Subversion Repositories HelenOS-historic

Rev

Rev 1007 | Rev 1086 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
1 jermar 1
/*
2
 * Copyright (C) 2001-2004 Jakub Jermar
3
 * All rights reserved.
4
 *
5
 * Redistribution and use in source and binary forms, with or without
6
 * modification, are permitted provided that the following conditions
7
 * are met:
8
 *
9
 * - Redistributions of source code must retain the above copyright
10
 *   notice, this list of conditions and the following disclaimer.
11
 * - Redistributions in binary form must reproduce the above copyright
12
 *   notice, this list of conditions and the following disclaimer in the
13
 *   documentation and/or other materials provided with the distribution.
14
 * - The name of the author may not be used to endorse or promote products
15
 *   derived from this software without specific prior written permission.
16
 *
17
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
 */
28
 
29
#include <proc/scheduler.h>
30
#include <proc/thread.h>
31
#include <proc/task.h>
378 jermar 32
#include <mm/frame.h>
33
#include <mm/page.h>
703 jermar 34
#include <mm/as.h>
378 jermar 35
#include <arch/asm.h>
36
#include <arch/faddr.h>
37
#include <arch/atomic.h>
38
#include <synch/spinlock.h>
1 jermar 39
#include <config.h>
40
#include <context.h>
41
#include <func.h>
42
#include <arch.h>
788 jermar 43
#include <adt/list.h>
68 decky 44
#include <panic.h>
1 jermar 45
#include <typedefs.h>
378 jermar 46
#include <cpu.h>
195 vana 47
#include <print.h>
227 jermar 48
#include <debug.h>
1 jermar 49
 
898 jermar 50
static void scheduler_separated_stack(void);
195 vana 51
 
898 jermar 52
atomic_t nrdy;  /**< Number of ready threads in the system. */
53
 
897 jermar 54
/** Take actions before new thread runs.
107 decky 55
 *
118 jermar 56
 * Perform actions that need to be
57
 * taken before the newly selected
58
 * tread is passed control.
107 decky 59
 *
827 palkovsky 60
 * THREAD->lock is locked on entry
61
 *
107 decky 62
 */
52 vana 63
void before_thread_runs(void)
64
{
309 palkovsky 65
    before_thread_runs_arch();
906 palkovsky 66
#ifdef CONFIG_FPU_LAZY
309 palkovsky 67
    if(THREAD==CPU->fpu_owner)
68
        fpu_enable();
69
    else
70
        fpu_disable();
906 palkovsky 71
#else
309 palkovsky 72
    fpu_enable();
73
    if (THREAD->fpu_context_exists)
906 palkovsky 74
        fpu_context_restore(THREAD->saved_fpu_context);
309 palkovsky 75
    else {
906 palkovsky 76
        fpu_init();
309 palkovsky 77
        THREAD->fpu_context_exists=1;
78
    }
906 palkovsky 79
#endif
52 vana 80
}
81
 
898 jermar 82
/** Take actions after THREAD had run.
897 jermar 83
 *
84
 * Perform actions that need to be
85
 * taken after the running thread
898 jermar 86
 * had been preempted by the scheduler.
897 jermar 87
 *
88
 * THREAD->lock is locked on entry
89
 *
90
 */
91
void after_thread_ran(void)
92
{
93
    after_thread_ran_arch();
94
}
95
 
458 decky 96
#ifdef CONFIG_FPU_LAZY
309 palkovsky 97
void scheduler_fpu_lazy_request(void)
98
{
907 palkovsky 99
restart:
309 palkovsky 100
    fpu_enable();
827 palkovsky 101
    spinlock_lock(&CPU->lock);
102
 
103
    /* Save old context */
309 palkovsky 104
    if (CPU->fpu_owner != NULL) {  
827 palkovsky 105
        spinlock_lock(&CPU->fpu_owner->lock);
906 palkovsky 106
        fpu_context_save(CPU->fpu_owner->saved_fpu_context);
309 palkovsky 107
        /* don't prevent migration */
108
        CPU->fpu_owner->fpu_context_engaged=0;
827 palkovsky 109
        spinlock_unlock(&CPU->fpu_owner->lock);
907 palkovsky 110
        CPU->fpu_owner = NULL;
309 palkovsky 111
    }
827 palkovsky 112
 
