Subversion Repositories HelenOS-historic

Rev

Rev 1594 | Rev 1705 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
703 jermar 1
/*
2
 * Copyright (C) 2001-2006 Jakub Jermar
3
 * All rights reserved.
4
 *
5
 * Redistribution and use in source and binary forms, with or without
6
 * modification, are permitted provided that the following conditions
7
 * are met:
8
 *
9
 * - Redistributions of source code must retain the above copyright
10
 *   notice, this list of conditions and the following disclaimer.
11
 * - Redistributions in binary form must reproduce the above copyright
12
 *   notice, this list of conditions and the following disclaimer in the
13
 *   documentation and/or other materials provided with the distribution.
14
 * - The name of the author may not be used to endorse or promote products
15
 *   derived from this software without specific prior written permission.
16
 *
17
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
 */
28
 
1702 cejka 29
 /** @defgroup mm Memory management
30
  * @ingroup kernel
31
  * @{
32
  * @}
33
  */
34
 
35
 /** @addtogroup genericmm generic
36
  * @ingroup mm
37
 * @{
38
 */
39
 
1248 jermar 40
/**
1702 cejka 41
 * @file
1248 jermar 42
 * @brief   Address space related functions.
43
 *
703 jermar 44
 * This file contains address space manipulation functions.
45
 * Roughly speaking, this is a higher-level client of
46
 * Virtual Address Translation (VAT) subsystem.
1248 jermar 47
 *
48
 * Functionality provided by this file allows one to
49
 * create address space and create, resize and share
50
 * address space areas.
51
 *
52
 * @see page.c
53
 *
703 jermar 54
 */
55
 
56
#include <mm/as.h>
756 jermar 57
#include <arch/mm/as.h>
703 jermar 58
#include <mm/page.h>
59
#include <mm/frame.h>
814 palkovsky 60
#include <mm/slab.h>
703 jermar 61
#include <mm/tlb.h>
62
#include <arch/mm/page.h>
63
#include <genarch/mm/page_pt.h>
1108 jermar 64
#include <genarch/mm/page_ht.h>
727 jermar 65
#include <mm/asid.h>
703 jermar 66
#include <arch/mm/asid.h>
67
#include <synch/spinlock.h>
1380 jermar 68
#include <synch/mutex.h>
788 jermar 69
#include <adt/list.h>
1147 jermar 70
#include <adt/btree.h>
1235 jermar 71
#include <proc/task.h>
1288 jermar 72
#include <proc/thread.h>
1235 jermar 73
#include <arch/asm.h>
703 jermar 74
#include <panic.h>
75
#include <debug.h>
1235 jermar 76
#include <print.h>
703 jermar 77
#include <memstr.h>
1070 jermar 78
#include <macros.h>
703 jermar 79
#include <arch.h>
1235 jermar 80
#include <errno.h>
81
#include <config.h>
1387 jermar 82
#include <align.h>
1235 jermar 83
#include <arch/types.h>
84
#include <typedefs.h>
1288 jermar 85
#include <syscall/copy.h>
86
#include <arch/interrupt.h>
703 jermar 87
 
756 jermar 88
as_operations_t *as_operations = NULL;
703 jermar 89
 
1415 jermar 90
/** This lock protects inactive_as_with_asid_head list. It must be acquired before as_t mutex. */
91
SPINLOCK_INITIALIZE(inactive_as_with_asid_lock);
823 jermar 92
 
93
/**
94
 * This list contains address spaces that are not active on any
95
 * processor and that have valid ASID.
96
 */
97
LIST_INITIALIZE(inactive_as_with_asid_head);
98
 
757 jermar 99
/** Kernel address space. */
100
as_t *AS_KERNEL = NULL;
101
 
1235 jermar 102
static int area_flags_to_page_flags(int aflags);
977 jermar 103
static as_area_t *find_area_and_lock(as_t *as, __address va);
1048 jermar 104
static bool check_area_conflicts(as_t *as, __address va, size_t size, as_area_t *avoid_area);
1409 jermar 105
static void sh_info_remove_reference(share_info_t *sh_info);
703 jermar 106
 
756 jermar 107
/** Initialize address space subsystem. */
108
void as_init(void)
109
{
110
    as_arch_init();
789 palkovsky 111
    AS_KERNEL = as_create(FLAG_AS_KERNEL);
1383 decky 112
    if (!AS_KERNEL)
113
        panic("can't create kernel address space\n");
114
 
756 jermar 115
}
116
 
757 jermar 117
/** Create address space.
118
 *
119
 * @param flags Flags that influence way in wich the address space is created.
120
 */
756 jermar 121
as_t *as_create(int flags)
703 jermar 122
{
123
    as_t *as;
124
 
822 palkovsky 125
    as = (as_t *) malloc(sizeof(as_t), 0);
823 jermar 126
    link_initialize(&as->inactive_as_with_asid_link);
1380 jermar 127
    mutex_initialize(&as->lock);
1147 jermar 128
    btree_create(&as->as_area_btree);
822 palkovsky 129
 
130
    if (flags & FLAG_AS_KERNEL)
131
        as->asid = ASID_KERNEL;
132
    else
133
        as->asid = ASID_INVALID;
134
 
1468 jermar 135
    as->refcount = 0;
1415 jermar 136
    as->cpu_refcount = 0;
822 palkovsky 137
    as->page_table = page_table_create(flags);
703 jermar 138
 
139
    return as;
140
}
141
 
1468 jermar 142
/** Destroy adress space.
143
 *
144
 * When there are no tasks referencing this address space (i.e. its refcount is zero),
145
 * the address space can be destroyed.
146
 */
147
void as_destroy(as_t *as)
973 palkovsky 148
{
1468 jermar 149
    ipl_t ipl;
1594 jermar 150
    bool cond;
973 palkovsky 151
 
1468 jermar 152
    ASSERT(as->refcount == 0);
153
 
154
    /*
155
     * Since there is no reference to this area,
156
     * it is safe not to lock its mutex.
157
     */
158
    ipl = interrupts_disable();
159
    spinlock_lock(&inactive_as_with_asid_lock);
1587 jermar 160
    if (as->asid != ASID_INVALID && as != AS_KERNEL) {
1594 jermar 161
        if (as != AS && as->cpu_refcount == 0)
1587 jermar 162
            list_remove(&as->inactive_as_with_asid_link);
1468 jermar 163
        asid_put(as->asid);
164
    }
165
    spinlock_unlock(&inactive_as_with_asid_lock);
166
 
167
    /*
168
     * Destroy address space areas of the address space.
1594 jermar 169
     * The B+tee must be walked carefully because it is
170
     * also being destroyed.
1468 jermar 171
     */
1594 jermar 172
    for (cond = true; cond; ) {
1468 jermar 173
        btree_node_t *node;
1594 jermar 174
 
175
        ASSERT(!list_empty(&as->as_area_btree.leaf_head));
176
        node = list_get_instance(as->as_area_btree.leaf_head.next, btree_node_t, leaf_link);
177
 
178
        if ((cond = node->keys)) {
179
            as_area_destroy(as, node->key[0]);
180
        }
1468 jermar 181
    }
1495 jermar 182
 
1483 jermar 183
    btree_destroy(&as->as_area_btree);
1468 jermar 184
    page_table_destroy(as->page_table);
185
 
186
    interrupts_restore(ipl);
187
 
973 palkovsky 188
    free(as);
189
}
190
 
703 jermar 191
/** Create address space area of common attributes.
192
 *
193
 * The created address space area is added to the target address space.
194
 *
195
 * @param as Target address space.
1239 jermar 196
 * @param flags Flags of the area memory.
1048 jermar 197
 * @param size Size of area.
703 jermar 198
 * @param base Base address of area.
1239 jermar 199
 * @param attrs Attributes of the area.
1409 jermar 200
 * @param backend Address space area backend. NULL if no backend is used.
201
 * @param backend_data NULL or a pointer to an array holding two void *.
703 jermar 202
 *
203
 * @return Address space area on success or NULL on failure.
204
 */
1409 jermar 205
as_area_t *as_area_create(as_t *as, int flags, size_t size, __address base, int attrs,
1424 jermar 206
           mem_backend_t *backend, mem_backend_data_t *backend_data)
703 jermar 207
{
208
    ipl_t ipl;
209
    as_area_t *a;
210
 
