Subversion Repositories HelenOS-doc

Rev

Rev 67 | Rev 69 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
9 bondari 1
<?xml version="1.0" encoding="UTF-8"?>
11 bondari 2
<chapter id="mm">
3
  <?dbhtml filename="mm.html"?>
9 bondari 4
 
11 bondari 5
  <title>Memory management</title>
9 bondari 6
 
67 jermar 7
  <para>In previous chapters, this book described the scheduling subsystem as
8
  the creator of the impression that threads execute in parallel. The memory
9
  management subsystem, on the other hand, creates the impression that there
10
  is enough physical memory for the kernel and that userspace tasks have the
11
  entire address space only for themselves.</para>
64 jermar 12
 
26 bondari 13
  <section>
64 jermar 14
    <title>Physical memory management</title>
15
 
16
    <section id="zones_and_frames">
17
      <title>Zones and frames</title>
18
 
67 jermar 19
      <para>HelenOS represents continuous areas of physical memory in
20
      structures called frame zones (abbreviated as zones). Each zone contains
21
      information about the number of allocated and unallocated physical
22
      memory frames as well as the physical base address of the zone and
23
      number of frames contained in it. A zone also contains an array of frame
24
      structures describing each frame of the zone and, in the last, but not
25
      the least important, front, each zone is equipped with a buddy system
26
      that faciliates effective allocation of power-of-two sized block of
27
      frames.</para>
64 jermar 28
 
67 jermar 29
      <para>This organization of physical memory provides good preconditions
30
      for hot-plugging of more zones. There is also one currently unused zone
31
      attribute: <code>flags</code>. The attribute could be used to give a
32
      special meaning to some zones in the future.</para>
64 jermar 33
 
67 jermar 34
      <para>The zones are linked in a doubly-linked list. This might seem a
35
      bit ineffective because the zone list is walked everytime a frame is
36
      allocated or deallocated. However, this does not represent a significant
37
      performance problem as it is expected that the number of zones will be
38
      rather low. Moreover, most architectures merge all zones into
39
      one.</para>
40
 
41
      <para>For each physical memory frame found in a zone, there is a frame
42
      structure that contains number of references and data used by buddy
43
      system.</para>
64 jermar 44
    </section>
45
 
46
    <section id="frame_allocator">
47
      <title>Frame allocator</title>
48
 
67 jermar 49
      <para>The frame allocator satisfies kernel requests to allocate
50
      power-of-two sized blocks of physical memory. Because of zonal
51
      organization of physical memory, the frame allocator is always working
52
      within a context of some frame zone. In order to carry out the
53
      allocation requests, the frame allocator is tightly integrated with the
54
      buddy system belonging to the zone. The frame allocator is also
55
      responsible for updating information about the number of free and busy
56
      frames in the zone. <figure>
57
          <mediaobject id="frame_alloc">
58
            <imageobject role="html">
59
              <imagedata fileref="images/frame_alloc.png" format="PNG" />
60
            </imageobject>
64 jermar 61
 
67 jermar 62
            <imageobject role="fop">
63
              <imagedata fileref="images.vector/frame_alloc.svg" format="SVG" />
64
            </imageobject>
65
          </mediaobject>
64 jermar 66
 
67 jermar 67
          <title>Frame allocator scheme.</title>
68
        </figure></para>
64 jermar 69
 
70
      <formalpara>
71
        <title>Allocation / deallocation</title>
72
 
67 jermar 73
        <para>Upon allocation request via function <code>frame_alloc</code>,
74
        the frame allocator first tries to find a zone that can satisfy the
75
        request (i.e. has the required amount of free frames). Once a suitable
76
        zone is found, the frame allocator uses the buddy allocator on the
77
        zone's buddy system to perform the allocation. During deallocation,
78
        which is triggered by a call to <code>frame_free</code>, the frame
79
        allocator looks up the respective zone that contains the frame being
80
        deallocated. Afterwards, it calls the buddy allocator again, this time
81
        to take care of deallocation within the zone's buddy system.</para>
64 jermar 82
      </formalpara>
83
    </section>
84
 
