Subversion Repositories HelenOS-historic

Rev

Rev 1187 | Rev 1221 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
1 jermar 1
/*
2
 * Copyright (C) 2001-2004 Jakub Jermar
3
 * All rights reserved.
4
 *
5
 * Redistribution and use in source and binary forms, with or without
6
 * modification, are permitted provided that the following conditions
7
 * are met:
8
 *
9
 * - Redistributions of source code must retain the above copyright
10
 *   notice, this list of conditions and the following disclaimer.
11
 * - Redistributions in binary form must reproduce the above copyright
12
 *   notice, this list of conditions and the following disclaimer in the
13
 *   documentation and/or other materials provided with the distribution.
14
 * - The name of the author may not be used to endorse or promote products
15
 *   derived from this software without specific prior written permission.
16
 *
17
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
 */
28
 
29
#include <proc/scheduler.h>
30
#include <proc/thread.h>
31
#include <proc/task.h>
378 jermar 32
#include <mm/frame.h>
33
#include <mm/page.h>
703 jermar 34
#include <mm/as.h>
378 jermar 35
#include <arch/asm.h>
36
#include <arch/faddr.h>
1104 jermar 37
#include <atomic.h>
378 jermar 38
#include <synch/spinlock.h>
1 jermar 39
#include <config.h>
40
#include <context.h>
41
#include <func.h>
42
#include <arch.h>
788 jermar 43
#include <adt/list.h>
68 decky 44
#include <panic.h>
1 jermar 45
#include <typedefs.h>
378 jermar 46
#include <cpu.h>
195 vana 47
#include <print.h>
227 jermar 48
#include <debug.h>
1 jermar 49
 
1187 jermar 50
static void before_task_runs(void);
51
static void before_thread_runs(void);
52
static void after_thread_ran(void);
898 jermar 53
static void scheduler_separated_stack(void);
195 vana 54
 
898 jermar 55
atomic_t nrdy;  /**< Number of ready threads in the system. */
56
 
1187 jermar 57
/** Carry out actions before new task runs. */
58
void before_task_runs(void)
59
{
60
    before_task_runs_arch();
61
}
62
 
897 jermar 63
/** Take actions before new thread runs.
107 decky 64
 *
118 jermar 65
 * Perform actions that need to be
66
 * taken before the newly selected
67
 * tread is passed control.
107 decky 68
 *
827 palkovsky 69
 * THREAD->lock is locked on entry
70
 *
107 decky 71
 */
52 vana 72
void before_thread_runs(void)
73
{
309 palkovsky 74
    before_thread_runs_arch();
906 palkovsky 75
#ifdef CONFIG_FPU_LAZY
309 palkovsky 76
    if(THREAD==CPU->fpu_owner)
77
        fpu_enable();
78
    else
79
        fpu_disable();
906 palkovsky 80
#else
309 palkovsky 81
    fpu_enable();
82
    if (THREAD->fpu_context_exists)
906 palkovsky 83
        fpu_context_restore(THREAD->saved_fpu_context);
309 palkovsky 84
    else {
906 palkovsky 85
        fpu_init();
309 palkovsky 86
        THREAD->fpu_context_exists=1;
87
    }
906 palkovsky 88
#endif
52 vana 89
}
90
 
898 jermar 91
/** Take actions after THREAD had run.
897 jermar 92
 *
93
 * Perform actions that need to be
94
 * taken after the running thread
898 jermar 95
 * had been preempted by the scheduler.
897 jermar 96
 *
97
 * THREAD->lock is locked on entry
98
 *
99
 */
100
void after_thread_ran(void)
101
{
102
    after_thread_ran_arch();
103
}
104
 
458 decky 105
#ifdef CONFIG_FPU_LAZY
309 palkovsky 106
void scheduler_fpu_lazy_request(void)
107
{
907 palkovsky 108
restart:
309 palkovsky 109
    fpu_enable();
827 palkovsky 110
    spinlock_lock(&CPU->lock);
111
 
112
    /* Save old context */
309 palkovsky 113
    if (CPU->fpu_owner != NULL) {  
827 palkovsky 114
        spinlock_lock(&CPU->fpu_owner->lock);
906 palkovsky 115
        fpu_context_save(CPU->fpu_owner->saved_fpu_context);
309 palkovsky 116
        /* don't prevent migration */
117
        CPU->fpu_owner->fpu_context_engaged=0;
827 palkovsky 118
        spinlock_unlock(&CPU->fpu_owner->lock);
907 palkovsky 119
        CPU->fpu_owner = NULL;
309 palkovsky 120
    }
827 palkovsky 121
 