211
    if (base % PAGE_SIZE)
1048 jermar 212
        return NULL;
213
 
1233 jermar 214
    if (!size)
215
        return NULL;
216
 
1048 jermar 217
    /* Writeable executable areas are not supported. */
218
    if ((flags & AS_AREA_EXEC) && (flags & AS_AREA_WRITE))
219
        return NULL;
703 jermar 220
 
221
    ipl = interrupts_disable();
1380 jermar 222
    mutex_lock(&as->lock);
703 jermar 223
 
1048 jermar 224
    if (!check_area_conflicts(as, base, size, NULL)) {
1380 jermar 225
        mutex_unlock(&as->lock);
1048 jermar 226
        interrupts_restore(ipl);
227
        return NULL;
228
    }
703 jermar 229
 
822 palkovsky 230
    a = (as_area_t *) malloc(sizeof(as_area_t), 0);
703 jermar 231
 
1380 jermar 232
    mutex_initialize(&a->lock);
822 palkovsky 233
 
1424 jermar 234
    a->as = as;
1026 jermar 235
    a->flags = flags;
1239 jermar 236
    a->attributes = attrs;
1048 jermar 237
    a->pages = SIZE2FRAMES(size);
822 palkovsky 238
    a->base = base;
1409 jermar 239
    a->sh_info = NULL;
240
    a->backend = backend;
1424 jermar 241
    if (backend_data)
242
        a->backend_data = *backend_data;
243
    else
244
        memsetb((__address) &a->backend_data, sizeof(a->backend_data), 0);
245
 
1387 jermar 246
    btree_create(&a->used_space);
822 palkovsky 247
 
1147 jermar 248
    btree_insert(&as->as_area_btree, base, (void *) a, NULL);
822 palkovsky 249
 
1380 jermar 250
    mutex_unlock(&as->lock);
703 jermar 251
    interrupts_restore(ipl);
704 jermar 252
 
703 jermar 253
    return a;
254
}
255
 
1235 jermar 256
/** Find address space area and change it.
257
 *
258
 * @param as Address space.
259
 * @param address Virtual address belonging to the area to be changed. Must be page-aligned.
260
 * @param size New size of the virtual memory block starting at address.
261
 * @param flags Flags influencing the remap operation. Currently unused.
262
 *
1306 jermar 263
 * @return Zero on success or a value from @ref errno.h otherwise.
1235 jermar 264
 */
1306 jermar 265
int as_area_resize(as_t *as, __address address, size_t size, int flags)
1235 jermar 266
{
1306 jermar 267
    as_area_t *area;
1235 jermar 268
    ipl_t ipl;
269
    size_t pages;
270
 
271
    ipl = interrupts_disable();
1380 jermar 272
    mutex_lock(&as->lock);
1235 jermar 273
 
274
    /*
275
     * Locate the area.
276
     */
277
    area = find_area_and_lock(as, address);
278
    if (!area) {
1380 jermar 279
        mutex_unlock(&as->lock);
1235 jermar 280
        interrupts_restore(ipl);
1306 jermar 281
        return ENOENT;
1235 jermar 282
    }
283
 
1424 jermar 284
    if (area->backend == &phys_backend) {
1235 jermar 285
        /*
286
         * Remapping of address space areas associated
287
         * with memory mapped devices is not supported.
288
         */
1380 jermar 289
        mutex_unlock(&area->lock);
290
        mutex_unlock(&as->lock);
1235 jermar 291
        interrupts_restore(ipl);
1306 jermar 292
        return ENOTSUP;
1235 jermar 293
    }
1409 jermar 294
    if (area->sh_info) {
295
        /*
296
         * Remapping of shared address space areas
297
         * is not supported.
298
         */
299
        mutex_unlock(&area->lock);
300
        mutex_unlock(&as->lock);
301
        interrupts_restore(ipl);
302
        return ENOTSUP;
303
    }
1235 jermar 304
 
305
    pages = SIZE2FRAMES((address - area->base) + size);
306
    if (!pages) {
307
        /*
308
         * Zero size address space areas are not allowed.
309
         */
1380 jermar 310
        mutex_unlock(&area->lock);
311
        mutex_unlock(&as->lock);
1235 jermar 312
        interrupts_restore(ipl);
1306 jermar 313
        return EPERM;
1235 jermar 314
    }
315
 
316
    if (pages < area->pages) {
1403 jermar 317
        bool cond;
318
        __address start_free = area->base + pages*PAGE_SIZE;
1235 jermar 319
 
320
        /*
321
         * Shrinking the area.
322
         * No need to check for overlaps.
323
         */
1403 jermar 324
 
325
        /*
1436 jermar 326
         * Start TLB shootdown sequence.
327
         */
328
        tlb_shootdown_start(TLB_INVL_PAGES, AS->asid, area->base + pages*PAGE_SIZE, area->pages - pages);
329
 
330
        /*
1403 jermar 331
         * Remove frames belonging to used space starting from
332
         * the highest addresses downwards until an overlap with
333
         * the resized address space area is found. Note that this
334
         * is also the right way to remove part of the used_space
335
         * B+tree leaf list.
336
         */    
337
        for (cond = true; cond;) {
338
            btree_node_t *node;
339
 
340
            ASSERT(!list_empty(&area->used_space.leaf_head));
341
            node = list_get_instance(area->used_space.leaf_head.prev, btree_node_t, leaf_link);
342
            if ((cond = (bool) node->keys)) {
343
                __address b = node->key[node->keys - 1];
344
                count_t c = (count_t) node->value[node->keys - 1];
345
                int i = 0;
1235 jermar 346
 
1403 jermar 347
                if (overlaps(b, c*PAGE_SIZE, area->base, pages*PAGE_SIZE)) {
348
 
349
                    if (b + c*PAGE_SIZE <= start_free) {
350
                        /*
351
                         * The whole interval fits completely
352
                         * in the resized address space area.
353
                         */
354
                        break;
355
                    }
356
 
357
                    /*
358
                     * Part of the interval corresponding to b and c
359
                     * overlaps with the resized address space area.
360
                     */
361
 
362
                    cond = false;   /* we are almost done */
363
                    i = (start_free - b) >> PAGE_WIDTH;
364
                    if (!used_space_remove(area, start_free, c - i))
365
                        panic("Could not remove used space.");
366
                } else {
367
                    /*
368
                     * The interval of used space can be completely removed.
369
                     */
370
                    if (!used_space_remove(area, b, c))
371
                        panic("Could not remove used space.\n");
372
                }
373
 
374
                for (; i < c; i++) {
375
                    pte_t *pte;
376
 
377
                    page_table_lock(as, false);
378
                    pte = page_mapping_find(as, b + i*PAGE_SIZE);
379
                    ASSERT(pte && PTE_VALID(pte) && PTE_PRESENT(pte));
1424 jermar 380
                    if (area->backend && area->backend->frame_free) {
381
                        area->backend->frame_free(area,
1409 jermar 382
                            b + i*PAGE_SIZE, PTE_GET_FRAME(pte));
383
                    }
1403 jermar 384
                    page_mapping_remove(as, b + i*PAGE_SIZE);
385
                    page_table_unlock(as, false);
386
                }
1235 jermar 387
            }
388
        }
1436 jermar 389
 
1235 jermar 390
        /*
1436 jermar 391
         * Finish TLB shootdown sequence.
1235 jermar 392
         */
393
        tlb_invalidate_pages(AS->asid, area->base + pages*PAGE_SIZE, area->pages - pages);
394
        tlb_shootdown_finalize();
395
    } else {
396
        /*
397
         * Growing the area.
398
         * Check for overlaps with other address space areas.
399
         */
400
        if (!check_area_conflicts(as, address, pages * PAGE_SIZE, area)) {
1380 jermar 401
            mutex_unlock(&area->lock);
402
            mutex_unlock(&as->lock);       
1235 jermar 403
            interrupts_restore(ipl);
1306 jermar 404
            return EADDRNOTAVAIL;
1235 jermar 405
        }
406
    }
407
 