85
    <section id="buddy_allocator">
86
      <title>Buddy allocator</title>
87
 
67 jermar 88
      <para>In the buddy system, the memory is broken down into power-of-two
89
      sized naturally aligned blocks. These blocks are organized in an array
90
      of lists, in which the list with index i contains all unallocated blocks
91
      of size <mathphrase>2<superscript>i</superscript></mathphrase>. The
92
      index i is called the order of block. Should there be two adjacent
93
      equally sized blocks in the list i<mathphrase />(i.e. buddies), the
94
      buddy allocator would coalesce them and put the resulting block in list
95
      <mathphrase>i + 1</mathphrase>, provided that the resulting block would
96
      be naturally aligned. Similarily, when the allocator is asked to
97
      allocate a block of size
98
      <mathphrase>2<superscript>i</superscript></mathphrase>, it first tries
99
      to satisfy the request from the list with index i. If the request cannot
100
      be satisfied (i.e. the list i is empty), the buddy allocator will try to
101
      allocate and split a larger block from the list with index i + 1. Both
102
      of these algorithms are recursive. The recursion ends either when there
103
      are no blocks to coalesce in the former case or when there are no blocks
104
      that can be split in the latter case.</para>
64 jermar 105
 
67 jermar 106
      <para>This approach greatly reduces external fragmentation of memory and
107
      helps in allocating bigger continuous blocks of memory aligned to their
108
      size. On the other hand, the buddy allocator suffers increased internal
109
      fragmentation of memory and is not suitable for general kernel
110
      allocations. This purpose is better addressed by the <link
111
      linkend="slab">slab allocator</link>.<figure>
64 jermar 112
          <mediaobject id="buddy_alloc">
113
            <imageobject role="html">
114
              <imagedata fileref="images/buddy_alloc.png" format="PNG" />
115
            </imageobject>
116
 
117
            <imageobject role="fop">
118
              <imagedata fileref="images.vector/buddy_alloc.svg" format="SVG" />
119
            </imageobject>
120
          </mediaobject>
121
 
122
          <title>Buddy system scheme.</title>
67 jermar 123
        </figure></para>
64 jermar 124
 
125
      <section>
126
        <title>Implementation</title>
127
 
128
        <para>The buddy allocator is, in fact, an abstract framework wich can
129
        be easily specialized to serve one particular task. It knows nothing
130
        about the nature of memory it helps to allocate. In order to beat the
131
        lack of this knowledge, the buddy allocator exports an interface that
132
        each of its clients is required to implement. When supplied with an
133
        implementation of this interface, the buddy allocator can use
134
        specialized external functions to find a buddy for a block, split and
135
        coalesce blocks, manipulate block order and mark blocks busy or
67 jermar 136
        available.</para>
64 jermar 137
 
138
        <formalpara>
139
          <title>Data organization</title>
140
 
141
          <para>Each entity allocable by the buddy allocator is required to
142
          contain space for storing block order number and a link variable
143
          used to interconnect blocks within the same order.</para>
144
 
145
          <para>Whatever entities are allocated by the buddy allocator, the
146
          first entity within a block is used to represent the entire block.
147
          The first entity keeps the order of the whole block. Other entities
148
          within the block are assigned the magic value
149
          <constant>BUDDY_INNER_BLOCK</constant>. This is especially important
150
          for effective identification of buddies in a one-dimensional array
151
          because the entity that represents a potential buddy cannot be
152
          associated with <constant>BUDDY_INNER_BLOCK</constant> (i.e. if it
153
          is associated with <constant>BUDDY_INNER_BLOCK</constant> then it is
154
          not a buddy).</para>
155
        </formalpara>
156
      </section>
157
    </section>
158
 
