input character device.
*
* @param chardev Character device.
* @param ch Character being pushed.
* @param indev Input character device.
* @param ch Character being pushed.
*
*/
void chardev_push_character(chardev_t *chardev, uint8_t ch)
void indev_push_character(indev_t *indev, wchar_t ch)
{
spinlock_lock(&chardev->lock);
chardev->counter++;
if (chardev->counter == CHARDEV_BUFLEN - 1) {
/* buffer full => disable device interrupt */
chardev->op->suspend(chardev);
ASSERT(indev);
spinlock_lock(&indev->lock);
if (indev->counter == INDEV_BUFLEN - 1) {
/* Buffer full */
spinlock_unlock(&indev->lock);
return;
}
chardev->buffer[chardev->index++] = ch;
chardev->index = chardev->index % CHARDEV_BUFLEN; /* index modulo size of buffer */
waitq_wakeup(&chardev->wq, WAKEUP_FIRST);
spinlock_unlock(&chardev->lock);
indev->counter++;
indev->buffer[indev->index++] = ch;
/* Index modulo size of buffer */
indev->index = indev->index % INDEV_BUFLEN;
waitq_wakeup(&indev->wq, WAKEUP_FIRST);
spinlock_unlock(&indev->lock);
}
 
/** Pop character from input character device.
*
* @param indev Input character device.
*
* @return Character read.
*
*/
wchar_t indev_pop_character(indev_t *indev)
{
if (atomic_get(&haltstate)) {
/* If we are here, we are hopefully on the processor that
* issued the 'halt' command, so proceed to read the character
* directly from input
*/
if (check_poll(indev))
return indev->op->poll(indev);
/* No other way of interacting with user */
interrupts_disable();
if (CPU)
printf("cpu%u: ", CPU->id);
else
printf("cpu: ");
printf("halted (no polling input)\n");
cpu_halt();
}
waitq_sleep(&indev->wq);
ipl_t ipl = interrupts_disable();
spinlock_lock(&indev->lock);
wchar_t ch = indev->buffer[(indev->index - indev->counter) % INDEV_BUFLEN];
indev->counter--;
spinlock_unlock(&indev->lock);
interrupts_restore(ipl);
return ch;
}
 
/** Initialize output character device.
*
* @param outdev Output character device.
* @param op Implementation of output character device operations.
*
*/
void outdev_initialize(char *name, outdev_t *outdev,
outdev_operations_t *op)
{
outdev->name = name;
spinlock_initialize(&outdev->lock, "outdev");
outdev->op = op;
}
 
bool check_poll(indev_t *indev)
{
if (indev == NULL)
return false;
if (indev->op == NULL)
return false;
return (indev->op->poll != NULL);
}
 
/** @}
*/
/branches/arm/kernel/generic/src/proc/scheduler.c
451,7 → 451,7
/*
* Entering state is unexpected.
*/
panic("tid%" PRIu64 ": unexpected state %s\n",
panic("tid%" PRIu64 ": unexpected state %s.",
THREAD->tid, thread_states[THREAD->state]);
break;
}
708,7 → 708,7
continue;
 
spinlock_lock(&cpus[cpu].lock);
printf("cpu%u: address=%p, nrdy=%ld, needs_relink=%" PRIc "\n",
printf("cpu%u: address=%p, nrdy=%ld, needs_relink=%" PRIs "\n",
cpus[cpu].id, &cpus[cpu], atomic_get(&cpus[cpu].nrdy),
cpus[cpu].needs_relink);
/branches/arm/kernel/generic/src/proc/task.c
52,7 → 52,10
#include <print.h>
#include <errno.h>
#include <func.h>
#include <string.h>
#include <syscall/copy.h>
#include <macros.h>
#include <ipc/event.h>
 
/** Spinlock protecting the tasks_tree AVL tree. */
SPINLOCK_INITIALIZE(tasks_lock);
130,7 → 133,7
/** Create new task with no threads.
*
* @param as Task's address space.
* @param name Symbolic name.
* @param name Symbolic name (a copy is made).
*
* @return New task's structure.
*
148,7 → 151,10
spinlock_initialize(&ta->lock, "task_ta_lock");
list_initialize(&ta->th_head);
ta->as = as;
ta->name = name;
 
memcpy(ta->name, name, TASK_NAME_BUFLEN);
ta->name[TASK_NAME_BUFLEN - 1] = 0;
 
atomic_set(&ta->refcount, 0);
atomic_set(&ta->lifecount, 0);
ta->context = CONTEXT;
161,10 → 167,10
udebug_task_init(&ta->udebug);
 
/* Init kbox stuff */
ipc_answerbox_init(&ta->kernel_box, ta);
ta->kb_thread = NULL;
mutex_initialize(&ta->kb_cleanup_lock, MUTEX_PASSIVE);
ta->kb_finished = false;
ipc_answerbox_init(&ta->kb.box, ta);
ta->kb.thread = NULL;
mutex_initialize(&ta->kb.cleanup_lock, MUTEX_PASSIVE);
ta->kb.finished = false;
#endif
 
ipc_answerbox_init(&ta->answerbox, ta);
192,7 → 198,14
avltree_insert(&tasks_tree, &ta->tasks_tree_node);
spinlock_unlock(&tasks_lock);
interrupts_restore(ipl);
 
/*
* Notify about task creation.
*/
if (event_is_subscribed(EVENT_WAIT))
event_notify_3(EVENT_WAIT, TASK_CREATE, LOWER32(ta->taskid),
UPPER32(ta->taskid));
return ta;
}
 
225,6 → 238,13
if (atomic_predec(&t->as->refcount) == 0)
as_destroy(t->as);
/*
* Notify about task destruction.
*/
if (event_is_subscribed(EVENT_WAIT))
event_notify_3(EVENT_WAIT, TASK_DESTROY, LOWER32(t->taskid),
UPPER32(t->taskid));
free(t);
TASK = NULL;
}
246,6 → 266,35
sizeof(TASK->taskid));
}
 
/** Syscall for setting the task name.
*
* The name simplifies identifying the task in the task list.
*
* @param name The new name for the task. (typically the same
* as the command used to execute it).
*
* @return 0 on success or an error code from @ref errno.h.
*/
unative_t sys_task_set_name(const char *uspace_name, size_t name_len)
{
int rc;
char namebuf[TASK_NAME_BUFLEN];
 
/* Cap length of name and copy it from userspace. */
 
if (name_len > TASK_NAME_BUFLEN - 1)
name_len = TASK_NAME_BUFLEN - 1;
 
rc = copy_from_uspace(namebuf, uspace_name, name_len);
if (rc != 0)
return (unative_t) rc;
 
namebuf[name_len] = '\0';
str_cpy(TASK->name, TASK_NAME_BUFLEN, namebuf);
 
return EOK;
}
 
/** Find task structure corresponding to task ID.
*
* The tasks_lock must be already held by the caller of this function and
336,7 → 385,7
bool sleeping = false;
thr = list_get_instance(cur, thread_t, th_link);
spinlock_lock(&thr->lock);
thr->interrupted = true;
if (thr->state == Sleeping)
364,13 → 413,13
order(task_get_accounting(t), &cycles, &suffix);
 
#ifdef __32_BITS__
printf("%-6" PRIu64 " %-10s %-3" PRIu32 " %10p %10p %9" PRIu64
printf("%-6" PRIu64 " %-12s %-3" PRIu32 " %10p %10p %9" PRIu64
"%c %7ld %6ld", t->taskid, t->name, t->context, t, t->as, cycles,
suffix, atomic_get(&t->refcount), atomic_get(&t->active_calls));
#endif
 
#ifdef __64_BITS__
printf("%-6" PRIu64 " %-10s %-3" PRIu32 " %18p %18p %9" PRIu64
printf("%-6" PRIu64 " %-12s %-3" PRIu32 " %18p %18p %9" PRIu64
"%c %7ld %6ld", t->taskid, t->name, t->context, t, t->as, cycles,
suffix, atomic_get(&t->refcount), atomic_get(&t->active_calls));
#endif
395,16 → 444,16
spinlock_lock(&tasks_lock);
 
#ifdef __32_BITS__
printf("taskid name ctx address as "
printf("taskid name ctx address as "
"cycles threads calls callee\n");
printf("------ ---------- --- ---------- ---------- "
printf("------ ------------ --- ---------- ---------- "
"---------- ------- ------ ------>\n");
#endif
 
#ifdef __64_BITS__
printf("taskid name ctx address as "
printf("taskid name ctx address as "
"cycles threads calls callee\n");
printf("------ ---------- --- ------------------ ------------------ "
printf("------ ------------ --- ------------------ ------------------ "
"---------- ------- ------ ------>\n");
#endif
 
/branches/arm/kernel/generic/src/proc/program.c
67,9 → 67,10
*
* @param as Address space containing a binary program image.
* @param entry_addr Program entry-point address in program address space.
* @param name Name to set for the program's task.
* @param p Buffer for storing program information.
*/
void program_create(as_t *as, uintptr_t entry_addr, program_t *p)
void program_create(as_t *as, uintptr_t entry_addr, char *name, program_t *p)
{
as_area_t *a;
uspace_arg_t *kernel_uarg;
81,7 → 82,7
kernel_uarg->uspace_thread_arg = NULL;
kernel_uarg->uspace_uarg = NULL;
p->task = task_create(as, "app");
p->task = task_create(as, name);
ASSERT(p->task);
 
/*
106,6 → 107,7
* executable image. The task is returned in *task.
*
* @param image_addr Address of an executable program image.
* @param name Name to set for the program's task.
* @param p Buffer for storing program info. If image_addr
* points to a loader image, p->task will be set to
* NULL and EOK will be returned.
112,7 → 114,7
*
* @return EOK on success or negative error code.
*/
int program_create_from_image(void *image_addr, program_t *p)
int program_create_from_image(void *image_addr, char *name, program_t *p)
{
as_t *as;
unsigned int rc;
131,12 → 133,12
/* Register image as the program loader */
ASSERT(program_loader == NULL);
program_loader = image_addr;
printf("Registered program loader at 0x%" PRIp "\n",
LOG("Registered program loader at 0x%" PRIp "\n",
image_addr);
return EOK;
}
 
program_create(as, ((elf_header_t *) image_addr)->e_entry, p);
program_create(as, ((elf_header_t *) image_addr)->e_entry, name, p);
 
return EOK;
}
143,10 → 145,12
 
/** Create a task from the program loader image.
*
* @param p Buffer for storing program info.
* @param p Buffer for storing program info.
* @param name Name to set for the program's task.
*
* @return EOK on success or negative error code.
*/
int program_create_loader(program_t *p)
int program_create_loader(program_t *p, char *name)
{
as_t *as;
unsigned int rc;
167,7 → 171,8
return ENOENT;
}
 
program_create(as, ((elf_header_t *) program_loader)->e_entry, p);
program_create(as, ((elf_header_t *) program_loader)->e_entry,
name, p);
 
return EOK;
}
185,48 → 190,37
 
/** Syscall for creating a new loader instance from userspace.
*
* Creates a new task from the program loader image, connects a phone
* to it and stores the phone id into the provided buffer.
* Creates a new task from the program loader image and sets
* the task name.
*
* @param uspace_phone_id Userspace address where to store the phone id.
* @param name Name to set on the new task (typically the same
* as the command used to execute it).
*
* @return 0 on success or an error code from @ref errno.h.
*/
unative_t sys_program_spawn_loader(int *uspace_phone_id)
unative_t sys_program_spawn_loader(char *uspace_name, size_t name_len)
{
program_t p;
int fake_id;
int rc;
int phone_id;
char namebuf[TASK_NAME_BUFLEN];
 
fake_id = 0;
/* Cap length of name and copy it from userspace. */
 
/* Before we even try creating the task, see if we can write the id */
rc = (unative_t) copy_to_uspace(uspace_phone_id, &fake_id,
sizeof(fake_id));
if (name_len > TASK_NAME_BUFLEN - 1)
name_len = TASK_NAME_BUFLEN - 1;
 
rc = copy_from_uspace(namebuf, uspace_name, name_len);
if (rc != 0)
return rc;
return (unative_t) rc;
 
phone_id = phone_alloc();
if (phone_id < 0)
return ELIMIT;
namebuf[name_len] = 0;
 
rc = program_create_loader(&p);
/* Spawn the new task. */
 
rc = program_create_loader(&p, namebuf);
if (rc != 0)
return rc;
 
phone_connect(phone_id, &p.task->answerbox);
 
/* No need to aquire lock before task_ready() */
rc = (unative_t) copy_to_uspace(uspace_phone_id, &phone_id,
sizeof(phone_id));
if (rc != 0) {
/* Ooops */
ipc_phone_hangup(&TASK->phones[phone_id]);
task_kill(p.task->taskid);
return rc;
}
 
// FIXME: control the capabilities
cap_set(p.task, cap_get(TASK));
 
/branches/arm/kernel/generic/src/proc/thread.c
102,7 → 102,7
thread_id_t last_tid = 0;
 
static slab_cache_t *thread_slab;
#ifdef ARCH_HAS_FPU
#ifdef CONFIG_FPU
slab_cache_t *fpu_context_slab;
#endif
 
161,7 → 161,7
/* call the architecture-specific part of the constructor */
thr_constructor_arch(t);
#ifdef ARCH_HAS_FPU
#ifdef CONFIG_FPU
#ifdef CONFIG_FPU_LAZY
t->saved_fpu_context = NULL;
#else
169,11 → 169,11
if (!t->saved_fpu_context)
return -1;
#endif
#endif
#endif
 
t->kstack = (uint8_t *) frame_alloc(STACK_FRAMES, FRAME_KA | kmflags);
if (!t->kstack) {
#ifdef ARCH_HAS_FPU
#ifdef CONFIG_FPU
if (t->saved_fpu_context)
slab_free(fpu_context_slab, t->saved_fpu_context);
#endif
196,7 → 196,7
thr_destructor_arch(t);
 
frame_free(KA2PA(t->kstack));
#ifdef ARCH_HAS_FPU
#ifdef CONFIG_FPU
if (t->saved_fpu_context)
slab_free(fpu_context_slab, t->saved_fpu_context);
#endif
211,11 → 211,11
void thread_init(void)
{
THREAD = NULL;
atomic_set(&nrdy,0);
atomic_set(&nrdy, 0);
thread_slab = slab_cache_create("thread_slab", sizeof(thread_t), 0,
thr_constructor, thr_destructor, 0);
 
#ifdef ARCH_HAS_FPU
#ifdef CONFIG_FPU
fpu_context_slab = slab_cache_create("fpu_slab", sizeof(fpu_context_t),
FPU_CONTEXT_ALIGN, NULL, NULL, 0);
#endif
279,7 → 279,7
* guarantee that the task won't cease to exist during the
* call. The task's lock may not be held.
* @param flags Thread flags.
* @param name Symbolic name.
* @param name Symbolic name (a copy is made).
* @param uncounted Thread's accounting doesn't affect accumulated task
* accounting.
*
316,6 → 316,7
interrupts_restore(ipl);
memcpy(t->name, name, THREAD_NAME_BUFLEN);
t->name[THREAD_NAME_BUFLEN - 1] = 0;
t->thread_code = func;
t->thread_arg = arg;
708,7 → 709,7
*
*/
unative_t sys_thread_create(uspace_arg_t *uspace_uarg, char *uspace_name,
thread_id_t *uspace_thread_id)
size_t name_len, thread_id_t *uspace_thread_id)
{
thread_t *t;
char namebuf[THREAD_NAME_BUFLEN];
715,10 → 716,15
uspace_arg_t *kernel_uarg;
int rc;
 
rc = copy_from_uspace(namebuf, uspace_name, THREAD_NAME_BUFLEN);
if (name_len > THREAD_NAME_BUFLEN - 1)
name_len = THREAD_NAME_BUFLEN - 1;
 
rc = copy_from_uspace(namebuf, uspace_name, name_len);
if (rc != 0)
return (unative_t) rc;
 
namebuf[name_len] = 0;
 
/*
* In case of failure, kernel_uarg will be deallocated in this function.
* In case of success, kernel_uarg will be freed in uinit().
757,14 → 763,20
return (unative_t) rc;
}
}
#ifdef CONFIG_UDEBUG
/*
* Generate udebug THREAD_B event and attach the thread.
* This must be done atomically (with the debug locks held),
* otherwise we would either miss some thread or receive
* THREAD_B events for threads that already existed
* and could be detected with THREAD_READ before.
*/
udebug_thread_b_event_attach(t, TASK);
#else
thread_attach(t, TASK);
#endif
thread_ready(t);
 
#ifdef CONFIG_UDEBUG
/* Generate udebug THREAD_B event */
udebug_thread_b_event(t);
#endif
 
return 0;
} else
free(kernel_uarg);
/branches/arm/kernel/generic/src/proc/tasklet.c
51,7 → 51,7
tasklet_list = malloc(sizeof(tasklet_descriptor_t *) * config.cpu_count, 0);
if (!tasklet_list)
panic("Error initializing tasklets");
panic("Error initializing tasklets.");
for (i = 0; i < config.cpu_count; i++)
tasklet_list[i] = NULL;
/branches/arm/kernel/generic/src/lib/string.c
0,0 → 1,712
/*
* Copyright (c) 2001-2004 Jakub Jermar
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* - The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
 
/** @addtogroup generic
* @{
*/
 
/**
* @file
* @brief String functions.
*
* Strings and characters use the Universal Character Set (UCS). The standard
* strings, called just strings are encoded in UTF-8. Wide strings (encoded
* in UTF-32) are supported to a limited degree. A single character is
* represented as wchar_t.@n
*
* Overview of the terminology:@n
*
* Term Meaning
* -------------------- ----------------------------------------------------
* byte 8 bits stored in uint8_t (unsigned 8 bit integer)
*
* character UTF-32 encoded Unicode character, stored in wchar_t
* (signed 32 bit integer), code points 0 .. 1114111
* are valid
*
* ASCII character 7 bit encoded ASCII character, stored in char
* (usually signed 8 bit integer), code points 0 .. 127
* are valid
*
* string UTF-8 encoded NULL-terminated Unicode string, char *
*
* wide string UTF-32 encoded NULL-terminated Unicode string,
* wchar_t *
*
* [wide] string size number of BYTES in a [wide] string (excluding
* the NULL-terminator), size_t
*
* [wide] string length number of CHARACTERS in a [wide] string (excluding
* the NULL-terminator), size_t
*
* [wide] string width number of display cells on a monospace display taken
* by a [wide] string, size_t
*
*
* Overview of string metrics:@n
*
* Metric Abbrev. Type Meaning
* ------ ------ ------ -------------------------------------------------
* size n size_t number of BYTES in a string (excluding the
* NULL-terminator)
*
* length l size_t number of CHARACTERS in a string (excluding the
* null terminator)
*
* width w size_t number of display cells on a monospace display
* taken by a string
*
*
* Function naming prefixes:@n
*
* chr_ operate on characters
* ascii_ operate on ASCII characters
* str_ operate on strings
* wstr_ operate on wide strings
*
* [w]str_[n|l|w] operate on a prefix limited by size, length
* or width
*
*
* A specific character inside a [wide] string can be referred to by:@n
*
* pointer (char *, wchar_t *)
* byte offset (size_t)
* character index (size_t)
*
*/
 
#include <string.h>
#include <print.h>
#include <cpu.h>
#include <arch/asm.h>
#include <arch.h>
#include <errno.h>
#include <align.h>
#include <debug.h>
 
/** Byte mask consisting of lowest @n bits (out of 8) */
#define LO_MASK_8(n) ((uint8_t) ((1 << (n)) - 1))
 
/** Byte mask consisting of lowest @n bits (out of 32) */
#define LO_MASK_32(n) ((uint32_t) ((1 << (n)) - 1))
 
/** Byte mask consisting of highest @n bits (out of 8) */
#define HI_MASK_8(n) (~LO_MASK_8(8 - (n)))
 
/** Number of data bits in a UTF-8 continuation byte */
#define CONT_BITS 6
 
/** Decode a single character from a string.
*
* Decode a single character from a string of size @a size. Decoding starts
* at @a offset and this offset is moved to the beginning of the next
* character. In case of decoding error, offset generally advances at least
* by one. However, offset is never moved beyond size.
*
* @param str String (not necessarily NULL-terminated).
* @param offset Byte offset in string where to start decoding.
* @param size Size of the string (in bytes).
*
* @return Value of decoded character, U_SPECIAL on decoding error or
* NULL if attempt to decode beyond @a size.
*
*/
wchar_t str_decode(const char *str, size_t *offset, size_t size)
{
if (*offset + 1 > size)
return 0;
/* First byte read from string */
uint8_t b0 = (uint8_t) str[(*offset)++];
/* Determine code length */
unsigned int b0_bits; /* Data bits in first byte */
unsigned int cbytes; /* Number of continuation bytes */
if ((b0 & 0x80) == 0) {
/* 0xxxxxxx (Plain ASCII) */
b0_bits = 7;
cbytes = 0;
} else if ((b0 & 0xe0) == 0xc0) {
/* 110xxxxx 10xxxxxx */
b0_bits = 5;
cbytes = 1;
} else if ((b0 & 0xf0) == 0xe0) {
/* 1110xxxx 10xxxxxx 10xxxxxx */
b0_bits = 4;
cbytes = 2;
} else if ((b0 & 0xf8) == 0xf0) {
/* 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx */
b0_bits = 3;
cbytes = 3;
} else {
/* 10xxxxxx -- unexpected continuation byte */
return U_SPECIAL;
}
if (*offset + cbytes > size)
return U_SPECIAL;
wchar_t ch = b0 & LO_MASK_8(b0_bits);
/* Decode continuation bytes */
while (cbytes > 0) {
uint8_t b = (uint8_t) str[(*offset)++];
/* Must be 10xxxxxx */
if ((b & 0xc0) != 0x80)
return U_SPECIAL;
/* Shift data bits to ch */
ch = (ch << CONT_BITS) | (wchar_t) (b & LO_MASK_8(CONT_BITS));
cbytes--;
}
return ch;
}
 
/** Encode a single character to string representation.
*
* Encode a single character to string representation (i.e. UTF-8) and store
* it into a buffer at @a offset. Encoding starts at @a offset and this offset
* is moved to the position where the next character can be written to.
*
* @param ch Input character.
* @param str Output buffer.
* @param offset Byte offset where to start writing.
* @param size Size of the output buffer (in bytes).
*
* @return EOK if the character was encoded successfully, EOVERFLOW if there
* was not enough space in the output buffer or EINVAL if the character
* code was invalid.
*/
int chr_encode(wchar_t ch, char *str, size_t *offset, size_t size)
{
if (*offset >= size)
return EOVERFLOW;
if (!chr_check(ch))
return EINVAL;
/* Unsigned version of ch (bit operations should only be done
on unsigned types). */
uint32_t cc = (uint32_t) ch;
/* Determine how many continuation bytes are needed */
unsigned int b0_bits; /* Data bits in first byte */
unsigned int cbytes; /* Number of continuation bytes */
if ((cc & ~LO_MASK_32(7)) == 0) {
b0_bits = 7;
cbytes = 0;
} else if ((cc & ~LO_MASK_32(11)) == 0) {
b0_bits = 5;
cbytes = 1;
} else if ((cc & ~LO_MASK_32(16)) == 0) {
b0_bits = 4;
cbytes = 2;
} else if ((cc & ~LO_MASK_32(21)) == 0) {
b0_bits = 3;
cbytes = 3;
} else {
/* Codes longer than 21 bits are not supported */
return EINVAL;
}
/* Check for available space in buffer */
if (*offset + cbytes >= size)
return EOVERFLOW;
/* Encode continuation bytes */
unsigned int i;
for (i = cbytes; i > 0; i--) {
str[*offset + i] = 0x80 | (cc & LO_MASK_32(CONT_BITS));
cc = cc >> CONT_BITS;
}
/* Encode first byte */
str[*offset] = (cc & LO_MASK_32(b0_bits)) | HI_MASK_8(8 - b0_bits - 1);
/* Advance offset */
*offset += cbytes + 1;
return EOK;
}
 
/** Get size of string.
*
* Get the number of bytes which are used by the string @a str (excluding the
* NULL-terminator).
*
* @param str String to consider.
*
* @return Number of bytes used by the string
*
*/
size_t str_size(const char *str)
{
size_t size = 0;
while (*str++ != 0)
size++;
return size;
}
 
/** Get size of wide string.
*
* Get the number of bytes which are used by the wide string @a str (excluding the
* NULL-terminator).
*
* @param str Wide string to consider.
*
* @return Number of bytes used by the wide string
*
*/
size_t wstr_size(const wchar_t *str)
{
return (wstr_length(str) * sizeof(wchar_t));
}
 
/** Get size of string with length limit.
*
* Get the number of bytes which are used by up to @a max_len first
* characters in the string @a str. If @a max_len is greater than
* the length of @a str, the entire string is measured (excluding the
* NULL-terminator).
*
* @param str String to consider.
* @param max_len Maximum number of characters to measure.
*
* @return Number of bytes used by the characters.
*
*/
size_t str_lsize(const char *str, size_t max_len)
{
size_t len = 0;
size_t offset = 0;
while (len < max_len) {
if (str_decode(str, &offset, STR_NO_LIMIT) == 0)
break;
len++;
}
return offset;
}
 
/** Get size of wide string with length limit.
*
* Get the number of bytes which are used by up to @a max_len first
* wide characters in the wide string @a str. If @a max_len is greater than
* the length of @a str, the entire wide string is measured (excluding the
* NULL-terminator).
*
* @param str Wide string to consider.
* @param max_len Maximum number of wide characters to measure.
*
* @return Number of bytes used by the wide characters.
*
*/
size_t wstr_lsize(const wchar_t *str, size_t max_len)
{
return (wstr_nlength(str, max_len * sizeof(wchar_t)) * sizeof(wchar_t));
}
 
/** Get number of characters in a string.
*
* @param str NULL-terminated string.
*
* @return Number of characters in string.
*
*/
size_t str_length(const char *str)
{
size_t len = 0;
size_t offset = 0;
while (str_decode(str, &offset, STR_NO_LIMIT) != 0)
len++;
return len;
}
 
/** Get number of characters in a wide string.
*
* @param str NULL-terminated wide string.
*
* @return Number of characters in @a str.
*
*/
size_t wstr_length(const wchar_t *wstr)
{
size_t len = 0;
while (*wstr++ != 0)
len++;
return len;
}
 
/** Get number of characters in a string with size limit.
*
* @param str NULL-terminated string.
* @param size Maximum number of bytes to consider.
*
* @return Number of characters in string.
*
*/
size_t str_nlength(const char *str, size_t size)
{
size_t len = 0;
size_t offset = 0;
while (str_decode(str, &offset, size) != 0)
len++;
return len;
}
 
/** Get number of characters in a string with size limit.
*
* @param str NULL-terminated string.
* @param size Maximum number of bytes to consider.
*
* @return Number of characters in string.
*
*/
size_t wstr_nlength(const wchar_t *str, size_t size)
{
size_t len = 0;
size_t limit = ALIGN_DOWN(size, sizeof(wchar_t));
size_t offset = 0;
while ((offset < limit) && (*str++ != 0)) {
len++;
offset += sizeof(wchar_t);
}
return len;
}
 
