Subversion Repositories HelenOS-doc

Rev

Rev 71 | Rev 73 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
9 bondari 1
<?xml version="1.0" encoding="UTF-8"?>
11 bondari 2
<chapter id="mm">
3
  <?dbhtml filename="mm.html"?>
9 bondari 4
 
11 bondari 5
  <title>Memory management</title>
9 bondari 6
 
67 jermar 7
  <para>In previous chapters, this book described the scheduling subsystem as
8
  the creator of the impression that threads execute in parallel. The memory
9
  management subsystem, on the other hand, creates the impression that there
10
  is enough physical memory for the kernel and that userspace tasks have the
11
  entire address space only for themselves.</para>
64 jermar 12
 
26 bondari 13
  <section>
64 jermar 14
    <title>Physical memory management</title>
15
 
16
    <section id="zones_and_frames">
17
      <title>Zones and frames</title>
18
 
67 jermar 19
      <para>HelenOS represents continuous areas of physical memory in
20
      structures called frame zones (abbreviated as zones). Each zone contains
21
      information about the number of allocated and unallocated physical
22
      memory frames as well as the physical base address of the zone and
23
      number of frames contained in it. A zone also contains an array of frame
24
      structures describing each frame of the zone and, in the last, but not
25
      the least important, front, each zone is equipped with a buddy system
26
      that faciliates effective allocation of power-of-two sized block of
27
      frames.</para>
64 jermar 28
 
67 jermar 29
      <para>This organization of physical memory provides good preconditions
30
      for hot-plugging of more zones. There is also one currently unused zone
31
      attribute: <code>flags</code>. The attribute could be used to give a
32
      special meaning to some zones in the future.</para>
64 jermar 33
 
67 jermar 34
      <para>The zones are linked in a doubly-linked list. This might seem a
35
      bit ineffective because the zone list is walked everytime a frame is
36
      allocated or deallocated. However, this does not represent a significant
37
      performance problem as it is expected that the number of zones will be
38
      rather low. Moreover, most architectures merge all zones into
39
      one.</para>
40
 
41
      <para>For each physical memory frame found in a zone, there is a frame
42
      structure that contains number of references and data used by buddy
43
      system.</para>
64 jermar 44
    </section>
45
 
46
    <section id="frame_allocator">
71 bondari 47
      <indexterm>
48
        <primary>frame allocator</primary>
49
      </indexterm>
50
 
64 jermar 51
      <title>Frame allocator</title>
52
 
67 jermar 53
      <para>The frame allocator satisfies kernel requests to allocate
54
      power-of-two sized blocks of physical memory. Because of zonal
55
      organization of physical memory, the frame allocator is always working
56
      within a context of some frame zone. In order to carry out the
57
      allocation requests, the frame allocator is tightly integrated with the
58
      buddy system belonging to the zone. The frame allocator is also
59
      responsible for updating information about the number of free and busy
60
      frames in the zone. <figure>
61
          <mediaobject id="frame_alloc">
62
            <imageobject role="html">
63
              <imagedata fileref="images/frame_alloc.png" format="PNG" />
64
            </imageobject>
64 jermar 65
 
67 jermar 66
            <imageobject role="fop">
67
              <imagedata fileref="images.vector/frame_alloc.svg" format="SVG" />
68
            </imageobject>
69
          </mediaobject>
64 jermar 70
 
67 jermar 71
          <title>Frame allocator scheme.</title>
72
        </figure></para>
64 jermar 73
 
74
      <formalpara>
75
        <title>Allocation / deallocation</title>
76
 
67 jermar 77
        <para>Upon allocation request via function <code>frame_alloc</code>,
78
        the frame allocator first tries to find a zone that can satisfy the
79
        request (i.e. has the required amount of free frames). Once a suitable
80
        zone is found, the frame allocator uses the buddy allocator on the
81
        zone's buddy system to perform the allocation. During deallocation,
82
        which is triggered by a call to <code>frame_free</code>, the frame
83
        allocator looks up the respective zone that contains the frame being
84
        deallocated. Afterwards, it calls the buddy allocator again, this time
85
        to take care of deallocation within the zone's buddy system.</para>
64 jermar 86
      </formalpara>
87
    </section>
88
 