159
    <section id="slab">
160
      <title>Slab allocator</title>
161
 
67 jermar 162
      <para>The majority of memory allocation requests in the kernel is for
163
      small, frequently used data structures. The basic idea behind the slab
164
      allocator is that commonly used objects are preallocated in continuous
165
      areas of physical memory called slabs<footnote>
166
          <para>Slabs are in fact blocks of physical memory frames allocated
167
          from the frame allocator.</para>
168
        </footnote>. Whenever an object is to be allocated, the slab allocator
169
      returns the first available item from a suitable slab corresponding to
170
      the object type<footnote>
171
          <para>The mechanism is rather more complicated, see the next
172
          paragraph.</para>
173
        </footnote>. Due to the fact that the sizes of the requested and
174
      allocated object match, the slab allocator significantly reduces
175
      internal fragmentation.</para>
64 jermar 176
 
67 jermar 177
      <para>Slabs of one object type are organized in a structure called slab
178
      cache. There are ususally more slabs in the slab cache, depending on
179
      previous allocations. If the the slab cache runs out of available slabs,
180
      new slabs are allocated. In order to exploit parallelism and to avoid
181
      locking of shared spinlocks, slab caches can have variants of
182
      processor-private slabs called magazines. On each processor, there is a
183
      two-magazine cache. Full magazines that are not part of any
184
      per-processor magazine cache are stored in a global list of full
185
      magazines.</para>
64 jermar 186
 
67 jermar 187
      <para>Each object begins its life in a slab. When it is allocated from
188
      there, the slab allocator calls a constructor that is registered in the
189
      respective slab cache. The constructor initializes and brings the object
190
      into a known state. The object is then used by the user. When the user
191
      later frees the object, the slab allocator puts it into a processor
192
      private magazine cache, from where it can be precedently allocated
193
      again. Note that allocations satisfied from a magazine are already
194
      initialized by the constructor. When both of the processor cached
195
      magazines get full, the allocator will move one of the magazines to the
196
      list of full magazines. Similarily, when allocating from an empty
197
      processor magazine cache, the kernel will reload only one magazine from
198
      the list of full magazines. In other words, the slab allocator tries to
199
      keep the processor magazine cache only half-full in order to prevent
200
      thrashing when allocations and deallocations interleave on magazine
201
      boundaries.</para>
65 jermar 202
 
67 jermar 203
      <para>Should HelenOS run short of memory, it would start deallocating
204
      objects from magazines, calling slab cache destructor on them and
205
      putting them back into slabs. When a slab contanins no allocated object,
206
      it is immediately freed.</para>
66 bondari 207
 
67 jermar 208
      <para><figure>
64 jermar 209
          <mediaobject id="slab_alloc">
210
            <imageobject role="html">
211
              <imagedata fileref="images/slab_alloc.png" format="PNG" />
212
            </imageobject>
213
          </mediaobject>
214
 
215
          <title>Slab allocator scheme.</title>
67 jermar 216
        </figure></para>
64 jermar 217
 
67 jermar 218
      <section>
219
        <title>Implementation</title>
220
 
221
        <para>The slab allocator is closely modelled after OpenSolaris slab
222
        allocator by Jeff Bonwick and Jonathan Adams with the following
223
        exceptions:<itemizedlist>
64 jermar 224
            <listitem>
68 bondari 225
               empty slabs are immediately deallocated
64 jermar 226
            </listitem>
66 bondari 227
 
228
            <listitem>
67 jermar 229
              <para>empty magazines are deallocated when not needed</para>
66 bondari 230
            </listitem>
64 jermar 231
          </itemizedlist> Following features are not currently supported but
232
        would be easy to do: <itemizedlist>
233
            <listitem>
67 jermar 234
               cache coloring
64 jermar 235
            </listitem>
236
 
237
            <listitem>
67 jermar 238
               dynamic magazine grow (different magazine sizes are already supported, but the allocation strategy would need to be adjusted)
64 jermar 239
            </listitem>
240
          </itemizedlist></para>
241
 
242
        <section>
243
          <title>Magazine layer</title>
244
 
245
          <para>Due to the extensive bottleneck on SMP architures, caused by
246
          global slab locking mechanism, making processing of all slab
247
          allocation requests serialized, a new layer was introduced to the
248
          classic slab allocator design. Slab allocator was extended to
249
          support per-CPU caches 'magazines' to achieve good SMP scaling.
250
          <termdef>Slab SMP perfromance bottleneck was resolved by introducing
251
          a per-CPU caching scheme called as <glossterm>magazine
252
          layer</glossterm></termdef>.</para>
253
 