113
    spinlock_lock(&THREAD->lock);
898 jermar 114
    if (THREAD->fpu_context_exists) {
906 palkovsky 115
        fpu_context_restore(THREAD->saved_fpu_context);
898 jermar 116
    } else {
906 palkovsky 117
        /* Allocate FPU context */
118
        if (!THREAD->saved_fpu_context) {
119
            /* Might sleep */
120
            spinlock_unlock(&THREAD->lock);
907 palkovsky 121
            spinlock_unlock(&CPU->lock);
906 palkovsky 122
            THREAD->saved_fpu_context = slab_alloc(fpu_context_slab,
123
                                   0);
907 palkovsky 124
            /* We may have switched CPUs during slab_alloc */
125
            goto restart;
906 palkovsky 126
        }
127
        fpu_init();
309 palkovsky 128
        THREAD->fpu_context_exists=1;
129
    }
130
    CPU->fpu_owner=THREAD;
131
    THREAD->fpu_context_engaged = 1;
898 jermar 132
    spinlock_unlock(&THREAD->lock);
827 palkovsky 133
 
134
    spinlock_unlock(&CPU->lock);
309 palkovsky 135
}
136
#endif
52 vana 137
 
107 decky 138
/** Initialize scheduler
139
 *
140
 * Initialize kernel scheduler.
141
 *
142
 */
1 jermar 143
void scheduler_init(void)
144
{
145
}
146
 
107 decky 147
/** Get thread to be scheduled
148
 *
149
 * Get the optimal thread to be scheduled
109 jermar 150
 * according to thread accounting and scheduler
107 decky 151
 * policy.
152
 *
153
 * @return Thread to be scheduled.
154
 *
155
 */
483 jermar 156
static thread_t *find_best_thread(void)
1 jermar 157
{
158
    thread_t *t;
159
    runq_t *r;
783 palkovsky 160
    int i;
1 jermar 161
 
227 jermar 162
    ASSERT(CPU != NULL);
163
 
1 jermar 164
loop:
413 jermar 165
    interrupts_enable();
1 jermar 166
 
783 palkovsky 167
    if (atomic_get(&CPU->nrdy) == 0) {
1 jermar 168
        /*
169
         * For there was nothing to run, the CPU goes to sleep
170
         * until a hardware interrupt or an IPI comes.
171
         * This improves energy saving and hyperthreading.
172
         */
785 jermar 173
 
174
        /*
175
         * An interrupt might occur right now and wake up a thread.
176
         * In such case, the CPU will continue to go to sleep
177
         * even though there is a runnable thread.
178
         */
179
 
1 jermar 180
         cpu_sleep();
181
         goto loop;
182
    }
183
 
413 jermar 184
    interrupts_disable();
114 jermar 185
 
898 jermar 186
    for (i = 0; i<RQ_COUNT; i++) {
15 jermar 187
        r = &CPU->rq[i];
1 jermar 188
        spinlock_lock(&r->lock);
189
        if (r->n == 0) {
190
            /*
191
             * If this queue is empty, try a lower-priority queue.
192
             */
193
            spinlock_unlock(&r->lock);
194
            continue;
195
        }
213 jermar 196
 
783 palkovsky 197
        atomic_dec(&CPU->nrdy);
475 jermar 198
        atomic_dec(&nrdy);
1 jermar 199
        r->n--;
200
 
201
        /*
202
         * Take the first thread from the queue.
203
         */
204
        t = list_get_instance(r->rq_head.next, thread_t, rq_link);
205
        list_remove(&t->rq_link);
206
 
207
        spinlock_unlock(&r->lock);
208
 
209
        spinlock_lock(&t->lock);
15 jermar 210
        t->cpu = CPU;
1 jermar 211
 
212
        t->ticks = us2ticks((i+1)*10000);
898 jermar 213
        t->priority = i;    /* correct rq index */
1 jermar 214
 
215
        /*
216
         * Clear the X_STOLEN flag so that t can be migrated when load balancing needs emerge.
217
         */
218
        t->flags &= ~X_STOLEN;
219
        spinlock_unlock(&t->lock);
220
 