122
    spinlock_lock(&THREAD->lock);
898 jermar 123
    if (THREAD->fpu_context_exists) {
906 palkovsky 124
        fpu_context_restore(THREAD->saved_fpu_context);
898 jermar 125
    } else {
906 palkovsky 126
        /* Allocate FPU context */
127
        if (!THREAD->saved_fpu_context) {
128
            /* Might sleep */
129
            spinlock_unlock(&THREAD->lock);
907 palkovsky 130
            spinlock_unlock(&CPU->lock);
906 palkovsky 131
            THREAD->saved_fpu_context = slab_alloc(fpu_context_slab,
132
                                   0);
907 palkovsky 133
            /* We may have switched CPUs during slab_alloc */
134
            goto restart;
906 palkovsky 135
        }
136
        fpu_init();
309 palkovsky 137
        THREAD->fpu_context_exists=1;
138
    }
139
    CPU->fpu_owner=THREAD;
140
    THREAD->fpu_context_engaged = 1;
898 jermar 141
    spinlock_unlock(&THREAD->lock);
827 palkovsky 142
 
143
    spinlock_unlock(&CPU->lock);
309 palkovsky 144
}
145
#endif
52 vana 146
 
107 decky 147
/** Initialize scheduler
148
 *
149
 * Initialize kernel scheduler.
150
 *
151
 */
1 jermar 152
void scheduler_init(void)
153
{
154
}
155
 
107 decky 156
/** Get thread to be scheduled
157
 *
158
 * Get the optimal thread to be scheduled
109 jermar 159
 * according to thread accounting and scheduler
107 decky 160
 * policy.
161
 *
162
 * @return Thread to be scheduled.
163
 *
164
 */
483 jermar 165
static thread_t *find_best_thread(void)
1 jermar 166
{
167
    thread_t *t;
168
    runq_t *r;
783 palkovsky 169
    int i;
1 jermar 170
 
227 jermar 171
    ASSERT(CPU != NULL);
172
 
1 jermar 173
loop:
413 jermar 174
    interrupts_enable();
1 jermar 175
 
783 palkovsky 176
    if (atomic_get(&CPU->nrdy) == 0) {
1 jermar 177
        /*
178
         * For there was nothing to run, the CPU goes to sleep
179
         * until a hardware interrupt or an IPI comes.
180
         * This improves energy saving and hyperthreading.
181
         */
785 jermar 182
 
183
        /*
184
         * An interrupt might occur right now and wake up a thread.
185
         * In such case, the CPU will continue to go to sleep
186
         * even though there is a runnable thread.
187
         */
188
 
1 jermar 189
         cpu_sleep();
190
         goto loop;
191
    }
192
 
413 jermar 193
    interrupts_disable();
114 jermar 194
 
898 jermar 195
    for (i = 0; i<RQ_COUNT; i++) {
15 jermar 196
        r = &CPU->rq[i];
1 jermar 197
        spinlock_lock(&r->lock);
198
        if (r->n == 0) {
199
            /*
200
             * If this queue is empty, try a lower-priority queue.
201
             */
202
            spinlock_unlock(&r->lock);
203
            continue;
204
        }
213 jermar 205
 
783 palkovsky 206
        atomic_dec(&CPU->nrdy);
475 jermar 207
        atomic_dec(&nrdy);
1 jermar 208
        r->n--;
209
 
210
        /*
211
         * Take the first thread from the queue.
212
         */
213
        t = list_get_instance(r->rq_head.next, thread_t, rq_link);
214
        list_remove(&t->rq_link);
215
 
216
        spinlock_unlock(&r->lock);
217
 
218
        spinlock_lock(&t->lock);
15 jermar 219
        t->cpu = CPU;
1 jermar 220
 
221
        t->ticks = us2ticks((i+1)*10000);
898 jermar 222
        t->priority = i;    /* correct rq index */
1 jermar 223
 