/** Check whether character is plain ASCII.
*
* @return True if character is plain ASCII.
*
*/
bool ascii_check(wchar_t ch)
{
if ((ch >= 0) && (ch <= 127))
return true;
return false;
}
 
/** Check whether character is valid
*
* @return True if character is a valid Unicode code point.
*
*/
bool chr_check(wchar_t ch)
{
if ((ch >= 0) && (ch <= 1114111))
return true;
return false;
}
 
/** Compare two NULL terminated strings.
*
* Do a char-by-char comparison of two NULL-terminated strings.
* The strings are considered equal iff they consist of the same
* characters on the minimum of their lengths.
*
* @param s1 First string to compare.
* @param s2 Second string to compare.
*
* @return 0 if the strings are equal, -1 if first is smaller,
* 1 if second smaller.
*
*/
int str_cmp(const char *s1, const char *s2)
{
wchar_t c1 = 0;
wchar_t c2 = 0;
size_t off1 = 0;
size_t off2 = 0;
 
while (true) {
c1 = str_decode(s1, &off1, STR_NO_LIMIT);
c2 = str_decode(s2, &off2, STR_NO_LIMIT);
 
if (c1 < c2)
return -1;
if (c1 > c2)
return 1;
 
if (c1 == 0 || c2 == 0)
break;
}
 
return 0;
}
 
/** Compare two NULL terminated strings with length limit.
*
* Do a char-by-char comparison of two NULL-terminated strings.
* The strings are considered equal iff they consist of the same
* characters on the minimum of their lengths and the length limit.
*
* @param s1 First string to compare.
* @param s2 Second string to compare.
* @param max_len Maximum number of characters to consider.
*
* @return 0 if the strings are equal, -1 if first is smaller,
* 1 if second smaller.
*
*/
int str_lcmp(const char *s1, const char *s2, size_t max_len)
{
wchar_t c1 = 0;
wchar_t c2 = 0;
size_t off1 = 0;
size_t off2 = 0;
size_t len = 0;
 
while (true) {
if (len >= max_len)
break;
 
c1 = str_decode(s1, &off1, STR_NO_LIMIT);
c2 = str_decode(s2, &off2, STR_NO_LIMIT);
 
if (c1 < c2)
return -1;
 
if (c1 > c2)
return 1;
 
if (c1 == 0 || c2 == 0)
break;
 
++len;
}
 
return 0;
 
}
 
/** Copy string.
*
* Copy source string @a src to destination buffer @a dest.
* No more than @a size bytes are written. If the size of the output buffer
* is at least one byte, the output string will always be well-formed, i.e.
* null-terminated and containing only complete characters.
*
* @param dst Destination buffer.
* @param count Size of the destination buffer (must be > 0).
* @param src Source string.
*/
void str_cpy(char *dest, size_t size, const char *src)
{
wchar_t ch;
size_t src_off;
size_t dest_off;
 
/* There must be space for a null terminator in the buffer. */
ASSERT(size > 0);
src_off = 0;
dest_off = 0;
 
while ((ch = str_decode(src, &src_off, STR_NO_LIMIT)) != 0) {
if (chr_encode(ch, dest, &dest_off, size - 1) != EOK)
break;
}
 
dest[dest_off] = '\0';
}
 
/** Copy size-limited substring.
*
* Copy prefix of string @a src of max. size @a size to destination buffer
* @a dest. No more than @a size bytes are written. The output string will
* always be well-formed, i.e. null-terminated and containing only complete
* characters.
*
* No more than @a n bytes are read from the input string, so it does not
* have to be null-terminated.
*
* @param dst Destination buffer.
* @param count Size of the destination buffer (must be > 0).
* @param src Source string.
* @param n Maximum number of bytes to read from @a src.
*/
void str_ncpy(char *dest, size_t size, const char *src, size_t n)
{
wchar_t ch;
size_t src_off;
size_t dest_off;
 
/* There must be space for a null terminator in the buffer. */
ASSERT(size > 0);
src_off = 0;
dest_off = 0;
 
while ((ch = str_decode(src, &src_off, n)) != 0) {
if (chr_encode(ch, dest, &dest_off, size - 1) != EOK)
break;
}
 
dest[dest_off] = '\0';
}
 
/** Copy NULL-terminated wide string to string
*
* Copy source wide string @a src to destination buffer @a dst.
* No more than @a size bytes are written. NULL-terminator is always
* written after the last succesfully copied character (i.e. if the
* destination buffer is has at least 1 byte, it will be always
* NULL-terminated).
*
* @param src Source wide string.
* @param dst Destination buffer.
* @param count Size of the destination buffer.
*
*/
void wstr_nstr(char *dst, const wchar_t *src, size_t size)
{
/* No space for the NULL-terminator in the buffer */
if (size == 0)
return;
wchar_t ch;
size_t src_idx = 0;
size_t dst_off = 0;
while ((ch = src[src_idx++]) != 0) {
if (chr_encode(ch, dst, &dst_off, size) != EOK)
break;
}
if (dst_off >= size)
dst[size - 1] = 0;
else
dst[dst_off] = 0;
}
 
/** Find first occurence of character in string.
*
* @param str String to search.
* @param ch Character to look for.
*
* @return Pointer to character in @a str or NULL if not found.
*
*/
const char *str_chr(const char *str, wchar_t ch)
{
wchar_t acc;
size_t off = 0;
size_t last = 0;
while ((acc = str_decode(str, &off, STR_NO_LIMIT)) != 0) {
if (acc == ch)
return (str + last);
last = off;
}
return NULL;
}
 
/** Insert a wide character into a wide string.
*
* Insert a wide character into a wide string at position
* @a pos. The characters after the position are shifted.
*
* @param str String to insert to.
* @param ch Character to insert to.
* @param pos Character index where to insert.
@ @param max_pos Characters in the buffer.
*
* @return True if the insertion was sucessful, false if the position
* is out of bounds.
*
*/
bool wstr_linsert(wchar_t *str, wchar_t ch, size_t pos, size_t max_pos)
{
size_t len = wstr_length(str);
if ((pos > len) || (pos + 1 > max_pos))
return false;
size_t i;
for (i = len; i + 1 > pos; i--)
str[i + 1] = str[i];
str[pos] = ch;
return true;
}
 
/** Remove a wide character from a wide string.
*
* Remove a wide character from a wide string at position
* @a pos. The characters after the position are shifted.
*
* @param str String to remove from.
* @param pos Character index to remove.
*
* @return True if the removal was sucessful, false if the position
* is out of bounds.
*
*/
bool wstr_remove(wchar_t *str, size_t pos)
{
size_t len = wstr_length(str);
if (pos >= len)
return false;
size_t i;
for (i = pos + 1; i <= len; i++)
str[i - 1] = str[i];
return true;
}
 
/** @}
*/
/branches/arm/kernel/generic/src/lib/sort.c
45,8 → 45,8
 
#define EBUFSIZE 32
 
void _qsort(void * data, count_t n, size_t e_size, int (* cmp) (void * a, void * b), void *tmp, void *pivot);
void _bubblesort(void * data, count_t n, size_t e_size, int (* cmp) (void * a, void * b), void *slot);
void _qsort(void * data, size_t n, size_t e_size, int (* cmp) (void * a, void * b), void *tmp, void *pivot);
void _bubblesort(void * data, size_t n, size_t e_size, int (* cmp) (void * a, void * b), void *slot);
 
/** Quicksort wrapper
*
61,7 → 61,7
* @param cmp Comparator function.
*
*/
void qsort(void * data, count_t n, size_t e_size, int (* cmp) (void * a, void * b))
void qsort(void * data, size_t n, size_t e_size, int (* cmp) (void * a, void * b))
{
uint8_t buf_tmp[EBUFSIZE];
uint8_t buf_pivot[EBUFSIZE];
93,7 → 93,7
* @param pivot Pointer to scratch memory buffer e_size bytes long.
*
*/
void _qsort(void * data, count_t n, size_t e_size, int (* cmp) (void * a, void * b), void *tmp, void *pivot)
void _qsort(void * data, size_t n, size_t e_size, int (* cmp) (void * a, void * b), void *tmp, void *pivot)
{
if (n > 4) {
unsigned int i = 0, j = n - 1;
133,7 → 133,7
* @param cmp Comparator function.
*
*/
void bubblesort(void * data, count_t n, size_t e_size, int (* cmp) (void * a, void * b))
void bubblesort(void * data, size_t n, size_t e_size, int (* cmp) (void * a, void * b))
{
uint8_t buf_slot[EBUFSIZE];
void * slot = buf_slot;
160,7 → 160,7
* @param slot Pointer to scratch memory buffer e_size bytes long.
*
*/
void _bubblesort(void * data, count_t n, size_t e_size, int (* cmp) (void * a, void * b), void *slot)
void _bubblesort(void * data, size_t n, size_t e_size, int (* cmp) (void * a, void * b), void *slot)
{
bool done = false;
void * p;
/branches/arm/kernel/generic/src/lib/func.c
47,7 → 47,7
 
/** Halt wrapper
*
* Set halt flag and halt the cpu.
* Set halt flag and halt the CPU.
*
*/
void halt()
54,9 → 54,7
{
#ifdef CONFIG_DEBUG
bool rundebugger = false;
 
// TODO test_and_set not defined on all arches
// if (!test_and_set(&haltstate))
if (!atomic_get(&haltstate)) {
atomic_set(&haltstate, 1);
rundebugger = true;
64,118 → 62,22
#else
atomic_set(&haltstate, 1);
#endif
 
interrupts_disable();
#ifdef CONFIG_DEBUG
if (rundebugger) {
printf("\n");
kconsole("panic"); /* Run kconsole as a last resort to user */
}
#endif
#if (defined(CONFIG_DEBUG)) && (defined(CONFIG_KCONSOLE))
if ((rundebugger) && (kconsole_check_poll()))
kconsole("panic", "\nLast resort kernel console ready.\n", false);
#endif
if (CPU)
printf("cpu%u: halted\n", CPU->id);
else
printf("cpu: halted\n");
cpu_halt();
}
 
/** Return number of characters in a string.
*
* @param str NULL terminated string.
*
* @return Number of characters in str.
*/
size_t strlen(const char *str)
{
int i;
for (i = 0; str[i]; i++)
;
return i;
}
 
/** Compare two NULL terminated strings
*
* Do a char-by-char comparison of two NULL terminated strings.
* The strings are considered equal iff they consist of the same
* characters on the minimum of their lengths.
*
* @param src First string to compare.
* @param dst Second string to compare.
*
* @return 0 if the strings are equal, -1 if first is smaller, 1 if second smaller.
*
*/
int strcmp(const char *src, const char *dst)
{
for (; *src && *dst; src++, dst++) {
if (*src < *dst)
return -1;
if (*src > *dst)
return 1;
}
if (*src == *dst)
return 0;
if (!*src)
return -1;
return 1;
}
 
 
/** Compare two NULL terminated strings
*
* Do a char-by-char comparison of two NULL terminated strings.
* The strings are considered equal iff they consist of the same
* characters on the minimum of their lengths and specified maximal
* length.
*
* @param src First string to compare.
* @param dst Second string to compare.
* @param len Maximal length for comparison.
*
* @return 0 if the strings are equal, -1 if first is smaller, 1 if second smaller.
*
*/
int strncmp(const char *src, const char *dst, size_t len)
{
unsigned int i;
for (i = 0; (*src) && (*dst) && (i < len); src++, dst++, i++) {
if (*src < *dst)
return -1;
if (*src > *dst)
return 1;
}
if (i == len || *src == *dst)
return 0;
if (!*src)
return -1;
return 1;
}
 
 
 
/** Copy NULL terminated string.
*
* Copy at most 'len' characters from string 'src' to 'dest'.
* If 'src' is shorter than 'len', '\0' is inserted behind the
* last copied character.
*
* @param src Source string.
* @param dest Destination buffer.
* @param len Size of destination buffer.
*/
void strncpy(char *dest, const char *src, size_t len)
{
unsigned int i;
for (i = 0; i < len; i++) {
if (!(dest[i] = src[i]))
return;
}
dest[i-1] = '\0';
}
 
/** Convert ascii representation to unative_t
*
* Supports 0x for hexa & 0 for octal notation.
/branches/arm/kernel/generic/src/lib/memstr.c
1,5 → 1,6
/*
* Copyright (c) 2001-2004 Jakub Jermar
* Copyright (c) 2008 Jiri Svoboda
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
76,6 → 77,51
return (char *) dst;
}
 
/** Move memory block with possible overlapping.
*
* Copy cnt bytes from src address to dst address. The source and destination
* memory areas may overlap.
*
* @param src Source address to copy from.
* @param dst Destination address to copy to.
* @param cnt Number of bytes to copy.
*
* @return Destination address.
*/
void *memmove(void *dst, const void *src, size_t n)
{
const uint8_t *sp;
uint8_t *dp;
 
/* Nothing to do? */
if (src == dst)
return dst;
 
/* Non-overlapping? */
if (dst >= src + n || src >= dst + n) {
return memcpy(dst, src, n);
}
 
/* Which direction? */
if (src > dst) {
/* Forwards. */
sp = src;
dp = dst;
 
while (n-- != 0)
*dp++ = *sp++;
} else {
/* Backwards. */
sp = src + (n - 1);
dp = dst + (n - 1);
 
while (n-- != 0)
*dp-- = *sp--;
}
 
return dst;
}
 
/** Fill block of memory
*
* Fill cnt bytes at dst address with the value x. The filling is done
114,25 → 160,5
p[i] = x;
}
 
/** Copy string.
*
* Copy string from src address to dst address. The copying is done
* char-by-char until the null character. The source and destination memory
* areas cannot overlap.
*
* @param src Source string to copy from.
* @param dst Destination string to copy to.
*
* @return Address of the destination string.
*/
char *strcpy(char *dest, const char *src)
{
char *orig = dest;
while ((*(dest++) = *(src++)))
;
return orig;
}
 
/** @}
*/
/branches/arm/kernel/generic/src/lib/rd.c
88,9 → 88,7
rd_parea.pbase = ALIGN_DOWN((uintptr_t) KA2PA((void *) header + hsize),
FRAME_SIZE);
rd_parea.vbase = (uintptr_t) ((void *) header + hsize);
rd_parea.frames = SIZE2FRAMES(dsize);
rd_parea.cacheable = true;
ddi_parea_register(&rd_parea);
 
sysinfo_set_item_val("rd", NULL, true);
/branches/arm/kernel/generic/src/adt/btree.c
63,9 → 63,9
static void node_remove_key_and_rsubtree(btree_node_t *node, btree_key_t key);
static btree_node_t *node_split(btree_node_t *node, btree_key_t key, void *value, btree_node_t *rsubtree, btree_key_t *median);
static btree_node_t *node_combine(btree_node_t *node);
static index_t find_key_by_subtree(btree_node_t *node, btree_node_t *subtree, bool right);
static void rotate_from_right(btree_node_t *lnode, btree_node_t *rnode, index_t idx);
static void rotate_from_left(btree_node_t *lnode, btree_node_t *rnode, index_t idx);
static size_t find_key_by_subtree(btree_node_t *node, btree_node_t *subtree, bool right);
static void rotate_from_right(btree_node_t *lnode, btree_node_t *rnode, size_t idx);
static void rotate_from_left(btree_node_t *lnode, btree_node_t *rnode, size_t idx);
static bool try_insert_by_rotation_to_left(btree_node_t *node, btree_key_t key, void *value, btree_node_t *rsubtree);
static bool try_insert_by_rotation_to_right(btree_node_t *node, btree_key_t key, void *value, btree_node_t *rsubtree);
static bool try_rotation_from_left(btree_node_t *rnode);
124,7 → 124,7
lnode = leaf_node;
if (!lnode) {
if (btree_search(t, key, &lnode)) {
panic("B-tree %p already contains key %" PRIu64 "\n", t, key);
panic("B-tree %p already contains key %" PRIu64 ".", t, key);
}
}
137,7 → 137,7
*/
void btree_destroy_subtree(btree_node_t *root)
{
count_t i;
size_t i;
 
if (root->keys) {
for (i = 0; i < root->keys + 1; i++) {
224,7 → 224,7
lnode = leaf_node;
if (!lnode) {
if (!btree_search(t, key, &lnode)) {
panic("B-tree %p does not contain key %" PRIu64 "\n", t, key);
panic("B-tree %p does not contain key %" PRIu64 ".", t, key);
}
}
269,7 → 269,7
}
if (node->keys > FILL_FACTOR) {
count_t i;
size_t i;
 
/*
* The key can be immediatelly removed.
285,7 → 285,7
}
} else {
index_t idx;
size_t idx;
btree_node_t *rnode, *parent;
 
/*
335,7 → 335,7
continue;
} else {
void *val;
count_t i;
size_t i;
/*
* Now if the key is smaller than cur->key[i]
442,11 → 442,11
*/
void node_insert_key_and_lsubtree(btree_node_t *node, btree_key_t key, void *value, btree_node_t *lsubtree)
{
count_t i;
size_t i;
 
for (i = 0; i < node->keys; i++) {
if (key < node->key[i]) {
count_t j;
size_t j;
for (j = node->keys; j > i; j--) {
node->key[j] = node->key[j - 1];
478,11 → 478,11
*/
void node_insert_key_and_rsubtree(btree_node_t *node, btree_key_t key, void *value, btree_node_t *rsubtree)
{
count_t i;
size_t i;
 
for (i = 0; i < node->keys; i++) {
if (key < node->key[i]) {
count_t j;
size_t j;
for (j = node->keys; j > i; j--) {
node->key[j] = node->key[j - 1];
510,7 → 510,7
*/
void node_remove_key_and_lsubtree(btree_node_t *node, btree_key_t key)
{
count_t i, j;
size_t i, j;
for (i = 0; i < node->keys; i++) {
if (key == node->key[i]) {
524,7 → 524,7
return;
}
}
panic("node %p does not contain key %" PRIu64 "\n", node, key);
panic("Node %p does not contain key %" PRIu64 ".", node, key);
}
 
/** Remove key and its right subtree pointer from B-tree node.
538,7 → 538,7
*/
void node_remove_key_and_rsubtree(btree_node_t *node, btree_key_t key)
{
count_t i, j;
size_t i, j;
for (i = 0; i < node->keys; i++) {
if (key == node->key[i]) {
551,7 → 551,7
return;
}
}
panic("node %p does not contain key %" PRIu64 "\n", node, key);
panic("Node %p does not contain key %" PRIu64 ".", node, key);
}
 
/** Split full B-tree node and insert new key-value-right-subtree triplet.
576,7 → 576,7
btree_node_t *node_split(btree_node_t *node, btree_key_t key, void *value, btree_node_t *rsubtree, btree_key_t *median)
{
btree_node_t *rnode;
count_t i, j;
size_t i, j;
 
ASSERT(median);
ASSERT(node->keys == BTREE_MAX_KEYS);
603,7 → 603,7
* Copy big keys, values and subtree pointers to the new right sibling.
* If this is an index node, do not copy the median.
*/
i = (count_t) INDEX_NODE(node);
i = (size_t) INDEX_NODE(node);
for (i += MEDIAN_HIGH_INDEX(node), j = 0; i < node->keys; i++, j++) {
rnode->key[j] = node->key[i];
rnode->value[j] = node->value[i];
636,9 → 636,9
*/
btree_node_t *node_combine(btree_node_t *node)
{
index_t idx;
size_t idx;
btree_node_t *rnode;
count_t i;
size_t i;
 
ASSERT(!ROOT_NODE(node));
685,15 → 685,15
*
* @return Index of the key associated with the subtree.
*/
index_t find_key_by_subtree(btree_node_t *node, btree_node_t *subtree, bool right)
size_t find_key_by_subtree(btree_node_t *node, btree_node_t *subtree, bool right)
{
count_t i;
size_t i;
for (i = 0; i < node->keys + 1; i++) {
if (subtree == node->subtree[i])
return i - (int) (right != false);
}
panic("node %p does not contain subtree %p\n", node, subtree);
panic("Node %p does not contain subtree %p.", node, subtree);
}
 
/** Rotate one key-value-rsubtree triplet from the left sibling to the right sibling.
706,7 → 706,7
* @param rnode Right sibling.
* @param idx Index of the parent node key that is taking part in the rotation.
*/
void rotate_from_left(btree_node_t *lnode, btree_node_t *rnode, index_t idx)
void rotate_from_left(btree_node_t *lnode, btree_node_t *rnode, size_t idx)
{
btree_key_t key;
 
743,7 → 743,7
* @param rnode Right sibling.
* @param idx Index of the parent node key that is taking part in the rotation.
*/
void rotate_from_right(btree_node_t *lnode, btree_node_t *rnode, index_t idx)
void rotate_from_right(btree_node_t *lnode, btree_node_t *rnode, size_t idx)
{
btree_key_t key;
 
786,7 → 786,7
*/
bool try_insert_by_rotation_to_left(btree_node_t *node, btree_key_t inskey, void *insvalue, btree_node_t *rsubtree)
{
index_t idx;
size_t idx;
btree_node_t *lnode;
 
/*
833,7 → 833,7
*/
bool try_insert_by_rotation_to_right(btree_node_t *node, btree_key_t inskey, void *insvalue, btree_node_t *rsubtree)
{
index_t idx;
size_t idx;
btree_node_t *rnode;
 
/*
872,7 → 872,7
*/
bool try_rotation_from_left(btree_node_t *rnode)
{
index_t idx;
size_t idx;
btree_node_t *lnode;
 
/*
907,7 → 907,7
*/
bool try_rotation_from_right(btree_node_t *lnode)
{
index_t idx;
size_t idx;
btree_node_t *rnode;
 
/*
940,7 → 940,7
*/
void btree_print(btree_t *t)
{
count_t i;
size_t i;
int depth = t->root->depth;
link_t head, *cur;
 
/branches/arm/kernel/generic/src/adt/hash_table.c
32,7 → 32,7
 
/**
* @file
* @brief Implementation of generic chained hash table.
* @brief Implementation of generic chained hash table.
*
* This file contains implementation of generic chained hash table.
*/
51,18 → 51,20
* @param max_keys Maximal number of keys needed to identify an item.
* @param op Hash table operations structure.
*/
void hash_table_create(hash_table_t *h, count_t m, count_t max_keys, hash_table_operations_t *op)
void hash_table_create(hash_table_t *h, size_t m, size_t max_keys, hash_table_operations_t *op)
{
index_t i;
size_t i;
 
ASSERT(h);
ASSERT(op && op->hash && op->compare);
ASSERT(op);
ASSERT(op->hash);
ASSERT(op->compare);
ASSERT(max_keys > 0);
h->entry = (link_t *) malloc(m * sizeof(link_t), 0);
if (!h->entry) {
panic("cannot allocate memory for hash table\n");
}
if (!h->entry)
panic("Cannot allocate memory for hash table.");
memsetb(h->entry, m * sizeof(link_t), 0);
for (i = 0; i < m; i++)
81,11 → 83,14
*/
void hash_table_insert(hash_table_t *h, unative_t key[], link_t *item)
{
index_t chain;
 
size_t chain;
ASSERT(item);
ASSERT(h && h->op && h->op->hash && h->op->compare);
 
ASSERT(h);
ASSERT(h->op);
ASSERT(h->op->hash);
ASSERT(h->op->compare);
chain = h->op->hash(key);
ASSERT(chain < h->entries);
102,10 → 107,13
link_t *hash_table_find(hash_table_t *h, unative_t key[])
{
link_t *cur;
index_t chain;
 
ASSERT(h && h->op && h->op->hash && h->op->compare);
 
size_t chain;
ASSERT(h);
ASSERT(h->op);
ASSERT(h->op->hash);
ASSERT(h->op->compare);
chain = h->op->hash(key);
ASSERT(chain < h->entries);
123,22 → 131,25
 
/** Remove all matching items from hash table.
*
* For each removed item, h->remove_callback() is called.
* For each removed item, h->remove_callback() is called (if not NULL).
*
* @param h Hash table.
* @param key Array of keys that will be compared against items of the hash table.
* @param keys Number of keys in the key array.
*/
void hash_table_remove(hash_table_t *h, unative_t key[], count_t keys)
void hash_table_remove(hash_table_t *h, unative_t key[], size_t keys)
{
index_t chain;
size_t chain;
link_t *cur;
 
ASSERT(h && h->op && h->op->hash && h->op->compare && h->op->remove_callback);
ASSERT(h);
ASSERT(h->op);
ASSERT(h->op->hash);
ASSERT(h->op->compare);
ASSERT(keys <= h->max_keys);
if (keys == h->max_keys) {
 
/*
* All keys are known, hash_table_find() can be used to find the entry.
*/
146,7 → 157,8
cur = hash_table_find(h, key);
if (cur) {
list_remove(cur);
h->op->remove_callback(cur);
if (h->op->remove_callback)
h->op->remove_callback(cur);
}
return;
}
164,7 → 176,8
cur = cur->prev;
list_remove(hlp);
h->op->remove_callback(hlp);
if (h->op->remove_callback)
h->op->remove_callback(hlp);
continue;
}
/branches/arm/kernel/generic/src/adt/bitmap.c
54,7 → 54,7
* @param map Address of the memory used to hold the map.
* @param bits Number of bits stored in bitmap.
*/
void bitmap_initialize(bitmap_t *bitmap, uint8_t *map, count_t bits)
void bitmap_initialize(bitmap_t *bitmap, uint8_t *map, size_t bits)
{
bitmap->map = map;
bitmap->bits = bits;
66,13 → 66,13
* @param start Starting bit.
* @param bits Number of bits to set.
*/
void bitmap_set_range(bitmap_t *bitmap, index_t start, count_t bits)
void bitmap_set_range(bitmap_t *bitmap, size_t start, size_t bits)
{
index_t i=0;
index_t aligned_start;
count_t lub; /* leading unaligned bits */
count_t amb; /* aligned middle bits */
count_t tab; /* trailing aligned bits */
size_t i = 0;
size_t aligned_start;
size_t lub; /* leading unaligned bits */
size_t amb; /* aligned middle bits */
size_t tab; /* trailing aligned bits */
ASSERT(start + bits <= bitmap->bits);
116,13 → 116,13
* @param start Starting bit.
* @param bits Number of bits to clear.
*/
void bitmap_clear_range(bitmap_t *bitmap, index_t start, count_t bits)
void bitmap_clear_range(bitmap_t *bitmap, size_t start, size_t bits)
{
index_t i=0;
index_t aligned_start;
count_t lub; /* leading unaligned bits */
count_t amb; /* aligned middle bits */
count_t tab; /* trailing aligned bits */
size_t i = 0;
size_t aligned_start;
size_t lub; /* leading unaligned bits */
size_t amb; /* aligned middle bits */
size_t tab; /* trailing aligned bits */
ASSERT(start + bits <= bitmap->bits);
168,9 → 168,9
* @param src Source bitmap.
* @param bits Number of bits to copy.
*/
void bitmap_copy(bitmap_t *dst, bitmap_t *src, count_t bits)
void bitmap_copy(bitmap_t *dst, bitmap_t *src, size_t bits)
{
index_t i;
size_t i;
ASSERT(bits <= dst->bits);
ASSERT(bits <= src->bits);
/branches/arm/kernel/generic/src/adt/avl.c
43,7 → 43,7
*
* Every node has a pointer to its parent which allows insertion of multiple
* identical keys into the tree.
*
*
* Be careful when using this tree because of the base atribute which is added
* to every inserted node key. There is no rule in which order nodes with the
* same key are visited.
/branches/arm/kernel/generic/src/mm/slab.c
129,7 → 129,7
static slab_cache_t *slab_extern_cache;
/** Caches for malloc */
static slab_cache_t *malloc_caches[SLAB_MAX_MALLOC_W - SLAB_MIN_MALLOC_W + 1];
char *malloc_names[] = {
static char *malloc_names[] = {
"malloc-16",
"malloc-32",
"malloc-64",
144,7 → 144,11
"malloc-32K",
"malloc-64K",
"malloc-128K",
"malloc-256K"
"malloc-256K",
"malloc-512K",
"malloc-1M",
"malloc-2M",
"malloc-4M"
};
 
