Subversion Repositories HelenOS-historic

Rev

Rev 823 | Rev 897 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
1 jermar 1
/*
2
 * Copyright (C) 2001-2004 Jakub Jermar
3
 * All rights reserved.
4
 *
5
 * Redistribution and use in source and binary forms, with or without
6
 * modification, are permitted provided that the following conditions
7
 * are met:
8
 *
9
 * - Redistributions of source code must retain the above copyright
10
 *   notice, this list of conditions and the following disclaimer.
11
 * - Redistributions in binary form must reproduce the above copyright
12
 *   notice, this list of conditions and the following disclaimer in the
13
 *   documentation and/or other materials provided with the distribution.
14
 * - The name of the author may not be used to endorse or promote products
15
 *   derived from this software without specific prior written permission.
16
 *
17
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
 */
28
 
29
#include <proc/scheduler.h>
30
#include <proc/thread.h>
31
#include <proc/task.h>
378 jermar 32
#include <mm/frame.h>
33
#include <mm/page.h>
703 jermar 34
#include <mm/as.h>
378 jermar 35
#include <arch/asm.h>
36
#include <arch/faddr.h>
37
#include <arch/atomic.h>
38
#include <synch/spinlock.h>
1 jermar 39
#include <config.h>
40
#include <context.h>
41
#include <func.h>
42
#include <arch.h>
788 jermar 43
#include <adt/list.h>
68 decky 44
#include <panic.h>
1 jermar 45
#include <typedefs.h>
378 jermar 46
#include <cpu.h>
195 vana 47
#include <print.h>
227 jermar 48
#include <debug.h>
1 jermar 49
 
475 jermar 50
atomic_t nrdy;
195 vana 51
 
118 jermar 52
/** Take actions before new thread runs
107 decky 53
 *
118 jermar 54
 * Perform actions that need to be
55
 * taken before the newly selected
56
 * tread is passed control.
107 decky 57
 *
827 palkovsky 58
 * THREAD->lock is locked on entry
59
 *
107 decky 60
 */
52 vana 61
void before_thread_runs(void)
62
{
309 palkovsky 63
    before_thread_runs_arch();
458 decky 64
#ifdef CONFIG_FPU_LAZY
309 palkovsky 65
    if(THREAD==CPU->fpu_owner)
66
        fpu_enable();
67
    else
68
        fpu_disable();
69
#else
70
    fpu_enable();
71
    if (THREAD->fpu_context_exists)
72
        fpu_context_restore(&(THREAD->saved_fpu_context));
73
    else {
827 palkovsky 74
        fpu_init(&(THREAD->saved_fpu_context));
309 palkovsky 75
        THREAD->fpu_context_exists=1;
76
    }
77
#endif
52 vana 78
}
79
 
458 decky 80
#ifdef CONFIG_FPU_LAZY
309 palkovsky 81
void scheduler_fpu_lazy_request(void)
82
{
83
    fpu_enable();
827 palkovsky 84
    spinlock_lock(&CPU->lock);
85
 
86
    /* Save old context */
309 palkovsky 87
    if (CPU->fpu_owner != NULL) {  
827 palkovsky 88
        spinlock_lock(&CPU->fpu_owner->lock);
309 palkovsky 89
        fpu_context_save(&CPU->fpu_owner->saved_fpu_context);
90
        /* don't prevent migration */
91
        CPU->fpu_owner->fpu_context_engaged=0;
827 palkovsky 92
        spinlock_unlock(&CPU->fpu_owner->lock);
309 palkovsky 93
    }
827 palkovsky 94
 
95
    spinlock_lock(&THREAD->lock);
309 palkovsky 96
    if (THREAD->fpu_context_exists)
97
        fpu_context_restore(&THREAD->saved_fpu_context);
98
    else {
827 palkovsky 99
        fpu_init(&(THREAD->saved_fpu_context));
309 palkovsky 100
        THREAD->fpu_context_exists=1;
101
    }
102
    CPU->fpu_owner=THREAD;
103
    THREAD->fpu_context_engaged = 1;
827 palkovsky 104
 