89
    <section id="buddy_allocator">
71 bondari 90
      <indexterm>
91
        <primary>buddy system</primary>
92
      </indexterm>
93
 
64 jermar 94
      <title>Buddy allocator</title>
95
 
67 jermar 96
      <para>In the buddy system, the memory is broken down into power-of-two
97
      sized naturally aligned blocks. These blocks are organized in an array
98
      of lists, in which the list with index i contains all unallocated blocks
99
      of size <mathphrase>2<superscript>i</superscript></mathphrase>. The
100
      index i is called the order of block. Should there be two adjacent
101
      equally sized blocks in the list i<mathphrase />(i.e. buddies), the
102
      buddy allocator would coalesce them and put the resulting block in list
103
      <mathphrase>i + 1</mathphrase>, provided that the resulting block would
104
      be naturally aligned. Similarily, when the allocator is asked to
105
      allocate a block of size
106
      <mathphrase>2<superscript>i</superscript></mathphrase>, it first tries
107
      to satisfy the request from the list with index i. If the request cannot
108
      be satisfied (i.e. the list i is empty), the buddy allocator will try to
109
      allocate and split a larger block from the list with index i + 1. Both
110
      of these algorithms are recursive. The recursion ends either when there
111
      are no blocks to coalesce in the former case or when there are no blocks
112
      that can be split in the latter case.</para>
64 jermar 113
 
67 jermar 114
      <para>This approach greatly reduces external fragmentation of memory and
115
      helps in allocating bigger continuous blocks of memory aligned to their
116
      size. On the other hand, the buddy allocator suffers increased internal
117
      fragmentation of memory and is not suitable for general kernel
118
      allocations. This purpose is better addressed by the <link
119
      linkend="slab">slab allocator</link>.<figure>
64 jermar 120
          <mediaobject id="buddy_alloc">
121
            <imageobject role="html">
122
              <imagedata fileref="images/buddy_alloc.png" format="PNG" />
123
            </imageobject>
124
 
125
            <imageobject role="fop">
126
              <imagedata fileref="images.vector/buddy_alloc.svg" format="SVG" />
127
            </imageobject>
128
          </mediaobject>
129
 
130
          <title>Buddy system scheme.</title>
67 jermar 131
        </figure></para>
64 jermar 132
 
133
      <section>
134
        <title>Implementation</title>
135
 
136
        <para>The buddy allocator is, in fact, an abstract framework wich can
137
        be easily specialized to serve one particular task. It knows nothing
138
        about the nature of memory it helps to allocate. In order to beat the
139
        lack of this knowledge, the buddy allocator exports an interface that
140
        each of its clients is required to implement. When supplied with an
141
        implementation of this interface, the buddy allocator can use
142
        specialized external functions to find a buddy for a block, split and
143
        coalesce blocks, manipulate block order and mark blocks busy or
67 jermar 144
        available.</para>
64 jermar 145
 
146
        <formalpara>
147
          <title>Data organization</title>
148
 
149
          <para>Each entity allocable by the buddy allocator is required to
150
          contain space for storing block order number and a link variable
151
          used to interconnect blocks within the same order.</para>
152
 
153
          <para>Whatever entities are allocated by the buddy allocator, the
154
          first entity within a block is used to represent the entire block.
155
          The first entity keeps the order of the whole block. Other entities
156
          within the block are assigned the magic value
157
          <constant>BUDDY_INNER_BLOCK</constant>. This is especially important
158
          for effective identification of buddies in a one-dimensional array
159
          because the entity that represents a potential buddy cannot be
160
          associated with <constant>BUDDY_INNER_BLOCK</constant> (i.e. if it
161
          is associated with <constant>BUDDY_INNER_BLOCK</constant> then it is
162
          not a buddy).</para>
163
        </formalpara>
164
      </section>
165
    </section>
166
 
167
    <section id="slab">
71 bondari 168
      <indexterm>
169
        <primary>slab allocator</primary>
170
      </indexterm>
171
 