/** Slab descriptor */
152,8 → 156,8
slab_cache_t *cache; /**< Pointer to parent cache. */
link_t link; /**< List of full/partial slabs. */
void *start; /**< Start address of first available item. */
count_t available; /**< Count of available items in this slab. */
index_t nextavail; /**< The index of next available item. */
size_t available; /**< Count of available items in this slab. */
size_t nextavail; /**< The index of next available item. */
} slab_t;
 
#ifdef CONFIG_DEBUG
173,7 → 177,7
slab_t *slab;
size_t fsize;
unsigned int i;
unsigned int zone = 0;
size_t zone = 0;
data = frame_alloc_generic(cache->order, FRAME_KA | flags, &zone);
if (!data) {
211,7 → 215,7
*
* @return number of freed frames
*/
static count_t slab_space_free(slab_cache_t *cache, slab_t *slab)
static size_t slab_space_free(slab_cache_t *cache, slab_t *slab)
{
frame_free(KA2PA(slab->start));
if (! (cache->flags & SLAB_CACHE_SLINSIDE))
239,7 → 243,7
*
* @return Number of freed pages
*/
static count_t slab_obj_destroy(slab_cache_t *cache, void *obj, slab_t *slab)
static size_t slab_obj_destroy(slab_cache_t *cache, void *obj, slab_t *slab)
{
int freed = 0;
 
367,10 → 371,10
*
* @return Number of freed pages
*/
static count_t magazine_destroy(slab_cache_t *cache, slab_magazine_t *mag)
static size_t magazine_destroy(slab_cache_t *cache, slab_magazine_t *mag)
{
unsigned int i;
count_t frames = 0;
size_t frames = 0;
 
for (i = 0; i < mag->busy; i++) {
frames += slab_obj_destroy(cache, mag->objs[i], NULL);
645,11 → 649,11
* @param flags If contains SLAB_RECLAIM_ALL, do aggressive freeing
* @return Number of freed pages
*/
static count_t _slab_reclaim(slab_cache_t *cache, int flags)
static size_t _slab_reclaim(slab_cache_t *cache, int flags)
{
unsigned int i;
slab_magazine_t *mag;
count_t frames = 0;
size_t frames = 0;
int magcount;
if (cache->flags & SLAB_CACHE_NOMAGAZINE)
767,11 → 771,11
}
 
/* Go through all caches and reclaim what is possible */
count_t slab_reclaim(int flags)
size_t slab_reclaim(int flags)
{
slab_cache_t *cache;
link_t *cur;
count_t frames = 0;
size_t frames = 0;
 
spinlock_lock(&slab_cache_lock);
 
932,7 → 936,7
void *malloc(unsigned int size, int flags)
{
ASSERT(_slab_initialized);
ASSERT(size && size <= (1 << SLAB_MAX_MALLOC_W));
ASSERT(size <= (1 << SLAB_MAX_MALLOC_W));
if (size < (1 << SLAB_MIN_MALLOC_W))
size = (1 << SLAB_MIN_MALLOC_W);
/branches/arm/kernel/generic/src/mm/tlb.c
79,7 → 79,7
* @param count Number of pages, if required by type.
*/
void tlb_shootdown_start(tlb_invalidate_type_t type, asid_t asid,
uintptr_t page, count_t count)
uintptr_t page, size_t count)
{
unsigned int i;
 
108,7 → 108,7
/*
* Enqueue the message.
*/
index_t idx = cpu->tlb_messages_count++;
size_t idx = cpu->tlb_messages_count++;
cpu->tlb_messages[idx].type = type;
cpu->tlb_messages[idx].asid = asid;
cpu->tlb_messages[idx].page = page;
143,7 → 143,7
tlb_invalidate_type_t type;
asid_t asid;
uintptr_t page;
count_t count;
size_t count;
unsigned int i;
ASSERT(CPU);
173,7 → 173,7
tlb_invalidate_pages(asid, page, count);
break;
default:
panic("unknown type (%d)\n", type);
panic("Unknown type (%d).", type);
break;
}
if (type == TLB_INVL_ALL)
/branches/arm/kernel/generic/src/mm/backend_anon.c
152,7 → 152,7
*/
page_mapping_insert(AS, addr, frame, as_area_get_flags(area));
if (!used_space_insert(area, ALIGN_DOWN(addr, PAGE_SIZE), 1))
panic("Could not insert used space.\n");
panic("Cannot insert used space.");
return AS_PF_OK;
}
195,7 → 195,7
node = list_get_instance(cur, btree_node_t, leaf_link);
for (i = 0; i < node->keys; i++) {
uintptr_t base = node->key[i];
count_t count = (count_t) node->value[i];
size_t count = (size_t) node->value[i];
unsigned int j;
for (j = 0; j < count; j++) {
/branches/arm/kernel/generic/src/mm/as.c
122,7 → 122,7
int rc;
 
link_initialize(&as->inactive_as_with_asid_link);
mutex_initialize(&as->lock, MUTEX_PASSIVE);
mutex_initialize(&as->lock, MUTEX_PASSIVE);
rc = as_constructor_arch(as, flags);
146,8 → 146,12
AS_KERNEL = as_create(FLAG_AS_KERNEL);
if (!AS_KERNEL)
panic("can't create kernel address space\n");
panic("Cannot create kernel address space.");
/* Make sure the kernel address space
* reference count never drops to zero.
*/
atomic_set(&AS_KERNEL->refcount, 1);
}
 
/** Create address space.
176,7 → 180,7
#else
page_table_create(flags);
#endif
 
return as;
}
 
414,8 → 418,8
btree_node_t, leaf_link);
if ((cond = (bool) node->keys)) {
uintptr_t b = node->key[node->keys - 1];
count_t c =
(count_t) node->value[node->keys - 1];
size_t c =
(size_t) node->value[node->keys - 1];
unsigned int i = 0;
if (overlaps(b, c * PAGE_SIZE, area->base,
440,8 → 444,8
i = (start_free - b) >> PAGE_WIDTH;
if (!used_space_remove(area, start_free,
c - i))
panic("Could not remove used "
"space.\n");
panic("Cannot remove used "
"space.");
} else {
/*
* The interval of used space can be
448,8 → 452,8
* completely removed.
*/
if (!used_space_remove(area, b, c))
panic("Could not remove used "
"space.\n");
panic("Cannot remove used "
"space.");
}
for (; i < c; i++) {
551,10 → 555,10
node = list_get_instance(cur, btree_node_t, leaf_link);
for (i = 0; i < node->keys; i++) {
uintptr_t b = node->key[i];
count_t j;
size_t j;
pte_t *pte;
for (j = 0; j < (count_t) node->value[i]; j++) {
for (j = 0; j < (size_t) node->value[i]; j++) {
page_table_lock(as, false);
pte = page_mapping_find(as, b + j * PAGE_SIZE);
ASSERT(pte && PTE_VALID(pte) &&
769,11 → 773,12
* In order for this to work properly, this may copy the data
* into private anonymous memory (unless it's already there).
*
* @param as Address space.
* @param flags Flags of the area memory.
* @param address Address withing the area to be changed.
* @param as Address space.
* @param flags Flags of the area memory.
* @param address Address within the area to be changed.
*
* @return Zero on success or a value from @ref errno.h on failure.
* @return Zero on success or a value from @ref errno.h on failure.
*
*/
int as_area_change_flags(as_t *as, int flags, uintptr_t address)
{
783,9 → 788,9
ipl_t ipl;
int page_flags;
uintptr_t *old_frame;
index_t frame_idx;
count_t used_pages;
 
size_t frame_idx;
size_t used_pages;
/* Flags for the new memory mapping */
page_flags = area_flags_to_page_flags(flags);
 
799,7 → 804,7
return ENOENT;
}
 
if (area->sh_info || area->backend != &anon_backend) {
if ((area->sh_info) || (area->backend != &anon_backend)) {
/* Copying shared areas not supported yet */
/* Copying non-anonymous memory not supported yet */
mutex_unlock(&area->lock);
822,7 → 827,7
node = list_get_instance(cur, btree_node_t, leaf_link);
for (i = 0; i < node->keys; i++) {
used_pages += (count_t) node->value[i];
used_pages += (size_t) node->value[i];
}
}
 
848,10 → 853,10
node = list_get_instance(cur, btree_node_t, leaf_link);
for (i = 0; i < node->keys; i++) {
uintptr_t b = node->key[i];
count_t j;
size_t j;
pte_t *pte;
for (j = 0; j < (count_t) node->value[i]; j++) {
for (j = 0; j < (size_t) node->value[i]; j++) {
page_table_lock(as, false);
pte = page_mapping_find(as, b + j * PAGE_SIZE);
ASSERT(pte && PTE_VALID(pte) &&
870,6 → 875,7
*/
 
tlb_invalidate_pages(as->asid, area->base, area->pages);
/*
* Invalidate potential software translation caches (e.g. TSB on
* sparc64).
897,9 → 903,9
node = list_get_instance(cur, btree_node_t, leaf_link);
for (i = 0; i < node->keys; i++) {
uintptr_t b = node->key[i];
count_t j;
size_t j;
for (j = 0; j < (count_t) node->value[i]; j++) {
for (j = 0; j < (size_t) node->value[i]; j++) {
page_table_lock(as, false);
 
/* Insert the new mapping */
1391,16 → 1397,16
*
* @return Zero on failure and non-zero on success.
*/
int used_space_insert(as_area_t *a, uintptr_t page, count_t count)
int used_space_insert(as_area_t *a, uintptr_t page, size_t count)
{
btree_node_t *leaf, *node;
count_t pages;
size_t pages;
unsigned int i;
 
ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
ASSERT(count);
 
pages = (count_t) btree_search(&a->used_space, page, &leaf);
pages = (size_t) btree_search(&a->used_space, page, &leaf);
if (pages) {
/*
* We hit the beginning of some used space.
1417,8 → 1423,8
if (node) {
uintptr_t left_pg = node->key[node->keys - 1];
uintptr_t right_pg = leaf->key[0];
count_t left_cnt = (count_t) node->value[node->keys - 1];
count_t right_cnt = (count_t) leaf->value[0];
size_t left_cnt = (size_t) node->value[node->keys - 1];
size_t right_cnt = (size_t) leaf->value[0];
/*
* Examine the possibility that the interval fits
1472,7 → 1478,7
}
} else if (page < leaf->key[0]) {
uintptr_t right_pg = leaf->key[0];
count_t right_cnt = (count_t) leaf->value[0];
size_t right_cnt = (size_t) leaf->value[0];
/*
* Investigate the border case in which the left neighbour does
1507,8 → 1513,8
if (node) {
uintptr_t left_pg = leaf->key[leaf->keys - 1];
uintptr_t right_pg = node->key[0];
count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
count_t right_cnt = (count_t) node->value[0];
size_t left_cnt = (size_t) leaf->value[leaf->keys - 1];
size_t right_cnt = (size_t) node->value[0];
/*
* Examine the possibility that the interval fits
1562,7 → 1568,7
}
} else if (page >= leaf->key[leaf->keys - 1]) {
uintptr_t left_pg = leaf->key[leaf->keys - 1];
count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
size_t left_cnt = (size_t) leaf->value[leaf->keys - 1];
/*
* Investigate the border case in which the right neighbour
1600,8 → 1606,8
if (page < leaf->key[i]) {
uintptr_t left_pg = leaf->key[i - 1];
uintptr_t right_pg = leaf->key[i];
count_t left_cnt = (count_t) leaf->value[i - 1];
count_t right_cnt = (count_t) leaf->value[i];
size_t left_cnt = (size_t) leaf->value[i - 1];
size_t right_cnt = (size_t) leaf->value[i];
 
/*
* The interval fits between left_pg and right_pg.
1659,8 → 1665,8
}
}
 
panic("Inconsistency detected while adding %" PRIc " pages of used "
"space at %p.\n", count, page);
panic("Inconsistency detected while adding %" PRIs " pages of used "
"space at %p.", count, page);
}
 
/** Mark portion of address space area as unused.
1673,16 → 1679,16
*
* @return Zero on failure and non-zero on success.
*/
int used_space_remove(as_area_t *a, uintptr_t page, count_t count)
int used_space_remove(as_area_t *a, uintptr_t page, size_t count)
{
btree_node_t *leaf, *node;
count_t pages;
size_t pages;
unsigned int i;
 
ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
ASSERT(count);
 
pages = (count_t) btree_search(&a->used_space, page, &leaf);
pages = (size_t) btree_search(&a->used_space, page, &leaf);
if (pages) {
/*
* We are lucky, page is the beginning of some interval.
1711,7 → 1717,7
node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
if (node && page < leaf->key[0]) {
uintptr_t left_pg = node->key[node->keys - 1];
count_t left_cnt = (count_t) node->value[node->keys - 1];
size_t left_cnt = (size_t) node->value[node->keys - 1];
 
if (overlaps(left_pg, left_cnt * PAGE_SIZE, page,
count * PAGE_SIZE)) {
1727,7 → 1733,7
return 1;
} else if (page + count * PAGE_SIZE <
left_pg + left_cnt*PAGE_SIZE) {
count_t new_cnt;
size_t new_cnt;
/*
* The interval is contained in the rightmost
1751,7 → 1757,7
if (page > leaf->key[leaf->keys - 1]) {
uintptr_t left_pg = leaf->key[leaf->keys - 1];
count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
size_t left_cnt = (size_t) leaf->value[leaf->keys - 1];
 
if (overlaps(left_pg, left_cnt * PAGE_SIZE, page,
count * PAGE_SIZE)) {
1766,7 → 1772,7
return 1;
} else if (page + count * PAGE_SIZE < left_pg +
left_cnt * PAGE_SIZE) {
count_t new_cnt;
size_t new_cnt;
/*
* The interval is contained in the rightmost
1793,7 → 1799,7
for (i = 1; i < leaf->keys - 1; i++) {
if (page < leaf->key[i]) {
uintptr_t left_pg = leaf->key[i - 1];
count_t left_cnt = (count_t) leaf->value[i - 1];
size_t left_cnt = (size_t) leaf->value[i - 1];
 
/*
* Now the interval is between intervals corresponding
1813,7 → 1819,7
return 1;
} else if (page + count * PAGE_SIZE <
left_pg + left_cnt * PAGE_SIZE) {
count_t new_cnt;
size_t new_cnt;
/*
* The interval is contained in the
1838,8 → 1844,8
}
 
error:
panic("Inconsistency detected while removing %" PRIc " pages of used "
"space from %p.\n", count, page);
panic("Inconsistency detected while removing %" PRIs " pages of used "
"space from %p.", count, page);
}
 
/** Remove reference to address space area share info.
1937,7 → 1943,7
as_area_t *area = node->value[i];
mutex_lock(&area->lock);
printf("as_area: %p, base=%p, pages=%" PRIc
printf("as_area: %p, base=%p, pages=%" PRIs
" (%p - %p)\n", area, area->base, area->pages,
area->base, area->base + FRAMES2SIZE(area->pages));
mutex_unlock(&area->lock);
/branches/arm/kernel/generic/src/mm/frame.c
1,6 → 1,7
/*
* Copyright (c) 2001-2005 Jakub Jermar
* Copyright (c) 2005 Sergey Bondari
* Copyright (c) 2009 Martin Decky
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
33,7 → 34,7
 
/**
* @file
* @brief Physical frame allocator.
* @brief Physical frame allocator.
*
* This file contains the physical frame allocator and memory zone management.
* The frame allocator is built on top of the buddy allocator.
41,16 → 42,6
* @see buddy.c
*/
 
/*
* Locking order
*
* In order to access particular zone, the process must first lock
* the zones.lock, then lock the zone and then unlock the zones.lock.
* This insures, that we can fiddle with the zones in runtime without
* affecting the processes.
*
*/
 
#include <arch/types.h>
#include <mm/frame.h>
#include <mm/as.h>
57,7 → 48,6
#include <panic.h>
#include <debug.h>
#include <adt/list.h>
#include <synch/spinlock.h>
#include <synch/mutex.h>
#include <synch/condvar.h>
#include <arch/asm.h>
69,72 → 59,37
#include <macros.h>
#include <config.h>
 
typedef struct {
count_t refcount; /**< tracking of shared frames */
uint8_t buddy_order; /**< buddy system block order */
link_t buddy_link; /**< link to the next free block inside one
order */
void *parent; /**< If allocated by slab, this points there */
} frame_t;
zones_t zones;
 
typedef struct {
SPINLOCK_DECLARE(lock); /**< this lock protects everything below */
pfn_t base; /**< frame_no of the first frame in the frames
array */
count_t count; /**< Size of zone */
 
frame_t *frames; /**< array of frame_t structures in this
zone */
count_t free_count; /**< number of free frame_t structures */
count_t busy_count; /**< number of busy frame_t structures */
buddy_system_t *buddy_system; /**< buddy system for the zone */
int flags;
} zone_t;
 
/*
* The zoneinfo.lock must be locked when accessing zoneinfo structure.
* Some of the attributes in zone_t structures are 'read-only'
*/
 
typedef struct {
SPINLOCK_DECLARE(lock);
unsigned int count;
zone_t *info[ZONES_MAX];
} zones_t;
 
static zones_t zones;
 
/*
* Synchronization primitives used to sleep when there is no memory
* available.
*/
mutex_t mem_avail_mtx;
condvar_t mem_avail_cv;
unsigned long mem_avail_frames = 0; /**< Number of available frames. */
unsigned long mem_avail_gen = 0; /**< Generation counter. */
size_t mem_avail_req = 0; /**< Number of frames requested. */
size_t mem_avail_gen = 0; /**< Generation counter. */
 
/********************/
/* Helper functions */
/********************/
 
static inline index_t frame_index(zone_t *zone, frame_t *frame)
static inline size_t frame_index(zone_t *zone, frame_t *frame)
{
return (index_t) (frame - zone->frames);
return (size_t) (frame - zone->frames);
}
 
static inline index_t frame_index_abs(zone_t *zone, frame_t *frame)
static inline size_t frame_index_abs(zone_t *zone, frame_t *frame)
{
return (index_t) (frame - zone->frames) + zone->base;
return (size_t) (frame - zone->frames) + zone->base;
}
 
static inline int frame_index_valid(zone_t *zone, index_t index)
static inline bool frame_index_valid(zone_t *zone, size_t index)
{
return (index < zone->count);
}
 
/** Compute pfn_t from frame_t pointer & zone pointer */
static index_t make_frame_index(zone_t *zone, frame_t *frame)
static inline size_t make_frame_index(zone_t *zone, frame_t *frame)
{
return (frame - zone->frames);
}
141,7 → 96,8
 
/** Initialize frame structure.
*
* @param frame Frame structure to be initialized.
* @param frame Frame structure to be initialized.
*
*/
static void frame_initialize(frame_t *frame)
{
149,153 → 105,145
frame->buddy_order = 0;
}
 
/**********************/
/* Zoneinfo functions */
/**********************/
/*******************/
/* Zones functions */
/*******************/
 
/** Insert-sort zone into zones list.
*
* @param newzone New zone to be inserted into zone list.
* @return Zone number on success, -1 on error.
* Assume interrupts are disabled and zones lock is
* locked.
*
* @param base Base frame of the newly inserted zone.
* @param count Number of frames of the newly inserted zone.
*
* @return Zone number on success, -1 on error.
*
*/
static int zones_add_zone(zone_t *newzone)
static size_t zones_insert_zone(pfn_t base, size_t count)
{
unsigned int i, j;
ipl_t ipl;
zone_t *z;
 
ipl = interrupts_disable();
spinlock_lock(&zones.lock);
/* Try to merge */
if (zones.count + 1 == ZONES_MAX) {
printf("Maximum zone count %u exceeded!\n", ZONES_MAX);
spinlock_unlock(&zones.lock);
interrupts_restore(ipl);
return -1;
return (size_t) -1;
}
size_t i;
for (i = 0; i < zones.count; i++) {
/* Check for overflow */
z = zones.info[i];
if (overlaps(newzone->base, newzone->count, z->base,
z->count)) {
/* Check for overlap */
if (overlaps(base, count,
zones.info[i].base, zones.info[i].count)) {
printf("Zones overlap!\n");
return -1;
return (size_t) -1;
}
if (newzone->base < z->base)
if (base < zones.info[i].base)
break;
}
/* Move other zones up */
for (j = i; j < zones.count; j++)
zones.info[j + 1] = zones.info[j];
size_t j;
for (j = zones.count; j > i; j--) {
zones.info[j] = zones.info[j - 1];
zones.info[j].buddy_system->data =
(void *) &zones.info[j - 1];
}
zones.info[i] = newzone;
zones.count++;
spinlock_unlock(&zones.lock);
interrupts_restore(ipl);
 
return i;
}
 
/** Try to find a zone where can we find the frame.
/** Get total available frames.
*
* Assume interrupts are disabled.
* Assume interrupts are disabled and zones lock is
* locked.
*
* @param frame Frame number contained in zone.
* @param pzone If not null, it is used as zone hint. Zone index is
* filled into the variable on success.
* @return Pointer to locked zone containing frame.
* @return Total number of available frames.
*
*/
static zone_t *find_zone_and_lock(pfn_t frame, unsigned int *pzone)
#ifdef CONFIG_DEBUG
static size_t total_frames_free(void)
{
unsigned int i;
unsigned int hint = pzone ? *pzone : 0;
zone_t *z;
size_t total = 0;
size_t i;
for (i = 0; i < zones.count; i++)
total += zones.info[i].free_count;
spinlock_lock(&zones.lock);
return total;
}
#endif
 
/** Find a zone with a given frames.
*
* Assume interrupts are disabled and zones lock is
* locked.
*
* @param frame Frame number contained in zone.
* @param count Number of frames to look for.
* @param hint Used as zone hint.
*
* @return Zone index or -1 if not found.
*
*/
size_t find_zone(pfn_t frame, size_t count, size_t hint)
{
if (hint >= zones.count)
hint = 0;
i = hint;
size_t i = hint;
do {
z = zones.info[i];
spinlock_lock(&z->lock);
if (z->base <= frame && z->base + z->count > frame) {
/* Unlock the global lock */
spinlock_unlock(&zones.lock);
if (pzone)
*pzone = i;
return z;
}
spinlock_unlock(&z->lock);
 
if ((zones.info[i].base <= frame)
&& (zones.info[i].base + zones.info[i].count >= frame + count))
return i;
i++;
if (i >= zones.count)
i = 0;
} while (i != hint);
 
spinlock_unlock(&zones.lock);
return NULL;
return (size_t) -1;
}
 
/** @return True if zone can allocate specified order */
static int zone_can_alloc(zone_t *z, uint8_t order)
static bool zone_can_alloc(zone_t *zone, uint8_t order)
{
return buddy_system_can_alloc(z->buddy_system, order);
return (zone_flags_available(zone->flags)
&& buddy_system_can_alloc(zone->buddy_system, order));
}
 
/** Find and lock zone that can allocate order frames.
/** Find a zone that can allocate order frames.
*
* Assume interrupts are disabled.
* Assume interrupts are disabled and zones lock is
* locked.
*
* @param order Size (2^order) of free space we are trying to find.
* @param flags Required flags of the target zone.
* @param pzone Pointer to preferred zone or NULL, on return contains
* zone number.
* @param order Size (2^order) of free space we are trying to find.
* @param flags Required flags of the target zone.
* @param hind Preferred zone.
*
*/
static zone_t *
find_free_zone_and_lock(uint8_t order, int flags, unsigned int *pzone)
static size_t find_free_zone(uint8_t order, zone_flags_t flags, size_t hint)
{
unsigned int i;
zone_t *z;
unsigned int hint = pzone ? *pzone : 0;
/* Mask off flags that are not applicable. */
flags &= FRAME_LOW_4_GiB;
 
spinlock_lock(&zones.lock);
if (hint >= zones.count)
hint = 0;
i = hint;
size_t i = hint;
do {
z = zones.info[i];
spinlock_lock(&z->lock);
 
/*
* Check whether the zone meets the search criteria.
*/
if ((z->flags & flags) == flags) {
if ((zones.info[i].flags & flags) == flags) {
/*
* Check if the zone has 2^order frames area available.
*/
if (zone_can_alloc(z, order)) {
spinlock_unlock(&zones.lock);
if (pzone)
*pzone = i;
return z;
}
if (zone_can_alloc(&zones.info[i], order))
return i;
}
spinlock_unlock(&z->lock);
if (++i >= zones.count)
i++;
if (i >= zones.count)
i = 0;
} while (i != hint);
spinlock_unlock(&zones.lock);
return NULL;
return (size_t) -1;
}
 
/**************************/
307,82 → 255,73
* Find block that is parent of current list.
* That means go to lower addresses, until such block is found
*
* @param order Order of parent must be different then this
* parameter!!
* @param order Order of parent must be different then this
* parameter!!
*
*/
static link_t *zone_buddy_find_block(buddy_system_t *b, link_t *child,
static link_t *zone_buddy_find_block(buddy_system_t *buddy, link_t *child,
uint8_t order)
{
frame_t *frame;
zone_t *zone;
index_t index;
frame_t *frame = list_get_instance(child, frame_t, buddy_link);
zone_t *zone = (zone_t *) buddy->data;
frame = list_get_instance(child, frame_t, buddy_link);
zone = (zone_t *) b->data;
 
index = frame_index(zone, frame);
size_t index = frame_index(zone, frame);
do {
if (zone->frames[index].buddy_order != order) {
if (zone->frames[index].buddy_order != order)
return &zone->frames[index].buddy_link;
}
} while(index-- > 0);
} while (index-- > 0);
return NULL;
}
 