105
    spinlock_unlock(&THREAD->lock);
106
    spinlock_unlock(&CPU->lock);
309 palkovsky 107
}
108
#endif
52 vana 109
 
107 decky 110
/** Initialize scheduler
111
 *
112
 * Initialize kernel scheduler.
113
 *
114
 */
1 jermar 115
void scheduler_init(void)
116
{
117
}
118
 
107 decky 119
 
120
/** Get thread to be scheduled
121
 *
122
 * Get the optimal thread to be scheduled
109 jermar 123
 * according to thread accounting and scheduler
107 decky 124
 * policy.
125
 *
126
 * @return Thread to be scheduled.
127
 *
128
 */
483 jermar 129
static thread_t *find_best_thread(void)
1 jermar 130
{
131
    thread_t *t;
132
    runq_t *r;
783 palkovsky 133
    int i;
1 jermar 134
 
227 jermar 135
    ASSERT(CPU != NULL);
136
 
1 jermar 137
loop:
413 jermar 138
    interrupts_enable();
1 jermar 139
 
783 palkovsky 140
    if (atomic_get(&CPU->nrdy) == 0) {
1 jermar 141
        /*
142
         * For there was nothing to run, the CPU goes to sleep
143
         * until a hardware interrupt or an IPI comes.
144
         * This improves energy saving and hyperthreading.
145
         */
785 jermar 146
 
147
        /*
148
         * An interrupt might occur right now and wake up a thread.
149
         * In such case, the CPU will continue to go to sleep
150
         * even though there is a runnable thread.
151
         */
152
 
1 jermar 153
         cpu_sleep();
154
         goto loop;
155
    }
156
 
413 jermar 157
    interrupts_disable();
114 jermar 158
 
159
    i = 0;
160
    for (; i<RQ_COUNT; i++) {
15 jermar 161
        r = &CPU->rq[i];
1 jermar 162
        spinlock_lock(&r->lock);
163
        if (r->n == 0) {
164
            /*
165
             * If this queue is empty, try a lower-priority queue.
166
             */
167
            spinlock_unlock(&r->lock);
168
            continue;
169
        }
213 jermar 170
 
783 palkovsky 171
        atomic_dec(&CPU->nrdy);
475 jermar 172
        atomic_dec(&nrdy);
1 jermar 173
        r->n--;
174
 
175
        /*
176
         * Take the first thread from the queue.
177
         */
178
        t = list_get_instance(r->rq_head.next, thread_t, rq_link);
179
        list_remove(&t->rq_link);
180
 
181
        spinlock_unlock(&r->lock);
182
 
183
        spinlock_lock(&t->lock);
15 jermar 184
        t->cpu = CPU;
1 jermar 185
 
186
        t->ticks = us2ticks((i+1)*10000);
413 jermar 187
        t->priority = i;    /* eventually correct rq index */
1 jermar 188
 
189
        /*
190
         * Clear the X_STOLEN flag so that t can be migrated when load balancing needs emerge.
191
         */
192
        t->flags &= ~X_STOLEN;
193
        spinlock_unlock(&t->lock);
194
 
195
        return t;
196
    }
197
    goto loop;
198
 
199
}
200
 
107 decky 201
 
202
/** Prevent rq starvation
203
 *
204
 * Prevent low priority threads from starving in rq's.
205
 *
206
 * When the function decides to relink rq's, it reconnects
207
 * respective pointers so that in result threads with 'pri'
208
 * greater or equal 'start' are moved to a higher-priority queue.
209
 *
210
 * @param start Threshold priority.
211
 *
1 jermar 212
 */
452 decky 213
static void relink_rq(int start)
1 jermar 214
{
215
    link_t head;
216
    runq_t *r;
217
    int i, n;
218
 
