Subversion Repositories HelenOS-doc

Rev

Rev 74 | Rev 77 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
9 bondari 1
<?xml version="1.0" encoding="UTF-8"?>
11 bondari 2
<chapter id="mm">
3
  <?dbhtml filename="mm.html"?>
9 bondari 4
 
11 bondari 5
  <title>Memory management</title>
9 bondari 6
 
67 jermar 7
  <para>In previous chapters, this book described the scheduling subsystem as
8
  the creator of the impression that threads execute in parallel. The memory
9
  management subsystem, on the other hand, creates the impression that there
10
  is enough physical memory for the kernel and that userspace tasks have the
11
  entire address space only for themselves.</para>
64 jermar 12
 
26 bondari 13
  <section>
64 jermar 14
    <title>Physical memory management</title>
15
 
16
    <section id="zones_and_frames">
17
      <title>Zones and frames</title>
18
 
67 jermar 19
      <para>HelenOS represents continuous areas of physical memory in
20
      structures called frame zones (abbreviated as zones). Each zone contains
21
      information about the number of allocated and unallocated physical
22
      memory frames as well as the physical base address of the zone and
23
      number of frames contained in it. A zone also contains an array of frame
24
      structures describing each frame of the zone and, in the last, but not
25
      the least important, front, each zone is equipped with a buddy system
26
      that faciliates effective allocation of power-of-two sized block of
27
      frames.</para>
64 jermar 28
 
67 jermar 29
      <para>This organization of physical memory provides good preconditions
30
      for hot-plugging of more zones. There is also one currently unused zone
31
      attribute: <code>flags</code>. The attribute could be used to give a
32
      special meaning to some zones in the future.</para>
64 jermar 33
 
67 jermar 34
      <para>The zones are linked in a doubly-linked list. This might seem a
35
      bit ineffective because the zone list is walked everytime a frame is
36
      allocated or deallocated. However, this does not represent a significant
37
      performance problem as it is expected that the number of zones will be
38
      rather low. Moreover, most architectures merge all zones into
39
      one.</para>
40
 
76 palkovsky 41
      <para>Every physical memory frame in a zone, is described by a structure
42
      that contains number of references and other data used by buddy
67 jermar 43
      system.</para>
64 jermar 44
    </section>
45
 
46
    <section id="frame_allocator">
71 bondari 47
      <indexterm>
48
        <primary>frame allocator</primary>
49
      </indexterm>
50
 
64 jermar 51
      <title>Frame allocator</title>
52
 
67 jermar 53
      <para>The frame allocator satisfies kernel requests to allocate
54
      power-of-two sized blocks of physical memory. Because of zonal
55
      organization of physical memory, the frame allocator is always working
76 palkovsky 56
      within a context of a particular frame zone. In order to carry out the
67 jermar 57
      allocation requests, the frame allocator is tightly integrated with the
58
      buddy system belonging to the zone. The frame allocator is also
59
      responsible for updating information about the number of free and busy
60
      frames in the zone. <figure>
61
          <mediaobject id="frame_alloc">
62
            <imageobject role="html">
63
              <imagedata fileref="images/frame_alloc.png" format="PNG" />
64
            </imageobject>
64 jermar 65
 
67 jermar 66
            <imageobject role="fop">
67
              <imagedata fileref="images.vector/frame_alloc.svg" format="SVG" />
68
            </imageobject>
69
          </mediaobject>
64 jermar 70
 
67 jermar 71
          <title>Frame allocator scheme.</title>
72
        </figure></para>
64 jermar 73
 
74
      <formalpara>
75
        <title>Allocation / deallocation</title>
76
 
67 jermar 77
        <para>Upon allocation request via function <code>frame_alloc</code>,
78
        the frame allocator first tries to find a zone that can satisfy the
79
        request (i.e. has the required amount of free frames). Once a suitable
80
        zone is found, the frame allocator uses the buddy allocator on the
81
        zone's buddy system to perform the allocation. During deallocation,
82
        which is triggered by a call to <code>frame_free</code>, the frame
83
        allocator looks up the respective zone that contains the frame being
84
        deallocated. Afterwards, it calls the buddy allocator again, this time
85
        to take care of deallocation within the zone's buddy system.</para>
64 jermar 86
      </formalpara>
87
    </section>
88
 