/** Buddy system find_buddy implementation.
*
* @param b Buddy system.
* @param block Block for which buddy should be found.
* @param buddy Buddy system.
* @param block Block for which buddy should be found.
*
* @return Buddy for given block if found.
* @return Buddy for given block if found.
*
*/
static link_t *zone_buddy_find_buddy(buddy_system_t *b, link_t *block)
static link_t *zone_buddy_find_buddy(buddy_system_t *buddy, link_t *block)
{
frame_t *frame;
zone_t *zone;
index_t index;
bool is_left, is_right;
 
frame = list_get_instance(block, frame_t, buddy_link);
zone = (zone_t *) b->data;
frame_t *frame = list_get_instance(block, frame_t, buddy_link);
zone_t *zone = (zone_t *) buddy->data;
ASSERT(IS_BUDDY_ORDER_OK(frame_index_abs(zone, frame),
frame->buddy_order));
is_left = IS_BUDDY_LEFT_BLOCK_ABS(zone, frame);
is_right = IS_BUDDY_RIGHT_BLOCK_ABS(zone, frame);
 
ASSERT(is_left ^ is_right);
bool is_left = IS_BUDDY_LEFT_BLOCK_ABS(zone, frame);
size_t index;
if (is_left) {
index = (frame_index(zone, frame)) +
(1 << frame->buddy_order);
} else { /* if (is_right) */
} else { /* is_right */
index = (frame_index(zone, frame)) -
(1 << frame->buddy_order);
}
if (frame_index_valid(zone, index)) {
if (zone->frames[index].buddy_order == frame->buddy_order &&
zone->frames[index].refcount == 0) {
if ((zone->frames[index].buddy_order == frame->buddy_order) &&
(zone->frames[index].refcount == 0)) {
return &zone->frames[index].buddy_link;
}
}
 
return NULL;
return NULL;
}
 
/** Buddy system bisect implementation.
*
* @param b Buddy system.
* @param block Block to bisect.
* @param buddy Buddy system.
* @param block Block to bisect.
*
* @return Right block.
* @return Right block.
*
*/
static link_t *zone_buddy_bisect(buddy_system_t *b, link_t *block)
static link_t *zone_buddy_bisect(buddy_system_t *buddy, link_t *block)
{
frame_t *frame_l, *frame_r;
 
frame_l = list_get_instance(block, frame_t, buddy_link);
frame_r = (frame_l + (1 << (frame_l->buddy_order - 1)));
frame_t *frame_l = list_get_instance(block, frame_t, buddy_link);
frame_t *frame_r = (frame_l + (1 << (frame_l->buddy_order - 1)));
return &frame_r->buddy_link;
}
389,75 → 328,68
 
/** Buddy system coalesce implementation.
*
* @param b Buddy system.
* @param block_1 First block.
* @param block_2 First block's buddy.
* @param buddy Buddy system.
* @param block_1 First block.
* @param block_2 First block's buddy.
*
* @return Coalesced block (actually block that represents lower
* address).
* @return Coalesced block (actually block that represents lower
* address).
*
*/
static link_t *zone_buddy_coalesce(buddy_system_t *b, link_t *block_1,
link_t *block_2)
static link_t *zone_buddy_coalesce(buddy_system_t *buddy, link_t *block_1,
link_t *block_2)
{
frame_t *frame1, *frame2;
frame_t *frame1 = list_get_instance(block_1, frame_t, buddy_link);
frame_t *frame2 = list_get_instance(block_2, frame_t, buddy_link);
frame1 = list_get_instance(block_1, frame_t, buddy_link);
frame2 = list_get_instance(block_2, frame_t, buddy_link);
return frame1 < frame2 ? block_1 : block_2;
return ((frame1 < frame2) ? block_1 : block_2);
}
 
/** Buddy system set_order implementation.
*
* @param b Buddy system.
* @param block Buddy system block.
* @param order Order to set.
* @param buddy Buddy system.
* @param block Buddy system block.
* @param order Order to set.
*
*/
static void zone_buddy_set_order(buddy_system_t *b, link_t *block,
static void zone_buddy_set_order(buddy_system_t *buddy, link_t *block,
uint8_t order)
{
frame_t *frame;
frame = list_get_instance(block, frame_t, buddy_link);
frame->buddy_order = order;
list_get_instance(block, frame_t, buddy_link)->buddy_order = order;
}
 
/** Buddy system get_order implementation.
*
* @param b Buddy system.
* @param block Buddy system block.
* @param buddy Buddy system.
* @param block Buddy system block.
*
* @return Order of block.
* @return Order of block.
*
*/
static uint8_t zone_buddy_get_order(buddy_system_t *b, link_t *block)
static uint8_t zone_buddy_get_order(buddy_system_t *buddy, link_t *block)
{
frame_t *frame;
frame = list_get_instance(block, frame_t, buddy_link);
return frame->buddy_order;
return list_get_instance(block, frame_t, buddy_link)->buddy_order;
}
 
/** Buddy system mark_busy implementation.
*
* @param b Buddy system.
* @param block Buddy system block.
* @param buddy Buddy system.
* @param block Buddy system block.
*
*/
static void zone_buddy_mark_busy(buddy_system_t *b, link_t * block)
static void zone_buddy_mark_busy(buddy_system_t *buddy, link_t * block)
{
frame_t * frame;
 
frame = list_get_instance(block, frame_t, buddy_link);
frame->refcount = 1;
list_get_instance(block, frame_t, buddy_link)->refcount = 1;
}
 
/** Buddy system mark_available implementation.
*
* @param b Buddy system.
* @param block Buddy system block.
* @param buddy Buddy system.
* @param block Buddy system block.
*/
static void zone_buddy_mark_available(buddy_system_t *b, link_t *block)
static void zone_buddy_mark_available(buddy_system_t *buddy, link_t *block)
{
frame_t *frame;
frame = list_get_instance(block, frame_t, buddy_link);
frame->refcount = 0;
list_get_instance(block, frame_t, buddy_link)->refcount = 0;
}
 
static buddy_system_operations_t zone_buddy_system_operations = {
477,60 → 409,57
 
/** Allocate frame in particular zone.
*
* Assume zone is locked.
* Assume zone is locked and is available for allocation.
* Panics if allocation is impossible.
*
* @param zone Zone to allocate from.
* @param order Allocate exactly 2^order frames.
* @param zone Zone to allocate from.
* @param order Allocate exactly 2^order frames.
*
* @return Frame index in zone.
* @return Frame index in zone.
*
*/
static pfn_t zone_frame_alloc(zone_t *zone, uint8_t order)
{
pfn_t v;
link_t *tmp;
frame_t *frame;
 
ASSERT(zone_flags_available(zone->flags));
/* Allocate frames from zone buddy system */
tmp = buddy_system_alloc(zone->buddy_system, order);
link_t *link = buddy_system_alloc(zone->buddy_system, order);
ASSERT(tmp);
ASSERT(link);
/* Update zone information. */
zone->free_count -= (1 << order);
zone->busy_count += (1 << order);
 
/* Frame will be actually a first frame of the block. */
frame = list_get_instance(tmp, frame_t, buddy_link);
frame_t *frame = list_get_instance(link, frame_t, buddy_link);
/* get frame address */
v = make_frame_index(zone, frame);
return v;
/* Get frame address */
return make_frame_index(zone, frame);
}
 
/** Free frame from zone.
*
* Assume zone is locked.
* Assume zone is locked and is available for deallocation.
*
* @param zone Pointer to zone from which the frame is to be freed.
* @param frame_idx Frame index relative to zone.
* @param zone Pointer to zone from which the frame is to be freed.
* @param frame_idx Frame index relative to zone.
*
*/
static void zone_frame_free(zone_t *zone, index_t frame_idx)
static void zone_frame_free(zone_t *zone, size_t frame_idx)
{
frame_t *frame;
uint8_t order;
 
frame = &zone->frames[frame_idx];
ASSERT(zone_flags_available(zone->flags));
/* remember frame order */
order = frame->buddy_order;
 
frame_t *frame = &zone->frames[frame_idx];
/* Remember frame order */
uint8_t order = frame->buddy_order;
ASSERT(frame->refcount);
 
if (!--frame->refcount) {
buddy_system_free(zone->buddy_system, &frame->buddy_link);
/* Update zone information. */
zone->free_count += (1 << order);
zone->busy_count -= (1 << order);
538,7 → 467,7
}
 
/** Return frame from zone. */
static frame_t *zone_get_frame(zone_t *zone, index_t frame_idx)
static frame_t *zone_get_frame(zone_t *zone, size_t frame_idx)
{
ASSERT(frame_idx < zone->count);
return &zone->frames[frame_idx];
545,569 → 474,648
}
 
/** Mark frame in zone unavailable to allocation. */
static void zone_mark_unavailable(zone_t *zone, index_t frame_idx)
static void zone_mark_unavailable(zone_t *zone, size_t frame_idx)
{
frame_t *frame;
link_t *link;
 
frame = zone_get_frame(zone, frame_idx);
ASSERT(zone_flags_available(zone->flags));
frame_t *frame = zone_get_frame(zone, frame_idx);
if (frame->refcount)
return;
link_t *link __attribute__ ((unused));
link = buddy_system_alloc_block(zone->buddy_system,
&frame->buddy_link);
ASSERT(link);
zone->free_count--;
 
mutex_lock(&mem_avail_mtx);
mem_avail_frames--;
mutex_unlock(&mem_avail_mtx);
}
 
/** Join two zones.
/** Merge two zones.
*
* Expect zone_t *z to point to space at least zone_conf_size large.
* Expect buddy to point to space at least zone_conf_size large.
* Assume z1 & z2 are locked and compatible and zones lock is
* locked.
*
* Assume z1 & z2 are locked.
* @param z1 First zone to merge.
* @param z2 Second zone to merge.
* @param old_z1 Original date of the first zone.
* @param buddy Merged zone buddy.
*
* @param z Target zone structure pointer.
* @param z1 Zone to merge.
* @param z2 Zone to merge.
*/
static void _zone_merge(zone_t *z, zone_t *z1, zone_t *z2)
static void zone_merge_internal(size_t z1, size_t z2, zone_t *old_z1, buddy_system_t *buddy)
{
uint8_t max_order;
unsigned int i;
int z2idx;
pfn_t frame_idx;
frame_t *frame;
 
ASSERT(!overlaps(z1->base, z1->count, z2->base, z2->count));
ASSERT(z1->base < z2->base);
 
spinlock_initialize(&z->lock, "zone_lock");
z->base = z1->base;
z->count = z2->base + z2->count - z1->base;
z->flags = z1->flags & z2->flags;
 
z->free_count = z1->free_count + z2->free_count;
z->busy_count = z1->busy_count + z2->busy_count;
ASSERT(zone_flags_available(zones.info[z1].flags));
ASSERT(zone_flags_available(zones.info[z2].flags));
ASSERT(zones.info[z1].flags == zones.info[z2].flags);
ASSERT(zones.info[z1].base < zones.info[z2].base);
ASSERT(!overlaps(zones.info[z1].base, zones.info[z1].count,
zones.info[z2].base, zones.info[z2].count));
max_order = fnzb(z->count);
 
z->buddy_system = (buddy_system_t *) &z[1];
buddy_system_create(z->buddy_system, max_order,
&zone_buddy_system_operations, (void *) z);
 
z->frames = (frame_t *)((uint8_t *) z->buddy_system +
buddy_conf_size(max_order));
for (i = 0; i < z->count; i++) {
/* This marks all frames busy */
frame_initialize(&z->frames[i]);
}
/* Difference between zone bases */
pfn_t base_diff = zones.info[z2].base - zones.info[z1].base;
zones.info[z1].count = base_diff + zones.info[z2].count;
zones.info[z1].free_count += zones.info[z2].free_count;
zones.info[z1].busy_count += zones.info[z2].busy_count;
zones.info[z1].buddy_system = buddy;
uint8_t order = fnzb(zones.info[z1].count);
buddy_system_create(zones.info[z1].buddy_system, order,
&zone_buddy_system_operations, (void *) &zones.info[z1]);
zones.info[z1].frames =
(frame_t *) ((uint8_t *) zones.info[z1].buddy_system
+ buddy_conf_size(order));
/* This marks all frames busy */
size_t i;
for (i = 0; i < zones.info[z1].count; i++)
frame_initialize(&zones.info[z1].frames[i]);
/* Copy frames from both zones to preserve full frame orders,
* parents etc. Set all free frames with refcount=0 to 1, because
* we add all free frames to buddy allocator later again, clear
* order to 0. Don't set busy frames with refcount=0, as they
* parents etc. Set all free frames with refcount = 0 to 1, because
* we add all free frames to buddy allocator later again, clearing
* order to 0. Don't set busy frames with refcount = 0, as they
* will not be reallocated during merge and it would make later
* problems with allocation/free.
*/
for (i = 0; i < z1->count; i++)
z->frames[i] = z1->frames[i];
for (i = 0; i < z2->count; i++) {
z2idx = i + (z2->base - z1->base);
z->frames[z2idx] = z2->frames[i];
}
for (i = 0; i < old_z1->count; i++)
zones.info[z1].frames[i] = old_z1->frames[i];
for (i = 0; i < zones.info[z2].count; i++)
zones.info[z1].frames[base_diff + i]
= zones.info[z2].frames[i];
i = 0;
while (i < z->count) {
if (z->frames[i].refcount) {
/* skip busy frames */
i += 1 << z->frames[i].buddy_order;
} else { /* Free frames, set refcount=1 */
/* All free frames have refcount=0, we need not
* to check the order */
z->frames[i].refcount = 1;
z->frames[i].buddy_order = 0;
while (i < zones.info[z1].count) {
if (zones.info[z1].frames[i].refcount) {
/* Skip busy frames */
i += 1 << zones.info[z1].frames[i].buddy_order;
} else {
/* Free frames, set refcount = 1
* (all free frames have refcount == 0, we need not
* to check the order)
*/
zones.info[z1].frames[i].refcount = 1;
zones.info[z1].frames[i].buddy_order = 0;
i++;
}
}
/* Add free blocks from the 2 original zones */
while (zone_can_alloc(z1, 0)) {
frame_idx = zone_frame_alloc(z1, 0);
frame = &z->frames[frame_idx];
/* Add free blocks from the original zone z1 */
while (zone_can_alloc(old_z1, 0)) {
/* Allocate from the original zone */
pfn_t frame_idx = zone_frame_alloc(old_z1, 0);
/* Free the frame from the merged zone */
frame_t *frame = &zones.info[z1].frames[frame_idx];
frame->refcount = 0;
buddy_system_free(z->buddy_system, &frame->buddy_link);
buddy_system_free(zones.info[z1].buddy_system, &frame->buddy_link);
}
while (zone_can_alloc(z2, 0)) {
frame_idx = zone_frame_alloc(z2, 0);
frame = &z->frames[frame_idx + (z2->base - z1->base)];
/* Add free blocks from the original zone z2 */
while (zone_can_alloc(&zones.info[z2], 0)) {
/* Allocate from the original zone */
pfn_t frame_idx = zone_frame_alloc(&zones.info[z2], 0);
/* Free the frame from the merged zone */
frame_t *frame = &zones.info[z1].frames[base_diff + frame_idx];
frame->refcount = 0;
buddy_system_free(z->buddy_system, &frame->buddy_link);
buddy_system_free(zones.info[z1].buddy_system, &frame->buddy_link);
}
}
 
/** Return old configuration frames into the zone.
*
* We have several cases
* - the conf. data is outside of zone -> exit, shall we call frame_free??
* - the conf. data was created by zone_create or
* updated with reduce_region -> free every frame
* We have two cases:
* - The configuration data is outside the zone
* -> do nothing (perhaps call frame_free?)
* - The configuration data was created by zone_create
* or updated by reduce_region -> free every frame
*
* @param newzone The actual zone where freeing should occur.
* @param oldzone Pointer to old zone configuration data that should
* be freed from new zone.
* @param znum The actual zone where freeing should occur.
* @param pfn Old zone configuration frame.
* @param count Old zone frame count.
*
*/
static void return_config_frames(zone_t *newzone, zone_t *oldzone)
static void return_config_frames(size_t znum, pfn_t pfn, size_t count)
{
pfn_t pfn;
frame_t *frame;
count_t cframes;
unsigned int i;
 
pfn = ADDR2PFN((uintptr_t)KA2PA(oldzone));
cframes = SIZE2FRAMES(zone_conf_size(oldzone->count));
ASSERT(zone_flags_available(zones.info[znum].flags));
if (pfn < newzone->base || pfn >= newzone->base + newzone->count)
size_t cframes = SIZE2FRAMES(zone_conf_size(count));
if ((pfn < zones.info[znum].base)
|| (pfn >= zones.info[znum].base + zones.info[znum].count))
return;
frame_t *frame __attribute__ ((unused));
 
frame = &newzone->frames[pfn - newzone->base];
frame = &zones.info[znum].frames[pfn - zones.info[znum].base];
ASSERT(!frame->buddy_order);
 
size_t i;
for (i = 0; i < cframes; i++) {
newzone->busy_count++;
zone_frame_free(newzone, pfn+i-newzone->base);
zones.info[znum].busy_count++;
zone_frame_free(&zones.info[znum],
pfn - zones.info[znum].base + i);
}
}
 
/** Reduce allocated block to count of order 0 frames.
*
* The allocated block need 2^order frames of space. Reduce all frames
* in block to order 0 and free the unneeded frames. This means, that
* when freeing the previously allocated block starting with frame_idx,
* The allocated block needs 2^order frames. Reduce all frames
* in the block to order 0 and free the unneeded frames. This means that
* when freeing the previously allocated block starting with frame_idx,
* you have to free every frame.
*
* @param zone
* @param frame_idx Index to block.
* @param count Allocated space in block.
* @param znum Zone.
* @param frame_idx Index the first frame of the block.
* @param count Allocated frames in block.
*
*/
static void zone_reduce_region(zone_t *zone, pfn_t frame_idx, count_t count)
static void zone_reduce_region(size_t znum, pfn_t frame_idx, size_t count)
{
count_t i;
uint8_t order;
frame_t *frame;
ASSERT(zone_flags_available(zones.info[znum].flags));
ASSERT(frame_idx + count < zones.info[znum].count);
ASSERT(frame_idx + count < zone->count);
 
order = zone->frames[frame_idx].buddy_order;
ASSERT((count_t) (1 << order) >= count);
 
uint8_t order = zones.info[znum].frames[frame_idx].buddy_order;
ASSERT((size_t) (1 << order) >= count);
/* Reduce all blocks to order 0 */
for (i = 0; i < (count_t) (1 << order); i++) {
frame = &zone->frames[i + frame_idx];
size_t i;
for (i = 0; i < (size_t) (1 << order); i++) {
frame_t *frame = &zones.info[znum].frames[i + frame_idx];
frame->buddy_order = 0;
if (!frame->refcount)
frame->refcount = 1;
ASSERT(frame->refcount == 1);
}
/* Free unneeded frames */
for (i = count; i < (count_t) (1 << order); i++) {
zone_frame_free(zone, i + frame_idx);
}
for (i = count; i < (size_t) (1 << order); i++)
zone_frame_free(&zones.info[znum], i + frame_idx);
}
 
/** Merge zones z1 and z2.
*
* - the zones must be 2 zones with no zone existing in between,
* which means that z2 = z1+1
* The merged zones must be 2 zones with no zone existing in between
* (which means that z2 = z1 + 1). Both zones must be available zones
* with the same flags.
*
* - When you create a new zone, the frame allocator configuration does
* not to be 2^order size. Once the allocator is running it is no longer
* possible, merged configuration data occupies more space :-/
* When you create a new zone, the frame allocator configuration does
* not to be 2^order size. Once the allocator is running it is no longer
* possible, merged configuration data occupies more space :-/
*
* The function uses
*
*/
void zone_merge(unsigned int z1, unsigned int z2)
bool zone_merge(size_t z1, size_t z2)
{
ipl_t ipl;
zone_t *zone1, *zone2, *newzone;
unsigned int cframes;
uint8_t order;
unsigned int i;
pfn_t pfn;
 
ipl = interrupts_disable();
ipl_t ipl = interrupts_disable();
spinlock_lock(&zones.lock);
 
if ((z1 >= zones.count) || (z2 >= zones.count))
bool ret = true;
/* We can join only 2 zones with none existing inbetween,
* the zones have to be available and with the same
* set of flags
*/
if ((z1 >= zones.count) || (z2 >= zones.count)
|| (z2 - z1 != 1)
|| (!zone_flags_available(zones.info[z1].flags))
|| (!zone_flags_available(zones.info[z2].flags))
|| (zones.info[z1].flags != zones.info[z2].flags)) {
ret = false;
goto errout;
/* We can join only 2 zones with none existing inbetween */
if (z2 - z1 != 1)
goto errout;
 
zone1 = zones.info[z1];
zone2 = zones.info[z2];
spinlock_lock(&zone1->lock);
spinlock_lock(&zone2->lock);
 
cframes = SIZE2FRAMES(zone_conf_size(zone2->base + zone2->count -
zone1->base));
}
pfn_t cframes = SIZE2FRAMES(zone_conf_size(
zones.info[z2].base - zones.info[z1].base
+ zones.info[z2].count));
uint8_t order;
if (cframes == 1)
order = 0;
else
else
order = fnzb(cframes - 1) + 1;
 
/* Allocate zonedata inside one of the zones */
if (zone_can_alloc(zone1, order))
pfn = zone1->base + zone_frame_alloc(zone1, order);
else if (zone_can_alloc(zone2, order))
pfn = zone2->base + zone_frame_alloc(zone2, order);
else
goto errout2;
 
newzone = (zone_t *) PA2KA(PFN2ADDR(pfn));
 
_zone_merge(newzone, zone1, zone2);
 
/* Allocate merged zone data inside one of the zones */
pfn_t pfn;
if (zone_can_alloc(&zones.info[z1], order)) {
pfn = zones.info[z1].base + zone_frame_alloc(&zones.info[z1], order);
} else if (zone_can_alloc(&zones.info[z2], order)) {
pfn = zones.info[z2].base + zone_frame_alloc(&zones.info[z2], order);
} else {
ret = false;
goto errout;
}
/* Preserve original data from z1 */
zone_t old_z1 = zones.info[z1];
old_z1.buddy_system->data = (void *) &old_z1;
/* Do zone merging */
buddy_system_t *buddy = (buddy_system_t *) PA2KA(PFN2ADDR(pfn));
zone_merge_internal(z1, z2, &old_z1, buddy);
/* Free unneeded config frames */
zone_reduce_region(newzone, pfn - newzone->base, cframes);
zone_reduce_region(z1, pfn - zones.info[z1].base, cframes);
/* Subtract zone information from busy frames */
newzone->busy_count -= cframes;
 
/* Replace existing zones in zoneinfo list */
zones.info[z1] = newzone;
for (i = z2 + 1; i < zones.count; i++)
zones.info[z1].busy_count -= cframes;
/* Free old zone information */
return_config_frames(z1,
ADDR2PFN(KA2PA((uintptr_t) old_z1.frames)), old_z1.count);
return_config_frames(z1,
ADDR2PFN(KA2PA((uintptr_t) zones.info[z2].frames)),
zones.info[z2].count);
/* Move zones down */
size_t i;
for (i = z2 + 1; i < zones.count; i++) {
zones.info[i - 1] = zones.info[i];
zones.info[i - 1].buddy_system->data =
(void *) &zones.info[i - 1];
}
zones.count--;
 
/* Free old zone information */
return_config_frames(newzone, zone1);
return_config_frames(newzone, zone2);
errout2:
/* Nobody is allowed to enter to zone, so we are safe
* to touch the spinlocks last time */
spinlock_unlock(&zone1->lock);
spinlock_unlock(&zone2->lock);
errout:
spinlock_unlock(&zones.lock);
interrupts_restore(ipl);
return ret;
}
 
/** Merge all zones into one big zone.
/** Merge all mergeable zones into one big zone.
*
* It is reasonable to do this on systems whose bios reports parts in chunks,
* so that we could have 1 zone (it's faster).
* It is reasonable to do this on systems where
* BIOS reports parts in chunks, so that we could
* have 1 zone (it's faster).
*
*/
void zone_merge_all(void)
{
int count = zones.count;
 
while (zones.count > 1 && --count) {
zone_merge(0, 1);
break;
size_t i = 0;
while (i < zones.count) {
if (!zone_merge(i, i + 1))
i++;
}
}
 
/** Create new frame zone.
*
* @param start Physical address of the first frame within the zone.
* @param count Count of frames in zone.
* @param z Address of configuration information of zone.
* @param flags Zone flags.
* @param zone Zone to construct.
* @param buddy Address of buddy system configuration information.
* @param start Physical address of the first frame within the zone.
* @param count Count of frames in zone.
* @param flags Zone flags.
*
* @return Initialized zone.
* @return Initialized zone.
*
*/
static void zone_construct(pfn_t start, count_t count, zone_t *z, int flags)
static void zone_construct(zone_t *zone, buddy_system_t *buddy, pfn_t start, size_t count, zone_flags_t flags)
{
unsigned int i;
uint8_t max_order;
 
spinlock_initialize(&z->lock, "zone_lock");
z->base = start;
z->count = count;
 
/* Mask off flags that are calculated automatically. */
flags &= ~FRAME_LOW_4_GiB;
/* Determine calculated flags. */
if (z->base + count < (1ULL << (32 - FRAME_WIDTH))) /* 4 GiB */
flags |= FRAME_LOW_4_GiB;
 
z->flags = flags;
 
z->free_count = count;
z->busy_count = 0;
 
/*
* Compute order for buddy system, initialize
*/
max_order = fnzb(count);
z->buddy_system = (buddy_system_t *)&z[1];
zone->base = start;
zone->count = count;
zone->flags = flags;
zone->free_count = count;
zone->busy_count = 0;
zone->buddy_system = buddy;
buddy_system_create(z->buddy_system, max_order,
&zone_buddy_system_operations, (void *) z);
/* Allocate frames _after_ the conframe */
/* Check sizes */
z->frames = (frame_t *)((uint8_t *) z->buddy_system +
buddy_conf_size(max_order));
for (i = 0; i < count; i++) {
frame_initialize(&z->frames[i]);
}
/* Stuffing frames */
for (i = 0; i < count; i++) {
z->frames[i].refcount = 0;
buddy_system_free(z->buddy_system, &z->frames[i].buddy_link);
}
if (zone_flags_available(flags)) {
/*
* Compute order for buddy system and initialize
*/
uint8_t order = fnzb(count);
buddy_system_create(zone->buddy_system, order,
&zone_buddy_system_operations, (void *) zone);
/* Allocate frames _after_ the confframe */
/* Check sizes */
zone->frames = (frame_t *) ((uint8_t *) zone->buddy_system +
buddy_conf_size(order));
size_t i;
for (i = 0; i < count; i++)
frame_initialize(&zone->frames[i]);
/* Stuffing frames */
for (i = 0; i < count; i++) {
zone->frames[i].refcount = 0;
buddy_system_free(zone->buddy_system, &zone->frames[i].buddy_link);
}
} else
zone->frames = NULL;
}
 