219
    list_initialize(&head);
15 jermar 220
    spinlock_lock(&CPU->lock);
221
    if (CPU->needs_relink > NEEDS_RELINK_MAX) {
1 jermar 222
        for (i = start; i<RQ_COUNT-1; i++) {
223
            /* remember and empty rq[i + 1] */
15 jermar 224
            r = &CPU->rq[i + 1];
1 jermar 225
            spinlock_lock(&r->lock);
226
            list_concat(&head, &r->rq_head);
227
            n = r->n;
228
            r->n = 0;
229
            spinlock_unlock(&r->lock);
230
 
231
            /* append rq[i + 1] to rq[i] */
15 jermar 232
            r = &CPU->rq[i];
1 jermar 233
            spinlock_lock(&r->lock);
234
            list_concat(&r->rq_head, &head);
235
            r->n += n;
236
            spinlock_unlock(&r->lock);
237
        }
15 jermar 238
        CPU->needs_relink = 0;
1 jermar 239
    }
784 palkovsky 240
    spinlock_unlock(&CPU->lock);
1 jermar 241
 
242
}
243
 
107 decky 244
 
245
/** Scheduler stack switch wrapper
246
 *
247
 * Second part of the scheduler() function
248
 * using new stack. Handling the actual context
249
 * switch to a new thread.
250
 *
787 palkovsky 251
 * Assume THREAD->lock is held.
107 decky 252
 */
452 decky 253
static void scheduler_separated_stack(void)
1 jermar 254
{
255
    int priority;
256
 
227 jermar 257
    ASSERT(CPU != NULL);
258
 
15 jermar 259
    if (THREAD) {
260
        switch (THREAD->state) {
1 jermar 261
            case Running:
125 jermar 262
            THREAD->state = Ready;
263
            spinlock_unlock(&THREAD->lock);
264
            thread_ready(THREAD);
265
            break;
1 jermar 266
 
267
            case Exiting:
787 palkovsky 268
            thread_destroy(THREAD);
125 jermar 269
            break;
787 palkovsky 270
 
1 jermar 271
            case Sleeping:
125 jermar 272
            /*
273
             * Prefer the thread after it's woken up.
274
             */
413 jermar 275
            THREAD->priority = -1;
1 jermar 276
 
125 jermar 277
            /*
278
             * We need to release wq->lock which we locked in waitq_sleep().
279
             * Address of wq->lock is kept in THREAD->sleep_queue.
280
             */
281
            spinlock_unlock(&THREAD->sleep_queue->lock);
1 jermar 282
 
125 jermar 283
            /*
284
             * Check for possible requests for out-of-context invocation.
285
             */
286
            if (THREAD->call_me) {
287
                THREAD->call_me(THREAD->call_me_with);
288
                THREAD->call_me = NULL;
289
                THREAD->call_me_with = NULL;
290
            }
1 jermar 291
 
125 jermar 292
            spinlock_unlock(&THREAD->lock);
1 jermar 293
 
125 jermar 294
            break;
295
 
1 jermar 296
            default:
125 jermar 297
            /*
298
             * Entering state is unexpected.
299
             */
300
            panic("tid%d: unexpected state %s\n", THREAD->tid, thread_states[THREAD->state]);
301
            break;
1 jermar 302
        }
15 jermar 303
        THREAD = NULL;
1 jermar 304
    }
198 jermar 305
 
214 vana 306
 
15 jermar 307
    THREAD = find_best_thread();
1 jermar 308
 
15 jermar 309
    spinlock_lock(&THREAD->lock);
413 jermar 310
    priority = THREAD->priority;
15 jermar 311
    spinlock_unlock(&THREAD->lock);
192 jermar 312
 
1 jermar 313
    relink_rq(priority);       
314
 
15 jermar 315
    spinlock_lock(&THREAD->lock);  
1 jermar 316
 
317
    /*
318
     * If both the old and the new task are the same, lots of work is avoided.
319
     */
15 jermar 320
    if (TASK != THREAD->task) {
703 jermar 321
        as_t *as1 = NULL;
322
        as_t *as2;
1 jermar 323
 
