Subversion Repositories HelenOS-doc

Rev

Rev 65 | Rev 67 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
9 bondari 1
<?xml version="1.0" encoding="UTF-8"?>
11 bondari 2
<chapter id="mm">
3
  <?dbhtml filename="mm.html"?>
9 bondari 4
 
11 bondari 5
  <title>Memory management</title>
9 bondari 6
 
66 bondari 7
  <section>
8
    <title>Virtual memory management</title>
64 jermar 9
 
66 bondari 10
    <section>
11
      <title>Introduction</title>
12
 
13
      <para>Virtual memory is a special memory management technique, used by
14
      kernel to achieve a bunch of mission critical goals. <itemizedlist>
15
          <listitem>
16
             Isolate each task from other tasks that are running on the system at the same time.
17
          </listitem>
18
 
19
          <listitem>
20
             Allow to allocate more memory, than is actual physical memory size of the machine.
21
          </listitem>
22
 
23
          <listitem>
24
             Allowing, in general, to load and execute two programs that are linked on the same address without complicated relocations.
25
          </listitem>
26
        </itemizedlist></para>
27
 
28
      <para><!--
29
                <para>
30
                        Address spaces. Address space area (B+ tree). Only for uspace. Set of syscalls (shrink/extend etc).
31
                        Special address space area type - device - prohibits shrink/extend syscalls to call on it.
32
                        Address space has link to mapping tables (hierarchical - per Address space, hash - global tables).
33
                </para>
34
 
35
--></para>
36
    </section>
37
 
38
    <section>
39
      <title>Address spaces</title>
40
 
41
      <section>
42
        <title>Address space areas</title>
43
 
44
        <para>Each address space consists of mutually disjunctive continuous
45
        address space areas. Address space area is precisely defined by its
46
        base address and the number of frames/pages is contains.</para>
47
 
48
        <para>Address space area , that define behaviour and permissions on
49
        the particular area. <itemizedlist>
50
            <listitem>
51
 
52
 
53
              <emphasis>AS_AREA_READ</emphasis>
54
 
55
               flag indicates reading permission.
56
            </listitem>
57
 
58
            <listitem>
59
 
60
 
61
              <emphasis>AS_AREA_WRITE</emphasis>
62
 
63
               flag indicates writing permission.
64
            </listitem>
65
 
66
            <listitem>
67
 
68
 
69
              <emphasis>AS_AREA_EXEC</emphasis>
70
 
71
               flag indicates code execution permission. Some architectures do not support execution persmission restriction. In this case this flag has no effect.
72
            </listitem>
73
 
74
            <listitem>
75
 
76
 
77
              <emphasis>AS_AREA_DEVICE</emphasis>
78
 
79
               marks area as mapped to the device memory.
80
            </listitem>
81
          </itemizedlist></para>
82
 
83
        <para>Kernel provides possibility tasks create/expand/shrink/share its
84
        address space via the set of syscalls.</para>
85
      </section>
86
 
87
      <section>
88
        <title>Address Space ID (ASID)</title>
89
 
90
        <para>When switching to the different task, kernel also require to
91
        switch mappings to the different address space. In case TLB cannot
92
        distinguish address space mappings, all mapping information in TLB
93
        from the old address space must be flushed, which can create certain
94
        uncessary overhead during the task switching. To avoid this, some
95
        architectures have capability to segregate different address spaces on
96
        hardware level introducing the address space identifier as a part of
97
        TLB record, telling the virtual address space translation unit to
98
        which address space this record is applicable.</para>
99
 
100
        <para>HelenOS kernel can take advantage of this hardware supported
101
        identifier by having an ASID abstraction which is somehow related to
102
        the corresponding architecture identifier. I.e. on ia64 kernel ASID is
103
        derived from RID (region identifier) and on the mips32 kernel ASID is
104
        actually the hardware identifier. As expected, this ASID information
105
        record is the part of <emphasis>as_t</emphasis> structure.</para>
106
 
107
        <para>Due to the hardware limitations, hardware ASID has limited
108
        length from 8 bits on ia64 to 24 bits on mips32, which makes it
109
        impossible to use it as unique address space identifier for all tasks
110
        running in the system. In such situations special ASID stealing
111
        algoritm is used, which takes ASID from inactive task and assigns it
112
        to the active task.<classname></classname></para>
113
      </section>
114
    </section>
115
 