/** Compute configuration data size for zone.
*
* @param count Size of zone in frames.
* @return Size of zone configuration info (in bytes).
* @param count Size of zone in frames.
*
* @return Size of zone configuration info (in bytes).
*
*/
uintptr_t zone_conf_size(count_t count)
uintptr_t zone_conf_size(size_t count)
{
int size = sizeof(zone_t) + count * sizeof(frame_t);
int max_order;
 
max_order = fnzb(count);
size += buddy_conf_size(max_order);
return size;
return (count * sizeof(frame_t) + buddy_conf_size(fnzb(count)));
}
 
/** Create and add zone to system.
*
* @param start First frame number (absolute).
* @param count Size of zone in frames.
* @param confframe Where configuration frames are supposed to be.
* Automatically checks, that we will not disturb the
* kernel and possibly init. If confframe is given
* _outside_ this zone, it is expected, that the area is
* already marked BUSY and big enough to contain
* zone_conf_size() amount of data. If the confframe is
* inside the area, the zone free frame information is
* modified not to include it.
* @param start First frame number (absolute).
* @param count Size of zone in frames.
* @param confframe Where configuration frames are supposed to be.
* Automatically checks, that we will not disturb the
* kernel and possibly init. If confframe is given
* _outside_ this zone, it is expected, that the area is
* already marked BUSY and big enough to contain
* zone_conf_size() amount of data. If the confframe is
* inside the area, the zone free frame information is
* modified not to include it.
*
* @return Zone number or -1 on error.
* @return Zone number or -1 on error.
*
*/
int zone_create(pfn_t start, count_t count, pfn_t confframe, int flags)
size_t zone_create(pfn_t start, size_t count, pfn_t confframe, zone_flags_t flags)
{
zone_t *z;
uintptr_t addr;
count_t confcount;
unsigned int i;
int znum;
 
/* Theoretically we could have here 0, practically make sure
* nobody tries to do that. If some platform requires, remove
* the assert
*/
ASSERT(confframe);
/* If conframe is supposed to be inside our zone, then make sure
* it does not span kernel & init
*/
confcount = SIZE2FRAMES(zone_conf_size(count));
if (confframe >= start && confframe < start + count) {
for (; confframe < start + count; confframe++) {
addr = PFN2ADDR(confframe);
if (overlaps(addr, PFN2ADDR(confcount),
KA2PA(config.base), config.kernel_size))
continue;
if (overlaps(addr, PFN2ADDR(confcount),
KA2PA(config.stack_base), config.stack_size))
continue;
bool overlap = false;
count_t i;
for (i = 0; i < init.cnt; i++)
ipl_t ipl = interrupts_disable();
spinlock_lock(&zones.lock);
if (zone_flags_available(flags)) { /* Create available zone */
/* Theoretically we could have NULL here, practically make sure
* nobody tries to do that. If some platform requires, remove
* the assert
*/
ASSERT(confframe != NULL);
/* If confframe is supposed to be inside our zone, then make sure
* it does not span kernel & init
*/
size_t confcount = SIZE2FRAMES(zone_conf_size(count));
if ((confframe >= start) && (confframe < start + count)) {
for (; confframe < start + count; confframe++) {
uintptr_t addr = PFN2ADDR(confframe);
if (overlaps(addr, PFN2ADDR(confcount),
KA2PA(init.tasks[i].addr),
init.tasks[i].size)) {
overlap = true;
break;
}
if (overlap)
continue;
KA2PA(config.base), config.kernel_size))
continue;
if (overlaps(addr, PFN2ADDR(confcount),
KA2PA(config.stack_base), config.stack_size))
continue;
bool overlap = false;
size_t i;
for (i = 0; i < init.cnt; i++)
if (overlaps(addr, PFN2ADDR(confcount),
KA2PA(init.tasks[i].addr),
init.tasks[i].size)) {
overlap = true;
break;
}
if (overlap)
continue;
break;
}
break;
if (confframe >= start + count)
panic("Cannot find configuration data for zone.");
}
if (confframe >= start + count)
panic("Cannot find configuration data for zone.");
size_t znum = zones_insert_zone(start, count);
if (znum == (size_t) -1) {
spinlock_unlock(&zones.lock);
interrupts_restore(ipl);
return (size_t) -1;
}
buddy_system_t *buddy = (buddy_system_t *) PA2KA(PFN2ADDR(confframe));
zone_construct(&zones.info[znum], buddy, start, count, flags);
/* If confdata in zone, mark as unavailable */
if ((confframe >= start) && (confframe < start + count)) {
size_t i;
for (i = confframe; i < confframe + confcount; i++)
zone_mark_unavailable(&zones.info[znum],
i - zones.info[znum].base);
}
spinlock_unlock(&zones.lock);
interrupts_restore(ipl);
return znum;
}
 
z = (zone_t *) PA2KA(PFN2ADDR(confframe));
zone_construct(start, count, z, flags);
znum = zones_add_zone(z);
if (znum == -1)
return -1;
 
mutex_lock(&mem_avail_mtx);
mem_avail_frames += count;
mutex_unlock(&mem_avail_mtx);
 
/* If confdata in zone, mark as unavailable */
if (confframe >= start && confframe < start + count)
for (i = confframe; i < confframe + confcount; i++) {
zone_mark_unavailable(z, i - z->base);
}
/* Non-available zone */
size_t znum = zones_insert_zone(start, count);
if (znum == (size_t) -1) {
spinlock_unlock(&zones.lock);
interrupts_restore(ipl);
return (size_t) -1;
}
zone_construct(&zones.info[znum], NULL, start, count, flags);
spinlock_unlock(&zones.lock);
interrupts_restore(ipl);
return znum;
}
 
/***************************************/
/*******************/
/* Frame functions */
/*******************/
 
/** Set parent of frame. */
void frame_set_parent(pfn_t pfn, void *data, unsigned int hint)
void frame_set_parent(pfn_t pfn, void *data, size_t hint)
{
zone_t *zone = find_zone_and_lock(pfn, &hint);
 
ASSERT(zone);
 
zone_get_frame(zone, pfn - zone->base)->parent = data;
spinlock_unlock(&zone->lock);
ipl_t ipl = interrupts_disable();
spinlock_lock(&zones.lock);
size_t znum = find_zone(pfn, 1, hint);
ASSERT(znum != (size_t) -1);
zone_get_frame(&zones.info[znum],
pfn - zones.info[znum].base)->parent = data;
spinlock_unlock(&zones.lock);
interrupts_restore(ipl);
}
 
void *frame_get_parent(pfn_t pfn, unsigned int hint)
void *frame_get_parent(pfn_t pfn, size_t hint)
{
zone_t *zone = find_zone_and_lock(pfn, &hint);
void *res;
 
ASSERT(zone);
res = zone_get_frame(zone, pfn - zone->base)->parent;
ipl_t ipl = interrupts_disable();
spinlock_lock(&zones.lock);
spinlock_unlock(&zone->lock);
size_t znum = find_zone(pfn, 1, hint);
ASSERT(znum != (size_t) -1);
void *res = zone_get_frame(&zones.info[znum],
pfn - zones.info[znum].base)->parent;
spinlock_unlock(&zones.lock);
interrupts_restore(ipl);
return res;
}
 
/** Allocate power-of-two frames of physical memory.
*
* @param order Allocate exactly 2^order frames.
* @param flags Flags for host zone selection and address processing.
* @param pzone Preferred zone.
* @param order Allocate exactly 2^order frames.
* @param flags Flags for host zone selection and address processing.
* @param pzone Preferred zone.
*
* @return Physical address of the allocated frame.
* @return Physical address of the allocated frame.
*
*/
void *frame_alloc_generic(uint8_t order, int flags, unsigned int *pzone)
void *frame_alloc_generic(uint8_t order, frame_flags_t flags, size_t *pzone)
{
size_t size = ((size_t) 1) << order;
ipl_t ipl;
int freed;
pfn_t v;
zone_t *zone;
unsigned long gen = 0;
size_t hint = pzone ? (*pzone) : 0;
loop:
ipl = interrupts_disable();
spinlock_lock(&zones.lock);
/*
* First, find suitable frame zone.
*/
zone = find_free_zone_and_lock(order, flags, pzone);
size_t znum = find_free_zone(order,
FRAME_TO_ZONE_FLAGS(flags), hint);
/* If no memory, reclaim some slab memory,
if it does not help, reclaim all */
if (!zone && !(flags & FRAME_NO_RECLAIM)) {
freed = slab_reclaim(0);
if (freed)
zone = find_free_zone_and_lock(order, flags, pzone);
if (!zone) {
if ((znum == (size_t) -1) && (!(flags & FRAME_NO_RECLAIM))) {
spinlock_unlock(&zones.lock);
interrupts_restore(ipl);
size_t freed = slab_reclaim(0);
ipl = interrupts_disable();
spinlock_lock(&zones.lock);
if (freed > 0)
znum = find_free_zone(order,
FRAME_TO_ZONE_FLAGS(flags), hint);
if (znum == (size_t) -1) {
spinlock_unlock(&zones.lock);
interrupts_restore(ipl);
freed = slab_reclaim(SLAB_RECLAIM_ALL);
if (freed)
zone = find_free_zone_and_lock(order, flags,
pzone);
ipl = interrupts_disable();
spinlock_lock(&zones.lock);
if (freed > 0)
znum = find_free_zone(order,
FRAME_TO_ZONE_FLAGS(flags), hint);
}
}
if (!zone) {
/*
* Sleep until some frames are available again.
*/
if (znum == (size_t) -1) {
if (flags & FRAME_ATOMIC) {
spinlock_unlock(&zones.lock);
interrupts_restore(ipl);
return 0;
return NULL;
}
#ifdef CONFIG_DEBUG
unsigned long avail;
 
mutex_lock(&mem_avail_mtx);
avail = mem_avail_frames;
mutex_unlock(&mem_avail_mtx);
 
printf("Thread %" PRIu64 " waiting for %u frames, "
"%u available.\n", THREAD->tid, 1ULL << order, avail);
size_t avail = total_frames_free();
#endif
 
spinlock_unlock(&zones.lock);
interrupts_restore(ipl);
/*
* Sleep until some frames are available again.
*/
#ifdef CONFIG_DEBUG
printf("Thread %" PRIu64 " waiting for %" PRIs " frames, "
"%" PRIs " available.\n", THREAD->tid, size, avail);
#endif
mutex_lock(&mem_avail_mtx);
while ((mem_avail_frames < (1ULL << order)) ||
gen == mem_avail_gen)
if (mem_avail_req > 0)
mem_avail_req = min(mem_avail_req, size);
else
mem_avail_req = size;
size_t gen = mem_avail_gen;
while (gen == mem_avail_gen)
condvar_wait(&mem_avail_cv, &mem_avail_mtx);
gen = mem_avail_gen;
mutex_unlock(&mem_avail_mtx);
 
#ifdef CONFIG_DEBUG
mutex_lock(&mem_avail_mtx);
avail = mem_avail_frames;
mutex_unlock(&mem_avail_mtx);
 
printf("Thread %" PRIu64 " woken up, %u frames available.\n",
THREAD->tid, avail);
printf("Thread %" PRIu64 " woken up.\n", THREAD->tid);
#endif
 
interrupts_restore(ipl);
goto loop;
}
v = zone_frame_alloc(zone, order);
v += zone->base;
 
spinlock_unlock(&zone->lock);
pfn_t pfn = zone_frame_alloc(&zones.info[znum], order)
+ zones.info[znum].base;
mutex_lock(&mem_avail_mtx);
mem_avail_frames -= (1ULL << order);
mutex_unlock(&mem_avail_mtx);
 
spinlock_unlock(&zones.lock);
interrupts_restore(ipl);
 
if (pzone)
*pzone = znum;
if (flags & FRAME_KA)
return (void *)PA2KA(PFN2ADDR(v));
return (void *)PFN2ADDR(v);
return (void *) PA2KA(PFN2ADDR(pfn));
return (void *) PFN2ADDR(pfn);
}
 
/** Free a frame.
*
* Find respective frame structure for supplied physical frame address.
* Decrement frame reference count.
* If it drops to zero, move the frame structure to free list.
* Decrement frame reference count. If it drops to zero, move the frame
* structure to free list.
*
* @param frame Physical Address of of the frame to be freed.
* @param frame Physical Address of of the frame to be freed.
*
*/
void frame_free(uintptr_t frame)
{
ipl_t ipl;
zone_t *zone;
pfn_t pfn = ADDR2PFN(frame);
 
ipl = interrupts_disable();
 
ipl_t ipl = interrupts_disable();
spinlock_lock(&zones.lock);
/*
* First, find host frame zone for addr.
*/
zone = find_zone_and_lock(pfn, NULL);
ASSERT(zone);
pfn_t pfn = ADDR2PFN(frame);
size_t znum = find_zone(pfn, 1, NULL);
zone_frame_free(zone, pfn - zone->base);
ASSERT(znum != (size_t) -1);
spinlock_unlock(&zone->lock);
zone_frame_free(&zones.info[znum], pfn - zones.info[znum].base);
spinlock_unlock(&zones.lock);
interrupts_restore(ipl);
/*
* Signal that some memory has been freed.
*/
mutex_lock(&mem_avail_mtx);
mem_avail_frames++;
mem_avail_gen++;
condvar_broadcast(&mem_avail_cv);
if (mem_avail_req > 0)
mem_avail_req--;
if (mem_avail_req == 0) {
mem_avail_gen++;
condvar_broadcast(&mem_avail_cv);
}
mutex_unlock(&mem_avail_mtx);
 
interrupts_restore(ipl);
}
 
/** Add reference to frame.
1115,44 → 1123,45
* Find respective frame structure for supplied PFN and
* increment frame reference count.
*
* @param pfn Frame number of the frame to be freed.
* @param pfn Frame number of the frame to be freed.
*
*/
void frame_reference_add(pfn_t pfn)
{
ipl_t ipl;
zone_t *zone;
frame_t *frame;
 
ipl = interrupts_disable();
ipl_t ipl = interrupts_disable();
spinlock_lock(&zones.lock);
/*
* First, find host frame zone for addr.
*/
zone = find_zone_and_lock(pfn, NULL);
ASSERT(zone);
size_t znum = find_zone(pfn, 1, NULL);
frame = &zone->frames[pfn - zone->base];
frame->refcount++;
ASSERT(znum != (size_t) -1);
spinlock_unlock(&zone->lock);
zones.info[znum].frames[pfn - zones.info[znum].base].refcount++;
spinlock_unlock(&zones.lock);
interrupts_restore(ipl);
}
 
/** Mark given range unavailable in frame zones. */
void frame_mark_unavailable(pfn_t start, count_t count)
void frame_mark_unavailable(pfn_t start, size_t count)
{
unsigned int i;
zone_t *zone;
unsigned int prefzone = 0;
ipl_t ipl = interrupts_disable();
spinlock_lock(&zones.lock);
size_t i;
for (i = 0; i < count; i++) {
zone = find_zone_and_lock(start + i, &prefzone);
if (!zone) /* PFN not found */
size_t znum = find_zone(start + i, 1, 0);
if (znum == (size_t) -1) /* PFN not found */
continue;
zone_mark_unavailable(zone, start + i - zone->base);
 
spinlock_unlock(&zone->lock);
zone_mark_unavailable(&zones.info[znum],
start + i - zones.info[znum].base);
}
spinlock_unlock(&zones.lock);
interrupts_restore(ipl);
}
 
/** Initialize physical memory management. */
1164,6 → 1173,7
mutex_initialize(&mem_avail_mtx, MUTEX_ACTIVE);
condvar_initialize(&mem_avail_cv);
}
/* Tell the architecture to create some memory */
frame_arch_init();
if (config.cpu_active == 1) {
1172,41 → 1182,34
frame_mark_unavailable(ADDR2PFN(KA2PA(config.stack_base)),
SIZE2FRAMES(config.stack_size));
count_t i;
size_t i;
for (i = 0; i < init.cnt; i++) {
pfn_t pfn = ADDR2PFN(KA2PA(init.tasks[i].addr));
frame_mark_unavailable(pfn,
SIZE2FRAMES(init.tasks[i].size));
}
 
if (ballocs.size)
frame_mark_unavailable(ADDR2PFN(KA2PA(ballocs.base)),
SIZE2FRAMES(ballocs.size));
 
/* Black list first frame, as allocating NULL would
* fail in some places */
* fail in some places
*/
frame_mark_unavailable(0, 1);
}
}
 
 
/** Return total size of all zones. */
uint64_t zone_total_size(void)
{
zone_t *zone = NULL;
unsigned int i;
ipl_t ipl;
uint64_t total = 0;
 
ipl = interrupts_disable();
ipl_t ipl = interrupts_disable();
spinlock_lock(&zones.lock);
for (i = 0; i < zones.count; i++) {
zone = zones.info[i];
spinlock_lock(&zone->lock);
total += (uint64_t) FRAMES2SIZE(zone->count);
spinlock_unlock(&zone->lock);
}
uint64_t total = 0;
size_t i;
for (i = 0; i < zones.count; i++)
total += (uint64_t) FRAMES2SIZE(zones.info[i].count);
spinlock_unlock(&zones.lock);
interrupts_restore(ipl);
1217,18 → 1220,14
/** Prints list of zones. */
void zone_print_list(void)
{
zone_t *zone = NULL;
unsigned int i;
ipl_t ipl;
 
#ifdef __32_BITS__
printf("# base address free frames busy frames\n");
printf("-- ------------ ------------ ------------\n");
#ifdef __32_BITS__
printf("# base address frames flags free frames busy frames\n");
printf("-- ------------ ------------ -------- ------------ ------------\n");
#endif
 
#ifdef __64_BITS__
printf("# base address free frames busy frames\n");
printf("-- -------------------- ------------ ------------\n");
printf("# base address frames flags free frames busy frames\n");
printf("-- -------------------- ------------ -------- ------------ ------------\n");
#endif
/*
1241,13 → 1240,10
* we may end up with inaccurate output (e.g. a zone being skipped from
* the listing).
*/
 
for (i = 0; ; i++) {
uintptr_t base;
count_t free_count;
count_t busy_count;
 
ipl = interrupts_disable();
size_t i;
for (i = 0;; i++) {
ipl_t ipl = interrupts_disable();
spinlock_lock(&zones.lock);
if (i >= zones.count) {
1255,56 → 1251,61
interrupts_restore(ipl);
break;
}
 
zone = zones.info[i];
spinlock_lock(&zone->lock);
 
base = PFN2ADDR(zone->base);
free_count = zone->free_count;
busy_count = zone->busy_count;
 
spinlock_unlock(&zone->lock);
uintptr_t base = PFN2ADDR(zones.info[i].base);
size_t count = zones.info[i].count;
zone_flags_t flags = zones.info[i].flags;
size_t free_count = zones.info[i].free_count;
size_t busy_count = zones.info[i].busy_count;
spinlock_unlock(&zones.lock);
interrupts_restore(ipl);
 
bool available = zone_flags_available(flags);
printf("%-2" PRIs, i);
#ifdef __32_BITS__
printf("%-2u %10p %12" PRIc " %12" PRIc "\n", i, base,
free_count, busy_count);
printf(" %10p", base);
#endif
 
#ifdef __64_BITS__
printf("%-2u %18p %12" PRIc " %12" PRIc "\n", i, base,
free_count, busy_count);
printf(" %18p", base);
#endif
printf(" %12" PRIs " %c%c%c ", count,
available ? 'A' : ' ',
(flags & ZONE_RESERVED) ? 'R' : ' ',
(flags & ZONE_FIRMWARE) ? 'F' : ' ');
if (available)
printf("%12" PRIs " %12" PRIs,
free_count, busy_count);
printf("\n");
}
}
 
/** Prints zone details.
*
* @param num Zone base address or zone number.
* @param num Zone base address or zone number.
*
*/
void zone_print_one(unsigned int num)
void zone_print_one(size_t num)
{
zone_t *zone = NULL;
ipl_t ipl;
unsigned int i;
uintptr_t base;
count_t count;
count_t busy_count;
count_t free_count;
 
ipl = interrupts_disable();
ipl_t ipl = interrupts_disable();
spinlock_lock(&zones.lock);
 
size_t znum = (size_t) -1;
size_t i;
for (i = 0; i < zones.count; i++) {
if ((i == num) || (PFN2ADDR(zones.info[i]->base) == num)) {
zone = zones.info[i];
if ((i == num) || (PFN2ADDR(zones.info[i].base) == num)) {
znum = i;
break;
}
}
if (!zone) {
if (znum == (size_t) -1) {
spinlock_unlock(&zones.lock);
interrupts_restore(ipl);
printf("Zone not found.\n");
1311,24 → 1312,33
return;
}
spinlock_lock(&zone->lock);
base = PFN2ADDR(zone->base);
count = zone->count;
busy_count = zone->busy_count;
free_count = zone->free_count;
spinlock_unlock(&zone->lock);
uintptr_t base = PFN2ADDR(zones.info[i].base);
zone_flags_t flags = zones.info[i].flags;
size_t count = zones.info[i].count;
size_t free_count = zones.info[i].free_count;
size_t busy_count = zones.info[i].busy_count;
spinlock_unlock(&zones.lock);
interrupts_restore(ipl);
 
bool available = zone_flags_available(flags);
printf("Zone number: %" PRIs "\n", znum);
printf("Zone base address: %p\n", base);
printf("Zone size: %" PRIc " frames (%" PRIs " KiB)\n", count,
printf("Zone size: %" PRIs " frames (%" PRIs " KiB)\n", count,
SIZE2KB(FRAMES2SIZE(count)));
printf("Allocated space: %" PRIc " frames (%" PRIs " KiB)\n",
busy_count, SIZE2KB(FRAMES2SIZE(busy_count)));
printf("Available space: %" PRIc " frames (%" PRIs " KiB)\n",
free_count, SIZE2KB(FRAMES2SIZE(free_count)));
printf("Zone flags: %c%c%c\n",
available ? 'A' : ' ',
(flags & ZONE_RESERVED) ? 'R' : ' ',
(flags & ZONE_FIRMWARE) ? 'F' : ' ');
if (available) {
printf("Allocated space: %" PRIs " frames (%" PRIs " KiB)\n",
busy_count, SIZE2KB(FRAMES2SIZE(busy_count)));
printf("Available space: %" PRIs " frames (%" PRIs " KiB)\n",
free_count, SIZE2KB(FRAMES2SIZE(free_count)));
}
}
 
/** @}
*/
 
/branches/arm/kernel/generic/src/mm/backend_elf.c
82,7 → 82,7
elf_segment_header_t *entry = area->backend_data.segment;
btree_node_t *leaf;
uintptr_t base, frame, page, start_anon;
index_t i;
size_t i;
bool dirty = false;
 
if (!as_area_check_access(area, access))
129,7 → 129,7
page_mapping_insert(AS, addr, frame,
as_area_get_flags(area));
if (!used_space_insert(area, page, 1))
panic("Could not insert used space.\n");
panic("Cannot insert used space.");
mutex_unlock(&area->sh_info->lock);
return AS_PF_OK;
}
214,7 → 214,7
 
page_mapping_insert(AS, addr, frame, as_area_get_flags(area));
if (!used_space_insert(area, page, 1))
panic("Could not insert used space.\n");
panic("Cannot insert used space.");
 
return AS_PF_OK;
}
234,7 → 234,7
elf_header_t *elf = area->backend_data.elf;
elf_segment_header_t *entry = area->backend_data.segment;
uintptr_t base, start_anon;
index_t i;
size_t i;
 
ASSERT((page >= ALIGN_DOWN(entry->p_vaddr, PAGE_SIZE)) &&
(page < entry->p_vaddr + entry->p_memsz));
304,7 → 304,7
for (i = 0; i < node->keys; i++) {
uintptr_t base = node->key[i];
count_t count = (count_t) node->value[i];
size_t count = (size_t) node->value[i];
unsigned int j;
/*
/branches/arm/kernel/generic/src/mm/buddy.c
46,7 → 46,7
#include <macros.h>
 
/** Return size needed for the buddy configuration data. */
size_t buddy_conf_size(int max_order)
size_t buddy_conf_size(size_t max_order)
{
return sizeof(buddy_system_t) + (max_order + 1) * sizeof(link_t);
}
/branches/arm/kernel/generic/src/mm/backend_phys.c
77,7 → 77,7
page_mapping_insert(AS, addr, base + (addr - area->base),
as_area_get_flags(area));
if (!used_space_insert(area, ALIGN_DOWN(addr, PAGE_SIZE), 1))
panic("Could not insert used space.\n");
panic("Cannot insert used space.");
 
return AS_PF_OK;
}
/branches/arm/kernel/generic/src/ipc/event.c
0,0 → 1,154
/*
* Copyright (c) 2009 Jakub Jermar
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* - The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
 
/** @addtogroup generic
* @{
*/
/**
* @file
* @brief Kernel event notifications.
*/
 
#include <ipc/event.h>
#include <ipc/event_types.h>
#include <mm/slab.h>
#include <arch/types.h>
#include <synch/spinlock.h>
#include <console/console.h>
#include <memstr.h>
#include <errno.h>
#include <arch.h>
 
/**
* The events array.
* Arranging the events in this two-dimensional array should decrease the
* likelyhood of cacheline ping-pong.
*/
static event_t events[EVENT_END];
 
/** Initialize kernel events. */
void event_init(void)
{
unsigned int i;
for (i = 0; i < EVENT_END; i++) {
spinlock_initialize(&events[i].lock, "event.lock");
events[i].answerbox = NULL;
events[i].counter = 0;
events[i].method = 0;
}
}
 
static int event_subscribe(event_type_t evno, unative_t method,
answerbox_t *answerbox)
{
if (evno >= EVENT_END)
return ELIMIT;
spinlock_lock(&events[evno].lock);
int res;
if (events[evno].answerbox == NULL) {
events[evno].answerbox = answerbox;
events[evno].method = method;
events[evno].counter = 0;
res = EOK;
} else
res = EEXISTS;
spinlock_unlock(&events[evno].lock);
return res;
}
 
unative_t sys_event_subscribe(unative_t evno, unative_t method)
{
return (unative_t) event_subscribe((event_type_t) evno, (unative_t)
method, &TASK->answerbox);
}
 
bool event_is_subscribed(event_type_t evno)
{
bool res;
ASSERT(evno < EVENT_END);
spinlock_lock(&events[evno].lock);
res = events[evno].answerbox != NULL;
spinlock_unlock(&events[evno].lock);
return res;
}
 
 
void event_cleanup_answerbox(answerbox_t *answerbox)
{
unsigned int i;
for (i = 0; i < EVENT_END; i++) {
spinlock_lock(&events[i].lock);
if (events[i].answerbox == answerbox) {
events[i].answerbox = NULL;
events[i].counter = 0;
events[i].method = 0;
}
spinlock_unlock(&events[i].lock);
}
}
 
void event_notify(event_type_t evno, unative_t a1, unative_t a2, unative_t a3,
unative_t a4, unative_t a5)
{
ASSERT(evno < EVENT_END);
spinlock_lock(&events[evno].lock);
if (events[evno].answerbox != NULL) {
call_t *call = ipc_call_alloc(FRAME_ATOMIC);
if (call) {
call->flags |= IPC_CALL_NOTIF;
call->priv = ++events[evno].counter;
IPC_SET_METHOD(call->data, events[evno].method);
IPC_SET_ARG1(call->data, a1);
IPC_SET_ARG2(call->data, a2);
IPC_SET_ARG3(call->data, a3);
IPC_SET_ARG4(call->data, a4);
IPC_SET_ARG5(call->data, a5);
spinlock_lock(&events[evno].answerbox->irq_lock);
list_append(&call->link, &events[evno].answerbox->irq_notifs);
spinlock_unlock(&events[evno].answerbox->irq_lock);
waitq_wakeup(&events[evno].answerbox->wq, WAKEUP_FIRST);
}
}
spinlock_unlock(&events[evno].lock);
}
 