89
    <section id="buddy_allocator">
71 bondari 90
      <indexterm>
91
        <primary>buddy system</primary>
92
      </indexterm>
93
 
64 jermar 94
      <title>Buddy allocator</title>
95
 
67 jermar 96
      <para>In the buddy system, the memory is broken down into power-of-two
97
      sized naturally aligned blocks. These blocks are organized in an array
98
      of lists, in which the list with index i contains all unallocated blocks
99
      of size <mathphrase>2<superscript>i</superscript></mathphrase>. The
100
      index i is called the order of block. Should there be two adjacent
101
      equally sized blocks in the list i<mathphrase />(i.e. buddies), the
102
      buddy allocator would coalesce them and put the resulting block in list
103
      <mathphrase>i + 1</mathphrase>, provided that the resulting block would
104
      be naturally aligned. Similarily, when the allocator is asked to
105
      allocate a block of size
106
      <mathphrase>2<superscript>i</superscript></mathphrase>, it first tries
107
      to satisfy the request from the list with index i. If the request cannot
108
      be satisfied (i.e. the list i is empty), the buddy allocator will try to
109
      allocate and split a larger block from the list with index i + 1. Both
110
      of these algorithms are recursive. The recursion ends either when there
111
      are no blocks to coalesce in the former case or when there are no blocks
112
      that can be split in the latter case.</para>
64 jermar 113
 
67 jermar 114
      <para>This approach greatly reduces external fragmentation of memory and
115
      helps in allocating bigger continuous blocks of memory aligned to their
116
      size. On the other hand, the buddy allocator suffers increased internal
117
      fragmentation of memory and is not suitable for general kernel
118
      allocations. This purpose is better addressed by the <link
119
      linkend="slab">slab allocator</link>.<figure>
64 jermar 120
          <mediaobject id="buddy_alloc">
121
            <imageobject role="html">
122
              <imagedata fileref="images/buddy_alloc.png" format="PNG" />
123
            </imageobject>
124
 
125
            <imageobject role="fop">
126
              <imagedata fileref="images.vector/buddy_alloc.svg" format="SVG" />
127
            </imageobject>
128
          </mediaobject>
129
 
130
          <title>Buddy system scheme.</title>
67 jermar 131
        </figure></para>
64 jermar 132
 
133
      <section>
134
        <title>Implementation</title>
135
 
136
        <para>The buddy allocator is, in fact, an abstract framework wich can
137
        be easily specialized to serve one particular task. It knows nothing
138
        about the nature of memory it helps to allocate. In order to beat the
139
        lack of this knowledge, the buddy allocator exports an interface that
140
        each of its clients is required to implement. When supplied with an
141
        implementation of this interface, the buddy allocator can use
142
        specialized external functions to find a buddy for a block, split and
143
        coalesce blocks, manipulate block order and mark blocks busy or
67 jermar 144
        available.</para>
64 jermar 145
 
146
        <formalpara>
147
          <title>Data organization</title>
148
 
149
          <para>Each entity allocable by the buddy allocator is required to
150
          contain space for storing block order number and a link variable
151
          used to interconnect blocks within the same order.</para>
152
 
153
          <para>Whatever entities are allocated by the buddy allocator, the
154
          first entity within a block is used to represent the entire block.
155
          The first entity keeps the order of the whole block. Other entities
156
          within the block are assigned the magic value
157
          <constant>BUDDY_INNER_BLOCK</constant>. This is especially important
158
          for effective identification of buddies in a one-dimensional array
159
          because the entity that represents a potential buddy cannot be
160
          associated with <constant>BUDDY_INNER_BLOCK</constant> (i.e. if it
161
          is associated with <constant>BUDDY_INNER_BLOCK</constant> then it is
162
          not a buddy).</para>
163
        </formalpara>
164
      </section>
165
    </section>
166
 
167
    <section id="slab">
71 bondari 168
      <indexterm>
169
        <primary>slab allocator</primary>
170
      </indexterm>
171
 