116
    <section>
117
      <title>Virtual address translation</title>
118
 
119
      <section id="pagING">
120
        <title>Paging</title>
121
 
122
        <section>
123
          <title>Introduction</title>
124
 
125
          <para>Virtual memory is usually using paged memory model, where
126
          virtual memory address space is divided into the
127
          <emphasis>pages</emphasis> (usually having size 4096 bytes) and
128
          physical memory is divided into the frames (same sized as a page, of
129
          course). Each page may be mapped to some frame and then, upon memory
130
          access to the virtual address, CPU performs <emphasis>address
131
          translation</emphasis> during the instruction execution.
132
          Non-existing mapping generates page fault exception, calling kernel
133
          exception handler, thus allowing kernel to manipulate rules of
134
          memory access. Information for pages mapping is stored by kernel in
135
          the <link linkend="page_tables">page tables</link></para>
136
 
137
          <para>The majority of the architectures use multi-level page tables,
138
          which means need to access physical memory several times before
139
          getting physical address. This fact would make serios performance
140
          overhead in virtual memory management. To avoid this <link
141
          linkend="tlb">Traslation Lookaside Buffer (TLB)</link> is
142
          used.</para>
143
 
144
          <para>HelenOS kernel has two different approaches to the paging
145
          implementation: <emphasis>4 level page tables</emphasis> and
146
          <emphasis>global hash table</emphasis>, which are accessible via
147
          generic paging abstraction layer. Such different functionality was
148
          caused by the major architectural differences between supported
149
          platforms. This abstraction is implemented with help of the global
150
          structure of pointers to basic mapping functions
151
          <emphasis>page_mapping_operations</emphasis>. To achieve different
152
          functionality of page tables, corresponding layer must implement
153
          functions, declared in
154
          <emphasis>page_mapping_operations</emphasis></para>
155
 
156
          <para>Thanks to the abstract paging interface, there was a place
157
          left for more paging implementations (besides already implemented
158
          hieararchical page tables and hash table), for example B-Tree based
159
          page tables.</para>
160
        </section>
161
 
162
        <section>
163
          <title>Hierarchical 4-level page tables</title>
164
 
165
          <para>Hierarchical 4-level page tables are the generalization of the
166
          hardware capabilities of most architectures. Each address space has
167
          its own page tables.<itemizedlist>
168
              <listitem>
169
                 ia32 uses 2-level page tables, with full hardware support.
170
              </listitem>
171
 
172
              <listitem>
173
                 amd64 uses 4-level page tables, also coming with full hardware support.
174
              </listitem>
175
 
176
              <listitem>
177
                 mips and ppc32 have 2-level tables, software simulated support.
178
              </listitem>
179
            </itemizedlist></para>
180
        </section>
181
 
182
        <section>
183
          <title>Global hash table</title>
184
 
185
          <para>Implementation of the global hash table was encouraged by the
186
          ia64 architecture support. One of the major differences between
187
          global hash table and hierarchical tables is that global hash table
188
          exists only once in the system and the hierarchical tables are
189
          maintained per address space. </para>
190
 
191
          <para>Thus, hash table contains information about all address spaces
192
          mappings in the system, so, the hash of an entry must contain
193
          information of both address space pointer or id and the virtual
194
          address of the page. Generic hash table implementation assumes that
195
          the addresses of the pointers to the address spaces are likely to be
196
          on the close addresses, so it uses least significant bits for hash;
197
          also it assumes that the virtual page addresses have roughly the
198
          same probability of occurring, so the least significant bits of VPN
199
          compose the hash index.</para>
200
 
201
          <para>- global page hash table: existuje jen jedna v celem systemu
202
          (vyuziva ji ia64), pozn. ia64 ma zatim vypnuty VHPT. Pouziva se
203
          genericke hash table s oddelenymi collision chains. ASID support is
204
          required to use global hash tables.</para>
205
        </section>
206
      </section>
207
 
208
      <section id="tlb">
209
        <title>Translation Lookaside buffer</title>
210
 
211
        <para>Due to the extensive overhead during the page mapping lookup in
212
        the page tables, all architectures has fast assotiative cache memory
213
        built-in CPU. This memory called TLB stores recently used page table
214
        entries.</para>
215
 