70 jermar 172
      <title>Slab allocator</title>
64 jermar 173
 
67 jermar 174
      <para>The majority of memory allocation requests in the kernel is for
175
      small, frequently used data structures. The basic idea behind the slab
176
      allocator is that commonly used objects are preallocated in continuous
177
      areas of physical memory called slabs<footnote>
178
          <para>Slabs are in fact blocks of physical memory frames allocated
179
          from the frame allocator.</para>
180
        </footnote>. Whenever an object is to be allocated, the slab allocator
181
      returns the first available item from a suitable slab corresponding to
182
      the object type<footnote>
183
          <para>The mechanism is rather more complicated, see the next
184
          paragraph.</para>
185
        </footnote>. Due to the fact that the sizes of the requested and
186
      allocated object match, the slab allocator significantly reduces
187
      internal fragmentation.</para>
64 jermar 188
 
71 bondari 189
      <indexterm>
190
        <primary>slab allocator</primary>
191
 
72 bondari 192
        <secondary>- slab cache</secondary>
71 bondari 193
      </indexterm>
194
 
67 jermar 195
      <para>Slabs of one object type are organized in a structure called slab
196
      cache. There are ususally more slabs in the slab cache, depending on
197
      previous allocations. If the the slab cache runs out of available slabs,
198
      new slabs are allocated. In order to exploit parallelism and to avoid
199
      locking of shared spinlocks, slab caches can have variants of
200
      processor-private slabs called magazines. On each processor, there is a
201
      two-magazine cache. Full magazines that are not part of any
202
      per-processor magazine cache are stored in a global list of full
203
      magazines.</para>
64 jermar 204
 
71 bondari 205
      <indexterm>
206
        <primary>slab allocator</primary>
207
 
72 bondari 208
        <secondary>- magazine</secondary>
71 bondari 209
      </indexterm>
210
 
67 jermar 211
      <para>Each object begins its life in a slab. When it is allocated from
212
      there, the slab allocator calls a constructor that is registered in the
213
      respective slab cache. The constructor initializes and brings the object
214
      into a known state. The object is then used by the user. When the user
215
      later frees the object, the slab allocator puts it into a processor
71 bondari 216
      private <indexterm>
217
          <primary>slab allocator</primary>
218
 
72 bondari 219
          <secondary>- magazine</secondary>
71 bondari 220
        </indexterm>magazine cache, from where it can be precedently allocated
67 jermar 221
      again. Note that allocations satisfied from a magazine are already
222
      initialized by the constructor. When both of the processor cached
223
      magazines get full, the allocator will move one of the magazines to the
224
      list of full magazines. Similarily, when allocating from an empty
225
      processor magazine cache, the kernel will reload only one magazine from
226
      the list of full magazines. In other words, the slab allocator tries to
227
      keep the processor magazine cache only half-full in order to prevent
228
      thrashing when allocations and deallocations interleave on magazine
70 jermar 229
      boundaries. The advantage of this setup is that during most of the
230
      allocations, no global spinlock needs to be held.</para>
65 jermar 231
 
67 jermar 232
      <para>Should HelenOS run short of memory, it would start deallocating
233
      objects from magazines, calling slab cache destructor on them and
234
      putting them back into slabs. When a slab contanins no allocated object,
235
      it is immediately freed.</para>
66 bondari 236
 
71 bondari 237
      <para>
238
        <figure>
64 jermar 239
          <mediaobject id="slab_alloc">
240
            <imageobject role="html">
241
              <imagedata fileref="images/slab_alloc.png" format="PNG" />
242
            </imageobject>
243
          </mediaobject>
244
 
245
          <title>Slab allocator scheme.</title>
71 bondari 246
        </figure>
247
      </para>
64 jermar 248
 
67 jermar 249
      <section>
250
        <title>Implementation</title>
251
 
252
        <para>The slab allocator is closely modelled after OpenSolaris slab
71 bondari 253
        allocator by Jeff Bonwick and Jonathan Adams <xref
254
        linkend="Bonwick01" /> with the following exceptions:<itemizedlist>
255
            <listitem>empty slabs are immediately deallocated and</listitem>
66 bondari 256
 