254
          <para>Magazine is a N-element cache of objects, so each magazine can
255
          satisfy N allocations. Magazine behaves like a automatic weapon
256
          magazine (LIFO, stack), so the allocation/deallocation become simple
257
          push/pop pointer operation. Trick is that CPU does not access global
258
          slab allocator data during the allocation from its magazine, thus
259
          making possible parallel allocations between CPUs.</para>
260
 
261
          <para>Implementation also requires adding another feature as the
262
          CPU-bound magazine is actually a pair of magazines to avoid
263
          thrashing when during allocation/deallocatiion of 1 item at the
264
          magazine size boundary. LIFO order is enforced, which should avoid
265
          fragmentation as much as possible.</para>
266
 
267
          <para>Another important entity of magazine layer is the common full
268
          magazine list (also called a depot), that stores full magazines that
269
          may be used by any of the CPU magazine caches to reload active CPU
270
          magazine. This list of magazines can be pre-filled with full
271
          magazines during initialization, but in current implementation it is
272
          filled during object deallocation, when CPU magazine becomes
273
          full.</para>
274
 
275
          <para>Slab allocator control structures are allocated from special
276
          slabs, that are marked by special flag, indicating that it should
277
          not be used for slab magazine layer. This is done to avoid possible
278
          infinite recursions and deadlock during conventional slab allocaiton
279
          requests.</para>
280
        </section>
281
 
282
        <section>
283
          <title>Allocation/deallocation</title>
284
 
285
          <para>Every cache contains list of full slabs and list of partialy
286
          full slabs. Empty slabs are immediately freed (thrashing will be
287
          avoided because of magazines).</para>
288
 
289
          <para>The SLAB allocator allocates lots of space and does not free
290
          it. When frame allocator fails to allocate the frame, it calls
291
          slab_reclaim(). It tries 'light reclaim' first, then brutal reclaim.
292
          The light reclaim releases slabs from cpu-shared magazine-list,
293
          until at least 1 slab is deallocated in each cache (this algorithm
294
          should probably change). The brutal reclaim removes all cached
295
          objects, even from CPU-bound magazines.</para>
296
 
297
          <formalpara>
298
            <title>Allocation</title>
299
 
300
            <para><emphasis>Step 1.</emphasis> When it comes to the allocation
301
            request, slab allocator first of all checks availability of memory
302
            in local CPU-bound magazine. If it is there, we would just "pop"
303
            the CPU magazine and return the pointer to object.</para>
304
 
305
            <para><emphasis>Step 2.</emphasis> If the CPU-bound magazine is
306
            empty, allocator will attempt to reload magazin, swapping it with
307
            second CPU magazine and returns to the first step.</para>
308
 
309
            <para><emphasis>Step 3.</emphasis> Now we are in the situation
310
            when both CPU-bound magazines are empty, which makes allocator to
311
            access shared full-magazines depot to reload CPU-bound magazines.
312
            If reload is succesful (meaning there are full magazines in depot)
313
            algoritm continues at Step 1.</para>
314
 
315
            <para><emphasis>Step 4.</emphasis> Final step of the allocation.
316
            In this step object is allocated from the conventional slab layer
317
            and pointer is returned.</para>
318
          </formalpara>
319
 
320
          <formalpara>
321
            <title>Deallocation</title>
322
 
323
            <para><emphasis>Step 1.</emphasis> During deallocation request,
324
            slab allocator will check if the local CPU-bound magazine is not
325
            full. In this case we will just push the pointer to this
326
            magazine.</para>
327
 
328
            <para><emphasis>Step 2.</emphasis> If the CPU-bound magazine is
329
            full, allocator will attempt to reload magazin, swapping it with
330
            second CPU magazine and returns to the first step.</para>
331
 