15 jermar 324
        if (TASK) {
325
            spinlock_lock(&TASK->lock);
703 jermar 326
            as1 = TASK->as;
15 jermar 327
            spinlock_unlock(&TASK->lock);
1 jermar 328
        }
329
 
15 jermar 330
        spinlock_lock(&THREAD->task->lock);
703 jermar 331
        as2 = THREAD->task->as;
15 jermar 332
        spinlock_unlock(&THREAD->task->lock);
1 jermar 333
 
334
        /*
703 jermar 335
         * Note that it is possible for two tasks to share one address space.
1 jermar 336
         */
703 jermar 337
        if (as1 != as2) {
1 jermar 338
            /*
703 jermar 339
             * Both tasks and address spaces are different.
1 jermar 340
             * Replace the old one with the new one.
341
             */
823 jermar 342
            as_switch(as1, as2);
1 jermar 343
        }
15 jermar 344
        TASK = THREAD->task;   
1 jermar 345
    }
346
 
15 jermar 347
    THREAD->state = Running;
1 jermar 348
 
349
    #ifdef SCHEDULER_VERBOSE
823 jermar 350
    printf("cpu%d: tid %d (priority=%d,ticks=%d,nrdy=%d)\n", CPU->id, THREAD->tid, THREAD->priority, THREAD->ticks, atomic_get(&CPU->nrdy));
1 jermar 351
    #endif  
352
 
213 jermar 353
    /*
354
     * Copy the knowledge of CPU, TASK, THREAD and preemption counter to thread's stack.
355
     */
184 jermar 356
    the_copy(THE, (the_t *) THREAD->kstack);
357
 
15 jermar 358
    context_restore(&THREAD->saved_context);
1 jermar 359
    /* not reached */
360
}
361
 
107 decky 362
 
452 decky 363
/** The scheduler
364
 *
365
 * The thread scheduling procedure.
675 jermar 366
 * Passes control directly to
367
 * scheduler_separated_stack().
452 decky 368
 *
369
 */
370
void scheduler(void)
371
{
372
    volatile ipl_t ipl;
373
 
374
    ASSERT(CPU != NULL);
375
 
376
    ipl = interrupts_disable();
377
 
631 palkovsky 378
    if (atomic_get(&haltstate))
452 decky 379
        halt();
380
 
381
    if (THREAD) {
382
        spinlock_lock(&THREAD->lock);
458 decky 383
#ifndef CONFIG_FPU_LAZY
452 decky 384
        fpu_context_save(&(THREAD->saved_fpu_context));
385
#endif
386
        if (!context_save(&THREAD->saved_context)) {
387
            /*
388
             * This is the place where threads leave scheduler();
389
             */
390
            before_thread_runs();
391
            spinlock_unlock(&THREAD->lock);
392
            interrupts_restore(THREAD->saved_context.ipl);
393
            return;
394
        }
395
 
396
        /*
397
         * Interrupt priority level of preempted thread is recorded here
398
         * to facilitate scheduler() invocations from interrupts_disable()'d
399
         * code (e.g. waitq_sleep_timeout()).
400
         */
401
        THREAD->saved_context.ipl = ipl;
402
    }
403
 
404
    /*
557 jermar 405
     * Through the 'THE' structure, we keep track of THREAD, TASK, CPU, VM
452 decky 406
     * and preemption counter. At this point THE could be coming either
407
     * from THREAD's or CPU's stack.
408
     */
409
    the_copy(THE, (the_t *) CPU->stack);
410
 