/** @}
*/
Property changes:
Added: svn:mergeinfo
/branches/arm/kernel/generic/src/ipc/sysipc.c
93,6 → 93,8
static inline int method_is_forwardable(unative_t method)
{
switch (method) {
case IPC_M_CONNECTION_CLONE:
case IPC_M_CONNECT_ME:
case IPC_M_PHONE_HUNGUP:
/* This message is meant only for the original recipient. */
return 0;
140,6 → 142,8
static inline int answer_need_old(call_t *call)
{
switch (IPC_GET_METHOD(call->data)) {
case IPC_M_CONNECTION_CLONE:
case IPC_M_CONNECT_ME:
case IPC_M_CONNECT_TO_ME:
case IPC_M_CONNECT_ME_TO:
case IPC_M_SHARE_OUT:
182,9 → 186,48
if (!olddata)
return 0;
 
if (IPC_GET_METHOD(*olddata) == IPC_M_CONNECT_TO_ME) {
if (IPC_GET_METHOD(*olddata) == IPC_M_CONNECTION_CLONE) {
phoneid = IPC_GET_ARG1(*olddata);
phone_t *phone = &TASK->phones[phoneid];
if (IPC_GET_RETVAL(answer->data) != EOK) {
/*
* The recipient of the cloned phone rejected the offer.
* In this case, the connection was established at the
* request time and therefore we need to slam the phone.
* We don't merely hangup as that would result in
* sending IPC_M_HUNGUP to the third party on the
* other side of the cloned phone.
*/
mutex_lock(&phone->lock);
if (phone->state == IPC_PHONE_CONNECTED) {
spinlock_lock(&phone->callee->lock);
list_remove(&phone->link);
phone->state = IPC_PHONE_SLAMMED;
spinlock_unlock(&phone->callee->lock);
}
mutex_unlock(&phone->lock);
}
} else if (IPC_GET_METHOD(*olddata) == IPC_M_CONNECT_ME) {
phone_t *phone = (phone_t *)IPC_GET_ARG5(*olddata);
if (IPC_GET_RETVAL(answer->data) != EOK) {
/*
* The other party on the cloned phoned rejected our
* request for connection on the protocol level.
* We need to break the connection without sending
* IPC_M_HUNGUP back.
*/
mutex_lock(&phone->lock);
if (phone->state == IPC_PHONE_CONNECTED) {
spinlock_lock(&phone->callee->lock);
list_remove(&phone->link);
phone->state = IPC_PHONE_SLAMMED;
spinlock_unlock(&phone->callee->lock);
}
mutex_unlock(&phone->lock);
}
} else if (IPC_GET_METHOD(*olddata) == IPC_M_CONNECT_TO_ME) {
phoneid = IPC_GET_ARG5(*olddata);
if (IPC_GET_RETVAL(answer->data)) {
if (IPC_GET_RETVAL(answer->data) != EOK) {
/* The connection was not accepted */
phone_dealloc(phoneid);
} else {
196,7 → 239,7
}
} else if (IPC_GET_METHOD(*olddata) == IPC_M_CONNECT_ME_TO) {
/* If the users accepted call, connect */
if (!IPC_GET_RETVAL(answer->data)) {
if (IPC_GET_RETVAL(answer->data) == EOK) {
ipc_phone_connect((phone_t *) IPC_GET_ARG5(*olddata),
&TASK->answerbox);
}
293,6 → 336,26
return 0;
}
 
static void phones_lock(phone_t *p1, phone_t *p2)
{
if (p1 < p2) {
mutex_lock(&p1->lock);
mutex_lock(&p2->lock);
} else if (p1 > p2) {
mutex_lock(&p2->lock);
mutex_lock(&p1->lock);
} else {
mutex_lock(&p1->lock);
}
}
 
static void phones_unlock(phone_t *p1, phone_t *p2)
{
mutex_unlock(&p1->lock);
if (p1 != p2)
mutex_unlock(&p2->lock);
}
 
/** Called before the request is sent.
*
* @param call Call structure with the request.
308,8 → 371,39
int rc;
 
switch (IPC_GET_METHOD(call->data)) {
case IPC_M_CONNECTION_CLONE: {
phone_t *cloned_phone;
GET_CHECK_PHONE(cloned_phone, IPC_GET_ARG1(call->data),
return ENOENT);
phones_lock(cloned_phone, phone);
if ((cloned_phone->state != IPC_PHONE_CONNECTED) ||
phone->state != IPC_PHONE_CONNECTED) {
phones_unlock(cloned_phone, phone);
return EINVAL;
}
/*
* We can be pretty sure now that both tasks exist and we are
* connected to them. As we continue to hold the phone locks,
* we are effectively preventing them from finishing their
* potential cleanup.
*/
newphid = phone_alloc(phone->callee->task);
if (newphid < 0) {
phones_unlock(cloned_phone, phone);
return ELIMIT;
}
ipc_phone_connect(&phone->callee->task->phones[newphid],
cloned_phone->callee);
phones_unlock(cloned_phone, phone);
/* Set the new phone for the callee. */
IPC_SET_ARG1(call->data, newphid);
break;
}
case IPC_M_CONNECT_ME:
IPC_SET_ARG5(call->data, (unative_t) phone);
break;
case IPC_M_CONNECT_ME_TO:
newphid = phone_alloc();
newphid = phone_alloc(TASK);
if (newphid < 0)
return ELIMIT;
/* Set arg5 for server */
332,7 → 426,7
src = IPC_GET_ARG1(call->data);
size = IPC_GET_ARG2(call->data);
if ((size <= 0) || (size > DATA_XFER_LIMIT))
if (size > DATA_XFER_LIMIT)
return ELIMIT;
call->buffer = (uint8_t *) malloc(size, 0);
399,7 → 493,7
int phoneid;
 
if (IPC_GET_METHOD(call->data) == IPC_M_CONNECT_TO_ME) {
phoneid = phone_alloc();
phoneid = phone_alloc(TASK);
if (phoneid < 0) { /* Failed to allocate phone */
IPC_SET_RETVAL(call->data, ELIMIT);
ipc_answer(box, call);
455,10 → 549,17
IPC_SET_ARG5(call.data, 0);
 
if (!(res = request_preprocess(&call, phone))) {
#ifdef CONFIG_UDEBUG
udebug_stoppable_begin();
#endif
rc = ipc_call_sync(phone, &call);
#ifdef CONFIG_UDEBUG
udebug_stoppable_end();
#endif
if (rc != EOK)
return rc;
process_answer(&call);
 
} else {
IPC_SET_RETVAL(call.data, res);
}
495,7 → 596,13
GET_CHECK_PHONE(phone, phoneid, return ENOENT);
 
if (!(res = request_preprocess(&call, phone))) {
#ifdef CONFIG_UDEBUG
udebug_stoppable_begin();
#endif
rc = ipc_call_sync(phone, &call);
#ifdef CONFIG_UDEBUG
udebug_stoppable_end();
#endif
if (rc != EOK)
return rc;
process_answer(&call);
605,7 → 712,8
return (unative_t) call;
}
 
/** Forward a received call to another destination.
/** Forward a received call to another destination - common code for both the
* fast and the slow version.
*
* @param callid Hash of the call to forward.
* @param phoneid Phone handle to use for forwarding.
612,23 → 720,21
* @param method New method to use for the forwarded call.
* @param arg1 New value of the first argument for the forwarded call.
* @param arg2 New value of the second argument for the forwarded call.
* @param arg3 New value of the third argument for the forwarded call.
* @param arg4 New value of the fourth argument for the forwarded call.
* @param arg5 New value of the fifth argument for the forwarded call.
* @param mode Flags that specify mode of the forward operation.
* @param slow If true, arg3, arg4 and arg5 are considered. Otherwise
* the function considers only the fast version arguments:
* i.e. arg1 and arg2.
*
* @return Return 0 on succes, otherwise return an error code.
*
* In case the original method is a system method, ARG1, ARG2 and ARG3 are
* overwritten in the forwarded message with the new method and the new arg1 and
* arg2, respectively. Otherwise the METHOD, ARG1 and ARG2 are rewritten with
* the new method, arg1 and arg2, respectively. Also note there is a set of
* immutable methods, for which the new method and argument is not set and
* these values are ignored.
*
* Warning: When implementing support for changing additional payload
* arguments, make sure that ARG5 is not rewritten for certain
* system IPC
* Warning: Make sure that ARG5 is not rewritten for certain system IPC
*/
unative_t sys_ipc_forward_fast(unative_t callid, unative_t phoneid,
unative_t method, unative_t arg1, unative_t arg2, int mode)
static unative_t sys_ipc_forward_common(unative_t callid, unative_t phoneid,
unative_t method, unative_t arg1, unative_t arg2, unative_t arg3,
unative_t arg4, unative_t arg5, int mode, bool slow)
{
call_t *call;
phone_t *phone;
636,7 → 742,7
call = get_call(callid);
if (!call)
return ENOENT;
 
call->flags |= IPC_CALL_FORWARDED;
 
GET_CHECK_PHONE(phone, phoneid, {
653,8 → 759,8
 
/*
* Userspace is not allowed to change method of system methods on
* forward, allow changing ARG1, ARG2 and ARG3 by means of method,
* arg1 and arg2.
* forward, allow changing ARG1, ARG2, ARG3 and ARG4 by means of method,
* arg1, arg2 and arg3.
* If the method is immutable, don't change anything.
*/
if (!method_is_immutable(IPC_GET_METHOD(call->data))) {
665,10 → 771,22
IPC_SET_ARG1(call->data, method);
IPC_SET_ARG2(call->data, arg1);
IPC_SET_ARG3(call->data, arg2);
if (slow) {
IPC_SET_ARG4(call->data, arg3);
/*
* For system methods we deliberately don't
* overwrite ARG5.
*/
}
} else {
IPC_SET_METHOD(call->data, method);
IPC_SET_ARG1(call->data, arg1);
IPC_SET_ARG2(call->data, arg2);
if (slow) {
IPC_SET_ARG3(call->data, arg3);
IPC_SET_ARG4(call->data, arg4);
IPC_SET_ARG5(call->data, arg5);
}
}
}
 
675,6 → 793,64
return ipc_forward(call, phone, &TASK->answerbox, mode);
}
 
/** Forward a received call to another destination - fast version.
*
* @param callid Hash of the call to forward.
* @param phoneid Phone handle to use for forwarding.
* @param method New method to use for the forwarded call.
* @param arg1 New value of the first argument for the forwarded call.
* @param arg2 New value of the second argument for the forwarded call.
* @param mode Flags that specify mode of the forward operation.
*
* @return Return 0 on succes, otherwise return an error code.
*
* In case the original method is a system method, ARG1, ARG2 and ARG3 are
* overwritten in the forwarded message with the new method and the new
* arg1 and arg2, respectively. Otherwise the METHOD, ARG1 and ARG2 are
* rewritten with the new method, arg1 and arg2, respectively. Also note there
* is a set of immutable methods, for which the new method and arguments are not
* set and these values are ignored.
*/
unative_t sys_ipc_forward_fast(unative_t callid, unative_t phoneid,
unative_t method, unative_t arg1, unative_t arg2, int mode)
{
return sys_ipc_forward_common(callid, phoneid, method, arg1, arg2, 0, 0,
0, mode, false);
}
 
/** Forward a received call to another destination - slow version.
*
* @param callid Hash of the call to forward.
* @param phoneid Phone handle to use for forwarding.
* @param data Userspace address of the new IPC data.
* @param mode Flags that specify mode of the forward operation.
*
* @return Return 0 on succes, otherwise return an error code.
*
* This function is the slow verision of the sys_ipc_forward_fast interface.
* It can copy all five new arguments and the new method from the userspace.
* It naturally extends the functionality of the fast version. For system
* methods, it additionally stores the new value of arg3 to ARG4. For non-system
* methods, it additionally stores the new value of arg3, arg4 and arg5,
* respectively, to ARG3, ARG4 and ARG5, respectively.
*/
unative_t sys_ipc_forward_slow(unative_t callid, unative_t phoneid,
ipc_data_t *data, int mode)
{
ipc_data_t newdata;
int rc;
 
rc = copy_from_uspace(&newdata.args, &data->args,
sizeof(newdata.args));
if (rc != 0)
return (unative_t) rc;
 
return sys_ipc_forward_common(callid, phoneid,
IPC_GET_METHOD(newdata), IPC_GET_ARG1(newdata),
IPC_GET_ARG2(newdata), IPC_GET_ARG3(newdata),
IPC_GET_ARG4(newdata), IPC_GET_ARG5(newdata), mode, true);
}
 
/** Answer an IPC call - fast version.
*
* This function can handle only two return arguments of payload, but is faster
798,9 → 974,17
{
call_t *call;
 
restart:
restart:
 
#ifdef CONFIG_UDEBUG
udebug_stoppable_begin();
#endif
call = ipc_wait_for_call(&TASK->answerbox, usec,
flags | SYNCH_FLAGS_INTERRUPTIBLE);
 
#ifdef CONFIG_UDEBUG
udebug_stoppable_end();
#endif
if (!call)
return 0;
 
846,6 → 1030,21
/* Include phone address('id') of the caller in the request,
* copy whole call->data, not only call->data.args */
if (STRUCT_TO_USPACE(calldata, &call->data)) {
/*
* The callee will not receive this call and no one else has
* a chance to answer it. Reply with the EPARTY error code.
*/
ipc_data_t saved_data;
int saveddata = 0;
 
if (answer_need_old(call)) {
memcpy(&saved_data, &call->data, sizeof(call->data));
saveddata = 1;
}
IPC_SET_RETVAL(call->data, EPARTY);
(void) answer_preprocess(call, saveddata ? &saved_data : NULL);
ipc_answer(&TASK->answerbox, call);
return 0;
}
return (unative_t)call;
/branches/arm/kernel/generic/src/ipc/ipcrsc.c
160,27 → 160,29
return result;
}
 
/** Allocate new phone slot in the current TASK structure.
/** Allocate new phone slot in the specified task.
*
* @param t Task for which to allocate a new phone.
*
* @return New phone handle or -1 if the phone handle limit is
* exceeded.
*/
int phone_alloc(void)
int phone_alloc(task_t *t)
{
int i;
 
spinlock_lock(&TASK->lock);
spinlock_lock(&t->lock);
for (i = 0; i < IPC_MAX_PHONES; i++) {
if (TASK->phones[i].state == IPC_PHONE_HUNGUP &&
atomic_get(&TASK->phones[i].active_calls) == 0)
TASK->phones[i].state = IPC_PHONE_FREE;
if (t->phones[i].state == IPC_PHONE_HUNGUP &&
atomic_get(&t->phones[i].active_calls) == 0)
t->phones[i].state = IPC_PHONE_FREE;
 
if (TASK->phones[i].state == IPC_PHONE_FREE) {
TASK->phones[i].state = IPC_PHONE_CONNECTING;
if (t->phones[i].state == IPC_PHONE_FREE) {
t->phones[i].state = IPC_PHONE_CONNECTING;
break;
}
}
spinlock_unlock(&TASK->lock);
spinlock_unlock(&t->lock);
 
if (i == IPC_MAX_PHONES)
return -1;
/branches/arm/kernel/generic/src/ipc/kbox.c
42,19 → 42,27
#include <debug.h>
#include <udebug/udebug_ipc.h>
#include <ipc/kbox.h>
#include <print.h>
 
void ipc_kbox_cleanup(void)
{
ipl_t ipl;
bool have_kb_thread;
 
/* Only hold kb_cleanup_lock while setting kb_finished - this is enough */
mutex_lock(&TASK->kb_cleanup_lock);
TASK->kb_finished = true;
mutex_unlock(&TASK->kb_cleanup_lock);
/*
* Only hold kb.cleanup_lock while setting kb.finished -
* this is enough.
*/
mutex_lock(&TASK->kb.cleanup_lock);
TASK->kb.finished = true;
mutex_unlock(&TASK->kb.cleanup_lock);
 
have_kb_thread = (TASK->kb_thread != NULL);
have_kb_thread = (TASK->kb.thread != NULL);
 
/* From now on nobody will try to connect phones or attach kbox threads */
/*
* From now on nobody will try to connect phones or attach
* kbox threads
*/
 
/*
* Disconnect all phones connected to our kbox. Passing true for
62,83 → 70,136
* disconnected phone. This ensures the kbox thread is going to
* wake up and terminate.
*/
ipc_answerbox_slam_phones(&TASK->kernel_box, have_kb_thread);
ipc_answerbox_slam_phones(&TASK->kb.box, have_kb_thread);
 
/*
* If the task was being debugged, clean up debugging session.
* This is necessarry as slamming the phones won't force
* kbox thread to clean it up since sender != debugger.
*/
ipl = interrupts_disable();
spinlock_lock(&TASK->lock);
udebug_task_cleanup(TASK);
spinlock_unlock(&TASK->lock);
interrupts_restore(ipl);
if (have_kb_thread) {
LOG("join kb_thread..\n");
thread_join(TASK->kb_thread);
thread_detach(TASK->kb_thread);
LOG("join done\n");
TASK->kb_thread = NULL;
LOG("Join kb.thread.");
thread_join(TASK->kb.thread);
thread_detach(TASK->kb.thread);
LOG("...join done.");
TASK->kb.thread = NULL;
}
 
/* Answer all messages in 'calls' and 'dispatched_calls' queues */
spinlock_lock(&TASK->kernel_box.lock);
ipc_cleanup_call_list(&TASK->kernel_box.dispatched_calls);
ipc_cleanup_call_list(&TASK->kernel_box.calls);
spinlock_unlock(&TASK->kernel_box.lock);
/* Answer all messages in 'calls' and 'dispatched_calls' queues. */
spinlock_lock(&TASK->kb.box.lock);
ipc_cleanup_call_list(&TASK->kb.box.dispatched_calls);
ipc_cleanup_call_list(&TASK->kb.box.calls);
spinlock_unlock(&TASK->kb.box.lock);
}
 
/** Handle hangup message in kbox.
*
* @param call The IPC_M_PHONE_HUNGUP call structure.
* @param last Output, the function stores @c true here if
* this was the last phone, @c false otherwise.
**/
static void kbox_proc_phone_hungup(call_t *call, bool *last)
{
ipl_t ipl;
 
/* Was it our debugger, who hung up? */
if (call->sender == TASK->udebug.debugger) {
/* Terminate debugging session (if any). */
LOG("Terminate debugging session.");
ipl = interrupts_disable();
spinlock_lock(&TASK->lock);
udebug_task_cleanup(TASK);
spinlock_unlock(&TASK->lock);
interrupts_restore(ipl);
} else {
LOG("Was not debugger.");
}
 
LOG("Continue with hangup message.");
IPC_SET_RETVAL(call->data, 0);
ipc_answer(&TASK->kb.box, call);
 
ipl = interrupts_disable();
spinlock_lock(&TASK->lock);
spinlock_lock(&TASK->kb.box.lock);
if (list_empty(&TASK->kb.box.connected_phones)) {
/*
* Last phone has been disconnected. Detach this thread so it
* gets freed and signal to the caller.
*/
 
/* Only detach kbox thread unless already terminating. */
mutex_lock(&TASK->kb.cleanup_lock);
if (&TASK->kb.finished == false) {
/* Detach kbox thread so it gets freed from memory. */
thread_detach(TASK->kb.thread);
TASK->kb.thread = NULL;
}
mutex_unlock(&TASK->kb.cleanup_lock);
 
LOG("Phone list is empty.");
*last = true;
} else {
*last = false;
}
 
spinlock_unlock(&TASK->kb.box.lock);
spinlock_unlock(&TASK->lock);
interrupts_restore(ipl);
}
 
/** Implementing function for the kbox thread.
*
* This function listens for debug requests. It terminates
* when all phones are disconnected from the kbox.
*
* @param arg Ignored.
*/
static void kbox_thread_proc(void *arg)
{
call_t *call;
int method;
bool done;
ipl_t ipl;
 
(void)arg;
LOG("kbox_thread_proc()\n");
LOG("Starting.");
done = false;
 
while (!done) {
call = ipc_wait_for_call(&TASK->kernel_box, SYNCH_NO_TIMEOUT,
call = ipc_wait_for_call(&TASK->kb.box, SYNCH_NO_TIMEOUT,
SYNCH_FLAGS_NONE);
 
if (call != NULL) {
method = IPC_GET_METHOD(call->data);
if (call == NULL)
continue; /* Try again. */
 
if (method == IPC_M_DEBUG_ALL) {
udebug_call_receive(call);
}
switch (IPC_GET_METHOD(call->data)) {
 
if (method == IPC_M_PHONE_HUNGUP) {
LOG("kbox: handle hangup message\n");
case IPC_M_DEBUG_ALL:
/* Handle debug call. */
udebug_call_receive(call);
break;
 
/* Was it our debugger, who hung up? */
if (call->sender == TASK->udebug.debugger) {
/* Terminate debugging session (if any) */
LOG("kbox: terminate debug session\n");
ipl = interrupts_disable();
spinlock_lock(&TASK->lock);
udebug_task_cleanup(TASK);
spinlock_unlock(&TASK->lock);
interrupts_restore(ipl);
} else {
LOG("kbox: was not debugger\n");
}
case IPC_M_PHONE_HUNGUP:
/*
* Process the hangup call. If this was the last
* phone, done will be set to true and the
* while loop will terminate.
*/
kbox_proc_phone_hungup(call, &done);
break;
 
LOG("kbox: continue with hangup message\n");
IPC_SET_RETVAL(call->data, 0);
ipc_answer(&TASK->kernel_box, call);
 
ipl = interrupts_disable();
spinlock_lock(&TASK->lock);
spinlock_lock(&TASK->answerbox.lock);
if (list_empty(&TASK->answerbox.connected_phones)) {
/* Last phone has been disconnected */
TASK->kb_thread = NULL;
done = true;
LOG("phone list is empty\n");
}
spinlock_unlock(&TASK->answerbox.lock);
spinlock_unlock(&TASK->lock);
interrupts_restore(ipl);
}
default:
/* Ignore */
break;
}
}
 
LOG("kbox: finished\n");
LOG("Exiting.");
}
 
 
145,10 → 206,10
/**
* Connect phone to a task kernel-box specified by id.
*
* Note that this is not completely atomic. For optimisation reasons,
* The task might start cleaning up kbox after the phone has been connected
* and before a kbox thread has been created. This must be taken into account
* in the cleanup code.
* Note that this is not completely atomic. For optimisation reasons, the task
* might start cleaning up kbox after the phone has been connected and before
* a kbox thread has been created. This must be taken into account in the
* cleanup code.
*
* @return Phone id on success, or negative error code.
*/
174,44 → 235,45
spinlock_unlock(&tasks_lock);
interrupts_restore(ipl);
 
mutex_lock(&ta->kb_cleanup_lock);
mutex_lock(&ta->kb.cleanup_lock);
 
if (atomic_predec(&ta->refcount) == 0) {
mutex_unlock(&ta->kb_cleanup_lock);
mutex_unlock(&ta->kb.cleanup_lock);
task_destroy(ta);
return ENOENT;
}
 
if (ta->kb_finished != false) {
mutex_unlock(&ta->kb_cleanup_lock);
if (ta->kb.finished != false) {
mutex_unlock(&ta->kb.cleanup_lock);
return EINVAL;
}
 
newphid = phone_alloc();
newphid = phone_alloc(TASK);
if (newphid < 0) {
mutex_unlock(&ta->kb_cleanup_lock);
mutex_unlock(&ta->kb.cleanup_lock);
return ELIMIT;
}
 
/* Connect the newly allocated phone to the kbox */
ipc_phone_connect(&TASK->phones[newphid], &ta->kernel_box);
ipc_phone_connect(&TASK->phones[newphid], &ta->kb.box);
 
if (ta->kb_thread != NULL) {
mutex_unlock(&ta->kb_cleanup_lock);
if (ta->kb.thread != NULL) {
mutex_unlock(&ta->kb.cleanup_lock);
return newphid;
}
 
/* Create a kbox thread */
kb_thread = thread_create(kbox_thread_proc, NULL, ta, 0, "kbox", false);
kb_thread = thread_create(kbox_thread_proc, NULL, ta, 0,
"kbox", false);
if (!kb_thread) {
mutex_unlock(&ta->kb_cleanup_lock);
mutex_unlock(&ta->kb.cleanup_lock);
return ENOMEM;
}
 
ta->kb_thread = kb_thread;
ta->kb.thread = kb_thread;
thread_ready(kb_thread);
 
mutex_unlock(&ta->kb_cleanup_lock);
mutex_unlock(&ta->kb.cleanup_lock);
 
return newphid;
}
/branches/arm/kernel/generic/src/ipc/ipc.c
44,6 → 44,7
#include <synch/synch.h>
#include <ipc/ipc.h>
#include <ipc/kbox.h>
#include <ipc/event.h>
#include <errno.h>
#include <mm/slab.h>
#include <arch.h>
50,7 → 51,6
#include <proc/task.h>
#include <memstr.h>
#include <debug.h>
 
#include <print.h>
#include <console/console.h>
#include <proc/thread.h>
328,12 → 328,10
list_remove(&phone->link);
spinlock_unlock(&box->lock);
 
if (phone->state != IPC_PHONE_SLAMMED) {
call = ipc_call_alloc(0);
IPC_SET_METHOD(call->data, IPC_M_PHONE_HUNGUP);
call->flags |= IPC_CALL_DISCARD_ANSWER;
_ipc_call(phone, box, call);
}
call = ipc_call_alloc(0);
IPC_SET_METHOD(call->data, IPC_M_PHONE_HUNGUP);
call->flags |= IPC_CALL_DISCARD_ANSWER;
_ipc_call(phone, box, call);
}
 
phone->state = IPC_PHONE_HUNGUP;
526,6 → 524,9
for (i = 0; i < IPC_MAX_PHONES; i++)
ipc_phone_hangup(&TASK->phones[i]);
 
/* Unsubscribe from any event notifications. */
event_cleanup_answerbox(&TASK->answerbox);
 
/* Disconnect all connected irqs */
ipc_irq_cleanup(&TASK->answerbox);
 