408
    area->pages = pages;
409
 
1380 jermar 410
    mutex_unlock(&area->lock);
411
    mutex_unlock(&as->lock);
1235 jermar 412
    interrupts_restore(ipl);
413
 
1306 jermar 414
    return 0;
1235 jermar 415
}
416
 
1306 jermar 417
/** Destroy address space area.
418
 *
419
 * @param as Address space.
420
 * @param address Address withing the area to be deleted.
421
 *
422
 * @return Zero on success or a value from @ref errno.h on failure.
423
 */
424
int as_area_destroy(as_t *as, __address address)
425
{
426
    as_area_t *area;
427
    __address base;
1495 jermar 428
    link_t *cur;
1306 jermar 429
    ipl_t ipl;
430
 
431
    ipl = interrupts_disable();
1380 jermar 432
    mutex_lock(&as->lock);
1306 jermar 433
 
434
    area = find_area_and_lock(as, address);
435
    if (!area) {
1380 jermar 436
        mutex_unlock(&as->lock);
1306 jermar 437
        interrupts_restore(ipl);
438
        return ENOENT;
439
    }
440
 
1403 jermar 441
    base = area->base;
442
 
1411 jermar 443
    /*
1436 jermar 444
     * Start TLB shootdown sequence.
445
     */
446
    tlb_shootdown_start(TLB_INVL_PAGES, AS->asid, area->base, area->pages);
447
 
448
    /*
1411 jermar 449
     * Visit only the pages mapped by used_space B+tree.
450
     */
1495 jermar 451
    for (cur = area->used_space.leaf_head.next; cur != &area->used_space.leaf_head; cur = cur->next) {
1411 jermar 452
        btree_node_t *node;
1495 jermar 453
        int i;
1403 jermar 454
 
1495 jermar 455
        node = list_get_instance(cur, btree_node_t, leaf_link);
456
        for (i = 0; i < node->keys; i++) {
457
            __address b = node->key[i];
458
            count_t j;
1411 jermar 459
            pte_t *pte;
1403 jermar 460
 
1495 jermar 461
            for (j = 0; j < (count_t) node->value[i]; j++) {
1411 jermar 462
                page_table_lock(as, false);
1495 jermar 463
                pte = page_mapping_find(as, b + j*PAGE_SIZE);
1411 jermar 464
                ASSERT(pte && PTE_VALID(pte) && PTE_PRESENT(pte));
1424 jermar 465
                if (area->backend && area->backend->frame_free) {
466
                    area->backend->frame_free(area,
1495 jermar 467
                        b + j*PAGE_SIZE, PTE_GET_FRAME(pte));
1403 jermar 468
                }
1495 jermar 469
                page_mapping_remove(as, b + j*PAGE_SIZE);
1411 jermar 470
                page_table_unlock(as, false);
1306 jermar 471
            }
472
        }
473
    }
1403 jermar 474
 
1306 jermar 475
    /*
1436 jermar 476
     * Finish TLB shootdown sequence.
1306 jermar 477
     */
478
    tlb_invalidate_pages(AS->asid, area->base, area->pages);
479
    tlb_shootdown_finalize();
1436 jermar 480
 
481
    btree_destroy(&area->used_space);
1306 jermar 482
 
1309 jermar 483
    area->attributes |= AS_AREA_ATTR_PARTIAL;
1409 jermar 484
 
485
    if (area->sh_info)
486
        sh_info_remove_reference(area->sh_info);
487
 
1380 jermar 488
    mutex_unlock(&area->lock);
1306 jermar 489
 
490
    /*
491
     * Remove the empty area from address space.
492
     */
493
    btree_remove(&AS->as_area_btree, base, NULL);
494
 
1309 jermar 495
    free(area);
496
 
1380 jermar 497
    mutex_unlock(&AS->lock);
1306 jermar 498
    interrupts_restore(ipl);
499
    return 0;
500
}
501
 
1413 jermar 502
/** Share address space area with another or the same address space.
1235 jermar 503
 *
1424 jermar 504
 * Address space area mapping is shared with a new address space area.
505
 * If the source address space area has not been shared so far,
506
 * a new sh_info is created. The new address space area simply gets the
507
 * sh_info of the source area. The process of duplicating the
508
 * mapping is done through the backend share function.
1413 jermar 509
 *
1417 jermar 510
 * @param src_as Pointer to source address space.
1239 jermar 511
 * @param src_base Base address of the source address space area.
1417 jermar 512
 * @param acc_size Expected size of the source area.
1428 palkovsky 513
 * @param dst_as Pointer to destination address space.
1417 jermar 514
 * @param dst_base Target base address.
515
 * @param dst_flags_mask Destination address space area flags mask.
1235 jermar 516
 *
1306 jermar 517
 * @return Zero on success or ENOENT if there is no such task or
1235 jermar 518
 *     if there is no such address space area,
519
 *     EPERM if there was a problem in accepting the area or
520
 *     ENOMEM if there was a problem in allocating destination
1413 jermar 521
 *     address space area. ENOTSUP is returned if an attempt
522
 *     to share non-anonymous address space area is detected.
1235 jermar 523
 */
1413 jermar 524
int as_area_share(as_t *src_as, __address src_base, size_t acc_size,
1428 palkovsky 525
          as_t *dst_as, __address dst_base, int dst_flags_mask)
1235 jermar 526
{
527
    ipl_t ipl;
1239 jermar 528
    int src_flags;
529
    size_t src_size;
530
    as_area_t *src_area, *dst_area;
1413 jermar 531
    share_info_t *sh_info;
1424 jermar 532
    mem_backend_t *src_backend;
533
    mem_backend_data_t src_backend_data;
1434 palkovsky 534
 
1235 jermar 535
    ipl = interrupts_disable();
1380 jermar 536
    mutex_lock(&src_as->lock);
1329 palkovsky 537
    src_area = find_area_and_lock(src_as, src_base);
1239 jermar 538
    if (!src_area) {
1238 jermar 539
        /*
540
         * Could not find the source address space area.
541
         */
1380 jermar 542
        mutex_unlock(&src_as->lock);
1238 jermar 543
        interrupts_restore(ipl);
544
        return ENOENT;
545
    }
1413 jermar 546
 
1424 jermar 547
    if (!src_area->backend || !src_area->backend->share) {
1413 jermar 548
        /*
1424 jermar 549
         * There is now backend or the backend does not
550
         * know how to share the area.
1413 jermar 551
         */
552
        mutex_unlock(&src_area->lock);
553
        mutex_unlock(&src_as->lock);
554
        interrupts_restore(ipl);
555
        return ENOTSUP;
556
    }
557
 
1239 jermar 558
    src_size = src_area->pages * PAGE_SIZE;
559
    src_flags = src_area->flags;
1424 jermar 560
    src_backend = src_area->backend;
561
    src_backend_data = src_area->backend_data;
1544 palkovsky 562
 
563
    /* Share the cacheable flag from the original mapping */
564
    if (src_flags & AS_AREA_CACHEABLE)
565
        dst_flags_mask |= AS_AREA_CACHEABLE;
566
 
1461 palkovsky 567
    if (src_size != acc_size || (src_flags & dst_flags_mask) != dst_flags_mask) {
1413 jermar 568
        mutex_unlock(&src_area->lock);
569
        mutex_unlock(&src_as->lock);
1235 jermar 570
        interrupts_restore(ipl);
571
        return EPERM;
572
    }
1413 jermar 573
 