224
        /*
225
         * Clear the X_STOLEN flag so that t can be migrated when load balancing needs emerge.
226
         */
227
        t->flags &= ~X_STOLEN;
228
        spinlock_unlock(&t->lock);
229
 
230
        return t;
231
    }
232
    goto loop;
233
 
234
}
235
 
107 decky 236
/** Prevent rq starvation
237
 *
238
 * Prevent low priority threads from starving in rq's.
239
 *
240
 * When the function decides to relink rq's, it reconnects
241
 * respective pointers so that in result threads with 'pri'
242
 * greater or equal 'start' are moved to a higher-priority queue.
243
 *
244
 * @param start Threshold priority.
245
 *
1 jermar 246
 */
452 decky 247
static void relink_rq(int start)
1 jermar 248
{
249
    link_t head;
250
    runq_t *r;
251
    int i, n;
252
 
253
    list_initialize(&head);
15 jermar 254
    spinlock_lock(&CPU->lock);
255
    if (CPU->needs_relink > NEEDS_RELINK_MAX) {
1 jermar 256
        for (i = start; i<RQ_COUNT-1; i++) {
257
            /* remember and empty rq[i + 1] */
15 jermar 258
            r = &CPU->rq[i + 1];
1 jermar 259
            spinlock_lock(&r->lock);
260
            list_concat(&head, &r->rq_head);
261
            n = r->n;
262
            r->n = 0;
263
            spinlock_unlock(&r->lock);
264
 
265
            /* append rq[i + 1] to rq[i] */
15 jermar 266
            r = &CPU->rq[i];
1 jermar 267
            spinlock_lock(&r->lock);
268
            list_concat(&r->rq_head, &head);
269
            r->n += n;
270
            spinlock_unlock(&r->lock);
271
        }
15 jermar 272
        CPU->needs_relink = 0;
1 jermar 273
    }
784 palkovsky 274
    spinlock_unlock(&CPU->lock);
1 jermar 275
 
276
}
277
 
898 jermar 278
/** The scheduler
279
 *
280
 * The thread scheduling procedure.
281
 * Passes control directly to
282
 * scheduler_separated_stack().
283
 *
284
 */
285
void scheduler(void)
286
{
287
    volatile ipl_t ipl;
107 decky 288
 
898 jermar 289
    ASSERT(CPU != NULL);
290
 
291
    ipl = interrupts_disable();
292
 
293
    if (atomic_get(&haltstate))
294
        halt();
1007 decky 295
 
898 jermar 296
    if (THREAD) {
297
        spinlock_lock(&THREAD->lock);
906 palkovsky 298
#ifndef CONFIG_FPU_LAZY
299
        fpu_context_save(THREAD->saved_fpu_context);
300
#endif
898 jermar 301
        if (!context_save(&THREAD->saved_context)) {
302
            /*
303
             * This is the place where threads leave scheduler();
304
             */
305
            spinlock_unlock(&THREAD->lock);
306
            interrupts_restore(THREAD->saved_context.ipl);
1007 decky 307
 
898 jermar 308
            return;
309
        }
310
 
311
        /*
312
         * Interrupt priority level of preempted thread is recorded here
313
         * to facilitate scheduler() invocations from interrupts_disable()'d
314
         * code (e.g. waitq_sleep_timeout()).
315
         */
316
        THREAD->saved_context.ipl = ipl;
317
    }
318
 
319
    /*
320
     * Through the 'THE' structure, we keep track of THREAD, TASK, CPU, VM
321
     * and preemption counter. At this point THE could be coming either
322
     * from THREAD's or CPU's stack.
323
     */
324
    the_copy(THE, (the_t *) CPU->stack);
325
 
326
    /*
327
     * We may not keep the old stack.
328
     * Reason: If we kept the old stack and got blocked, for instance, in
329
     * find_best_thread(), the old thread could get rescheduled by another
330
     * CPU and overwrite the part of its own stack that was also used by
331
     * the scheduler on this CPU.
332
     *
333
     * Moreover, we have to bypass the compiler-generated POP sequence
334
     * which is fooled by SP being set to the very top of the stack.
335
     * Therefore the scheduler() function continues in
336
     * scheduler_separated_stack().
337
     */
338
    context_save(&CPU->saved_context);
339
    context_set(&CPU->saved_context, FADDR(scheduler_separated_stack), (__address) CPU->stack, CPU_STACK_SIZE);
340
    context_restore(&CPU->saved_context);
341
    /* not reached */
342
}
343
 