257
            <listitem>
70 jermar 258
              <para>empty magazines are deallocated when not needed.</para>
66 bondari 259
            </listitem>
70 jermar 260
          </itemizedlist>The following features are not currently supported
261
        but would be easy to do: <itemizedlist>
71 bondari 262
            <listitem>cache coloring and</listitem>
64 jermar 263
 
71 bondari 264
            <listitem>dynamic magazine grow (different magazine sizes are
265
            already supported, but the allocation strategy would need to be
266
            adjusted).</listitem>
64 jermar 267
          </itemizedlist></para>
268
 
269
        <section>
270
          <title>Allocation/deallocation</title>
271
 
70 jermar 272
          <para>The following two paragraphs summarize and complete the
273
          description of the slab allocator operation (i.e.
274
          <code>slab_alloc</code> and <code>slab_free</code>
275
          operations).</para>
64 jermar 276
 
277
          <formalpara>
278
            <title>Allocation</title>
279
 
70 jermar 280
            <para><emphasis>Step 1.</emphasis> When an allocation request
281
            comes, the slab allocator checks availability of memory in the
282
            current magazine of the local processor magazine cache. If the
283
            available memory is there, the allocator just pops the magazine
284
            and returns pointer to the object.</para>
64 jermar 285
 
70 jermar 286
            <para><emphasis>Step 2.</emphasis> If the current magazine in the
287
            processor magazine cache is empty, the allocator will attempt to
288
            swap it with the last magazine from the cache and return to the
289
            first step. If also the last magazine is empty, the algorithm will
290
            fall through to Step 3.</para>
64 jermar 291
 
70 jermar 292
            <para><emphasis>Step 3.</emphasis> Now the allocator is in the
293
            situation when both magazines in the processor magazine cache are
294
            empty. The allocator reloads one magazine from the shared list of
295
            full magazines. If the reload is successful (i.e. there are full
296
            magazines in the list), the algorithm continues with Step
297
            1.</para>
64 jermar 298
 
70 jermar 299
            <para><emphasis>Step 4.</emphasis> In this fail-safe step, an
300
            object is allocated from the conventional slab layer and a pointer
301
            to it is returned. If also the last magazine is full,</para>
64 jermar 302
          </formalpara>
303
 
304
          <formalpara>
305
            <title>Deallocation</title>
306
 
70 jermar 307
            <para><emphasis>Step 1.</emphasis> During a deallocation request,
308
            the slab allocator checks if the current magazine of the local
309
            processor magazine cache is not full. If yes, the pointer to the
310
            objects is just pushed into the magazine and the algorithm
311
            returns.</para>
64 jermar 312
 
70 jermar 313
            <para><emphasis>Step 2.</emphasis> If the current magazine is
314
            full, the allocator will attempt to swap it with the last magazine
315
            from the cache and return to the first step. If also the last
316
            magazine is empty, the algorithm will fall through to Step
317
            3.</para>
64 jermar 318
 
70 jermar 319
            <para><emphasis>Step 3.</emphasis> Now the allocator is in the
320
            situation when both magazines in the processor magazine cache are
321
            full. The allocator moves one magazine to the shared list of full
322
            magazines. The algoritm continues with Step 1.</para>
64 jermar 323
          </formalpara>
324
        </section>
325
      </section>
326
    </section>
327
  </section>
328
 
329
  <section>
67 jermar 330
    <title>Virtual memory management</title>
9 bondari 331
 
67 jermar 332
    <section>
333
      <title>Introduction</title>
334
 
335
      <para>Virtual memory is a special memory management technique, used by
336
      kernel to achieve a bunch of mission critical goals. <itemizedlist>
337
          <listitem>
338
             Isolate each task from other tasks that are running on the system at the same time.
339
          </listitem>
340
 
341
          <listitem>
342
             Allow to allocate more memory, than is actual physical memory size of the machine.
343
          </listitem>
344
 
345
          <listitem>
346
             Allowing, in general, to load and execute two programs that are linked on the same address without complicated relocations.
347
          </listitem>
348
        </itemizedlist></para>
349
 
350
      <para><!--
351
                <para>
352
                        Address spaces. Address space area (B+ tree). Only for uspace. Set of syscalls (shrink/extend etc).
353
                        Special address space area type - device - prohibits shrink/extend syscalls to call on it.
354
                        Address space has link to mapping tables (hierarchical - per Address space, hash - global tables).
355
                </para>
356
 