70 jermar 172
      <title>Slab allocator</title>
64 jermar 173
 
67 jermar 174
      <para>The majority of memory allocation requests in the kernel is for
175
      small, frequently used data structures. The basic idea behind the slab
176
      allocator is that commonly used objects are preallocated in continuous
177
      areas of physical memory called slabs<footnote>
178
          <para>Slabs are in fact blocks of physical memory frames allocated
179
          from the frame allocator.</para>
180
        </footnote>. Whenever an object is to be allocated, the slab allocator
181
      returns the first available item from a suitable slab corresponding to
182
      the object type<footnote>
183
          <para>The mechanism is rather more complicated, see the next
184
          paragraph.</para>
185
        </footnote>. Due to the fact that the sizes of the requested and
186
      allocated object match, the slab allocator significantly reduces
187
      internal fragmentation.</para>
64 jermar 188
 
71 bondari 189
      <indexterm>
190
        <primary>slab allocator</primary>
191
 
72 bondari 192
        <secondary>- slab cache</secondary>
71 bondari 193
      </indexterm>
194
 
67 jermar 195
      <para>Slabs of one object type are organized in a structure called slab
196
      cache. There are ususally more slabs in the slab cache, depending on
197
      previous allocations. If the the slab cache runs out of available slabs,
198
      new slabs are allocated. In order to exploit parallelism and to avoid
199
      locking of shared spinlocks, slab caches can have variants of
200
      processor-private slabs called magazines. On each processor, there is a
201
      two-magazine cache. Full magazines that are not part of any
202
      per-processor magazine cache are stored in a global list of full
203
      magazines.</para>
64 jermar 204
 
71 bondari 205
      <indexterm>
206
        <primary>slab allocator</primary>
207
 
72 bondari 208
        <secondary>- magazine</secondary>
71 bondari 209
      </indexterm>
210
 
67 jermar 211
      <para>Each object begins its life in a slab. When it is allocated from
212
      there, the slab allocator calls a constructor that is registered in the
213
      respective slab cache. The constructor initializes and brings the object
214
      into a known state. The object is then used by the user. When the user
215
      later frees the object, the slab allocator puts it into a processor
71 bondari 216
      private <indexterm>
217
          <primary>slab allocator</primary>
218
 
72 bondari 219
          <secondary>- magazine</secondary>
71 bondari 220
        </indexterm>magazine cache, from where it can be precedently allocated
67 jermar 221
      again. Note that allocations satisfied from a magazine are already
222
      initialized by the constructor. When both of the processor cached
223
      magazines get full, the allocator will move one of the magazines to the
224
      list of full magazines. Similarily, when allocating from an empty
225
      processor magazine cache, the kernel will reload only one magazine from
226
      the list of full magazines. In other words, the slab allocator tries to
227
      keep the processor magazine cache only half-full in order to prevent
228
      thrashing when allocations and deallocations interleave on magazine
70 jermar 229
      boundaries. The advantage of this setup is that during most of the
230
      allocations, no global spinlock needs to be held.</para>
65 jermar 231
 
67 jermar 232
      <para>Should HelenOS run short of memory, it would start deallocating
233
      objects from magazines, calling slab cache destructor on them and
234
      putting them back into slabs. When a slab contanins no allocated object,
235
      it is immediately freed.</para>
66 bondari 236
 
71 bondari 237
      <para>
238
        <figure>
64 jermar 239
          <mediaobject id="slab_alloc">
240
            <imageobject role="html">
241
              <imagedata fileref="images/slab_alloc.png" format="PNG" />
242
            </imageobject>
243
          </mediaobject>
244
 
245
          <title>Slab allocator scheme.</title>
71 bondari 246
        </figure>
247
      </para>
64 jermar 248
 
67 jermar 249
      <section>
250
        <title>Implementation</title>
251
 
252
        <para>The slab allocator is closely modelled after OpenSolaris slab
71 bondari 253
        allocator by Jeff Bonwick and Jonathan Adams <xref
254
        linkend="Bonwick01" /> with the following exceptions:<itemizedlist>
255
            <listitem>empty slabs are immediately deallocated and</listitem>
66 bondari 256
 
257
            <listitem>
70 jermar 258
              <para>empty magazines are deallocated when not needed.</para>
66 bondari 259
            </listitem>
70 jermar 260
          </itemizedlist>The following features are not currently supported
261
        but would be easy to do: <itemizedlist>
71 bondari 262
            <listitem>cache coloring and</listitem>
64 jermar 263
 