/branches/arm/kernel/generic/src/ipc/irq.c
44,8 → 44,28
* - ARG1: payload modified by a 'top-half' handler
* - ARG2: payload modified by a 'top-half' handler
* - ARG3: payload modified by a 'top-half' handler
* - ARG4: payload modified by a 'top-half' handler
* - ARG5: payload modified by a 'top-half' handler
* - in_phone_hash: interrupt counter (may be needed to assure correct order
* in multithreaded drivers)
*
* Note on synchronization for ipc_irq_register(), ipc_irq_unregister(),
* ipc_irq_cleanup() and IRQ handlers:
*
* By always taking all of the uspace IRQ hash table lock, IRQ structure lock
* and answerbox lock, we can rule out race conditions between the
* registration functions and also the cleanup function. Thus the observer can
* either see the IRQ structure present in both the hash table and the
* answerbox list or absent in both. Views in which the IRQ structure would be
* linked in the hash table but not in the answerbox list, or vice versa, are
* not possible.
*
* By always taking the hash table lock and the IRQ structure lock, we can
* rule out a scenario in which we would free up an IRQ structure, which is
* still referenced by, for example, an IRQ handler. The locking scheme forces
* us to lock the IRQ structure only after any progressing IRQs on that
* structure are finished. Because we hold the hash table lock, we prevent new
* IRQs from taking new references to the IRQ structure.
*/
 
#include <arch.h>
58,78 → 78,8
#include <console/console.h>
#include <print.h>
 
/** Execute code associated with IRQ notification.
/** Free the top-half pseudocode.
*
* @param call Notification call.
* @param code Top-half pseudocode.
*/
static void code_execute(call_t *call, irq_code_t *code)
{
unsigned int i;
unative_t dstval = 0;
if (!code)
return;
for (i = 0; i < code->cmdcount; i++) {
switch (code->cmds[i].cmd) {
case CMD_MEM_READ_1:
dstval = *((uint8_t *) code->cmds[i].addr);
break;
case CMD_MEM_READ_2:
dstval = *((uint16_t *) code->cmds[i].addr);
break;
case CMD_MEM_READ_4:
dstval = *((uint32_t *) code->cmds[i].addr);
break;
case CMD_MEM_READ_8:
dstval = *((uint64_t *) code->cmds[i].addr);
break;
case CMD_MEM_WRITE_1:
*((uint8_t *) code->cmds[i].addr) = code->cmds[i].value;
break;
case CMD_MEM_WRITE_2:
*((uint16_t *) code->cmds[i].addr) =
code->cmds[i].value;
break;
case CMD_MEM_WRITE_4:
*((uint32_t *) code->cmds[i].addr) =
code->cmds[i].value;
break;
case CMD_MEM_WRITE_8:
*((uint64_t *) code->cmds[i].addr) =
code->cmds[i].value;
break;
#if defined(ia32) || defined(amd64)
case CMD_PORT_READ_1:
dstval = inb((long) code->cmds[i].addr);
break;
case CMD_PORT_WRITE_1:
outb((long) code->cmds[i].addr, code->cmds[i].value);
break;
#endif
#if defined(ia64) && defined(SKI)
case CMD_IA64_GETCHAR:
dstval = _getc(&ski_uconsole);
break;
#endif
#if defined(ppc32)
case CMD_PPC32_GETCHAR:
dstval = cuda_get_scancode();
break;
#endif
default:
break;
}
if (code->cmds[i].dstarg && code->cmds[i].dstarg <
IPC_CALL_LEN) {
call->data.args[code->cmds[i].dstarg] = dstval;
}
}
}
 
/** Free top-half pseudocode.
*
* @param code Pointer to the top-half pseudocode.
*/
static void code_free(irq_code_t *code)
140,7 → 90,7
}
}
 
/** Copy top-half pseudocode from userspace into the kernel.
/** Copy the top-half pseudocode from userspace into the kernel.
*
* @param ucode Userspace address of the top-half pseudocode.
*
176,47 → 126,16
return code;
}
 
/** Unregister task from IRQ notification.
*
* @param box Answerbox associated with the notification.
* @param inr IRQ number.
* @param devno Device number.
*/
void ipc_irq_unregister(answerbox_t *box, inr_t inr, devno_t devno)
{
ipl_t ipl;
irq_t *irq;
 
ipl = interrupts_disable();
irq = irq_find_and_lock(inr, devno);
if (irq) {
if (irq->notif_cfg.answerbox == box) {
code_free(irq->notif_cfg.code);
irq->notif_cfg.notify = false;
irq->notif_cfg.answerbox = NULL;
irq->notif_cfg.code = NULL;
irq->notif_cfg.method = 0;
irq->notif_cfg.counter = 0;
 
spinlock_lock(&box->irq_lock);
list_remove(&irq->notif_cfg.link);
spinlock_unlock(&box->irq_lock);
spinlock_unlock(&irq->lock);
}
}
interrupts_restore(ipl);
}
 
/** Register an answerbox as a receiving end for IRQ notifications.
*
* @param box Receiving answerbox.
* @param inr IRQ number.
* @param devno Device number.
* @param method Method to be associated with the notification.
* @param ucode Uspace pointer to top-half pseudocode.
* @param box Receiving answerbox.
* @param inr IRQ number.
* @param devno Device number.
* @param method Method to be associated with the notification.
* @param ucode Uspace pointer to top-half pseudocode.
*
* @return EBADMEM, ENOENT or EEXISTS on failure or 0 on success.
* @return EBADMEM, ENOENT or EEXISTS on failure or 0 on success.
*
*/
int ipc_irq_register(answerbox_t *box, inr_t inr, devno_t devno,
unative_t method, irq_code_t *ucode)
224,7 → 143,12
ipl_t ipl;
irq_code_t *code;
irq_t *irq;
 
link_t *hlp;
unative_t key[] = {
(unative_t) inr,
(unative_t) devno
};
if (ucode) {
code = code_from_uspace(ucode);
if (!code)
232,36 → 156,177
} else {
code = NULL;
}
 
/*
* Allocate and populate the IRQ structure.
*/
irq = malloc(sizeof(irq_t), 0);
irq_initialize(irq);
irq->devno = devno;
irq->inr = inr;
irq->claim = ipc_irq_top_half_claim;
irq->handler = ipc_irq_top_half_handler;
irq->notif_cfg.notify = true;
irq->notif_cfg.answerbox = box;
irq->notif_cfg.method = method;
irq->notif_cfg.code = code;
irq->notif_cfg.counter = 0;
/*
* Enlist the IRQ structure in the uspace IRQ hash table and the
* answerbox's list.
*/
ipl = interrupts_disable();
irq = irq_find_and_lock(inr, devno);
if (!irq) {
interrupts_restore(ipl);
spinlock_lock(&irq_uspace_hash_table_lock);
hlp = hash_table_find(&irq_uspace_hash_table, key);
if (hlp) {
irq_t *hirq __attribute__((unused))
= hash_table_get_instance(hlp, irq_t, link);
/* hirq is locked */
spinlock_unlock(&hirq->lock);
code_free(code);
return ENOENT;
}
if (irq->notif_cfg.answerbox) {
spinlock_unlock(&irq->lock);
spinlock_unlock(&irq_uspace_hash_table_lock);
free(irq);
interrupts_restore(ipl);
code_free(code);
return EEXISTS;
}
irq->notif_cfg.notify = true;
irq->notif_cfg.answerbox = box;
irq->notif_cfg.method = method;
irq->notif_cfg.code = code;
irq->notif_cfg.counter = 0;
 
spinlock_lock(&irq->lock); /* Not really necessary, but paranoid */
spinlock_lock(&box->irq_lock);
hash_table_insert(&irq_uspace_hash_table, key, &irq->link);
list_append(&irq->notif_cfg.link, &box->irq_head);
spinlock_unlock(&box->irq_lock);
spinlock_unlock(&irq->lock);
spinlock_unlock(&irq_uspace_hash_table_lock);
interrupts_restore(ipl);
return EOK;
}
 
/** Unregister task from IRQ notification.
*
* @param box Answerbox associated with the notification.
* @param inr IRQ number.
* @param devno Device number.
*/
int ipc_irq_unregister(answerbox_t *box, inr_t inr, devno_t devno)
{
ipl_t ipl;
unative_t key[] = {
(unative_t) inr,
(unative_t) devno
};
link_t *lnk;
irq_t *irq;
 
ipl = interrupts_disable();
spinlock_lock(&irq_uspace_hash_table_lock);
lnk = hash_table_find(&irq_uspace_hash_table, key);
if (!lnk) {
spinlock_unlock(&irq_uspace_hash_table_lock);
interrupts_restore(ipl);
return ENOENT;
}
irq = hash_table_get_instance(lnk, irq_t, link);
/* irq is locked */
spinlock_lock(&box->irq_lock);
ASSERT(irq->notif_cfg.answerbox == box);
/* Free up the pseudo code and associated structures. */
code_free(irq->notif_cfg.code);
 
/* Remove the IRQ from the answerbox's list. */
list_remove(&irq->notif_cfg.link);
 
/*
* We need to drop the IRQ lock now because hash_table_remove() will try
* to reacquire it. That basically violates the natural locking order,
* but a deadlock in hash_table_remove() is prevented by the fact that
* we already held the IRQ lock and didn't drop the hash table lock in
* the meantime.
*/
spinlock_unlock(&irq->lock);
 
/* Remove the IRQ from the uspace IRQ hash table. */
hash_table_remove(&irq_uspace_hash_table, key, 2);
spinlock_unlock(&irq_uspace_hash_table_lock);
spinlock_unlock(&box->irq_lock);
/* Free up the IRQ structure. */
free(irq);
interrupts_restore(ipl);
return EOK;
}
 
return 0;
 
/** Disconnect all IRQ notifications from an answerbox.
*
* This function is effective because the answerbox contains
* list of all irq_t structures that are registered to
* send notifications to it.
*
* @param box Answerbox for which we want to carry out the cleanup.
*/
void ipc_irq_cleanup(answerbox_t *box)
{
ipl_t ipl;
loop:
ipl = interrupts_disable();
spinlock_lock(&irq_uspace_hash_table_lock);
spinlock_lock(&box->irq_lock);
while (box->irq_head.next != &box->irq_head) {
link_t *cur = box->irq_head.next;
irq_t *irq;
DEADLOCK_PROBE_INIT(p_irqlock);
unative_t key[2];
irq = list_get_instance(cur, irq_t, notif_cfg.link);
if (!spinlock_trylock(&irq->lock)) {
/*
* Avoid deadlock by trying again.
*/
spinlock_unlock(&box->irq_lock);
spinlock_unlock(&irq_uspace_hash_table_lock);
interrupts_restore(ipl);
DEADLOCK_PROBE(p_irqlock, DEADLOCK_THRESHOLD);
goto loop;
}
key[0] = irq->inr;
key[1] = irq->devno;
ASSERT(irq->notif_cfg.answerbox == box);
/* Unlist from the answerbox. */
list_remove(&irq->notif_cfg.link);
/* Free up the pseudo code and associated structures. */
code_free(irq->notif_cfg.code);
/*
* We need to drop the IRQ lock now because hash_table_remove()
* will try to reacquire it. That basically violates the natural
* locking order, but a deadlock in hash_table_remove() is
* prevented by the fact that we already held the IRQ lock and
* didn't drop the hash table lock in the meantime.
*/
spinlock_unlock(&irq->lock);
/* Remove from the hash table. */
hash_table_remove(&irq_uspace_hash_table, key, 2);
free(irq);
}
spinlock_unlock(&box->irq_lock);
spinlock_unlock(&irq_uspace_hash_table_lock);
interrupts_restore(ipl);
}
 
/** Add a call to the proper answerbox queue.
280,125 → 345,158
waitq_wakeup(&irq->notif_cfg.answerbox->wq, WAKEUP_FIRST);
}
 
/** Send notification message.
/** Apply the top-half pseudo code to find out whether to accept the IRQ or not.
*
* @param irq IRQ structure.
* @param a1 Driver-specific payload argument.
* @param a2 Driver-specific payload argument.
* @param a3 Driver-specific payload argument.
* @param a4 Driver-specific payload argument.
* @param a5 Driver-specific payload argument.
*
* @return IRQ_ACCEPT if the interrupt is accepted by the
* pseudocode. IRQ_DECLINE otherwise.
*/
void ipc_irq_send_msg(irq_t *irq, unative_t a1, unative_t a2, unative_t a3,
unative_t a4, unative_t a5)
irq_ownership_t ipc_irq_top_half_claim(irq_t *irq)
{
call_t *call;
unsigned int i;
unative_t dstval;
irq_code_t *code = irq->notif_cfg.code;
unative_t *scratch = irq->notif_cfg.scratch;
 
spinlock_lock(&irq->lock);
 
if (irq->notif_cfg.answerbox) {
call = ipc_call_alloc(FRAME_ATOMIC);
if (!call) {
spinlock_unlock(&irq->lock);
return;
if (!irq->notif_cfg.notify)
return IRQ_DECLINE;
if (!code)
return IRQ_DECLINE;
for (i = 0; i < code->cmdcount; i++) {
unsigned int srcarg = code->cmds[i].srcarg;
unsigned int dstarg = code->cmds[i].dstarg;
if (srcarg >= IPC_CALL_LEN)
break;
if (dstarg >= IPC_CALL_LEN)
break;
switch (code->cmds[i].cmd) {
case CMD_PIO_READ_8:
dstval = pio_read_8((ioport8_t *) code->cmds[i].addr);
if (dstarg)
scratch[dstarg] = dstval;
break;
case CMD_PIO_READ_16:
dstval = pio_read_16((ioport16_t *) code->cmds[i].addr);
if (dstarg)
scratch[dstarg] = dstval;
break;
case CMD_PIO_READ_32:
dstval = pio_read_32((ioport32_t *) code->cmds[i].addr);
if (dstarg)
scratch[dstarg] = dstval;
break;
case CMD_PIO_WRITE_8:
pio_write_8((ioport8_t *) code->cmds[i].addr,
(uint8_t) code->cmds[i].value);
break;
case CMD_PIO_WRITE_16:
pio_write_16((ioport16_t *) code->cmds[i].addr,
(uint16_t) code->cmds[i].value);
break;
case CMD_PIO_WRITE_32:
pio_write_32((ioport32_t *) code->cmds[i].addr,
(uint32_t) code->cmds[i].value);
break;
case CMD_BTEST:
if (srcarg && dstarg) {
dstval = scratch[srcarg] & code->cmds[i].value;
scratch[dstarg] = dstval;
}
break;
case CMD_PREDICATE:
if (srcarg && !scratch[srcarg]) {
i += code->cmds[i].value;
continue;
}
break;
case CMD_ACCEPT:
return IRQ_ACCEPT;
break;
case CMD_DECLINE:
default:
return IRQ_DECLINE;
}
call->flags |= IPC_CALL_NOTIF;
IPC_SET_METHOD(call->data, irq->notif_cfg.method);
IPC_SET_ARG1(call->data, a1);
IPC_SET_ARG2(call->data, a2);
IPC_SET_ARG3(call->data, a3);
IPC_SET_ARG4(call->data, a4);
IPC_SET_ARG5(call->data, a5);
/* Put a counter to the message */
call->priv = ++irq->notif_cfg.counter;
send_call(irq, call);
}
spinlock_unlock(&irq->lock);
return IRQ_DECLINE;
}
 
/** Notify a task that an IRQ had occurred.
 
/* IRQ top-half handler.
*
* We expect interrupts to be disabled and the irq->lock already held.
*
* @param irq IRQ structure.
*/
void ipc_irq_send_notif(irq_t *irq)
void ipc_irq_top_half_handler(irq_t *irq)
{
call_t *call;
 
ASSERT(irq);
 
if (irq->notif_cfg.answerbox) {
call_t *call;
 
call = ipc_call_alloc(FRAME_ATOMIC);
if (!call) {
if (!call)
return;
}
call->flags |= IPC_CALL_NOTIF;
/* Put a counter to the message */
call->priv = ++irq->notif_cfg.counter;
 
/* Set up args */
IPC_SET_METHOD(call->data, irq->notif_cfg.method);
IPC_SET_ARG1(call->data, irq->notif_cfg.scratch[1]);
IPC_SET_ARG2(call->data, irq->notif_cfg.scratch[2]);
IPC_SET_ARG3(call->data, irq->notif_cfg.scratch[3]);
IPC_SET_ARG4(call->data, irq->notif_cfg.scratch[4]);
IPC_SET_ARG5(call->data, irq->notif_cfg.scratch[5]);
 
/* Execute code to handle irq */
code_execute(call, irq->notif_cfg.code);
send_call(irq, call);
}
}
 
/** Disconnect all IRQ notifications from an answerbox.
/** Send notification message.
*
* This function is effective because the answerbox contains
* list of all irq_t structures that are registered to
* send notifications to it.
*
* @param box Answerbox for which we want to carry out the cleanup.
* @param irq IRQ structure.
* @param a1 Driver-specific payload argument.
* @param a2 Driver-specific payload argument.
* @param a3 Driver-specific payload argument.
* @param a4 Driver-specific payload argument.
* @param a5 Driver-specific payload argument.
*/
void ipc_irq_cleanup(answerbox_t *box)
void ipc_irq_send_msg(irq_t *irq, unative_t a1, unative_t a2, unative_t a3,
unative_t a4, unative_t a5)
{
ipl_t ipl;
loop:
ipl = interrupts_disable();
spinlock_lock(&box->irq_lock);
while (box->irq_head.next != &box->irq_head) {
link_t *cur = box->irq_head.next;
irq_t *irq;
DEADLOCK_PROBE_INIT(p_irqlock);
irq = list_get_instance(cur, irq_t, notif_cfg.link);
if (!spinlock_trylock(&irq->lock)) {
/*
* Avoid deadlock by trying again.
*/
spinlock_unlock(&box->irq_lock);
interrupts_restore(ipl);
DEADLOCK_PROBE(p_irqlock, DEADLOCK_THRESHOLD);
goto loop;
call_t *call;
 
spinlock_lock(&irq->lock);
 
if (irq->notif_cfg.answerbox) {
call = ipc_call_alloc(FRAME_ATOMIC);
if (!call) {
spinlock_unlock(&irq->lock);
return;
}
call->flags |= IPC_CALL_NOTIF;
/* Put a counter to the message */
call->priv = ++irq->notif_cfg.counter;
 
IPC_SET_METHOD(call->data, irq->notif_cfg.method);
IPC_SET_ARG1(call->data, a1);
IPC_SET_ARG2(call->data, a2);
IPC_SET_ARG3(call->data, a3);
IPC_SET_ARG4(call->data, a4);
IPC_SET_ARG5(call->data, a5);
ASSERT(irq->notif_cfg.answerbox == box);
list_remove(&irq->notif_cfg.link);
/*
* Don't forget to free any top-half pseudocode.
*/
code_free(irq->notif_cfg.code);
irq->notif_cfg.notify = false;
irq->notif_cfg.answerbox = NULL;
irq->notif_cfg.code = NULL;
irq->notif_cfg.method = 0;
irq->notif_cfg.counter = 0;
 
spinlock_unlock(&irq->lock);
send_call(irq, call);
}
spinlock_unlock(&box->irq_lock);
interrupts_restore(ipl);
spinlock_unlock(&irq->lock);
}
 
/** @}
/branches/arm/kernel/generic/src/syscall/syscall.c
32,9 → 32,9
 
/**
* @file
* @brief Syscall table and syscall wrappers.
* @brief Syscall table and syscall wrappers.
*/
 
#include <syscall/syscall.h>
#include <proc/thread.h>
#include <proc/task.h>
41,61 → 41,19
#include <proc/program.h>
#include <mm/as.h>
#include <print.h>
#include <putchar.h>
#include <errno.h>
#include <arch.h>
#include <debug.h>
#include <ddi/device.h>
#include <ipc/sysipc.h>
#include <synch/futex.h>
#include <synch/smc.h>
#include <ddi/ddi.h>
#include <ipc/event.h>
#include <security/cap.h>
#include <syscall/copy.h>
#include <sysinfo/sysinfo.h>
#include <console/console.h>
#include <udebug/udebug.h>
 
/** Print using kernel facility
*
* Print to kernel log.
*
*/
static unative_t sys_klog(int fd, const void * buf, size_t count)
{
size_t i;
char *data;
int rc;
 
if (count > PAGE_SIZE)
return ELIMIT;
if (count > 0) {
data = (char *) malloc(count, 0);
if (!data)
return ENOMEM;
rc = copy_from_uspace(data, buf, count);
if (rc) {
free(data);
return rc;
}
for (i = 0; i < count; i++)
putchar(data[i]);
free(data);
} else
klog_update();
return count;
}
 
/** Tell kernel to get keyboard/console access again */
static unative_t sys_debug_enable_console(void)
{
arch_grab_console();
return 0;
}
 
/** Dispatch system call */
unative_t syscall_handler(unative_t a1, unative_t a2, unative_t a3,
unative_t a4, unative_t a5, unative_t a6, unative_t id)
103,13 → 61,20
unative_t rc;
 
#ifdef CONFIG_UDEBUG
udebug_syscall_event(a1, a2, a3, a4, a5, a6, id, 0, false);
#endif
bool debug;
 
if (id < SYSCALL_END) {
#ifdef CONFIG_UDEBUG
udebug_stoppable_begin();
/*
* Early check for undebugged tasks. We do not lock anything as this
* test need not be precise in either way.
*/
debug = THREAD->udebug.active;
if (debug) {
udebug_syscall_event(a1, a2, a3, a4, a5, a6, id, 0, false);
}
#endif
if (id < SYSCALL_END) {
rc = syscall_table[id](a1, a2, a3, a4, a5, a6);
} else {
printf("Task %" PRIu64": Unknown syscall %#" PRIxn, TASK->taskid, id);
116,13 → 81,22
task_kill(TASK->taskid);
thread_exit();
}
if (THREAD->interrupted)
thread_exit();
 
#ifdef CONFIG_UDEBUG
udebug_syscall_event(a1, a2, a3, a4, a5, a6, id, rc, true);
udebug_stoppable_end();
if (debug) {
udebug_syscall_event(a1, a2, a3, a4, a5, a6, id, rc, true);
/*
* Stopping point needed for tasks that only invoke
* non-blocking system calls. Not needed if the task
* is not being debugged (it cannot block here).
*/
udebug_stoppable_begin();
udebug_stoppable_end();
}
#endif
return rc;
138,6 → 112,7
(syshandler_t) sys_thread_get_id,
(syshandler_t) sys_task_get_id,
(syshandler_t) sys_task_set_name,
(syshandler_t) sys_program_spawn_loader,
/* Synchronization related syscalls. */
159,10 → 134,14
(syshandler_t) sys_ipc_answer_fast,
(syshandler_t) sys_ipc_answer_slow,
(syshandler_t) sys_ipc_forward_fast,
(syshandler_t) sys_ipc_forward_slow,
(syshandler_t) sys_ipc_wait_for_call,
(syshandler_t) sys_ipc_hangup,
(syshandler_t) sys_ipc_register_irq,
(syshandler_t) sys_ipc_unregister_irq,
 
/* Event notification syscalls. */
(syshandler_t) sys_event_subscribe,
/* Capabilities related syscalls. */
(syshandler_t) sys_cap_grant,
169,6 → 148,7
(syshandler_t) sys_cap_revoke,
/* DDI related syscalls. */
(syshandler_t) sys_device_assign_devno,
(syshandler_t) sys_physmem_map,
(syshandler_t) sys_iospace_enable,
(syshandler_t) sys_preempt_control,
179,7 → 159,8
/* Debug calls */
(syshandler_t) sys_debug_enable_console,
 
(syshandler_t) sys_debug_disable_console,
(syshandler_t) sys_ipc_connect_kbox
};
 
/branches/arm/kernel/generic/src/udebug/udebug.c
35,18 → 35,6
* @brief Udebug hooks and data structure management.
*
* Udebug is an interface that makes userspace debuggers possible.
*
* Functions in this file are executed directly in each thread, which
* may or may not be the subject of debugging. The udebug_stoppable_begin/end()
* functions are also executed in the clock interrupt handler. To avoid
* deadlock, functions in this file are protected from the interrupt
* by locking the recursive lock THREAD->udebug.int_lock (just an atomic
* variable). This prevents udebug_stoppable_begin/end() from being
* executed in the interrupt handler (they are skipped).
*
* Functions in udebug_ops.c and udebug_ipc.c execute in different threads,
* so they needn't be protected from the (preemptible) interrupt-initiated
* code.
*/
#include <synch/waitq.h>
53,18 → 41,10
#include <debug.h>
#include <udebug/udebug.h>
#include <errno.h>
#include <print.h>
#include <arch.h>
 
static inline void udebug_int_lock(void)
{
atomic_inc(&THREAD->udebug.int_lock);
}
 
static inline void udebug_int_unlock(void)
{
atomic_dec(&THREAD->udebug.int_lock);
}
 
/** Initialize udebug part of task structure.
*
* Called as part of task structure initialization.
89,15 → 69,11
mutex_initialize(&ut->lock, MUTEX_PASSIVE);
waitq_initialize(&ut->go_wq);
 
/*
* At the beginning the thread is stoppable, so int_lock be set, too.
*/
atomic_set(&ut->int_lock, 1);
 
ut->go_call = NULL;
ut->stop = true;
ut->uspace_state = NULL;
ut->go = false;
ut->stoppable = true;
ut->debug_active = false;
ut->active = false;
ut->cur_event = 0; /* none */
}
 
122,27 → 98,6
waitq_sleep_finish(wq, rc, ipl);
}
 
/** Do a preliminary check that a debugging session is in progress.
*
* This only requires the THREAD->udebug.lock mutex (and not TASK->udebug.lock
* mutex). For an undebugged task, this will never block (while there could be
* collisions by different threads on the TASK mutex), thus improving SMP
* perormance for undebugged tasks.
*
* @return True if the thread was in a debugging session when the function
* checked, false otherwise.
*/
static bool udebug_thread_precheck(void)
{
bool res;
 
mutex_lock(&THREAD->udebug.lock);
res = THREAD->udebug.debug_active;
mutex_unlock(&THREAD->udebug.lock);
 
return res;
}
 
/** Start of stoppable section.
*
* A stoppable section is a section of code where if the thread can be stoped. In other words,
161,14 → 116,6
ASSERT(THREAD);
ASSERT(TASK);
 
udebug_int_lock();
 