1235 jermar 574
    /*
1413 jermar 575
     * Now we are committed to sharing the area.
576
     * First prepare the area for sharing.
577
     * Then it will be safe to unlock it.
578
     */
579
    sh_info = src_area->sh_info;
580
    if (!sh_info) {
581
        sh_info = (share_info_t *) malloc(sizeof(share_info_t), 0);
582
        mutex_initialize(&sh_info->lock);
583
        sh_info->refcount = 2;
584
        btree_create(&sh_info->pagemap);
585
        src_area->sh_info = sh_info;
586
    } else {
587
        mutex_lock(&sh_info->lock);
588
        sh_info->refcount++;
589
        mutex_unlock(&sh_info->lock);
590
    }
591
 
1424 jermar 592
    src_area->backend->share(src_area);
1413 jermar 593
 
594
    mutex_unlock(&src_area->lock);
595
    mutex_unlock(&src_as->lock);
596
 
597
    /*
1239 jermar 598
     * Create copy of the source address space area.
599
     * The destination area is created with AS_AREA_ATTR_PARTIAL
600
     * attribute set which prevents race condition with
601
     * preliminary as_page_fault() calls.
1417 jermar 602
     * The flags of the source area are masked against dst_flags_mask
603
     * to support sharing in less privileged mode.
1235 jermar 604
     */
1461 palkovsky 605
    dst_area = as_area_create(dst_as, dst_flags_mask, src_size, dst_base,
1424 jermar 606
                  AS_AREA_ATTR_PARTIAL, src_backend, &src_backend_data);
1239 jermar 607
    if (!dst_area) {
1235 jermar 608
        /*
609
         * Destination address space area could not be created.
610
         */
1413 jermar 611
        sh_info_remove_reference(sh_info);
612
 
1235 jermar 613
        interrupts_restore(ipl);
614
        return ENOMEM;
615
    }
616
 
617
    /*
1239 jermar 618
     * Now the destination address space area has been
619
     * fully initialized. Clear the AS_AREA_ATTR_PARTIAL
1413 jermar 620
     * attribute and set the sh_info.
1239 jermar 621
     */
1380 jermar 622
    mutex_lock(&dst_area->lock);
1239 jermar 623
    dst_area->attributes &= ~AS_AREA_ATTR_PARTIAL;
1413 jermar 624
    dst_area->sh_info = sh_info;
1380 jermar 625
    mutex_unlock(&dst_area->lock);
1235 jermar 626
 
627
    interrupts_restore(ipl);
628
 
629
    return 0;
630
}
631
 
1423 jermar 632
/** Check access mode for address space area.
633
 *
634
 * The address space area must be locked prior to this call.
635
 *
636
 * @param area Address space area.
637
 * @param access Access mode.
638
 *
639
 * @return False if access violates area's permissions, true otherwise.
640
 */
641
bool as_area_check_access(as_area_t *area, pf_access_t access)
642
{
643
    int flagmap[] = {
644
        [PF_ACCESS_READ] = AS_AREA_READ,
645
        [PF_ACCESS_WRITE] = AS_AREA_WRITE,
646
        [PF_ACCESS_EXEC] = AS_AREA_EXEC
647
    };
648
 
649
    if (!(area->flags & flagmap[access]))
650
        return false;
651
 
652
    return true;
653
}
654
 
703 jermar 655
/** Handle page fault within the current address space.
656
 *
1409 jermar 657
 * This is the high-level page fault handler. It decides
658
 * whether the page fault can be resolved by any backend
659
 * and if so, it invokes the backend to resolve the page
660
 * fault.
661
 *
703 jermar 662
 * Interrupts are assumed disabled.
663
 *
664
 * @param page Faulting page.
1411 jermar 665
 * @param access Access mode that caused the fault (i.e. read/write/exec).
1288 jermar 666
 * @param istate Pointer to interrupted state.
703 jermar 667
 *
1409 jermar 668
 * @return AS_PF_FAULT on page fault, AS_PF_OK on success or AS_PF_DEFER if the
669
 *     fault was caused by copy_to_uspace() or copy_from_uspace().
703 jermar 670
 */
1411 jermar 671
int as_page_fault(__address page, pf_access_t access, istate_t *istate)
703 jermar 672
{
1044 jermar 673
    pte_t *pte;
977 jermar 674
    as_area_t *area;
703 jermar 675
 
1380 jermar 676
    if (!THREAD)
1409 jermar 677
        return AS_PF_FAULT;
1380 jermar 678
 
703 jermar 679
    ASSERT(AS);
1044 jermar 680
 
1380 jermar 681
    mutex_lock(&AS->lock);
977 jermar 682
    area = find_area_and_lock(AS, page);   
703 jermar 683
    if (!area) {
684
        /*
685
         * No area contained mapping for 'page'.
686
         * Signal page fault to low-level handler.
687
         */
1380 jermar 688
        mutex_unlock(&AS->lock);
1288 jermar 689
        goto page_fault;
703 jermar 690
    }
691
 
1239 jermar 692
    if (area->attributes & AS_AREA_ATTR_PARTIAL) {
693
        /*
694
         * The address space area is not fully initialized.
695
         * Avoid possible race by returning error.
696
         */
1380 jermar 697
        mutex_unlock(&area->lock);
698
        mutex_unlock(&AS->lock);
1288 jermar 699
        goto page_fault;       
1239 jermar 700
    }
701
 
1424 jermar 702
    if (!area->backend || !area->backend->page_fault) {
1409 jermar 703
        /*
704
         * The address space area is not backed by any backend
705
         * or the backend cannot handle page faults.
706
         */
707
        mutex_unlock(&area->lock);
708
        mutex_unlock(&AS->lock);
709
        goto page_fault;       
710
    }
1179 jermar 711
 
1044 jermar 712
    page_table_lock(AS, false);
713
 
703 jermar 714
    /*
1044 jermar 715
     * To avoid race condition between two page faults
716
     * on the same address, we need to make sure
717
     * the mapping has not been already inserted.
718
     */
719
    if ((pte = page_mapping_find(AS, page))) {
720
        if (PTE_PRESENT(pte)) {
1423 jermar 721
            if (((access == PF_ACCESS_READ) && PTE_READABLE(pte)) ||
722
                (access == PF_ACCESS_WRITE && PTE_WRITABLE(pte)) ||
723
                (access == PF_ACCESS_EXEC && PTE_EXECUTABLE(pte))) {
724
                page_table_unlock(AS, false);
725
                mutex_unlock(&area->lock);
726
                mutex_unlock(&AS->lock);
727
                return AS_PF_OK;
728
            }
1044 jermar 729
        }
730
    }
1409 jermar 731
 
1044 jermar 732
    /*
1409 jermar 733
     * Resort to the backend page fault handler.
703 jermar 734
     */
1424 jermar 735
    if (area->backend->page_fault(area, page, access) != AS_PF_OK) {
1409 jermar 736
        page_table_unlock(AS, false);
737
        mutex_unlock(&area->lock);
738
        mutex_unlock(&AS->lock);
739
        goto page_fault;
740
    }
703 jermar 741
 
1044 jermar 742
    page_table_unlock(AS, false);
1380 jermar 743
    mutex_unlock(&area->lock);
744
    mutex_unlock(&AS->lock);
1288 jermar 745
    return AS_PF_OK;
746
 
747
page_fault:
748
    if (THREAD->in_copy_from_uspace) {
749
        THREAD->in_copy_from_uspace = false;
750
        istate_set_retaddr(istate, (__address) &memcpy_from_uspace_failover_address);
751
    } else if (THREAD->in_copy_to_uspace) {
752
        THREAD->in_copy_to_uspace = false;
753
        istate_set_retaddr(istate, (__address) &memcpy_to_uspace_failover_address);
754
    } else {
755
        return AS_PF_FAULT;
756
    }
757
 
758
    return AS_PF_DEFER;
703 jermar 759
}
760
 
823 jermar 761
/** Switch address spaces.
703 jermar 762
 *
1380 jermar 763
 * Note that this function cannot sleep as it is essentially a part of
1415 jermar 764
 * scheduling. Sleeping here would lead to deadlock on wakeup.
1380 jermar 765
 *
823 jermar 766
 * @param old Old address space or NULL.
767
 * @param new New address space.
703 jermar 768
 */
823 jermar 769
void as_switch(as_t *old, as_t *new)
703 jermar 770
{
771
    ipl_t ipl;
823 jermar 772
    bool needs_asid = false;
703 jermar 773
 