71 bondari 264
            <listitem>dynamic magazine grow (different magazine sizes are
265
            already supported, but the allocation strategy would need to be
266
            adjusted).</listitem>
64 jermar 267
          </itemizedlist></para>
268
 
269
        <section>
270
          <title>Allocation/deallocation</title>
271
 
70 jermar 272
          <para>The following two paragraphs summarize and complete the
273
          description of the slab allocator operation (i.e.
274
          <code>slab_alloc</code> and <code>slab_free</code>
275
          operations).</para>
64 jermar 276
 
277
          <formalpara>
278
            <title>Allocation</title>
279
 
70 jermar 280
            <para><emphasis>Step 1.</emphasis> When an allocation request
281
            comes, the slab allocator checks availability of memory in the
282
            current magazine of the local processor magazine cache. If the
76 palkovsky 283
            available memory is there, the allocator just pops the object from
284
            magazine and returns it.</para>
64 jermar 285
 
70 jermar 286
            <para><emphasis>Step 2.</emphasis> If the current magazine in the
287
            processor magazine cache is empty, the allocator will attempt to
288
            swap it with the last magazine from the cache and return to the
289
            first step. If also the last magazine is empty, the algorithm will
290
            fall through to Step 3.</para>
64 jermar 291
 
70 jermar 292
            <para><emphasis>Step 3.</emphasis> Now the allocator is in the
293
            situation when both magazines in the processor magazine cache are
294
            empty. The allocator reloads one magazine from the shared list of
295
            full magazines. If the reload is successful (i.e. there are full
296
            magazines in the list), the algorithm continues with Step
297
            1.</para>
64 jermar 298
 
70 jermar 299
            <para><emphasis>Step 4.</emphasis> In this fail-safe step, an
300
            object is allocated from the conventional slab layer and a pointer
301
            to it is returned. If also the last magazine is full,</para>
64 jermar 302
          </formalpara>
303
 
304
          <formalpara>
305
            <title>Deallocation</title>
306
 
70 jermar 307
            <para><emphasis>Step 1.</emphasis> During a deallocation request,
308
            the slab allocator checks if the current magazine of the local
76 palkovsky 309
            processor magazine cache is not full. If it is, the pointer to the
70 jermar 310
            objects is just pushed into the magazine and the algorithm
311
            returns.</para>
64 jermar 312
 
70 jermar 313
            <para><emphasis>Step 2.</emphasis> If the current magazine is
314
            full, the allocator will attempt to swap it with the last magazine
315
            from the cache and return to the first step. If also the last
316
            magazine is empty, the algorithm will fall through to Step
317
            3.</para>
64 jermar 318
 
70 jermar 319
            <para><emphasis>Step 3.</emphasis> Now the allocator is in the
320
            situation when both magazines in the processor magazine cache are
76 palkovsky 321
            full. The allocator tries to allocate a new empty magazine and
322
            flush one of the full magazines to the shared list of full
323
            magazines. If it is successfull, the algoritm continues with Step
324
            1.</para>
325
 
326
            <para><emphasis>Step 4. </emphasis>In case of low memory condition
327
            when the allocation of empty magazine fails, the object is moved
328
            directly into slab. In the worst case object deallocation does not
329
            need to allocate any additional memory.</para>
64 jermar 330
          </formalpara>
331
        </section>
332
      </section>
333
    </section>
334
  </section>
335
 
336
  <section>
67 jermar 337
    <title>Virtual memory management</title>
9 bondari 338
 
67 jermar 339
    <section>
340
      <title>Introduction</title>
341
 
342
      <para>Virtual memory is a special memory management technique, used by
343
      kernel to achieve a bunch of mission critical goals. <itemizedlist>
344
          <listitem>
345
             Isolate each task from other tasks that are running on the system at the same time.
346
          </listitem>
347
 
348
          <listitem>
349
             Allow to allocate more memory, than is actual physical memory size of the machine.
350
          </listitem>
351
 
352
          <listitem>
353
             Allowing, in general, to load and execute two programs that are linked on the same address without complicated relocations.
354
          </listitem>
355
        </itemizedlist></para>
356
 