107 decky 344
/** Scheduler stack switch wrapper
345
 *
346
 * Second part of the scheduler() function
347
 * using new stack. Handling the actual context
348
 * switch to a new thread.
349
 *
787 palkovsky 350
 * Assume THREAD->lock is held.
107 decky 351
 */
898 jermar 352
void scheduler_separated_stack(void)
1 jermar 353
{
354
    int priority;
1007 decky 355
 
227 jermar 356
    ASSERT(CPU != NULL);
1007 decky 357
 
15 jermar 358
    if (THREAD) {
898 jermar 359
        /* must be run after the switch to scheduler stack */
897 jermar 360
        after_thread_ran();
361
 
15 jermar 362
        switch (THREAD->state) {
1 jermar 363
            case Running:
125 jermar 364
            spinlock_unlock(&THREAD->lock);
365
            thread_ready(THREAD);
366
            break;
1 jermar 367
 
368
            case Exiting:
787 palkovsky 369
            thread_destroy(THREAD);
125 jermar 370
            break;
787 palkovsky 371
 
1 jermar 372
            case Sleeping:
125 jermar 373
            /*
374
             * Prefer the thread after it's woken up.
375
             */
413 jermar 376
            THREAD->priority = -1;
1 jermar 377
 
125 jermar 378
            /*
379
             * We need to release wq->lock which we locked in waitq_sleep().
380
             * Address of wq->lock is kept in THREAD->sleep_queue.
381
             */
382
            spinlock_unlock(&THREAD->sleep_queue->lock);
1 jermar 383
 
125 jermar 384
            /*
385
             * Check for possible requests for out-of-context invocation.
386
             */
387
            if (THREAD->call_me) {
388
                THREAD->call_me(THREAD->call_me_with);
389
                THREAD->call_me = NULL;
390
                THREAD->call_me_with = NULL;
391
            }
1 jermar 392
 
125 jermar 393
            spinlock_unlock(&THREAD->lock);
1 jermar 394
 
125 jermar 395
            break;
396
 
1 jermar 397
            default:
125 jermar 398
            /*
399
             * Entering state is unexpected.
400
             */
401
            panic("tid%d: unexpected state %s\n", THREAD->tid, thread_states[THREAD->state]);
402
            break;
1 jermar 403
        }
897 jermar 404
 
15 jermar 405
        THREAD = NULL;
1 jermar 406
    }
198 jermar 407
 
15 jermar 408
    THREAD = find_best_thread();
1 jermar 409
 
15 jermar 410
    spinlock_lock(&THREAD->lock);
413 jermar 411
    priority = THREAD->priority;
15 jermar 412
    spinlock_unlock(&THREAD->lock);
192 jermar 413
 
1 jermar 414
    relink_rq(priority);       
415
 
15 jermar 416
    spinlock_lock(&THREAD->lock);  
1 jermar 417
 
418
    /*
419
     * If both the old and the new task are the same, lots of work is avoided.
420
     */
15 jermar 421
    if (TASK != THREAD->task) {
703 jermar 422
        as_t *as1 = NULL;
423
        as_t *as2;
1 jermar 424
 
15 jermar 425
        if (TASK) {
426
            spinlock_lock(&TASK->lock);
703 jermar 427
            as1 = TASK->as;
15 jermar 428
            spinlock_unlock(&TASK->lock);
1 jermar 429
        }
430
 
15 jermar 431
        spinlock_lock(&THREAD->task->lock);
703 jermar 432
        as2 = THREAD->task->as;
15 jermar 433
        spinlock_unlock(&THREAD->task->lock);
1 jermar 434
 
435
        /*
703 jermar 436
         * Note that it is possible for two tasks to share one address space.
1 jermar 437
         */
703 jermar 438
        if (as1 != as2) {
1 jermar 439
            /*
703 jermar 440
             * Both tasks and address spaces are different.
1 jermar 441
             * Replace the old one with the new one.
442
             */
823 jermar 443
            as_switch(as1, as2);
1 jermar 444
        }
906 palkovsky 445
        TASK = THREAD->task;
1187 jermar 446
        before_task_runs();
1 jermar 447
    }
448
 