774
    ipl = interrupts_disable();
1415 jermar 775
    spinlock_lock(&inactive_as_with_asid_lock);
703 jermar 776
 
777
    /*
823 jermar 778
     * First, take care of the old address space.
779
     */
780
    if (old) {
1380 jermar 781
        mutex_lock_active(&old->lock);
1415 jermar 782
        ASSERT(old->cpu_refcount);
783
        if((--old->cpu_refcount == 0) && (old != AS_KERNEL)) {
823 jermar 784
            /*
785
             * The old address space is no longer active on
786
             * any processor. It can be appended to the
787
             * list of inactive address spaces with assigned
788
             * ASID.
789
             */
790
             ASSERT(old->asid != ASID_INVALID);
791
             list_append(&old->inactive_as_with_asid_link, &inactive_as_with_asid_head);
792
        }
1380 jermar 793
        mutex_unlock(&old->lock);
823 jermar 794
    }
795
 
796
    /*
797
     * Second, prepare the new address space.
798
     */
1380 jermar 799
    mutex_lock_active(&new->lock);
1415 jermar 800
    if ((new->cpu_refcount++ == 0) && (new != AS_KERNEL)) {
823 jermar 801
        if (new->asid != ASID_INVALID)
802
            list_remove(&new->inactive_as_with_asid_link);
803
        else
804
            needs_asid = true;  /* defer call to asid_get() until new->lock is released */
805
    }
806
    SET_PTL0_ADDRESS(new->page_table);
1380 jermar 807
    mutex_unlock(&new->lock);
823 jermar 808
 
809
    if (needs_asid) {
810
        /*
811
         * Allocation of new ASID was deferred
812
         * until now in order to avoid deadlock.
813
         */
814
        asid_t asid;
815
 
816
        asid = asid_get();
1380 jermar 817
        mutex_lock_active(&new->lock);
823 jermar 818
        new->asid = asid;
1380 jermar 819
        mutex_unlock(&new->lock);
823 jermar 820
    }
1415 jermar 821
    spinlock_unlock(&inactive_as_with_asid_lock);
823 jermar 822
    interrupts_restore(ipl);
823
 
824
    /*
703 jermar 825
     * Perform architecture-specific steps.
727 jermar 826
     * (e.g. write ASID to hardware register etc.)
703 jermar 827
     */
823 jermar 828
    as_install_arch(new);
703 jermar 829
 
823 jermar 830
    AS = new;
703 jermar 831
}
754 jermar 832
 
1235 jermar 833
/** Convert address space area flags to page flags.
754 jermar 834
 *
1235 jermar 835
 * @param aflags Flags of some address space area.
754 jermar 836
 *
1235 jermar 837
 * @return Flags to be passed to page_mapping_insert().
754 jermar 838
 */
1235 jermar 839
int area_flags_to_page_flags(int aflags)
754 jermar 840
{
841
    int flags;
842
 
1178 jermar 843
    flags = PAGE_USER | PAGE_PRESENT;
754 jermar 844
 
1235 jermar 845
    if (aflags & AS_AREA_READ)
1026 jermar 846
        flags |= PAGE_READ;
847
 
1235 jermar 848
    if (aflags & AS_AREA_WRITE)
1026 jermar 849
        flags |= PAGE_WRITE;
850
 
1235 jermar 851
    if (aflags & AS_AREA_EXEC)
1026 jermar 852
        flags |= PAGE_EXEC;
853
 
1424 jermar 854
    if (aflags & AS_AREA_CACHEABLE)
1178 jermar 855
        flags |= PAGE_CACHEABLE;
856
 
754 jermar 857
    return flags;
858
}
756 jermar 859
 
1235 jermar 860
/** Compute flags for virtual address translation subsytem.
861
 *
862
 * The address space area must be locked.
863
 * Interrupts must be disabled.
864
 *
865
 * @param a Address space area.
866
 *
867
 * @return Flags to be used in page_mapping_insert().
868
 */
1409 jermar 869
int as_area_get_flags(as_area_t *a)
1235 jermar 870
{
871
    return area_flags_to_page_flags(a->flags);
872
}
873
 
756 jermar 874
/** Create page table.
875
 *
876
 * Depending on architecture, create either address space
877
 * private or global page table.
878
 *
879
 * @param flags Flags saying whether the page table is for kernel address space.
880
 *
881
 * @return First entry of the page table.
882
 */
883
pte_t *page_table_create(int flags)
884
{
885
        ASSERT(as_operations);
886
        ASSERT(as_operations->page_table_create);
887
 
888
        return as_operations->page_table_create(flags);
889
}
977 jermar 890
 
1468 jermar 891
/** Destroy page table.
892
 *
893
 * Destroy page table in architecture specific way.
894
 *
895
 * @param page_table Physical address of PTL0.
896
 */
897
void page_table_destroy(pte_t *page_table)
898
{
899
        ASSERT(as_operations);
900
        ASSERT(as_operations->page_table_destroy);
901
 
902
        as_operations->page_table_destroy(page_table);
903
}
904
 
1044 jermar 905
/** Lock page table.
906
 *
907
 * This function should be called before any page_mapping_insert(),
908
 * page_mapping_remove() and page_mapping_find().
909
 *
910
 * Locking order is such that address space areas must be locked
911
 * prior to this call. Address space can be locked prior to this
912
 * call in which case the lock argument is false.
913
 *
914
 * @param as Address space.
1248 jermar 915
 * @param lock If false, do not attempt to lock as->lock.
1044 jermar 916
 */
917
void page_table_lock(as_t *as, bool lock)
918
{
919
    ASSERT(as_operations);
920
    ASSERT(as_operations->page_table_lock);
921
 
922
    as_operations->page_table_lock(as, lock);
923
}
924
 
925
/** Unlock page table.
926
 *
927
 * @param as Address space.
1248 jermar 928
 * @param unlock If false, do not attempt to unlock as->lock.
1044 jermar 929
 */
930
void page_table_unlock(as_t *as, bool unlock)
931
{
932
    ASSERT(as_operations);
933
    ASSERT(as_operations->page_table_unlock);
934
 
935
    as_operations->page_table_unlock(as, unlock);
936
}
937
 
977 jermar 938
 
939
/** Find address space area and lock it.
940
 *
941
 * The address space must be locked and interrupts must be disabled.
942
 *
943
 * @param as Address space.
944
 * @param va Virtual address.
945
 *
946
 * @return Locked address space area containing va on success or NULL on failure.
947
 */
948
as_area_t *find_area_and_lock(as_t *as, __address va)
949
{
950
    as_area_t *a;
1147 jermar 951
    btree_node_t *leaf, *lnode;
952
    int i;
977 jermar 953
 
1147 jermar 954
    a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf);
955
    if (a) {
956
        /* va is the base address of an address space area */
1380 jermar 957
        mutex_lock(&a->lock);
1147 jermar 958
        return a;
959
    }
960
 
961
    /*
1150 jermar 962
     * Search the leaf node and the righmost record of its left neighbour
1147 jermar 963
     * to find out whether this is a miss or va belongs to an address
964
     * space area found there.
965
     */
966
 
967
    /* First, search the leaf node itself. */
968
    for (i = 0; i < leaf->keys; i++) {
969
        a = (as_area_t *) leaf->value[i];
1380 jermar 970
        mutex_lock(&a->lock);
1147 jermar 971
        if ((a->base <= va) && (va < a->base + a->pages * PAGE_SIZE)) {
972
            return a;
973
        }
1380 jermar 974
        mutex_unlock(&a->lock);
1147 jermar 975
    }
977 jermar 976
 