357
      <para><!--
358
                <para>
359
                        Address spaces. Address space area (B+ tree). Only for uspace. Set of syscalls (shrink/extend etc).
360
                        Special address space area type - device - prohibits shrink/extend syscalls to call on it.
361
                        Address space has link to mapping tables (hierarchical - per Address space, hash - global tables).
362
                </para>
363
 
364
--></para>
365
    </section>
366
 
367
    <section>
71 bondari 368
      <title>Address spaces</title>
70 jermar 369
 
71 bondari 370
      <section>
371
        <indexterm>
372
          <primary>address space</primary>
70 jermar 373
 
72 bondari 374
          <secondary>- area</secondary>
71 bondari 375
        </indexterm>
70 jermar 376
 
377
        <title>Address space areas</title>
67 jermar 378
 
379
        <para>Each address space consists of mutually disjunctive continuous
380
        address space areas. Address space area is precisely defined by its
381
        base address and the number of frames/pages is contains.</para>
382
 
383
        <para>Address space area , that define behaviour and permissions on
384
        the particular area. <itemizedlist>
71 bondari 385
            <listitem><emphasis>AS_AREA_READ</emphasis> flag indicates reading
386
            permission.</listitem>
67 jermar 387
 
71 bondari 388
            <listitem><emphasis>AS_AREA_WRITE</emphasis> flag indicates
389
            writing permission.</listitem>
67 jermar 390
 
71 bondari 391
            <listitem><emphasis>AS_AREA_EXEC</emphasis> flag indicates code
392
            execution permission. Some architectures do not support execution
393
            persmission restriction. In this case this flag has no
394
            effect.</listitem>
67 jermar 395
 
71 bondari 396
            <listitem><emphasis>AS_AREA_DEVICE</emphasis> marks area as mapped
397
            to the device memory.</listitem>
67 jermar 398
          </itemizedlist></para>
399
 
400
        <para>Kernel provides possibility tasks create/expand/shrink/share its
401
        address space via the set of syscalls.</para>
402
      </section>
403
 
404
      <section>
71 bondari 405
        <indexterm>
406
          <primary>address space</primary>
407
 
72 bondari 408
          <secondary>- ASID</secondary>
71 bondari 409
        </indexterm>
410
 
67 jermar 411
        <title>Address Space ID (ASID)</title>
412
 
76 palkovsky 413
        <para>Every task in the operating system has it's own view of the
414
        virtual memory. When performing context switch between different
415
        tasks, the kernel must switch the address space mapping as well. As
416
        modern processors perform very aggressive caching of virtual mappings,
417
        flushing the complete TLB on every context switch would be very
418
        inefficient. To avoid such performance penalty, some architectures
419
        introduce an address space identifier, which allows storing several
420
        different mappings inside TLB.</para>
67 jermar 421
 
76 palkovsky 422
        <para>HelenOS kernel can take advantage of this hardware support by
423
        having an ASID abstraction. I.e. on ia64 kernel ASID is derived from
424
        RID (region identifier) and on the mips32 kernel ASID is actually the
425
        hardware identifier. As expected, this ASID information record is the
426
        part of <emphasis>as_t</emphasis> structure.</para>
67 jermar 427
 
428
        <para>Due to the hardware limitations, hardware ASID has limited
429
        length from 8 bits on ia64 to 24 bits on mips32, which makes it
430
        impossible to use it as unique address space identifier for all tasks
431
        running in the system. In such situations special ASID stealing
432
        algoritm is used, which takes ASID from inactive task and assigns it
433
        to the active task.</para>
434
 
71 bondari 435
        <indexterm>
436
          <primary>address space</primary>
437
 
72 bondari 438
          <secondary>- ASID stealing</secondary>
71 bondari 439
        </indexterm>
440
 
441
        <para>
442
          <classname>ASID stealing algoritm here.</classname>
443
        </para>
67 jermar 444
      </section>
445
    </section>
446
 
71 bondari 447
    <section id="paging">
67 jermar 448
      <title>Virtual address translation</title>
449
 
71 bondari 450
      <section>
451
        <title>Introduction</title>
67 jermar 452
 