357
--></para>
358
    </section>
359
 
360
    <section>
71 bondari 361
      <title>Address spaces</title>
70 jermar 362
 
71 bondari 363
      <section>
364
        <indexterm>
365
          <primary>address space</primary>
70 jermar 366
 
72 bondari 367
          <secondary>- area</secondary>
71 bondari 368
        </indexterm>
70 jermar 369
 
370
        <title>Address space areas</title>
67 jermar 371
 
372
        <para>Each address space consists of mutually disjunctive continuous
373
        address space areas. Address space area is precisely defined by its
374
        base address and the number of frames/pages is contains.</para>
375
 
376
        <para>Address space area , that define behaviour and permissions on
377
        the particular area. <itemizedlist>
71 bondari 378
            <listitem><emphasis>AS_AREA_READ</emphasis> flag indicates reading
379
            permission.</listitem>
67 jermar 380
 
71 bondari 381
            <listitem><emphasis>AS_AREA_WRITE</emphasis> flag indicates
382
            writing permission.</listitem>
67 jermar 383
 
71 bondari 384
            <listitem><emphasis>AS_AREA_EXEC</emphasis> flag indicates code
385
            execution permission. Some architectures do not support execution
386
            persmission restriction. In this case this flag has no
387
            effect.</listitem>
67 jermar 388
 
71 bondari 389
            <listitem><emphasis>AS_AREA_DEVICE</emphasis> marks area as mapped
390
            to the device memory.</listitem>
67 jermar 391
          </itemizedlist></para>
392
 
393
        <para>Kernel provides possibility tasks create/expand/shrink/share its
394
        address space via the set of syscalls.</para>
395
      </section>
396
 
397
      <section>
71 bondari 398
        <indexterm>
399
          <primary>address space</primary>
400
 
72 bondari 401
          <secondary>- ASID</secondary>
71 bondari 402
        </indexterm>
403
 
67 jermar 404
        <title>Address Space ID (ASID)</title>
405
 
406
        <para>When switching to the different task, kernel also require to
407
        switch mappings to the different address space. In case TLB cannot
408
        distinguish address space mappings, all mapping information in TLB
409
        from the old address space must be flushed, which can create certain
410
        uncessary overhead during the task switching. To avoid this, some
411
        architectures have capability to segregate different address spaces on
412
        hardware level introducing the address space identifier as a part of
413
        TLB record, telling the virtual address space translation unit to
414
        which address space this record is applicable.</para>
415
 
416
        <para>HelenOS kernel can take advantage of this hardware supported
417
        identifier by having an ASID abstraction which is somehow related to
418
        the corresponding architecture identifier. I.e. on ia64 kernel ASID is
419
        derived from RID (region identifier) and on the mips32 kernel ASID is
420
        actually the hardware identifier. As expected, this ASID information
421
        record is the part of <emphasis>as_t</emphasis> structure.</para>
422
 
423
        <para>Due to the hardware limitations, hardware ASID has limited
424
        length from 8 bits on ia64 to 24 bits on mips32, which makes it
425
        impossible to use it as unique address space identifier for all tasks
426
        running in the system. In such situations special ASID stealing
427
        algoritm is used, which takes ASID from inactive task and assigns it
428
        to the active task.</para>
429
 
71 bondari 430
        <indexterm>
431
          <primary>address space</primary>
432
 
72 bondari 433
          <secondary>- ASID stealing</secondary>
71 bondari 434
        </indexterm>
435
 
436
        <para>
437
          <classname>ASID stealing algoritm here.</classname>
438
        </para>
67 jermar 439
      </section>
440
    </section>
441
 
71 bondari 442
    <section id="paging">
67 jermar 443
      <title>Virtual address translation</title>
444
 
71 bondari 445
      <section>
446
        <title>Introduction</title>
67 jermar 447
 