1147 jermar 977
    /*
1150 jermar 978
     * Second, locate the left neighbour and test its last record.
1148 jermar 979
     * Because of its position in the B+tree, it must have base < va.
1147 jermar 980
     */
1150 jermar 981
    if ((lnode = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf))) {
1147 jermar 982
        a = (as_area_t *) lnode->value[lnode->keys - 1];
1380 jermar 983
        mutex_lock(&a->lock);
1147 jermar 984
        if (va < a->base + a->pages * PAGE_SIZE) {
1048 jermar 985
            return a;
1147 jermar 986
        }
1380 jermar 987
        mutex_unlock(&a->lock);
977 jermar 988
    }
989
 
990
    return NULL;
991
}
1048 jermar 992
 
993
/** Check area conflicts with other areas.
994
 *
995
 * The address space must be locked and interrupts must be disabled.
996
 *
997
 * @param as Address space.
998
 * @param va Starting virtual address of the area being tested.
999
 * @param size Size of the area being tested.
1000
 * @param avoid_area Do not touch this area.
1001
 *
1002
 * @return True if there is no conflict, false otherwise.
1003
 */
1004
bool check_area_conflicts(as_t *as, __address va, size_t size, as_area_t *avoid_area)
1005
{
1006
    as_area_t *a;
1147 jermar 1007
    btree_node_t *leaf, *node;
1008
    int i;
1048 jermar 1009
 
1070 jermar 1010
    /*
1011
     * We don't want any area to have conflicts with NULL page.
1012
     */
1013
    if (overlaps(va, size, NULL, PAGE_SIZE))
1014
        return false;
1015
 
1147 jermar 1016
    /*
1017
     * The leaf node is found in O(log n), where n is proportional to
1018
     * the number of address space areas belonging to as.
1019
     * The check for conflicts is then attempted on the rightmost
1150 jermar 1020
     * record in the left neighbour, the leftmost record in the right
1021
     * neighbour and all records in the leaf node itself.
1147 jermar 1022
     */
1048 jermar 1023
 
1147 jermar 1024
    if ((a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf))) {
1025
        if (a != avoid_area)
1026
            return false;
1027
    }
1028
 
1029
    /* First, check the two border cases. */
1150 jermar 1030
    if ((node = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf))) {
1147 jermar 1031
        a = (as_area_t *) node->value[node->keys - 1];
1380 jermar 1032
        mutex_lock(&a->lock);
1147 jermar 1033
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1380 jermar 1034
            mutex_unlock(&a->lock);
1147 jermar 1035
            return false;
1036
        }
1380 jermar 1037
        mutex_unlock(&a->lock);
1147 jermar 1038
    }
1150 jermar 1039
    if ((node = btree_leaf_node_right_neighbour(&as->as_area_btree, leaf))) {
1147 jermar 1040
        a = (as_area_t *) node->value[0];
1380 jermar 1041
        mutex_lock(&a->lock);
1147 jermar 1042
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1380 jermar 1043
            mutex_unlock(&a->lock);
1147 jermar 1044
            return false;
1045
        }
1380 jermar 1046
        mutex_unlock(&a->lock);
1147 jermar 1047
    }
1048
 
1049
    /* Second, check the leaf node. */
1050
    for (i = 0; i < leaf->keys; i++) {
1051
        a = (as_area_t *) leaf->value[i];
1052
 
1048 jermar 1053
        if (a == avoid_area)
1054
            continue;
1147 jermar 1055
 
1380 jermar 1056
        mutex_lock(&a->lock);
1147 jermar 1057
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1380 jermar 1058
            mutex_unlock(&a->lock);
1147 jermar 1059
            return false;
1060
        }
1380 jermar 1061
        mutex_unlock(&a->lock);
1048 jermar 1062
    }
1063
 
1070 jermar 1064
    /*
1065
     * So far, the area does not conflict with other areas.
1066
     * Check if it doesn't conflict with kernel address space.
1067
     */  
1068
    if (!KERNEL_ADDRESS_SPACE_SHADOWED) {
1069
        return !overlaps(va, size,
1070
            KERNEL_ADDRESS_SPACE_START, KERNEL_ADDRESS_SPACE_END-KERNEL_ADDRESS_SPACE_START);
1071
    }
1072
 
1048 jermar 1073
    return true;
1074
}
1235 jermar 1075
 
1380 jermar 1076
/** Return size of the address space area with given base.  */
1329 palkovsky 1077
size_t as_get_size(__address base)
1078
{
1079
    ipl_t ipl;
1080
    as_area_t *src_area;
1081
    size_t size;
1082
 
1083
    ipl = interrupts_disable();
1084
    src_area = find_area_and_lock(AS, base);
1085
    if (src_area){
1086
        size = src_area->pages * PAGE_SIZE;
1380 jermar 1087
        mutex_unlock(&src_area->lock);
1329 palkovsky 1088
    } else {
1089
        size = 0;
1090
    }
1091
    interrupts_restore(ipl);
1092
    return size;
1093
}
1094
 
1387 jermar 1095
/** Mark portion of address space area as used.
1096
 *
1097
 * The address space area must be already locked.
1098
 *
1099
 * @param a Address space area.
1100
 * @param page First page to be marked.
1101
 * @param count Number of page to be marked.
1102
 *
1103
 * @return 0 on failure and 1 on success.
1104
 */
1105
int used_space_insert(as_area_t *a, __address page, count_t count)
1106
{
1107
    btree_node_t *leaf, *node;
1108
    count_t pages;
1109
    int i;
1110
 
1111
    ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1112
    ASSERT(count);
1113
 
1114
    pages = (count_t) btree_search(&a->used_space, page, &leaf);
1115
    if (pages) {
1116
        /*
1117
         * We hit the beginning of some used space.
1118
         */
1119
        return 0;
1120
    }
1121
 
1437 jermar 1122
    if (!leaf->keys) {
1123
        btree_insert(&a->used_space, page, (void *) count, leaf);
1124
        return 1;
1125
    }
1126
 
1387 jermar 1127
    node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1128
    if (node) {
1129
        __address left_pg = node->key[node->keys - 1], right_pg = leaf->key[0];
1130
        count_t left_cnt = (count_t) node->value[node->keys - 1], right_cnt = (count_t) leaf->value[0];
1131
 
1132
        /*
1133
         * Examine the possibility that the interval fits
1134
         * somewhere between the rightmost interval of
1135
         * the left neigbour and the first interval of the leaf.
1136
         */
1137
 
1138
        if (page >= right_pg) {
1139
            /* Do nothing. */
1140
        } else if (overlaps(page, count*PAGE_SIZE, left_pg, left_cnt*PAGE_SIZE)) {
1141
            /* The interval intersects with the left interval. */
1142
            return 0;
1143
        } else if (overlaps(page, count*PAGE_SIZE, right_pg, right_cnt*PAGE_SIZE)) {
1144
            /* The interval intersects with the right interval. */
1145
            return 0;          
1146
        } else if ((page == left_pg + left_cnt*PAGE_SIZE) && (page + count*PAGE_SIZE == right_pg)) {
1147
            /* The interval can be added by merging the two already present intervals. */
1403 jermar 1148
            node->value[node->keys - 1] += count + right_cnt;
1387 jermar 1149
            btree_remove(&a->used_space, right_pg, leaf);
1150
            return 1;
1151
        } else if (page == left_pg + left_cnt*PAGE_SIZE) {
1152
            /* The interval can be added by simply growing the left interval. */
1403 jermar 1153
            node->value[node->keys - 1] += count;
1387 jermar 1154
            return 1;
1155
        } else if (page + count*PAGE_SIZE == right_pg) {
1156
            /*
1157
             * The interval can be addded by simply moving base of the right
1158
             * interval down and increasing its size accordingly.
1159
             */
1403 jermar 1160
            leaf->value[0] += count;
1387 jermar 1161
            leaf->key[0] = page;
1162
            return 1;
1163
        } else {
1164
            /*
1165
             * The interval is between both neigbouring intervals,
1166
             * but cannot be merged with any of them.
1167
             */
1168
            btree_insert(&a->used_space, page, (void *) count, leaf);
1169
            return 1;
1170
        }
1171
    } else if (page < leaf->key[0]) {
1172
        __address right_pg = leaf->key[0];
1173
        count_t right_cnt = (count_t) leaf->value[0];
1174
 