221
        return t;
222
    }
223
    goto loop;
224
 
225
}
226
 
107 decky 227
/** Prevent rq starvation
228
 *
229
 * Prevent low priority threads from starving in rq's.
230
 *
231
 * When the function decides to relink rq's, it reconnects
232
 * respective pointers so that in result threads with 'pri'
233
 * greater or equal 'start' are moved to a higher-priority queue.
234
 *
235
 * @param start Threshold priority.
236
 *
1 jermar 237
 */
452 decky 238
static void relink_rq(int start)
1 jermar 239
{
240
    link_t head;
241
    runq_t *r;
242
    int i, n;
243
 
244
    list_initialize(&head);
15 jermar 245
    spinlock_lock(&CPU->lock);
246
    if (CPU->needs_relink > NEEDS_RELINK_MAX) {
1 jermar 247
        for (i = start; i<RQ_COUNT-1; i++) {
248
            /* remember and empty rq[i + 1] */
15 jermar 249
            r = &CPU->rq[i + 1];
1 jermar 250
            spinlock_lock(&r->lock);
251
            list_concat(&head, &r->rq_head);
252
            n = r->n;
253
            r->n = 0;
254
            spinlock_unlock(&r->lock);
255
 
256
            /* append rq[i + 1] to rq[i] */
15 jermar 257
            r = &CPU->rq[i];
1 jermar 258
            spinlock_lock(&r->lock);
259
            list_concat(&r->rq_head, &head);
260
            r->n += n;
261
            spinlock_unlock(&r->lock);
262
        }
15 jermar 263
        CPU->needs_relink = 0;
1 jermar 264
    }
784 palkovsky 265
    spinlock_unlock(&CPU->lock);
1 jermar 266
 
267
}
268
 
898 jermar 269
/** The scheduler
270
 *
271
 * The thread scheduling procedure.
272
 * Passes control directly to
273
 * scheduler_separated_stack().
274
 *
275
 */
276
void scheduler(void)
277
{
278
    volatile ipl_t ipl;
107 decky 279
 
898 jermar 280
    ASSERT(CPU != NULL);
281
 
282
    ipl = interrupts_disable();
283
 
284
    if (atomic_get(&haltstate))
285
        halt();
1007 decky 286
 
898 jermar 287
    if (THREAD) {
288
        spinlock_lock(&THREAD->lock);
906 palkovsky 289
#ifndef CONFIG_FPU_LAZY
290
        fpu_context_save(THREAD->saved_fpu_context);
291
#endif
898 jermar 292
        if (!context_save(&THREAD->saved_context)) {
293
            /*
294
             * This is the place where threads leave scheduler();
295
             */
296
            spinlock_unlock(&THREAD->lock);
297
            interrupts_restore(THREAD->saved_context.ipl);
1007 decky 298
 
898 jermar 299
            return;
300
        }
301
 
302
        /*
303
         * Interrupt priority level of preempted thread is recorded here
304
         * to facilitate scheduler() invocations from interrupts_disable()'d
305
         * code (e.g. waitq_sleep_timeout()).
306
         */
307
        THREAD->saved_context.ipl = ipl;
308
    }
309
 
310
    /*
311
     * Through the 'THE' structure, we keep track of THREAD, TASK, CPU, VM
312
     * and preemption counter. At this point THE could be coming either
313
     * from THREAD's or CPU's stack.
314
     */
315
    the_copy(THE, (the_t *) CPU->stack);
316
 
317
    /*
318
     * We may not keep the old stack.
319
     * Reason: If we kept the old stack and got blocked, for instance, in
320
     * find_best_thread(), the old thread could get rescheduled by another
321
     * CPU and overwrite the part of its own stack that was also used by
322
     * the scheduler on this CPU.
323
     *
324
     * Moreover, we have to bypass the compiler-generated POP sequence
325
     * which is fooled by SP being set to the very top of the stack.
326
     * Therefore the scheduler() function continues in
327
     * scheduler_separated_stack().
328
     */
329
    context_save(&CPU->saved_context);
330
    context_set(&CPU->saved_context, FADDR(scheduler_separated_stack), (__address) CPU->stack, CPU_STACK_SIZE);
331
    context_restore(&CPU->saved_context);
332
    /* not reached */
333
}
334
 