71 bondari 453
        <para>Virtual memory is usually using paged memory model, where
454
        virtual memory address space is divided into the
455
        <emphasis>pages</emphasis> (usually having size 4096 bytes) and
456
        physical memory is divided into the frames (same sized as a page, of
457
        course). Each page may be mapped to some frame and then, upon memory
458
        access to the virtual address, CPU performs <emphasis>address
459
        translation</emphasis> during the instruction execution. Non-existing
460
        mapping generates page fault exception, calling kernel exception
461
        handler, thus allowing kernel to manipulate rules of memory access.
462
        Information for pages mapping is stored by kernel in the <link
463
        linkend="page_tables">page tables</link></para>
464
 
465
        <indexterm>
466
          <primary>page tables</primary>
467
        </indexterm>
468
 
469
        <para>The majority of the architectures use multi-level page tables,
470
        which means need to access physical memory several times before
471
        getting physical address. This fact would make serios performance
472
        overhead in virtual memory management. To avoid this <link
473
        linkend="tlb">Traslation Lookaside Buffer (TLB)</link> is used.</para>
474
 
70 jermar 475
        <para>HelenOS kernel has two different approaches to the paging
476
        implementation: <emphasis>4 level page tables</emphasis> and
71 bondari 477
        <emphasis>global hash table</emphasis>, which are accessible via
70 jermar 478
        generic paging abstraction layer. Such different functionality was
479
        caused by the major architectural differences between supported
480
        platforms. This abstraction is implemented with help of the global
481
        structure of pointers to basic mapping functions
482
        <emphasis>page_mapping_operations</emphasis>. To achieve different
483
        functionality of page tables, corresponding layer must implement
484
        functions, declared in
485
        <emphasis>page_mapping_operations</emphasis></para>
67 jermar 486
 
71 bondari 487
        <para>Thanks to the abstract paging interface, there was a place left
488
        for more paging implementations (besides already implemented
73 bondari 489
        hieararchical page tables and hash table), for example <indexterm>
490
            <primary>B-tree</primary>
491
          </indexterm> B-Tree based page tables.</para>
71 bondari 492
      </section>
67 jermar 493
 
71 bondari 494
      <section id="page_tables">
495
        <indexterm>
496
          <primary>page tables</primary>
67 jermar 497
 
72 bondari 498
          <secondary>- hierarchical</secondary>
71 bondari 499
        </indexterm>
67 jermar 500
 
71 bondari 501
        <title>Hierarchical 4-level page tables</title>
67 jermar 502
 
71 bondari 503
        <para>Hierarchical 4-level page tables are the generalization of the
504
        hardware capabilities of most architectures. Each address space has
505
        its own page tables.<itemizedlist>
506
            <listitem>ia32 uses 2-level page tables, with full hardware
507
            support.</listitem>
67 jermar 508
 
71 bondari 509
            <listitem>amd64 uses 4-level page tables, also coming with full
510
            hardware support.</listitem>
67 jermar 511
 
71 bondari 512
            <listitem>mips and ppc32 have 2-level tables, software simulated
513
            support.</listitem>
514
          </itemizedlist></para>
67 jermar 515
      </section>
516
 
71 bondari 517
      <section>
518
        <indexterm>
519
          <primary>page tables</primary>
67 jermar 520
 
72 bondari 521
          <secondary>- hashing</secondary>
71 bondari 522
        </indexterm>
67 jermar 523
 
71 bondari 524
        <title>Global hash table</title>
67 jermar 525
 
71 bondari 526
        <para>Implementation of the global hash table was encouraged by the
527
        ia64 architecture support. One of the major differences between global
528
        hash table and hierarchical tables is that global hash table exists
529
        only once in the system and the hierarchical tables are maintained per
530
        address space.</para>
67 jermar 531
 
71 bondari 532
        <para>Thus, hash table contains information about all address spaces
533
        mappings in the system, so, the hash of an entry must contain
534
        information of both address space pointer or id and the virtual
535
        address of the page. Generic hash table implementation assumes that
536
        the addresses of the pointers to the address spaces are likely to be
537
        on the close addresses, so it uses least significant bits for hash;
538
        also it assumes that the virtual page addresses have roughly the same
539
        probability of occurring, so the least significant bits of VPN compose
540
        the hash index.</para>
67 jermar 541
 