1175
        /*
1176
         * Investigate the border case in which the left neighbour does not
1177
         * exist but the interval fits from the left.
1178
         */
1179
 
1180
        if (overlaps(page, count*PAGE_SIZE, right_pg, right_cnt*PAGE_SIZE)) {
1181
            /* The interval intersects with the right interval. */
1182
            return 0;
1183
        } else if (page + count*PAGE_SIZE == right_pg) {
1184
            /*
1185
             * The interval can be added by moving the base of the right interval down
1186
             * and increasing its size accordingly.
1187
             */
1188
            leaf->key[0] = page;
1403 jermar 1189
            leaf->value[0] += count;
1387 jermar 1190
            return 1;
1191
        } else {
1192
            /*
1193
             * The interval doesn't adjoin with the right interval.
1194
             * It must be added individually.
1195
             */
1196
            btree_insert(&a->used_space, page, (void *) count, leaf);
1197
            return 1;
1198
        }
1199
    }
1200
 
1201
    node = btree_leaf_node_right_neighbour(&a->used_space, leaf);
1202
    if (node) {
1203
        __address left_pg = leaf->key[leaf->keys - 1], right_pg = node->key[0];
1204
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1], right_cnt = (count_t) node->value[0];
1205
 
1206
        /*
1207
         * Examine the possibility that the interval fits
1208
         * somewhere between the leftmost interval of
1209
         * the right neigbour and the last interval of the leaf.
1210
         */
1211
 
1212
        if (page < left_pg) {
1213
            /* Do nothing. */
1214
        } else if (overlaps(page, count*PAGE_SIZE, left_pg, left_cnt*PAGE_SIZE)) {
1215
            /* The interval intersects with the left interval. */
1216
            return 0;
1217
        } else if (overlaps(page, count*PAGE_SIZE, right_pg, right_cnt*PAGE_SIZE)) {
1218
            /* The interval intersects with the right interval. */
1219
            return 0;          
1220
        } else if ((page == left_pg + left_cnt*PAGE_SIZE) && (page + count*PAGE_SIZE == right_pg)) {
1221
            /* The interval can be added by merging the two already present intervals. */
1403 jermar 1222
            leaf->value[leaf->keys - 1] += count + right_cnt;
1387 jermar 1223
            btree_remove(&a->used_space, right_pg, node);
1224
            return 1;
1225
        } else if (page == left_pg + left_cnt*PAGE_SIZE) {
1226
            /* The interval can be added by simply growing the left interval. */
1403 jermar 1227
            leaf->value[leaf->keys - 1] +=  count;
1387 jermar 1228
            return 1;
1229
        } else if (page + count*PAGE_SIZE == right_pg) {
1230
            /*
1231
             * The interval can be addded by simply moving base of the right
1232
             * interval down and increasing its size accordingly.
1233
             */
1403 jermar 1234
            node->value[0] += count;
1387 jermar 1235
            node->key[0] = page;
1236
            return 1;
1237
        } else {
1238
            /*
1239
             * The interval is between both neigbouring intervals,
1240
             * but cannot be merged with any of them.
1241
             */
1242
            btree_insert(&a->used_space, page, (void *) count, leaf);
1243
            return 1;
1244
        }
1245
    } else if (page >= leaf->key[leaf->keys - 1]) {
1246
        __address left_pg = leaf->key[leaf->keys - 1];
1247
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1248
 
1249
        /*
1250
         * Investigate the border case in which the right neighbour does not
1251
         * exist but the interval fits from the right.
1252
         */
1253
 
1254
        if (overlaps(page, count*PAGE_SIZE, left_pg, left_cnt*PAGE_SIZE)) {
1403 jermar 1255
            /* The interval intersects with the left interval. */
1387 jermar 1256
            return 0;
1257
        } else if (left_pg + left_cnt*PAGE_SIZE == page) {
1258
            /* The interval can be added by growing the left interval. */
1403 jermar 1259
            leaf->value[leaf->keys - 1] += count;
1387 jermar 1260
            return 1;
1261
        } else {
1262
            /*
1263
             * The interval doesn't adjoin with the left interval.
1264
             * It must be added individually.
1265
             */
1266
            btree_insert(&a->used_space, page, (void *) count, leaf);
1267
            return 1;
1268
        }
1269
    }
1270
 
1271
    /*
1272
     * Note that if the algorithm made it thus far, the interval can fit only
1273
     * between two other intervals of the leaf. The two border cases were already
1274
     * resolved.
1275
     */
1276
    for (i = 1; i < leaf->keys; i++) {
1277
        if (page < leaf->key[i]) {
1278
            __address left_pg = leaf->key[i - 1], right_pg = leaf->key[i];
1279
            count_t left_cnt = (count_t) leaf->value[i - 1], right_cnt = (count_t) leaf->value[i];
1280
 
1281
            /*
1282
             * The interval fits between left_pg and right_pg.
1283
             */
1284
 
1285
            if (overlaps(page, count*PAGE_SIZE, left_pg, left_cnt*PAGE_SIZE)) {
1286
                /* The interval intersects with the left interval. */
1287
                return 0;
1288
            } else if (overlaps(page, count*PAGE_SIZE, right_pg, right_cnt*PAGE_SIZE)) {
1289
                /* The interval intersects with the right interval. */
1290
                return 0;          
1291
            } else if ((page == left_pg + left_cnt*PAGE_SIZE) && (page + count*PAGE_SIZE == right_pg)) {
1292
                /* The interval can be added by merging the two already present intervals. */
1403 jermar 1293
                leaf->value[i - 1] += count + right_cnt;
1387 jermar 1294
                btree_remove(&a->used_space, right_pg, leaf);
1295
                return 1;
1296
            } else if (page == left_pg + left_cnt*PAGE_SIZE) {
1297
                /* The interval can be added by simply growing the left interval. */
1403 jermar 1298
                leaf->value[i - 1] += count;
1387 jermar 1299
                return 1;
1300
            } else if (page + count*PAGE_SIZE == right_pg) {
1301
                /*
1302
                     * The interval can be addded by simply moving base of the right
1303
                 * interval down and increasing its size accordingly.
1304
                 */
1403 jermar 1305
                leaf->value[i] += count;
1387 jermar 1306
                leaf->key[i] = page;
1307
                return 1;
1308
            } else {
1309
                /*
1310
                 * The interval is between both neigbouring intervals,
1311
                 * but cannot be merged with any of them.
1312
                 */
1313
                btree_insert(&a->used_space, page, (void *) count, leaf);
1314
                return 1;
1315
            }
1316
        }
1317
    }
1318
 
1319
    panic("Inconsistency detected while adding %d pages of used space at %P.\n", count, page);
1320
}
1321
 
1322
/** Mark portion of address space area as unused.
1323
 *
1324
 * The address space area must be already locked.
1325
 *
1326
 * @param a Address space area.
1327
 * @param page First page to be marked.
1328
 * @param count Number of page to be marked.
1329
 *
1330
 * @return 0 on failure and 1 on success.
1331
 */
1332
int used_space_remove(as_area_t *a, __address page, count_t count)
1333
{
1334
    btree_node_t *leaf, *node;
1335
    count_t pages;
1336
    int i;
1337
 
1338
    ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1339
    ASSERT(count);
1340
 
1341
    pages = (count_t) btree_search(&a->used_space, page, &leaf);
1342
    if (pages) {
1343
        /*
1344
         * We are lucky, page is the beginning of some interval.
1345
         */
1346
        if (count > pages) {
1347
            return 0;
1348
        } else if (count == pages) {
1349
            btree_remove(&a->used_space, page, leaf);
1403 jermar 1350
            return 1;
1387 jermar 1351
        } else {
1352
            /*
1353
             * Find the respective interval.
1354
             * Decrease its size and relocate its start address.
1355
             */
1356
            for (i = 0; i < leaf->keys; i++) {
1357
                if (leaf->key[i] == page) {
1358
                    leaf->key[i] += count*PAGE_SIZE;
1403 jermar 1359
                    leaf->value[i] -= count;
1387 jermar 1360
                    return 1;
1361
                }
1362
            }
1363
            goto error;
1364
        }
1365
    }
1366
 