15 jermar 449
    THREAD->state = Running;
1 jermar 450
 
906 palkovsky 451
#ifdef SCHEDULER_VERBOSE
1196 cejka 452
    printf("cpu%d: tid %d (priority=%d,ticks=%lld,nrdy=%ld)\n", CPU->id, THREAD->tid, THREAD->priority, THREAD->ticks, atomic_get(&CPU->nrdy));
906 palkovsky 453
#endif  
1 jermar 454
 
213 jermar 455
    /*
897 jermar 456
     * Some architectures provide late kernel PA2KA(identity)
457
     * mapping in a page fault handler. However, the page fault
458
     * handler uses the kernel stack of the running thread and
459
     * therefore cannot be used to map it. The kernel stack, if
460
     * necessary, is to be mapped in before_thread_runs(). This
461
     * function must be executed before the switch to the new stack.
462
     */
463
    before_thread_runs();
464
 
465
    /*
213 jermar 466
     * Copy the knowledge of CPU, TASK, THREAD and preemption counter to thread's stack.
467
     */
184 jermar 468
    the_copy(THE, (the_t *) THREAD->kstack);
469
 
15 jermar 470
    context_restore(&THREAD->saved_context);
1 jermar 471
    /* not reached */
472
}
473
 
458 decky 474
#ifdef CONFIG_SMP
107 decky 475
/** Load balancing thread
476
 *
477
 * SMP load balancing thread, supervising thread supplies
478
 * for the CPU it's wired to.
479
 *
480
 * @param arg Generic thread argument (unused).
481
 *
1 jermar 482
 */
483
void kcpulb(void *arg)
484
{
485
    thread_t *t;
783 palkovsky 486
    int count, average, i, j, k = 0;
413 jermar 487
    ipl_t ipl;
1 jermar 488
 
489
loop:
490
    /*
779 jermar 491
     * Work in 1s intervals.
1 jermar 492
     */
779 jermar 493
    thread_sleep(1);
1 jermar 494
 
495
not_satisfied:
496
    /*
497
     * Calculate the number of threads that will be migrated/stolen from
498
     * other CPU's. Note that situation can have changed between two
499
     * passes. Each time get the most up to date counts.
500
     */
784 palkovsky 501
    average = atomic_get(&nrdy) / config.cpu_active + 1;
783 palkovsky 502
    count = average - atomic_get(&CPU->nrdy);
1 jermar 503
 
784 palkovsky 504
    if (count <= 0)
1 jermar 505
        goto satisfied;
506
 
507
    /*
508
     * Searching least priority queues on all CPU's first and most priority queues on all CPU's last.
509
     */
510
    for (j=RQ_COUNT-1; j >= 0; j--) {
511
        for (i=0; i < config.cpu_active; i++) {
512
            link_t *l;
513
            runq_t *r;
514
            cpu_t *cpu;
515
 
516
            cpu = &cpus[(i + k) % config.cpu_active];
517
 
518
            /*
519
             * Not interested in ourselves.
520
             * Doesn't require interrupt disabling for kcpulb is X_WIRED.
521
             */
15 jermar 522
            if (CPU == cpu)
783 palkovsky 523
                continue;
524
            if (atomic_get(&cpu->nrdy) <= average)
525
                continue;
1 jermar 526
 
784 palkovsky 527
            ipl = interrupts_disable();
115 jermar 528
            r = &cpu->rq[j];
1 jermar 529
            spinlock_lock(&r->lock);
530
            if (r->n == 0) {
531
                spinlock_unlock(&r->lock);
413 jermar 532
                interrupts_restore(ipl);
1 jermar 533
                continue;
534
            }
535
 
536
            t = NULL;
537
            l = r->rq_head.prev;    /* search rq from the back */
538
            while (l != &r->rq_head) {
539
                t = list_get_instance(l, thread_t, rq_link);
540
                /*
125 jermar 541
                 * We don't want to steal CPU-wired threads neither threads already stolen.
1 jermar 542
                 * The latter prevents threads from migrating between CPU's without ever being run.
125 jermar 543
                 * We don't want to steal threads whose FPU context is still in CPU.
73 vana 544
                 */
1 jermar 545
                spinlock_lock(&t->lock);
73 vana 546
                if ( (!(t->flags & (X_WIRED | X_STOLEN))) && (!(t->fpu_context_engaged)) ) {
1 jermar 547
                    /*
548
                     * Remove t from r.
549
                     */
550
                    spinlock_unlock(&t->lock);
551
 