/* Early check for undebugged tasks */
if (!udebug_thread_precheck()) {
udebug_int_unlock();
return;
}
 
mutex_lock(&TASK->udebug.lock);
 
nsc = --TASK->udebug.not_stoppable_count;
198,7 → 145,8
* Active debugging session
*/
 
if (THREAD->udebug.debug_active && THREAD->udebug.stop) {
if (THREAD->udebug.active == true &&
THREAD->udebug.go == false) {
/*
* Thread was requested to stop - answer go call
*/
228,18 → 176,11
*/
void udebug_stoppable_end(void)
{
/* Early check for undebugged tasks */
if (!udebug_thread_precheck()) {
udebug_int_unlock();
return;
}
 
restart:
mutex_lock(&TASK->udebug.lock);
mutex_lock(&THREAD->udebug.lock);
 
if (THREAD->udebug.debug_active &&
THREAD->udebug.stop == true) {
if (THREAD->udebug.active && THREAD->udebug.go == false) {
TASK->udebug.begin_call = NULL;
mutex_unlock(&THREAD->udebug.lock);
mutex_unlock(&TASK->udebug.lock);
247,7 → 188,7
udebug_wait_for_go(&THREAD->udebug.go_wq);
 
goto restart;
/* must try again - have to lose stoppability atomically */
/* Must try again - have to lose stoppability atomically. */
} else {
++TASK->udebug.not_stoppable_count;
ASSERT(THREAD->udebug.stoppable == true);
256,44 → 197,17
mutex_unlock(&THREAD->udebug.lock);
mutex_unlock(&TASK->udebug.lock);
}
 
udebug_int_unlock();
}
 
/** Upon being scheduled to run, check if the current thread should stop.
*
* This function is called from clock(). Preemption is enabled.
* interrupts are disabled, but since this is called after
* being scheduled-in, we can enable them, if we're careful enough
* not to allow arbitrary recursion or deadlock with the thread context.
* This function is called from clock().
*/
void udebug_before_thread_runs(void)
{
ipl_t ipl;
 
return;
ASSERT(!PREEMPTION_DISABLED);
 
/*
* Prevent agains re-entering, such as when preempted inside this
* function.
*/
if (atomic_get(&THREAD->udebug.int_lock) != 0)
return;
 
udebug_int_lock();
 
ipl = interrupts_enable();
 
/* Now we're free to do whatever we need (lock mutexes, sleep, etc.) */
 
/* Check if we're supposed to stop */
udebug_stoppable_begin();
udebug_stoppable_end();
 
interrupts_restore(ipl);
 
udebug_int_unlock();
}
 
/** Syscall event hook.
310,20 → 224,11
 
etype = end_variant ? UDEBUG_EVENT_SYSCALL_E : UDEBUG_EVENT_SYSCALL_B;
 
udebug_int_lock();
 
/* Early check for undebugged tasks */
if (!udebug_thread_precheck()) {
udebug_int_unlock();
return;
}
 
mutex_lock(&TASK->udebug.lock);
mutex_lock(&THREAD->udebug.lock);
 
/* Must only generate events when in debugging session and have go */
if (THREAD->udebug.debug_active != true ||
THREAD->udebug.stop == true ||
/* Must only generate events when in debugging session and is go. */
if (THREAD->udebug.active != true || THREAD->udebug.go == false ||
(TASK->udebug.evmask & UDEBUG_EVMASK(etype)) == 0) {
mutex_unlock(&THREAD->udebug.lock);
mutex_unlock(&TASK->udebug.lock);
330,7 → 235,7
return;
}
 
//printf("udebug_syscall_event\n");
/* Fill in the GO response. */
call = THREAD->udebug.go_call;
THREAD->udebug.go_call = NULL;
 
338,7 → 243,6
IPC_SET_ARG1(call->data, etype);
IPC_SET_ARG2(call->data, id);
IPC_SET_ARG3(call->data, rc);
//printf("udebug_syscall_event/ipc_answer\n");
 
THREAD->udebug.syscall_args[0] = a1;
THREAD->udebug.syscall_args[1] = a2;
348,11 → 252,11
THREAD->udebug.syscall_args[5] = a6;
 
/*
* Make sure udebug.stop is true when going to sleep
* Make sure udebug.go is false when going to sleep
* in case we get woken up by DEBUG_END. (At which
* point it must be back to the initial true value).
*/
THREAD->udebug.stop = true;
THREAD->udebug.go = false;
THREAD->udebug.cur_event = etype;
 
ipc_answer(&TASK->answerbox, call);
361,42 → 265,46
mutex_unlock(&TASK->udebug.lock);
 
udebug_wait_for_go(&THREAD->udebug.go_wq);
 
udebug_int_unlock();
}
 
/** Thread-creation event hook.
/** Thread-creation event hook combined with attaching the thread.
*
* Must be called when a new userspace thread is created in the debugged
* task. Generates a THREAD_B event.
* task. Generates a THREAD_B event. Also attaches the thread @a t
* to the task @a ta.
*
* This is necessary to avoid a race condition where the BEGIN and THREAD_READ
* requests would be handled inbetween attaching the thread and checking it
* for being in a debugging session to send the THREAD_B event. We could then
* either miss threads or get some threads both in the thread list
* and get a THREAD_B event for them.
*
* @param t Structure of the thread being created. Not locked, as the
* thread is not executing yet.
* @param ta Task to which the thread should be attached.
*/
void udebug_thread_b_event(struct thread *t)
void udebug_thread_b_event_attach(struct thread *t, struct task *ta)
{
call_t *call;
 
udebug_int_lock();
 
mutex_lock(&TASK->udebug.lock);
mutex_lock(&THREAD->udebug.lock);
 
LOG("udebug_thread_b_event\n");
LOG("- check state\n");
thread_attach(t, ta);
 
LOG("Check state");
 
/* Must only generate events when in debugging session */
if (THREAD->udebug.debug_active != true) {
LOG("- debug_active: %s, udebug.stop: %s\n",
THREAD->udebug.debug_active ? "yes(+)" : "no(-)",
THREAD->udebug.stop ? "yes(-)" : "no(+)");
if (THREAD->udebug.active != true) {
LOG("udebug.active: %s, udebug.go: %s",
THREAD->udebug.active ? "Yes(+)" : "No",
THREAD->udebug.go ? "Yes(-)" : "No");
mutex_unlock(&THREAD->udebug.lock);
mutex_unlock(&TASK->udebug.lock);
return;
}
 
LOG("- trigger event\n");
 
LOG("Trigger event");
call = THREAD->udebug.go_call;
THREAD->udebug.go_call = NULL;
IPC_SET_RETVAL(call->data, 0);
404,11 → 312,11
IPC_SET_ARG2(call->data, (unative_t)t);
 
/*
* Make sure udebug.stop is true when going to sleep
* Make sure udebug.go is false when going to sleep
* in case we get woken up by DEBUG_END. (At which
* point it must be back to the initial true value).
*/
THREAD->udebug.stop = true;
THREAD->udebug.go = false;
THREAD->udebug.cur_event = UDEBUG_EVENT_THREAD_B;
 
ipc_answer(&TASK->answerbox, call);
416,10 → 324,8
mutex_unlock(&THREAD->udebug.lock);
mutex_unlock(&TASK->udebug.lock);
 
LOG("- sleep\n");
LOG("Wait for Go");
udebug_wait_for_go(&THREAD->udebug.go_wq);
 
udebug_int_unlock();
}
 
/** Thread-termination event hook.
431,35 → 337,31
{
call_t *call;
 
udebug_int_lock();
 
mutex_lock(&TASK->udebug.lock);
mutex_lock(&THREAD->udebug.lock);
 
LOG("udebug_thread_e_event\n");
LOG("- check state\n");
LOG("Check state");
 
/* Must only generate events when in debugging session */
if (THREAD->udebug.debug_active != true) {
/* printf("- debug_active: %s, udebug.stop: %s\n",
THREAD->udebug.debug_active ? "yes(+)" : "no(-)",
THREAD->udebug.stop ? "yes(-)" : "no(+)");*/
/* Must only generate events when in debugging session. */
if (THREAD->udebug.active != true) {
LOG("udebug.active: %s, udebug.go: %s",
THREAD->udebug.active ? "Yes" : "No",
THREAD->udebug.go ? "Yes" : "No");
mutex_unlock(&THREAD->udebug.lock);
mutex_unlock(&TASK->udebug.lock);
return;
}
 
LOG("- trigger event\n");
 
LOG("Trigger event");
call = THREAD->udebug.go_call;
THREAD->udebug.go_call = NULL;
IPC_SET_RETVAL(call->data, 0);
IPC_SET_ARG1(call->data, UDEBUG_EVENT_THREAD_E);
 
/* Prevent any further debug activity in thread */
THREAD->udebug.debug_active = false;
/* Prevent any further debug activity in thread. */
THREAD->udebug.active = false;
THREAD->udebug.cur_event = 0; /* none */
THREAD->udebug.stop = true; /* set to initial value */
THREAD->udebug.go = false; /* set to initial value */
 
ipc_answer(&TASK->answerbox, call);
 
466,8 → 368,10
mutex_unlock(&THREAD->udebug.lock);
mutex_unlock(&TASK->udebug.lock);
 
/* Leave int_lock enabled */
/* This event does not sleep - debugging has finished in this thread */
/*
* This event does not sleep - debugging has finished
* in this thread.
*/
}
 
/**
487,17 → 391,13
int flags;
ipl_t ipl;
 
LOG("udebug_task_cleanup()\n");
LOG("task %" PRIu64 "\n", ta->taskid);
 
udebug_int_lock();
 
if (ta->udebug.dt_state != UDEBUG_TS_BEGINNING &&
ta->udebug.dt_state != UDEBUG_TS_ACTIVE) {
LOG("udebug_task_cleanup(): task not being debugged\n");
return EINVAL;
}
 
LOG("Task %" PRIu64, ta->taskid);
 
/* Finish debugging of all userspace threads */
for (cur = ta->th_head.next; cur != &ta->th_head; cur = cur->next) {
t = list_get_instance(cur, thread_t, th_link);
512,22 → 412,22
spinlock_unlock(&t->lock);
interrupts_restore(ipl);
 
/* Only process userspace threads */
/* Only process userspace threads. */
if ((flags & THREAD_FLAG_USPACE) != 0) {
/* Prevent any further debug activity in thread */
t->udebug.debug_active = false;
/* Prevent any further debug activity in thread. */
t->udebug.active = false;
t->udebug.cur_event = 0; /* none */
 
/* Still has go? */
if (t->udebug.stop == false) {
/* Is the thread still go? */
if (t->udebug.go == true) {
/*
* Yes, so clear go. As debug_active == false,
* Yes, so clear go. As active == false,
* this doesn't affect anything.
*/
t->udebug.stop = true;
t->udebug.go = false;
 
/* Answer GO call */
LOG("answer GO call with EVENT_FINISHED\n");
LOG("Answer GO call with EVENT_FINISHED.");
IPC_SET_RETVAL(t->udebug.go_call->data, 0);
IPC_SET_ARG1(t->udebug.go_call->data,
UDEBUG_EVENT_FINISHED);
553,8 → 453,6
ta->udebug.dt_state = UDEBUG_TS_INACTIVE;
ta->udebug.debugger = NULL;
 
udebug_int_unlock();
 
return 0;
}
 
/branches/arm/kernel/generic/src/udebug/udebug_ops.c
44,6 → 44,7
#include <proc/thread.h>
#include <arch.h>
#include <errno.h>
#include <print.h>
#include <syscall/copy.h>
#include <ipc/ipc.h>
#include <udebug/udebug.h>
57,8 → 58,8
*
* Specifically, verifies that thread t exists, is a userspace thread,
* and belongs to the current task (TASK). Verifies, that the thread
* has (or hasn't) go according to having_go (typically false).
* It also locks t->udebug.lock, making sure that t->udebug.debug_active
* is (or is not) go according to being_go (typically false).
* It also locks t->udebug.lock, making sure that t->udebug.active
* is true - that the thread is in a valid debugging session.
*
* With this verified and the t->udebug.lock mutex held, it is ensured
70,11 → 71,11
* the t->lock spinlock to the t->udebug.lock mutex.
*
* @param t Pointer, need not at all be valid.
* @param having_go Required thread state.
* @param being_go Required thread state.
*
* Returns EOK if all went well, or an error code otherwise.
*/
static int _thread_op_begin(thread_t *t, bool having_go)
static int _thread_op_begin(thread_t *t, bool being_go)
{
task_id_t taskid;
ipl_t ipl;
98,7 → 99,7
spinlock_lock(&t->lock);
spinlock_unlock(&threads_lock);
 
/* Verify that 't' is a userspace thread */
/* Verify that 't' is a userspace thread. */
if ((t->flags & THREAD_FLAG_USPACE) == 0) {
/* It's not, deny its existence */
spinlock_unlock(&t->lock);
107,8 → 108,8
return ENOENT;
}
 
/* Verify debugging state */
if (t->udebug.debug_active != true) {
/* Verify debugging state. */
if (t->udebug.active != true) {
/* Not in debugging session or undesired GO state */
spinlock_unlock(&t->lock);
interrupts_restore(ipl);
117,16 → 118,16
}
 
/*
* Since the thread has debug_active == true, TASK->udebug.lock
* is enough to ensure its existence and that debug_active remains
* Since the thread has active == true, TASK->udebug.lock
* is enough to ensure its existence and that active remains
* true.
*/
spinlock_unlock(&t->lock);
interrupts_restore(ipl);
 
/* Only mutex TASK->udebug.lock left */
/* Only mutex TASK->udebug.lock left. */
/* Now verify that the thread belongs to the current task */
/* Now verify that the thread belongs to the current task. */
if (t->task != TASK) {
/* No such thread belonging this task*/
mutex_unlock(&TASK->udebug.lock);
139,18 → 140,18
*/
mutex_lock(&t->udebug.lock);
 
/* The big task mutex is no longer needed */
/* The big task mutex is no longer needed. */
mutex_unlock(&TASK->udebug.lock);
 
if (!t->udebug.stop != having_go) {
/* Not in debugging session or undesired GO state */
if (t->udebug.go != being_go) {
/* Not in debugging session or undesired GO state. */
mutex_unlock(&t->udebug.lock);
return EINVAL;
}
 
/* Only t->udebug.lock left */
/* Only t->udebug.lock left. */
 
return EOK; /* All went well */
return EOK; /* All went well. */
}
 
/** End debugging operation on a thread. */
180,15 → 181,11
thread_t *t;
link_t *cur;
 
LOG("udebug_begin()\n");
 
LOG("Debugging task %llu", TASK->taskid);
mutex_lock(&TASK->udebug.lock);
LOG("debugging task %llu\n", TASK->taskid);
 
if (TASK->udebug.dt_state != UDEBUG_TS_INACTIVE) {
mutex_unlock(&TASK->udebug.lock);
LOG("udebug_begin(): busy error\n");
 
return EBUSY;
}
 
204,7 → 201,7
reply = 0; /* no reply */
}
/* Set udebug.debug_active on all of the task's userspace threads */
/* Set udebug.active on all of the task's userspace threads. */
 
for (cur = TASK->th_head.next; cur != &TASK->th_head; cur = cur->next) {
t = list_get_instance(cur, thread_t, th_link);
211,15 → 208,11
 
mutex_lock(&t->udebug.lock);
if ((t->flags & THREAD_FLAG_USPACE) != 0)
t->udebug.debug_active = true;
t->udebug.active = true;
mutex_unlock(&t->udebug.lock);
}
 
mutex_unlock(&TASK->udebug.lock);
 
LOG("udebug_begin() done (%s)\n",
reply ? "reply" : "stoppability wait");
 
return reply;
}
 
232,13 → 225,10
{
int rc;
 
LOG("udebug_end()\n");
LOG("Task %" PRIu64, TASK->taskid);
 
mutex_lock(&TASK->udebug.lock);
LOG("task %" PRIu64 "\n", TASK->taskid);
 
rc = udebug_task_cleanup(TASK);
 
mutex_unlock(&TASK->udebug.lock);
 
return rc;
253,19 → 243,16
*/
int udebug_set_evmask(udebug_evmask_t mask)
{
LOG("udebug_set_mask()\n");
LOG("mask = 0x%x", mask);
 
mutex_lock(&TASK->udebug.lock);
 
if (TASK->udebug.dt_state != UDEBUG_TS_ACTIVE) {
mutex_unlock(&TASK->udebug.lock);
LOG("udebug_set_mask(): not active debuging session\n");
 
return EINVAL;
}
 
TASK->udebug.evmask = mask;
 
mutex_unlock(&TASK->udebug.lock);
 
return 0;
273,7 → 260,7
 
/** Give thread GO.
*
* Upon recieving a go message, the thread is given GO. Having GO
* Upon recieving a go message, the thread is given GO. Being GO
* means the thread is allowed to execute userspace code (until
* a debugging event or STOP occurs, at which point the thread loses GO.
*
284,7 → 271,7
{
int rc;
 
/* On success, this will lock t->udebug.lock */
/* On success, this will lock t->udebug.lock. */
rc = _thread_op_begin(t, false);
if (rc != EOK) {
return rc;
291,11 → 278,11
}
 
t->udebug.go_call = call;
t->udebug.stop = false;
t->udebug.go = true;
t->udebug.cur_event = 0; /* none */
 
/*
* Neither t's lock nor threads_lock may be held during wakeup
* Neither t's lock nor threads_lock may be held during wakeup.
*/
waitq_wakeup(&t->udebug.go_wq, WAKEUP_FIRST);
 
316,8 → 303,7
{
int rc;
 
LOG("udebug_stop()\n");
mutex_lock(&TASK->udebug.lock);
LOG("udebug_stop()");
 
/*
* On success, this will lock t->udebug.lock. Note that this makes sure
328,36 → 314,34
return rc;
}
 
/* Take GO away from the thread */
t->udebug.stop = true;
/* Take GO away from the thread. */
t->udebug.go = false;
 
if (!t->udebug.stoppable) {
/* Answer will be sent when the thread becomes stoppable */
if (t->udebug.stoppable != true) {
/* Answer will be sent when the thread becomes stoppable. */
_thread_op_end(t);
return 0;
}
 
/*
* Answer GO call
* Answer GO call.
*/
LOG("udebug_stop - answering go call\n");
 
/* Make sure nobody takes this call away from us */
/* Make sure nobody takes this call away from us. */
call = t->udebug.go_call;
t->udebug.go_call = NULL;
 
IPC_SET_RETVAL(call->data, 0);
IPC_SET_ARG1(call->data, UDEBUG_EVENT_STOP);
LOG("udebug_stop/ipc_answer\n");
 
THREAD->udebug.cur_event = UDEBUG_EVENT_STOP;
 
_thread_op_end(t);
 
mutex_lock(&TASK->udebug.lock);
ipc_answer(&TASK->answerbox, call);
mutex_unlock(&TASK->udebug.lock);
 
LOG("udebog_stop/done\n");
return 0;
}
 
391,7 → 375,7
int flags;
size_t max_ids;
 
LOG("udebug_thread_read()\n");
LOG("udebug_thread_read()");
 
/* Allocate a buffer to hold thread IDs */
id_buffer = malloc(buf_size, 0);
422,7 → 406,7
flags = t->flags;
spinlock_unlock(&t->lock);
 
/* Not interested in kernel threads */
/* Not interested in kernel threads. */
if ((flags & THREAD_FLAG_USPACE) != 0) {
/* Using thread struct pointer as identification hash */
tid = (unative_t) t;
458,16 → 442,16
int rc;
unative_t *arg_buffer;
 
/* Prepare a buffer to hold the arguments */
/* Prepare a buffer to hold the arguments. */
arg_buffer = malloc(6 * sizeof(unative_t), 0);
 
/* On success, this will lock t->udebug.lock */
/* On success, this will lock t->udebug.lock. */
rc = _thread_op_begin(t, false);
if (rc != EOK) {
return rc;
}
 
/* Additionally we need to verify that we are inside a syscall */
/* Additionally we need to verify that we are inside a syscall. */
if (t->udebug.cur_event != UDEBUG_EVENT_SYSCALL_B &&
t->udebug.cur_event != UDEBUG_EVENT_SYSCALL_E) {
_thread_op_end(t);
474,7 → 458,7
return EINVAL;
}
 
/* Copy to a local buffer before releasing the lock */
/* Copy to a local buffer before releasing the lock. */
memcpy(arg_buffer, t->udebug.syscall_args, 6 * sizeof(unative_t));
 
_thread_op_end(t);
/branches/arm/kernel/generic/src/udebug/udebug_ipc.c
73,7 → 73,7
rc = udebug_begin(call);
if (rc < 0) {
IPC_SET_RETVAL(call->data, rc);
ipc_answer(&TASK->kernel_box, call);
ipc_answer(&TASK->kb.box, call);
return;
}
 
83,7 → 83,7
*/
if (rc != 0) {
IPC_SET_RETVAL(call->data, 0);
ipc_answer(&TASK->kernel_box, call);
ipc_answer(&TASK->kb.box, call);
}
}
 
99,7 → 99,7
rc = udebug_end();
 
IPC_SET_RETVAL(call->data, rc);
ipc_answer(&TASK->kernel_box, call);
ipc_answer(&TASK->kb.box, call);
}
 
/** Process a SET_EVMASK call.
116,7 → 116,7
rc = udebug_set_evmask(mask);
 
IPC_SET_RETVAL(call->data, rc);
ipc_answer(&TASK->kernel_box, call);
ipc_answer(&TASK->kb.box, call);
}
 
 
135,7 → 135,7
rc = udebug_go(t, call);
if (rc < 0) {
IPC_SET_RETVAL(call->data, rc);
ipc_answer(&TASK->kernel_box, call);
ipc_answer(&TASK->kb.box, call);
return;
}
}
154,7 → 154,7
 
rc = udebug_stop(t, call);
IPC_SET_RETVAL(call->data, rc);
ipc_answer(&TASK->kernel_box, call);
ipc_answer(&TASK->kb.box, call);
}
 
/** Process a THREAD_READ call.
182,7 → 182,7
rc = udebug_thread_read(&buffer, buf_size, &n);
if (rc < 0) {
IPC_SET_RETVAL(call->data, rc);
ipc_answer(&TASK->kernel_box, call);
ipc_answer(&TASK->kb.box, call);
return;
}
 
209,7 → 209,7
IPC_SET_ARG3(call->data, total_bytes);
call->buffer = buffer;
 
ipc_answer(&TASK->kernel_box, call);
ipc_answer(&TASK->kb.box, call);
}
 
/** Process an ARGS_READ call.
229,7 → 229,7
rc = udebug_args_read(t, &buffer);
if (rc != EOK) {
IPC_SET_RETVAL(call->data, rc);
ipc_answer(&TASK->kernel_box, call);
ipc_answer(&TASK->kb.box, call);
return;
}
 
247,7 → 247,7
IPC_SET_ARG2(call->data, 6 * sizeof(unative_t));
call->buffer = buffer;
 
ipc_answer(&TASK->kernel_box, call);
ipc_answer(&TASK->kb.box, call);
}
 
/** Process an MEM_READ call.
270,7 → 270,7
rc = udebug_mem_read(uspace_src, size, &buffer);
if (rc < 0) {
IPC_SET_RETVAL(call->data, rc);
ipc_answer(&TASK->kernel_box, call);
ipc_answer(&TASK->kb.box, call);
return;
}
 
282,7 → 282,7
IPC_SET_ARG2(call->data, size);
call->buffer = buffer;
 
ipc_answer(&TASK->kernel_box, call);
ipc_answer(&TASK->kb.box, call);
}
 
/** Handle a debug call received on the kernel answerbox.
306,7 → 306,7
*/
if (TASK->udebug.debugger != call->sender) {
IPC_SET_RETVAL(call->data, EINVAL);
ipc_answer(&TASK->kernel_box, call);
ipc_answer(&TASK->kb.box, call);
return;
}
}
/branches/arm/kernel/generic/src/interrupt/interrupt.c
42,7 → 42,6
#include <debug.h>
#include <console/kconsole.h>
#include <console/console.h>
#include <console/chardev.h>
#include <console/cmd.h>
#include <panic.h>
#include <print.h>
68,13 → 67,13
iroutine old;
spinlock_lock(&exctbl_lock);
 
old = exc_table[n].f;
exc_table[n].f = f;
exc_table[n].name = name;
 
spinlock_unlock(&exctbl_lock);
 
spinlock_unlock(&exctbl_lock);
return old;
}
 
86,8 → 85,17
void exc_dispatch(int n, istate_t *istate)
{
ASSERT(n < IVT_ITEMS);
 
#ifdef CONFIG_UDEBUG
if (THREAD) THREAD->udebug.uspace_state = istate;
#endif
exc_table[n].f(n + IVT_FIRST, istate);
 
#ifdef CONFIG_UDEBUG
if (THREAD) THREAD->udebug.uspace_state = NULL;
#endif
 
/* This is a safe place to exit exiting thread */
if (THREAD && THREAD->interrupted && istate_from_uspace(istate))
thread_exit();
100,8 → 108,10
panic("Unhandled exception %d.", n);
}
 
#ifdef CONFIG_KCONSOLE
 
/** kconsole cmd - print all exceptions */
static int exc_print_cmd(cmd_arg_t *argv)
static int cmd_exc_print(cmd_arg_t *argv)
{
#if (IVT_ITEMS > 0)
unsigned int i;
120,9 → 130,7
#endif
for (i = 0; i < IVT_ITEMS; i++) {
symbol = get_symtab_entry((unative_t) exc_table[i].f);
if (!symbol)
symbol = "not found";
symbol = symtab_fmt_name_lookup((unative_t) exc_table[i].f);
 
#ifdef __32_BITS__
printf("%-3u %-20s %10p %s\n", i + IVT_FIRST, exc_table[i].name,
137,7 → 145,7
if (((i + 1) % 20) == 0) {
printf(" -- Press any key to continue -- ");
spinlock_unlock(&exctbl_lock);
getc(stdin);
indev_pop_character(stdin);
spinlock_lock(&exctbl_lock);
printf("\n");
}
149,15 → 157,18
return 1;
}
 
 
static cmd_info_t exc_info = {
.name = "exc",
.description = "Print exception table.",
.func = exc_print_cmd,
.func = cmd_exc_print,
.help = NULL,
.argc = 0,
.argv = NULL
};
 
#endif
 
/** Initialize generic exception handling support */
void exc_init(void)
{
166,9 → 177,11
for (i = 0; i < IVT_ITEMS; i++)
exc_register(i, "undef", (iroutine) exc_undef);
 
#ifdef CONFIG_KCONSOLE
cmd_initialize(&exc_info);
if (!cmd_register(&exc_info))
panic("could not register command %s\n", exc_info.name);
printf("Cannot register command %s\n", exc_info.name);
#endif
}
 
/** @}
/branches/arm/kernel/generic/src/cpu/cpu.c
64,7 → 64,7
cpus = (cpu_t *) malloc(sizeof(cpu_t) * config.cpu_count,
FRAME_ATOMIC);
if (!cpus)
panic("malloc/cpus");
panic("Cannot allocate CPU structures.");
 
/* initialize everything */
memsetb(cpus, sizeof(cpu_t) * config.cpu_count, 0);
86,7 → 86,7
}
#endif /* CONFIG_SMP */
 
CPU = &cpus[config.cpu_active-1];
CPU = &cpus[config.cpu_active - 1];
CPU->active = 1;
CPU->tlb_active = 1;
/branches/arm/kernel/generic/src/sysinfo/sysinfo.c
163,7 → 163,8
i = 0;
}
}
panic("Not reached\n");
 
panic("Not reached.");
return NULL;
}