107 decky 335
/** Scheduler stack switch wrapper
336
 *
337
 * Second part of the scheduler() function
338
 * using new stack. Handling the actual context
339
 * switch to a new thread.
340
 *
787 palkovsky 341
 * Assume THREAD->lock is held.
107 decky 342
 */
898 jermar 343
void scheduler_separated_stack(void)
1 jermar 344
{
345
    int priority;
1007 decky 346
 
227 jermar 347
    ASSERT(CPU != NULL);
1007 decky 348
 
15 jermar 349
    if (THREAD) {
898 jermar 350
        /* must be run after the switch to scheduler stack */
897 jermar 351
        after_thread_ran();
352
 
15 jermar 353
        switch (THREAD->state) {
1 jermar 354
            case Running:
125 jermar 355
            THREAD->state = Ready;
356
            spinlock_unlock(&THREAD->lock);
357
            thread_ready(THREAD);
358
            break;
1 jermar 359
 
360
            case Exiting:
787 palkovsky 361
            thread_destroy(THREAD);
125 jermar 362
            break;
787 palkovsky 363
 
1 jermar 364
            case Sleeping:
125 jermar 365
            /*
366
             * Prefer the thread after it's woken up.
367
             */
413 jermar 368
            THREAD->priority = -1;
1 jermar 369
 
125 jermar 370
            /*
371
             * We need to release wq->lock which we locked in waitq_sleep().
372
             * Address of wq->lock is kept in THREAD->sleep_queue.
373
             */
374
            spinlock_unlock(&THREAD->sleep_queue->lock);
1 jermar 375
 
125 jermar 376
            /*
377
             * Check for possible requests for out-of-context invocation.
378
             */
379
            if (THREAD->call_me) {
380
                THREAD->call_me(THREAD->call_me_with);
381
                THREAD->call_me = NULL;
382
                THREAD->call_me_with = NULL;
383
            }
1 jermar 384
 
125 jermar 385
            spinlock_unlock(&THREAD->lock);
1 jermar 386
 
125 jermar 387
            break;
388
 
1 jermar 389
            default:
125 jermar 390
            /*
391
             * Entering state is unexpected.
392
             */
393
            panic("tid%d: unexpected state %s\n", THREAD->tid, thread_states[THREAD->state]);
394
            break;
1 jermar 395
        }
897 jermar 396
 
15 jermar 397
        THREAD = NULL;
1 jermar 398
    }
198 jermar 399
 
15 jermar 400
    THREAD = find_best_thread();
1 jermar 401
 
15 jermar 402
    spinlock_lock(&THREAD->lock);
413 jermar 403
    priority = THREAD->priority;
15 jermar 404
    spinlock_unlock(&THREAD->lock);
192 jermar 405
 
1 jermar 406
    relink_rq(priority);       
407
 
15 jermar 408
    spinlock_lock(&THREAD->lock);  
1 jermar 409
 
410
    /*
411
     * If both the old and the new task are the same, lots of work is avoided.
412
     */
15 jermar 413
    if (TASK != THREAD->task) {
703 jermar 414
        as_t *as1 = NULL;
415
        as_t *as2;
1 jermar 416
 
15 jermar 417
        if (TASK) {
418
            spinlock_lock(&TASK->lock);
703 jermar 419
            as1 = TASK->as;
15 jermar 420
            spinlock_unlock(&TASK->lock);
1 jermar 421
        }
422
 
15 jermar 423
        spinlock_lock(&THREAD->task->lock);
703 jermar 424
        as2 = THREAD->task->as;
15 jermar 425
        spinlock_unlock(&THREAD->task->lock);
1 jermar 426
 
427
        /*
703 jermar 428
         * Note that it is possible for two tasks to share one address space.
1 jermar 429
         */
703 jermar 430
        if (as1 != as2) {
1 jermar 431
            /*
703 jermar 432
             * Both tasks and address spaces are different.
1 jermar 433
             * Replace the old one with the new one.
434
             */
823 jermar 435
            as_switch(as1, as2);
1 jermar 436
        }
906 palkovsky 437
        TASK = THREAD->task;
1 jermar 438
    }
439
 