783 palkovsky 552
                    atomic_dec(&cpu->nrdy);
475 jermar 553
                    atomic_dec(&nrdy);
1 jermar 554
 
125 jermar 555
                    r->n--;
1 jermar 556
                    list_remove(&t->rq_link);
557
 
558
                    break;
559
                }
560
                spinlock_unlock(&t->lock);
561
                l = l->prev;
562
                t = NULL;
563
            }
564
            spinlock_unlock(&r->lock);
565
 
566
            if (t) {
567
                /*
568
                 * Ready t on local CPU
569
                 */
570
                spinlock_lock(&t->lock);
906 palkovsky 571
#ifdef KCPULB_VERBOSE
1196 cejka 572
                printf("kcpulb%d: TID %d -> cpu%d, nrdy=%ld, avg=%nd\n", CPU->id, t->tid, CPU->id, atomic_get(&CPU->nrdy), atomic_get(&nrdy) / config.cpu_active);
906 palkovsky 573
#endif
1 jermar 574
                t->flags |= X_STOLEN;
1115 jermar 575
                t->state = Entering;
1 jermar 576
                spinlock_unlock(&t->lock);
577
 
578
                thread_ready(t);
579
 
413 jermar 580
                interrupts_restore(ipl);
1 jermar 581
 
582
                if (--count == 0)
583
                    goto satisfied;
584
 
585
                /*
125 jermar 586
                 * We are not satisfied yet, focus on another CPU next time.
1 jermar 587
                 */
588
                k++;
589
 
590
                continue;
591
            }
413 jermar 592
            interrupts_restore(ipl);
1 jermar 593
        }
594
    }
595
 
783 palkovsky 596
    if (atomic_get(&CPU->nrdy)) {
1 jermar 597
        /*
598
         * Be a little bit light-weight and let migrated threads run.
599
         */
600
        scheduler();
779 jermar 601
    } else {
1 jermar 602
        /*
603
         * We failed to migrate a single thread.
779 jermar 604
         * Give up this turn.
1 jermar 605
         */
779 jermar 606
        goto loop;
1 jermar 607
    }
608
 
609
    goto not_satisfied;
125 jermar 610
 
1 jermar 611
satisfied:
612
    goto loop;
613
}
614
 
458 decky 615
#endif /* CONFIG_SMP */
775 palkovsky 616
 
617
 
618
/** Print information about threads & scheduler queues */
619
void sched_print_list(void)
620
{
621
    ipl_t ipl;
622
    int cpu,i;
623
    runq_t *r;
624
    thread_t *t;
625
    link_t *cur;
626
 
627
    /* We are going to mess with scheduler structures,
628
     * let's not be interrupted */
629
    ipl = interrupts_disable();
630
    for (cpu=0;cpu < config.cpu_count; cpu++) {
898 jermar 631
 
775 palkovsky 632
        if (!cpus[cpu].active)
633
            continue;
898 jermar 634
 
775 palkovsky 635
        spinlock_lock(&cpus[cpu].lock);
1196 cejka 636
        printf("cpu%d: address=%P, nrdy=%ld, needs_relink=%ld\n",
1062 jermar 637
               cpus[cpu].id, &cpus[cpu], atomic_get(&cpus[cpu].nrdy), cpus[cpu].needs_relink);
775 palkovsky 638
 
639
        for (i=0; i<RQ_COUNT; i++) {
640
            r = &cpus[cpu].rq[i];
641
            spinlock_lock(&r->lock);
642
            if (!r->n) {
643
                spinlock_unlock(&r->lock);
644
                continue;
645
            }
898 jermar 646
            printf("\trq[%d]: ", i);
775 palkovsky 647
            for (cur=r->rq_head.next; cur!=&r->rq_head; cur=cur->next) {
648
                t = list_get_instance(cur, thread_t, rq_link);
649
                printf("%d(%s) ", t->tid,
650
                       thread_states[t->state]);
651
            }
652
            printf("\n");
653
            spinlock_unlock(&r->lock);
654
        }
655
        spinlock_unlock(&cpus[cpu].lock);
656
    }
657
 
658
    interrupts_restore(ipl);
659
}