71 bondari 448
        <para>Virtual memory is usually using paged memory model, where
449
        virtual memory address space is divided into the
450
        <emphasis>pages</emphasis> (usually having size 4096 bytes) and
451
        physical memory is divided into the frames (same sized as a page, of
452
        course). Each page may be mapped to some frame and then, upon memory
453
        access to the virtual address, CPU performs <emphasis>address
454
        translation</emphasis> during the instruction execution. Non-existing
455
        mapping generates page fault exception, calling kernel exception
456
        handler, thus allowing kernel to manipulate rules of memory access.
457
        Information for pages mapping is stored by kernel in the <link
458
        linkend="page_tables">page tables</link></para>
459
 
460
        <indexterm>
461
          <primary>page tables</primary>
462
        </indexterm>
463
 
464
        <para>The majority of the architectures use multi-level page tables,
465
        which means need to access physical memory several times before
466
        getting physical address. This fact would make serios performance
467
        overhead in virtual memory management. To avoid this <link
468
        linkend="tlb">Traslation Lookaside Buffer (TLB)</link> is used.</para>
469
 
70 jermar 470
        <para>HelenOS kernel has two different approaches to the paging
471
        implementation: <emphasis>4 level page tables</emphasis> and
71 bondari 472
        <emphasis>global hash table</emphasis>, which are accessible via
70 jermar 473
        generic paging abstraction layer. Such different functionality was
474
        caused by the major architectural differences between supported
475
        platforms. This abstraction is implemented with help of the global
476
        structure of pointers to basic mapping functions
477
        <emphasis>page_mapping_operations</emphasis>. To achieve different
478
        functionality of page tables, corresponding layer must implement
479
        functions, declared in
480
        <emphasis>page_mapping_operations</emphasis></para>
67 jermar 481
 
71 bondari 482
        <para>Thanks to the abstract paging interface, there was a place left
483
        for more paging implementations (besides already implemented
484
        hieararchical page tables and hash table), for example B-Tree based
485
        page tables.</para>
486
      </section>
67 jermar 487
 
71 bondari 488
      <section id="page_tables">
489
        <indexterm>
490
          <primary>page tables</primary>
67 jermar 491
 
72 bondari 492
          <secondary>- hierarchical</secondary>
71 bondari 493
        </indexterm>
67 jermar 494
 
71 bondari 495
        <title>Hierarchical 4-level page tables</title>
67 jermar 496
 
71 bondari 497
        <para>Hierarchical 4-level page tables are the generalization of the
498
        hardware capabilities of most architectures. Each address space has
499
        its own page tables.<itemizedlist>
500
            <listitem>ia32 uses 2-level page tables, with full hardware
501
            support.</listitem>
67 jermar 502
 
71 bondari 503
            <listitem>amd64 uses 4-level page tables, also coming with full
504
            hardware support.</listitem>
67 jermar 505
 
71 bondari 506
            <listitem>mips and ppc32 have 2-level tables, software simulated
507
            support.</listitem>
508
          </itemizedlist></para>
67 jermar 509
      </section>
510
 
71 bondari 511
      <section>
512
        <indexterm>
513
          <primary>page tables</primary>
67 jermar 514
 
72 bondari 515
          <secondary>- hashing</secondary>
71 bondari 516
        </indexterm>
67 jermar 517
 
71 bondari 518
        <title>Global hash table</title>
67 jermar 519
 
71 bondari 520
        <para>Implementation of the global hash table was encouraged by the
521
        ia64 architecture support. One of the major differences between global
522
        hash table and hierarchical tables is that global hash table exists
523
        only once in the system and the hierarchical tables are maintained per
524
        address space.</para>
67 jermar 525
 
71 bondari 526
        <para>Thus, hash table contains information about all address spaces
527
        mappings in the system, so, the hash of an entry must contain
528
        information of both address space pointer or id and the virtual
529
        address of the page. Generic hash table implementation assumes that
530
        the addresses of the pointers to the address spaces are likely to be
531
        on the close addresses, so it uses least significant bits for hash;
532
        also it assumes that the virtual page addresses have roughly the same
533
        probability of occurring, so the least significant bits of VPN compose
534
        the hash index.</para>
67 jermar 535
 