411
    /*
412
     * We may not keep the old stack.
413
     * Reason: If we kept the old stack and got blocked, for instance, in
414
     * find_best_thread(), the old thread could get rescheduled by another
415
     * CPU and overwrite the part of its own stack that was also used by
416
     * the scheduler on this CPU.
417
     *
418
     * Moreover, we have to bypass the compiler-generated POP sequence
419
     * which is fooled by SP being set to the very top of the stack.
420
     * Therefore the scheduler() function continues in
421
     * scheduler_separated_stack().
422
     */
423
    context_save(&CPU->saved_context);
424
    context_set(&CPU->saved_context, FADDR(scheduler_separated_stack), (__address) CPU->stack, CPU_STACK_SIZE);
425
    context_restore(&CPU->saved_context);
426
    /* not reached */
427
}
428
 
429
 
430
 
431
 
432
 
458 decky 433
#ifdef CONFIG_SMP
107 decky 434
/** Load balancing thread
435
 *
436
 * SMP load balancing thread, supervising thread supplies
437
 * for the CPU it's wired to.
438
 *
439
 * @param arg Generic thread argument (unused).
440
 *
1 jermar 441
 */
442
void kcpulb(void *arg)
443
{
444
    thread_t *t;
783 palkovsky 445
    int count, average, i, j, k = 0;
413 jermar 446
    ipl_t ipl;
1 jermar 447
 
448
loop:
449
    /*
779 jermar 450
     * Work in 1s intervals.
1 jermar 451
     */
779 jermar 452
    thread_sleep(1);
1 jermar 453
 
454
not_satisfied:
455
    /*
456
     * Calculate the number of threads that will be migrated/stolen from
457
     * other CPU's. Note that situation can have changed between two
458
     * passes. Each time get the most up to date counts.
459
     */
784 palkovsky 460
    average = atomic_get(&nrdy) / config.cpu_active + 1;
783 palkovsky 461
    count = average - atomic_get(&CPU->nrdy);
1 jermar 462
 
784 palkovsky 463
    if (count <= 0)
1 jermar 464
        goto satisfied;
465
 
466
    /*
467
     * Searching least priority queues on all CPU's first and most priority queues on all CPU's last.
468
     */
469
    for (j=RQ_COUNT-1; j >= 0; j--) {
470
        for (i=0; i < config.cpu_active; i++) {
471
            link_t *l;
472
            runq_t *r;
473
            cpu_t *cpu;
474
 
475
            cpu = &cpus[(i + k) % config.cpu_active];
476
 
477
            /*
478
             * Not interested in ourselves.
479
             * Doesn't require interrupt disabling for kcpulb is X_WIRED.
480
             */
15 jermar 481
            if (CPU == cpu)
783 palkovsky 482
                continue;
483
            if (atomic_get(&cpu->nrdy) <= average)
484
                continue;
1 jermar 485
 
784 palkovsky 486
            ipl = interrupts_disable();
115 jermar 487
            r = &cpu->rq[j];
1 jermar 488
            spinlock_lock(&r->lock);
489
            if (r->n == 0) {
490
                spinlock_unlock(&r->lock);
413 jermar 491
                interrupts_restore(ipl);
1 jermar 492
                continue;
493
            }
494
 
495
            t = NULL;
496
            l = r->rq_head.prev;    /* search rq from the back */
497
            while (l != &r->rq_head) {
498
                t = list_get_instance(l, thread_t, rq_link);
499
                /*
125 jermar 500
                 * We don't want to steal CPU-wired threads neither threads already stolen.
1 jermar 501
                 * The latter prevents threads from migrating between CPU's without ever being run.
125 jermar 502
                 * We don't want to steal threads whose FPU context is still in CPU.
73 vana 503
                 */
1 jermar 504
                spinlock_lock(&t->lock);
73 vana 505
                if ( (!(t->flags & (X_WIRED | X_STOLEN))) && (!(t->fpu_context_engaged)) ) {
1 jermar 506
                    /*
507
                     * Remove t from r.
508
                     */
509
                    spinlock_unlock(&t->lock);
510
 