332
            <para><emphasis>Step 3.</emphasis> Now we are in the situation
333
            when both CPU-bound magazines are full, which makes allocator to
334
            access shared full-magazines depot to put one of the magazines to
335
            the depot and creating new empty magazine. Algoritm continues at
336
            Step 1.</para>
337
          </formalpara>
338
        </section>
339
      </section>
340
    </section>
341
 
342
    <!-- End of Physmem -->
343
  </section>
344
 
345
  <section>
67 jermar 346
    <title>Virtual memory management</title>
9 bondari 347
 
67 jermar 348
    <section>
349
      <title>Introduction</title>
350
 
351
      <para>Virtual memory is a special memory management technique, used by
352
      kernel to achieve a bunch of mission critical goals. <itemizedlist>
353
          <listitem>
354
             Isolate each task from other tasks that are running on the system at the same time.
355
          </listitem>
356
 
357
          <listitem>
358
             Allow to allocate more memory, than is actual physical memory size of the machine.
359
          </listitem>
360
 
361
          <listitem>
362
             Allowing, in general, to load and execute two programs that are linked on the same address without complicated relocations.
363
          </listitem>
364
        </itemizedlist></para>
365
 
366
      <para><!--
367
 
368
                <para>
369
                        Address spaces. Address space area (B+ tree). Only for uspace. Set of syscalls (shrink/extend etc).
370
                        Special address space area type - device - prohibits shrink/extend syscalls to call on it.
371
                        Address space has link to mapping tables (hierarchical - per Address space, hash - global tables).
372
                </para>
373
 
374
--></para>
375
    </section>
376
 
377
    <section>
378
      <title>Address spaces</title>
379
 
380
      <section>
381
        <title>Address space areas</title>
382
 
383
        <para>Each address space consists of mutually disjunctive continuous
384
        address space areas. Address space area is precisely defined by its
385
        base address and the number of frames/pages is contains.</para>
386
 
387
        <para>Address space area , that define behaviour and permissions on
388
        the particular area. <itemizedlist>
389
            <listitem>
390
 
391
 
392
              <emphasis>AS_AREA_READ</emphasis>
393
 
394
               flag indicates reading permission.
395
            </listitem>
396
 
397
            <listitem>
398
 
399
 
400
              <emphasis>AS_AREA_WRITE</emphasis>
401
 
402
               flag indicates writing permission.
403
            </listitem>
404
 
405
            <listitem>
406
 
407
 
408
              <emphasis>AS_AREA_EXEC</emphasis>
409
 
410
               flag indicates code execution permission. Some architectures do not support execution persmission restriction. In this case this flag has no effect.
411
            </listitem>
412
 
413
            <listitem>
414
 
415
 
416
              <emphasis>AS_AREA_DEVICE</emphasis>
417
 
418
               marks area as mapped to the device memory.
419
            </listitem>
420
          </itemizedlist></para>
421
 
422
        <para>Kernel provides possibility tasks create/expand/shrink/share its
423
        address space via the set of syscalls.</para>
424
      </section>
425
 
426
      <section>
427
        <title>Address Space ID (ASID)</title>
428
 
429
        <para>When switching to the different task, kernel also require to
430
        switch mappings to the different address space. In case TLB cannot
431
        distinguish address space mappings, all mapping information in TLB
432
        from the old address space must be flushed, which can create certain
433
        uncessary overhead during the task switching. To avoid this, some
434
        architectures have capability to segregate different address spaces on
435
        hardware level introducing the address space identifier as a part of
436
        TLB record, telling the virtual address space translation unit to
437
        which address space this record is applicable.</para>
438
 
439
        <para>HelenOS kernel can take advantage of this hardware supported
440
        identifier by having an ASID abstraction which is somehow related to
441
        the corresponding architecture identifier. I.e. on ia64 kernel ASID is
442
        derived from RID (region identifier) and on the mips32 kernel ASID is
443
        actually the hardware identifier. As expected, this ASID information
444
        record is the part of <emphasis>as_t</emphasis> structure.</para>
445
 