15 jermar 440
    THREAD->state = Running;
1 jermar 441
 
906 palkovsky 442
#ifdef SCHEDULER_VERBOSE
823 jermar 443
    printf("cpu%d: tid %d (priority=%d,ticks=%d,nrdy=%d)\n", CPU->id, THREAD->tid, THREAD->priority, THREAD->ticks, atomic_get(&CPU->nrdy));
906 palkovsky 444
#endif  
1 jermar 445
 
213 jermar 446
    /*
897 jermar 447
     * Some architectures provide late kernel PA2KA(identity)
448
     * mapping in a page fault handler. However, the page fault
449
     * handler uses the kernel stack of the running thread and
450
     * therefore cannot be used to map it. The kernel stack, if
451
     * necessary, is to be mapped in before_thread_runs(). This
452
     * function must be executed before the switch to the new stack.
453
     */
454
    before_thread_runs();
455
 
456
    /*
213 jermar 457
     * Copy the knowledge of CPU, TASK, THREAD and preemption counter to thread's stack.
458
     */
184 jermar 459
    the_copy(THE, (the_t *) THREAD->kstack);
460
 
15 jermar 461
    context_restore(&THREAD->saved_context);
1 jermar 462
    /* not reached */
463
}
464
 
458 decky 465
#ifdef CONFIG_SMP
107 decky 466
/** Load balancing thread
467
 *
468
 * SMP load balancing thread, supervising thread supplies
469
 * for the CPU it's wired to.
470
 *
471
 * @param arg Generic thread argument (unused).
472
 *
1 jermar 473
 */
474
void kcpulb(void *arg)
475
{
476
    thread_t *t;
783 palkovsky 477
    int count, average, i, j, k = 0;
413 jermar 478
    ipl_t ipl;
1 jermar 479
 
480
loop:
481
    /*
779 jermar 482
     * Work in 1s intervals.
1 jermar 483
     */
779 jermar 484
    thread_sleep(1);
1 jermar 485
 
486
not_satisfied:
487
    /*
488
     * Calculate the number of threads that will be migrated/stolen from
489
     * other CPU's. Note that situation can have changed between two
490
     * passes. Each time get the most up to date counts.
491
     */
784 palkovsky 492
    average = atomic_get(&nrdy) / config.cpu_active + 1;
783 palkovsky 493
    count = average - atomic_get(&CPU->nrdy);
1 jermar 494
 
784 palkovsky 495
    if (count <= 0)
1 jermar 496
        goto satisfied;
497
 
498
    /*
499
     * Searching least priority queues on all CPU's first and most priority queues on all CPU's last.
500
     */
501
    for (j=RQ_COUNT-1; j >= 0; j--) {
502
        for (i=0; i < config.cpu_active; i++) {
503
            link_t *l;
504
            runq_t *r;
505
            cpu_t *cpu;
506
 
507
            cpu = &cpus[(i + k) % config.cpu_active];
508
 
509
            /*
510
             * Not interested in ourselves.
511
             * Doesn't require interrupt disabling for kcpulb is X_WIRED.
512
             */
15 jermar 513
            if (CPU == cpu)
783 palkovsky 514
                continue;
515
            if (atomic_get(&cpu->nrdy) <= average)
516
                continue;
1 jermar 517
 
784 palkovsky 518
            ipl = interrupts_disable();
115 jermar 519
            r = &cpu->rq[j];
1 jermar 520
            spinlock_lock(&r->lock);
521
            if (r->n == 0) {
522
                spinlock_unlock(&r->lock);
413 jermar 523
                interrupts_restore(ipl);
1 jermar 524
                continue;
525
            }
526
 
527
            t = NULL;
528
            l = r->rq_head.prev;    /* search rq from the back */
529
            while (l != &r->rq_head) {
530
                t = list_get_instance(l, thread_t, rq_link);
531
                /*
125 jermar 532
                 * We don't want to steal CPU-wired threads neither threads already stolen.
1 jermar 533
                 * The latter prevents threads from migrating between CPU's without ever being run.
125 jermar 534
                 * We don't want to steal threads whose FPU context is still in CPU.
73 vana 535
                 */
1 jermar 536
                spinlock_lock(&t->lock);
73 vana 537
                if ( (!(t->flags & (X_WIRED | X_STOLEN))) && (!(t->fpu_context_engaged)) ) {
1 jermar 538
                    /*
539
                     * Remove t from r.
540
                     */
541
                    spinlock_unlock(&t->lock);
542
 