216
        <section id="tlb_shootdown">
217
          <title>TLB consistency. TLB shootdown algorithm.</title>
218
 
219
          <para>Operating system is responsible for keeping TLB consistent by
220
          invalidating the contents of TLB, whenever there is some change in
221
          page tables. Those changes may occur when page or group of pages
222
          were unmapped, mapping is changed or system switching active address
223
          space to schedule a new system task. Moreover, this invalidation
224
          operation must be done an all system CPUs because each CPU has its
225
          own independent TLB cache. Thus maintaining TLB consistency on SMP
226
          configuration as not as trivial task as it looks on the first
227
          glance. Naive solution would assume that is the CPU which wants to
228
          invalidate TLB will invalidate TLB caches on other CPUs. It is not
229
          possible on the most of the architectures, because of the simple
230
          fact - flushing TLB is allowed only on the local CPU and there is no
231
          possibility to access other CPUs' TLB caches, thus invalidate TLB
232
          remotely.</para>
233
 
234
          <para>Technique of remote invalidation of TLB entries is called "TLB
235
          shootdown". HelenOS uses a variation of the algorithm described by
236
          D. Black et al., "Translation Lookaside Buffer Consistency: A
237
          Software Approach," Proc. Third Int'l Conf. Architectural Support
238
          for Programming Languages and Operating Systems, 1989, pp.
239
          113-122.</para>
240
 
241
          <para>As the situation demands, you will want partitial invalidation
242
          of TLB caches. In case of simple memory mapping change it is
243
          necessary to invalidate only one or more adjacent pages. In case if
244
          the architecture is aware of ASIDs, when kernel needs to dump some
245
          ASID to use by another task, it invalidates only entries from this
246
          particular address space. Final option of the TLB invalidation is
247
          the complete TLB cache invalidation, which is the operation that
248
          flushes all entries in TLB.</para>
249
 
250
          <para>TLB shootdown is performed in two phases.</para>
251
 
252
          <formalpara>
253
            <title>Phase 1.</title>
254
 
255
            <para>First, initiator locks a global TLB spinlock, then request
256
            is being put to the local request cache of every other CPU in the
257
            system protected by its spinlock. In case the cache is full, all
258
            requests in the cache are replaced by one request, indicating
259
            global TLB flush. Then the initiator thread sends an IPI message
260
            indicating the TLB shootdown request to the rest of the CPUs and
261
            waits actively until all CPUs confirm TLB invalidating action
262
            execution by setting up a special flag. After setting this flag
263
            this thread is blocked on the TLB spinlock, held by the
264
            initiator.</para>
265
          </formalpara>
266
 
267
          <formalpara>
268
            <title>Phase 2.</title>
269
 
270
            <para>All CPUs are waiting on the TLB spinlock to execute TLB
271
            invalidation action and have indicated their intention to the
272
            initiator. Initiator continues, cleaning up its TLB and releasing
273
            the global TLB spinlock. After this all other CPUs gain and
274
            immidiately release TLB spinlock and perform TLB invalidation
275
            actions.</para>
276
          </formalpara>
277
        </section>
278
      </section>
279
    </section>
280
 
281
    <section>
282
      <title>---</title>
283
 
284
      <para>At the moment HelenOS does not support swapping.</para>
285
 
286
      <para>- pouzivame vypadky stranky k alokaci ramcu on-demand v ramci
287
      as_area - na architekturach, ktere to podporuji, podporujeme non-exec
288
      stranky</para>
289
    </section>
290
  </section>
291
 
26 bondari 292
  <section>
64 jermar 293
    <title>Physical memory management</title>
294
 
295
    <section id="zones_and_frames">
296
      <title>Zones and frames</title>
297
 
66 bondari 298
      <para>On some architectures not whole physical memory is available for
299
      conventional usage. This limitations require from kernel to maintain a
300
      table of available and unavailable ranges of physical memory addresses.
301
      Main idea of zones is in creating memory zone entity, that is a
302
      continuous chunk of memory available for allocation. If some chunk is
303
      not available, we simply do not put it in any zone.</para>
64 jermar 304
 