1367
    node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1368
    if (node && page < leaf->key[0]) {
1369
        __address left_pg = node->key[node->keys - 1];
1370
        count_t left_cnt = (count_t) node->value[node->keys - 1];
1371
 
1372
        if (overlaps(left_pg, left_cnt*PAGE_SIZE, page, count*PAGE_SIZE)) {
1373
            if (page + count*PAGE_SIZE == left_pg + left_cnt*PAGE_SIZE) {
1374
                /*
1375
                 * The interval is contained in the rightmost interval
1376
                 * of the left neighbour and can be removed by
1377
                 * updating the size of the bigger interval.
1378
                 */
1403 jermar 1379
                node->value[node->keys - 1] -= count;
1387 jermar 1380
                return 1;
1381
            } else if (page + count*PAGE_SIZE < left_pg + left_cnt*PAGE_SIZE) {
1403 jermar 1382
                count_t new_cnt;
1387 jermar 1383
 
1384
                /*
1385
                 * The interval is contained in the rightmost interval
1386
                 * of the left neighbour but its removal requires
1387
                 * both updating the size of the original interval and
1388
                 * also inserting a new interval.
1389
                 */
1403 jermar 1390
                new_cnt = ((left_pg + left_cnt*PAGE_SIZE) - (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1391
                node->value[node->keys - 1] -= count + new_cnt;
1387 jermar 1392
                btree_insert(&a->used_space, page + count*PAGE_SIZE, (void *) new_cnt, leaf);
1393
                return 1;
1394
            }
1395
        }
1396
        return 0;
1397
    } else if (page < leaf->key[0]) {
1398
        return 0;
1399
    }
1400
 
1401
    if (page > leaf->key[leaf->keys - 1]) {
1402
        __address left_pg = leaf->key[leaf->keys - 1];
1403
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1404
 
1405
        if (overlaps(left_pg, left_cnt*PAGE_SIZE, page, count*PAGE_SIZE)) {
1406
            if (page + count*PAGE_SIZE == left_pg + left_cnt*PAGE_SIZE) {
1407
                /*
1408
                 * The interval is contained in the rightmost interval
1409
                 * of the leaf and can be removed by updating the size
1410
                 * of the bigger interval.
1411
                 */
1403 jermar 1412
                leaf->value[leaf->keys - 1] -= count;
1387 jermar 1413
                return 1;
1414
            } else if (page + count*PAGE_SIZE < left_pg + left_cnt*PAGE_SIZE) {
1403 jermar 1415
                count_t new_cnt;
1387 jermar 1416
 
1417
                /*
1418
                 * The interval is contained in the rightmost interval
1419
                 * of the leaf but its removal requires both updating
1420
                 * the size of the original interval and
1421
                 * also inserting a new interval.
1422
                 */
1403 jermar 1423
                new_cnt = ((left_pg + left_cnt*PAGE_SIZE) - (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1424
                leaf->value[leaf->keys - 1] -= count + new_cnt;
1387 jermar 1425
                btree_insert(&a->used_space, page + count*PAGE_SIZE, (void *) new_cnt, leaf);
1426
                return 1;
1427
            }
1428
        }
1429
        return 0;
1430
    }  
1431
 
1432
    /*
1433
     * The border cases have been already resolved.
1434
     * Now the interval can be only between intervals of the leaf.
1435
     */
1436
    for (i = 1; i < leaf->keys - 1; i++) {
1437
        if (page < leaf->key[i]) {
1438
            __address left_pg = leaf->key[i - 1];
1439
            count_t left_cnt = (count_t) leaf->value[i - 1];
1440
 
1441
            /*
1442
             * Now the interval is between intervals corresponding to (i - 1) and i.
1443
             */
1444
            if (overlaps(left_pg, left_cnt*PAGE_SIZE, page, count*PAGE_SIZE)) {
1445
                if (page + count*PAGE_SIZE == left_pg + left_cnt*PAGE_SIZE) {
1446
                    /*
1447
                    * The interval is contained in the interval (i - 1)
1448
                     * of the leaf and can be removed by updating the size
1449
                     * of the bigger interval.
1450
                     */
1403 jermar 1451
                    leaf->value[i - 1] -= count;
1387 jermar 1452
                    return 1;
1453
                } else if (page + count*PAGE_SIZE < left_pg + left_cnt*PAGE_SIZE) {
1403 jermar 1454
                    count_t new_cnt;
1387 jermar 1455
 
1456
                    /*
1457
                     * The interval is contained in the interval (i - 1)
1458
                     * of the leaf but its removal requires both updating
1459
                     * the size of the original interval and
1460
                     * also inserting a new interval.
1461
                     */
1403 jermar 1462
                    new_cnt = ((left_pg + left_cnt*PAGE_SIZE) - (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1463
                    leaf->value[i - 1] -= count + new_cnt;
1387 jermar 1464
                    btree_insert(&a->used_space, page + count*PAGE_SIZE, (void *) new_cnt, leaf);
1465
                    return 1;
1466
                }
1467
            }
1468
            return 0;
1469
        }
1470
    }
1471
 
1472
error:
1473
    panic("Inconsistency detected while removing %d pages of used space from %P.\n", count, page);
1474
}
1475
 
1409 jermar 1476
/** Remove reference to address space area share info.
1477
 *
1478
 * If the reference count drops to 0, the sh_info is deallocated.
1479
 *
1480
 * @param sh_info Pointer to address space area share info.
1481
 */
1482
void sh_info_remove_reference(share_info_t *sh_info)
1483
{
1484
    bool dealloc = false;
1485
 
1486
    mutex_lock(&sh_info->lock);
1487
    ASSERT(sh_info->refcount);
1488
    if (--sh_info->refcount == 0) {
1489
        dealloc = true;
1495 jermar 1490
        link_t *cur;
1409 jermar 1491
 
1492
        /*
1493
         * Now walk carefully the pagemap B+tree and free/remove
1494
         * reference from all frames found there.
1495
         */
1495 jermar 1496
        for (cur = sh_info->pagemap.leaf_head.next; cur != &sh_info->pagemap.leaf_head; cur = cur->next) {
1409 jermar 1497
            btree_node_t *node;
1495 jermar 1498
            int i;
1409 jermar 1499
 
1495 jermar 1500
            node = list_get_instance(cur, btree_node_t, leaf_link);
1501
            for (i = 0; i < node->keys; i++)
1502
                frame_free(ADDR2PFN((__address) node->value[i]));
1409 jermar 1503
        }
1504
 
1505
    }
1506
    mutex_unlock(&sh_info->lock);
1507
 
1508
    if (dealloc) {
1509
        btree_destroy(&sh_info->pagemap);
1510
        free(sh_info);
1511
    }
1512
}
1513
 
1235 jermar 1514
/*
1515
 * Address space related syscalls.
1516
 */
1517
 
1518
/** Wrapper for as_area_create(). */
1519
__native sys_as_area_create(__address address, size_t size, int flags)
1520
{
1424 jermar 1521
    if (as_area_create(AS, flags | AS_AREA_CACHEABLE, size, address, AS_AREA_ATTR_NONE, &anon_backend, NULL))
1235 jermar 1522
        return (__native) address;
1523
    else
1524
        return (__native) -1;
1525
}
1526
 
1527
/** Wrapper for as_area_resize. */
1528
__native sys_as_area_resize(__address address, size_t size, int flags)
1529
{
1306 jermar 1530
    return (__native) as_area_resize(AS, address, size, 0);
1235 jermar 1531
}
1532
 
1306 jermar 1533
/** Wrapper for as_area_destroy. */
1534
__native sys_as_area_destroy(__address address)
1535
{
1536
    return (__native) as_area_destroy(AS, address);
1537
}
1702 cejka 1538
 
1539
 /** @}
1540
 */
1541