71 bondari 536
        <para>- global page hash table: existuje jen jedna v celem systemu
537
        (vyuziva ji ia64), pozn. ia64 ma zatim vypnuty VHPT. Pouziva se
538
        genericke hash table s oddelenymi collision chains. ASID support is
539
        required to use global hash tables.</para>
70 jermar 540
      </section>
541
    </section>
67 jermar 542
 
71 bondari 543
    <section id="tlb">
544
      <indexterm>
545
        <primary>TLB</primary>
546
      </indexterm>
67 jermar 547
 
71 bondari 548
      <title>Translation Lookaside buffer</title>
67 jermar 549
 
71 bondari 550
      <para>Due to the extensive overhead during the page mapping lookup in
551
      the page tables, all architectures has fast assotiative cache memory
552
      built-in CPU. This memory called TLB stores recently used page table
553
      entries.</para>
554
 
555
      <section id="tlb_shootdown">
556
        <indexterm>
557
          <primary>TLB</primary>
558
 
72 bondari 559
          <secondary>- TLB shootdown</secondary>
71 bondari 560
        </indexterm>
561
 
562
        <title>TLB consistency. TLB shootdown algorithm.</title>
563
 
564
        <para>Operating system is responsible for keeping TLB consistent by
565
        invalidating the contents of TLB, whenever there is some change in
566
        page tables. Those changes may occur when page or group of pages were
567
        unmapped, mapping is changed or system switching active address space
568
        to schedule a new system task. Moreover, this invalidation operation
569
        must be done an all system CPUs because each CPU has its own
570
        independent TLB cache. Thus maintaining TLB consistency on SMP
571
        configuration as not as trivial task as it looks on the first glance.
572
        Naive solution would assume that is the CPU which wants to invalidate
573
        TLB will invalidate TLB caches on other CPUs. It is not possible on
574
        the most of the architectures, because of the simple fact - flushing
575
        TLB is allowed only on the local CPU and there is no possibility to
576
        access other CPUs' TLB caches, thus invalidate TLB remotely.</para>
577
 
578
        <para>Technique of remote invalidation of TLB entries is called "TLB
579
        shootdown". HelenOS uses a variation of the algorithm described by D.
580
        Black et al., "Translation Lookaside Buffer Consistency: A Software
581
        Approach," Proc. Third Int'l Conf. Architectural Support for
582
        Programming Languages and Operating Systems, 1989, pp. 113-122. <xref
583
        linkend="Black89" /></para>
584
 
585
        <para>As the situation demands, you will want partitial invalidation
586
        of TLB caches. In case of simple memory mapping change it is necessary
587
        to invalidate only one or more adjacent pages. In case if the
588
        architecture is aware of ASIDs, when kernel needs to dump some ASID to
589
        use by another task, it invalidates only entries from this particular
590
        address space. Final option of the TLB invalidation is the complete
591
        TLB cache invalidation, which is the operation that flushes all
592
        entries in TLB.</para>
593
 
594
        <para>TLB shootdown is performed in two phases.</para>
595
 
596
        <formalpara>
597
          <title>Phase 1.</title>
598
 
599
          <para>First, initiator locks a global TLB spinlock, then request is
600
          being put to the local request cache of every other CPU in the
601
          system protected by its spinlock. In case the cache is full, all
602
          requests in the cache are replaced by one request, indicating global
603
          TLB flush. Then the initiator thread sends an IPI message indicating
604
          the TLB shootdown request to the rest of the CPUs and waits actively
605
          until all CPUs confirm TLB invalidating action execution by setting
606
          up a special flag. After setting this flag this thread is blocked on
607
          the TLB spinlock, held by the initiator.</para>
608
        </formalpara>
609
 
610
        <formalpara>
611
          <title>Phase 2.</title>
612
 
613
          <para>All CPUs are waiting on the TLB spinlock to execute TLB
614
          invalidation action and have indicated their intention to the
615
          initiator. Initiator continues, cleaning up its TLB and releasing
616
          the global TLB spinlock. After this all other CPUs gain and
617
          immidiately release TLB spinlock and perform TLB invalidation
618
          actions.</para>
619
        </formalpara>
620
      </section>
67 jermar 621
    </section>
26 bondari 622
  </section>
11 bondari 623
</chapter>