74 bondari 542
        <para>Paging hash table uses generic hash table with collision chains
543
        (see the <link linkend="hashtables">Data Structures</link> chapter of
544
        this manual for details).</para>
70 jermar 545
      </section>
546
    </section>
67 jermar 547
 
71 bondari 548
    <section id="tlb">
549
      <indexterm>
550
        <primary>TLB</primary>
551
      </indexterm>
67 jermar 552
 
71 bondari 553
      <title>Translation Lookaside buffer</title>
67 jermar 554
 
71 bondari 555
      <para>Due to the extensive overhead during the page mapping lookup in
556
      the page tables, all architectures has fast assotiative cache memory
557
      built-in CPU. This memory called TLB stores recently used page table
558
      entries.</para>
559
 
560
      <section id="tlb_shootdown">
561
        <indexterm>
562
          <primary>TLB</primary>
563
 
72 bondari 564
          <secondary>- TLB shootdown</secondary>
71 bondari 565
        </indexterm>
566
 
567
        <title>TLB consistency. TLB shootdown algorithm.</title>
568
 
569
        <para>Operating system is responsible for keeping TLB consistent by
570
        invalidating the contents of TLB, whenever there is some change in
571
        page tables. Those changes may occur when page or group of pages were
572
        unmapped, mapping is changed or system switching active address space
573
        to schedule a new system task. Moreover, this invalidation operation
574
        must be done an all system CPUs because each CPU has its own
575
        independent TLB cache. Thus maintaining TLB consistency on SMP
576
        configuration as not as trivial task as it looks on the first glance.
577
        Naive solution would assume that is the CPU which wants to invalidate
578
        TLB will invalidate TLB caches on other CPUs. It is not possible on
579
        the most of the architectures, because of the simple fact - flushing
580
        TLB is allowed only on the local CPU and there is no possibility to
581
        access other CPUs' TLB caches, thus invalidate TLB remotely.</para>
582
 
583
        <para>Technique of remote invalidation of TLB entries is called "TLB
584
        shootdown". HelenOS uses a variation of the algorithm described by D.
585
        Black et al., "Translation Lookaside Buffer Consistency: A Software
586
        Approach," Proc. Third Int'l Conf. Architectural Support for
587
        Programming Languages and Operating Systems, 1989, pp. 113-122. <xref
588
        linkend="Black89" /></para>
589
 
590
        <para>As the situation demands, you will want partitial invalidation
591
        of TLB caches. In case of simple memory mapping change it is necessary
592
        to invalidate only one or more adjacent pages. In case if the
593
        architecture is aware of ASIDs, when kernel needs to dump some ASID to
594
        use by another task, it invalidates only entries from this particular
595
        address space. Final option of the TLB invalidation is the complete
596
        TLB cache invalidation, which is the operation that flushes all
597
        entries in TLB.</para>
598
 
599
        <para>TLB shootdown is performed in two phases.</para>
600
 
601
        <formalpara>
602
          <title>Phase 1.</title>
603
 
604
          <para>First, initiator locks a global TLB spinlock, then request is
605
          being put to the local request cache of every other CPU in the
606
          system protected by its spinlock. In case the cache is full, all
607
          requests in the cache are replaced by one request, indicating global
608
          TLB flush. Then the initiator thread sends an IPI message indicating
609
          the TLB shootdown request to the rest of the CPUs and waits actively
610
          until all CPUs confirm TLB invalidating action execution by setting
611
          up a special flag. After setting this flag this thread is blocked on
612
          the TLB spinlock, held by the initiator.</para>
613
        </formalpara>
614
 
615
        <formalpara>
616
          <title>Phase 2.</title>
617
 
618
          <para>All CPUs are waiting on the TLB spinlock to execute TLB
619
          invalidation action and have indicated their intention to the
620
          initiator. Initiator continues, cleaning up its TLB and releasing
621
          the global TLB spinlock. After this all other CPUs gain and
622
          immidiately release TLB spinlock and perform TLB invalidation
623
          actions.</para>
624
        </formalpara>
625
      </section>
67 jermar 626
    </section>
26 bondari 627
  </section>
11 bondari 628
</chapter>