446
        <para>Due to the hardware limitations, hardware ASID has limited
447
        length from 8 bits on ia64 to 24 bits on mips32, which makes it
448
        impossible to use it as unique address space identifier for all tasks
449
        running in the system. In such situations special ASID stealing
450
        algoritm is used, which takes ASID from inactive task and assigns it
451
        to the active task.</para>
452
 
453
        <para><classname>ASID stealing algoritm here.</classname></para>
454
      </section>
455
    </section>
456
 
457
    <section>
458
      <title>Virtual address translation</title>
459
 
68 bondari 460
      <section id="paging">
461
        <title>Paging</title>
67 jermar 462
 
68 bondari 463
        <section>
464
          <title>Introduction</title>
67 jermar 465
 
68 bondari 466
          <para>Virtual memory is usually using paged memory model, where
467
          virtual memory address space is divided into the
468
          <emphasis>pages</emphasis> (usually having size 4096 bytes) and
469
          physical memory is divided into the frames (same sized as a page, of
470
          course). Each page may be mapped to some frame and then, upon memory
471
          access to the virtual address, CPU performs <emphasis>address
472
          translation</emphasis> during the instruction execution.
473
          Non-existing mapping generates page fault exception, calling kernel
474
          exception handler, thus allowing kernel to manipulate rules of
475
          memory access. Information for pages mapping is stored by kernel in
476
          the <link linkend="page_tables">page tables</link></para>
67 jermar 477
 
68 bondari 478
          <para>The majority of the architectures use multi-level page tables,
479
          which means need to access physical memory several times before
480
          getting physical address. This fact would make serios performance
481
          overhead in virtual memory management. To avoid this <link
482
          linkend="tlb">Traslation Lookaside Buffer (TLB)</link> is
483
          used.</para>
484
 
485
          <para>HelenOS kernel has two different approaches to the paging
486
          implementation: <emphasis>4 level page tables</emphasis> and
487
          <emphasis>global hash table</emphasis>, which are accessible via
488
          generic paging abstraction layer. Such different functionality was
489
          caused by the major architectural differences between supported
490
          platforms. This abstraction is implemented with help of the global
491
          structure of pointers to basic mapping functions
492
          <emphasis>page_mapping_operations</emphasis>. To achieve different
493
          functionality of page tables, corresponding layer must implement
494
          functions, declared in
495
          <emphasis>page_mapping_operations</emphasis></para>
496
 
497
          <para>Thanks to the abstract paging interface, there was a place
498
          left for more paging implementations (besides already implemented
499
          hieararchical page tables and hash table), for example B-Tree based
500
          page tables.</para>
501
        </section>
502
 
503
        <section>
504
          <title>Hierarchical 4-level page tables</title>
505
 
506
          <para>Hierarchical 4-level page tables are the generalization of the
507
          hardware capabilities of most architectures. Each address space has
508
          its own page tables.<itemizedlist>
67 jermar 509
              <listitem>
510
                 ia32 uses 2-level page tables, with full hardware support.
511
              </listitem>
512
 
513
              <listitem>
514
                 amd64 uses 4-level page tables, also coming with full hardware support.
515
              </listitem>
516
 
517
              <listitem>
518
                 mips and ppc32 have 2-level tables, software simulated support.
519
              </listitem>
520
            </itemizedlist></para>
68 bondari 521
        </section>
67 jermar 522
 
68 bondari 523
        <section>
524
          <title>Global hash table</title>
67 jermar 525
 
68 bondari 526
          <para>Implementation of the global hash table was encouraged by the
527
          ia64 architecture support. One of the major differences between
528
          global hash table and hierarchical tables is that global hash table
529
          exists only once in the system and the hierarchical tables are
530
          maintained per address space.</para>
67 jermar 531
 
68 bondari 532
          <para>Thus, hash table contains information about all address spaces
533
          mappings in the system, so, the hash of an entry must contain
534
          information of both address space pointer or id and the virtual
535
          address of the page. Generic hash table implementation assumes that
536
          the addresses of the pointers to the address spaces are likely to be
537
          on the close addresses, so it uses least significant bits for hash;
538
          also it assumes that the virtual page addresses have roughly the
539
          same probability of occurring, so the least significant bits of VPN
540
          compose the hash index.</para>
541
 