783 palkovsky 511
                    atomic_dec(&cpu->nrdy);
475 jermar 512
                    atomic_dec(&nrdy);
1 jermar 513
 
125 jermar 514
                    r->n--;
1 jermar 515
                    list_remove(&t->rq_link);
516
 
517
                    break;
518
                }
519
                spinlock_unlock(&t->lock);
520
                l = l->prev;
521
                t = NULL;
522
            }
523
            spinlock_unlock(&r->lock);
524
 
525
            if (t) {
526
                /*
527
                 * Ready t on local CPU
528
                 */
529
                spinlock_lock(&t->lock);
530
                #ifdef KCPULB_VERBOSE
783 palkovsky 531
                printf("kcpulb%d: TID %d -> cpu%d, nrdy=%d, avg=%d\n", CPU->id, t->tid, CPU->id, atomic_get(&CPU->nrdy), atomic_get(&nrdy) / config.cpu_active);
1 jermar 532
                #endif
533
                t->flags |= X_STOLEN;
534
                spinlock_unlock(&t->lock);
535
 
536
                thread_ready(t);
537
 
413 jermar 538
                interrupts_restore(ipl);
1 jermar 539
 
540
                if (--count == 0)
541
                    goto satisfied;
542
 
543
                /*
125 jermar 544
                 * We are not satisfied yet, focus on another CPU next time.
1 jermar 545
                 */
546
                k++;
547
 
548
                continue;
549
            }
413 jermar 550
            interrupts_restore(ipl);
1 jermar 551
        }
552
    }
553
 
783 palkovsky 554
    if (atomic_get(&CPU->nrdy)) {
1 jermar 555
        /*
556
         * Be a little bit light-weight and let migrated threads run.
557
         */
558
        scheduler();
779 jermar 559
    } else {
1 jermar 560
        /*
561
         * We failed to migrate a single thread.
779 jermar 562
         * Give up this turn.
1 jermar 563
         */
779 jermar 564
        goto loop;
1 jermar 565
    }
566
 
567
    goto not_satisfied;
125 jermar 568
 
1 jermar 569
satisfied:
570
    goto loop;
571
}
572
 
458 decky 573
#endif /* CONFIG_SMP */
775 palkovsky 574
 
575
 
576
/** Print information about threads & scheduler queues */
577
void sched_print_list(void)
578
{
579
    ipl_t ipl;
580
    int cpu,i;
581
    runq_t *r;
582
    thread_t *t;
583
    link_t *cur;
584
 
585
    /* We are going to mess with scheduler structures,
586
     * let's not be interrupted */
587
    ipl = interrupts_disable();
588
    printf("*********** Scheduler dump ***********\n");
589
    for (cpu=0;cpu < config.cpu_count; cpu++) {
590
        if (!cpus[cpu].active)
591
            continue;
592
        spinlock_lock(&cpus[cpu].lock);
593
        printf("cpu%d: nrdy: %d needs_relink: %d\n",
783 palkovsky 594
               cpus[cpu].id, atomic_get(&cpus[cpu].nrdy), cpus[cpu].needs_relink);
775 palkovsky 595
 
596
        for (i=0; i<RQ_COUNT; i++) {
597
            r = &cpus[cpu].rq[i];
598
            spinlock_lock(&r->lock);
599
            if (!r->n) {
600
                spinlock_unlock(&r->lock);
601
                continue;
602
            }
779 jermar 603
            printf("\tRq %d: ", i);
775 palkovsky 604
            for (cur=r->rq_head.next; cur!=&r->rq_head; cur=cur->next) {
605
                t = list_get_instance(cur, thread_t, rq_link);
606
                printf("%d(%s) ", t->tid,
607
                       thread_states[t->state]);
608
            }
609
            printf("\n");
610
            spinlock_unlock(&r->lock);
611
        }
612
        spinlock_unlock(&cpus[cpu].lock);
613
    }
614
 
615
    interrupts_restore(ipl);
616
}