783 palkovsky 543
                    atomic_dec(&cpu->nrdy);
475 jermar 544
                    atomic_dec(&nrdy);
1 jermar 545
 
125 jermar 546
                    r->n--;
1 jermar 547
                    list_remove(&t->rq_link);
548
 
549
                    break;
550
                }
551
                spinlock_unlock(&t->lock);
552
                l = l->prev;
553
                t = NULL;
554
            }
555
            spinlock_unlock(&r->lock);
556
 
557
            if (t) {
558
                /*
559
                 * Ready t on local CPU
560
                 */
561
                spinlock_lock(&t->lock);
906 palkovsky 562
#ifdef KCPULB_VERBOSE
783 palkovsky 563
                printf("kcpulb%d: TID %d -> cpu%d, nrdy=%d, avg=%d\n", CPU->id, t->tid, CPU->id, atomic_get(&CPU->nrdy), atomic_get(&nrdy) / config.cpu_active);
906 palkovsky 564
#endif
1 jermar 565
                t->flags |= X_STOLEN;
566
                spinlock_unlock(&t->lock);
567
 
568
                thread_ready(t);
569
 
413 jermar 570
                interrupts_restore(ipl);
1 jermar 571
 
572
                if (--count == 0)
573
                    goto satisfied;
574
 
575
                /*
125 jermar 576
                 * We are not satisfied yet, focus on another CPU next time.
1 jermar 577
                 */
578
                k++;
579
 
580
                continue;
581
            }
413 jermar 582
            interrupts_restore(ipl);
1 jermar 583
        }
584
    }
585
 
783 palkovsky 586
    if (atomic_get(&CPU->nrdy)) {
1 jermar 587
        /*
588
         * Be a little bit light-weight and let migrated threads run.
589
         */
590
        scheduler();
779 jermar 591
    } else {
1 jermar 592
        /*
593
         * We failed to migrate a single thread.
779 jermar 594
         * Give up this turn.
1 jermar 595
         */
779 jermar 596
        goto loop;
1 jermar 597
    }
598
 
599
    goto not_satisfied;
125 jermar 600
 
1 jermar 601
satisfied:
602
    goto loop;
603
}
604
 
458 decky 605
#endif /* CONFIG_SMP */
775 palkovsky 606
 
607
 
608
/** Print information about threads & scheduler queues */
609
void sched_print_list(void)
610
{
611
    ipl_t ipl;
612
    int cpu,i;
613
    runq_t *r;
614
    thread_t *t;
615
    link_t *cur;
616
 
617
    /* We are going to mess with scheduler structures,
618
     * let's not be interrupted */
619
    ipl = interrupts_disable();
620
    for (cpu=0;cpu < config.cpu_count; cpu++) {
898 jermar 621
 
775 palkovsky 622
        if (!cpus[cpu].active)
623
            continue;
898 jermar 624
 
775 palkovsky 625
        spinlock_lock(&cpus[cpu].lock);
1062 jermar 626
        printf("cpu%d: address=%P, nrdy=%d, needs_relink=%d\n",
627
               cpus[cpu].id, &cpus[cpu], atomic_get(&cpus[cpu].nrdy), cpus[cpu].needs_relink);
775 palkovsky 628
 
629
        for (i=0; i<RQ_COUNT; i++) {
630
            r = &cpus[cpu].rq[i];
631
            spinlock_lock(&r->lock);
632
            if (!r->n) {
633
                spinlock_unlock(&r->lock);
634
                continue;
635
            }
898 jermar 636
            printf("\trq[%d]: ", i);
775 palkovsky 637
            for (cur=r->rq_head.next; cur!=&r->rq_head; cur=cur->next) {
638
                t = list_get_instance(cur, thread_t, rq_link);
639
                printf("%d(%s) ", t->tid,
640
                       thread_states[t->state]);
641
            }
642
            printf("\n");
643
            spinlock_unlock(&r->lock);
644
        }
645
        spinlock_unlock(&cpus[cpu].lock);
646
    }
647
 
648
    interrupts_restore(ipl);
649
}