542
          <para>Collision chains ...</para>
543
        </section>
67 jermar 544
      </section>
545
 
546
      <section id="tlb">
547
        <title>Translation Lookaside buffer</title>
548
 
549
        <para>Due to the extensive overhead during the page mapping lookup in
550
        the page tables, all architectures has fast assotiative cache memory
551
        built-in CPU. This memory called TLB stores recently used page table
552
        entries.</para>
553
 
554
        <section id="tlb_shootdown">
555
          <title>TLB consistency. TLB shootdown algorithm.</title>
556
 
557
          <para>Operating system is responsible for keeping TLB consistent by
558
          invalidating the contents of TLB, whenever there is some change in
559
          page tables. Those changes may occur when page or group of pages
560
          were unmapped, mapping is changed or system switching active address
68 bondari 561
          space to schedule a new system task. Moreover, this invalidation
562
          operation must be done an all system CPUs because each CPU has its
563
          own independent TLB cache. Thus maintaining TLB consistency on SMP
564
          configuration as not as trivial task as it looks on the first
565
          glance. Naive solution would assume that is the CPU which wants to
566
          invalidate TLB will invalidate TLB caches on other CPUs. It is not
567
          possible on the most of the architectures, because of the simple
568
          fact - flushing TLB is allowed only on the local CPU and there is no
569
          possibility to access other CPUs' TLB caches, thus invalidate TLB
570
          remotely.</para>
67 jermar 571
 
572
          <para>Technique of remote invalidation of TLB entries is called "TLB
573
          shootdown". HelenOS uses a variation of the algorithm described by
574
          D. Black et al., "Translation Lookaside Buffer Consistency: A
575
          Software Approach," Proc. Third Int'l Conf. Architectural Support
576
          for Programming Languages and Operating Systems, 1989, pp.
577
          113-122.</para>
578
 
579
          <para>As the situation demands, you will want partitial invalidation
580
          of TLB caches. In case of simple memory mapping change it is
581
          necessary to invalidate only one or more adjacent pages. In case if
68 bondari 582
          the architecture is aware of ASIDs, when kernel needs to dump some
583
          ASID to use by another task, it invalidates only entries from this
584
          particular address space. Final option of the TLB invalidation is
585
          the complete TLB cache invalidation, which is the operation that
586
          flushes all entries in TLB.</para>
67 jermar 587
 
68 bondari 588
          <para>TLB shootdown is performed in two phases.</para>
67 jermar 589
 
68 bondari 590
          <formalpara>
591
            <title>Phase 1.</title>
67 jermar 592
 
68 bondari 593
            <para>First, initiator locks a global TLB spinlock, then request
594
            is being put to the local request cache of every other CPU in the
595
            system protected by its spinlock. In case the cache is full, all
596
            requests in the cache are replaced by one request, indicating
597
            global TLB flush. Then the initiator thread sends an IPI message
598
            indicating the TLB shootdown request to the rest of the CPUs and
599
            waits actively until all CPUs confirm TLB invalidating action
600
            execution by setting up a special flag. After setting this flag
601
            this thread is blocked on the TLB spinlock, held by the
602
            initiator.</para>
603
          </formalpara>
67 jermar 604
 
68 bondari 605
          <formalpara>
606
            <title>Phase 2.</title>
607
 
608
            <para>All CPUs are waiting on the TLB spinlock to execute TLB
609
            invalidation action and have indicated their intention to the
610
            initiator. Initiator continues, cleaning up its TLB and releasing
611
            the global TLB spinlock. After this all other CPUs gain and
612
            immidiately release TLB spinlock and perform TLB invalidation
613
            actions.</para>
614
          </formalpara>
615
        </section>
616
      </section>
67 jermar 617
    </section>
26 bondari 618
  </section>
11 bondari 619
</chapter>