66 bondari 305
      <para>Zone is also serves for informational purposes, containing
306
      information about number of free and busy frames. Physical memory
307
      allocation is also done inside the certain zone. Allocation of zone
308
      frame must be organized by the <link linkend="frame_allocator">frame
309
      allocator</link> associated with the zone.</para>
64 jermar 310
 
66 bondari 311
      <para>Some of the architectures (mips32, ppc32) have only one zone, that
312
      covers whole physical memory, and the others (like ia32) may have
313
      multiple zones. Information about zones on current machine is stored in
314
      BIOS hardware tables or can be hardcoded into kernel during compile
315
      time.</para>
64 jermar 316
    </section>
317
 
318
    <section id="frame_allocator">
319
      <title>Frame allocator</title>
320
 
66 bondari 321
      <figure>
322
        <mediaobject id="frame_alloc">
323
          <imageobject role="html">
324
            <imagedata fileref="images/frame_alloc.png" format="PNG" />
325
          </imageobject>
64 jermar 326
 
66 bondari 327
          <imageobject role="fop">
328
            <imagedata fileref="images.vector/frame_alloc.svg" format="SVG" />
329
          </imageobject>
330
        </mediaobject>
64 jermar 331
 
66 bondari 332
        <title>Frame allocator scheme.</title>
333
      </figure>
64 jermar 334
 
335
      <formalpara>
66 bondari 336
        <title>Overview</title>
337
 
338
        <para>Frame allocator provides physical memory allocation for the
339
        kernel. Because of zonal organization of physical memory, frame
340
        allocator is always working in context of some zone, thus making
341
        impossible to allocate a piece of memory, which lays in different
342
        zone, which cannot happen, because two adjacent zones can be merged
343
        into one. Frame allocator is also being responsible to update
344
        information on the number of free/busy frames in zone. Physical memory
345
        allocation inside one <link linkend="zones_and_frames">memory
346
        zone</link> is being handled by an instance of <link
347
        linkend="buddy_allocator">buddy allocator</link> tailored to allocate
348
        blocks of physical memory frames.</para>
349
      </formalpara>
350
 
351
      <formalpara>
64 jermar 352
        <title>Allocation / deallocation</title>
353
 
66 bondari 354
        <para>Upon allocation request, frame allocator tries to find first
355
        zone, that can satisfy the incoming request (has required amount of
356
        free frames to allocate). During deallocation, frame allocator needs
357
        to find zone, that contain deallocated frame. This approach could
358
        bring up two potential problems: <itemizedlist>
359
            <listitem>
360
               Linear search of zones does not any good to performance, but number of zones is not expected to be high. And if yes, list of zones can be replaced with more time-efficient B-tree.
361
            </listitem>
362
 
363
            <listitem>
364
               Quickly find out if zone contains required number of frames to allocate and if this chunk of memory is properly aligned. This issue is perfectly solved bu the buddy allocator.
365
            </listitem>
366
          </itemizedlist></para>
64 jermar 367
      </formalpara>
368
    </section>
369
 
370
    <section id="buddy_allocator">
371
      <title>Buddy allocator</title>
372
 
66 bondari 373
      <section>
374
        <title>Overview</title>
64 jermar 375
 
66 bondari 376
        <figure>
64 jermar 377
          <mediaobject id="buddy_alloc">
378
            <imageobject role="html">
379
              <imagedata fileref="images/buddy_alloc.png" format="PNG" />
380
            </imageobject>
381
 
382
            <imageobject role="fop">
383
              <imagedata fileref="images.vector/buddy_alloc.svg" format="SVG" />
384
            </imageobject>
385
          </mediaobject>
386
 
387
          <title>Buddy system scheme.</title>
66 bondari 388
        </figure>
64 jermar 389
 
66 bondari 390
        <para>In the buddy allocator, the memory is broken down into
391
        power-of-two sized naturally aligned blocks. These blocks are
392
        organized in an array of lists, in which the list with index i
393
        contains all unallocated blocks of size
394
        <mathphrase>2<superscript>i</superscript></mathphrase>. The index i is
395
        called the order of block. Should there be two adjacent equally sized
396
        blocks in the list i<mathphrase />(i.e. buddies), the buddy allocator
397
        would coalesce them and put the resulting block in list <mathphrase>i
398
        + 1</mathphrase>, provided that the resulting block would be naturally
399
        aligned. Similarily, when the allocator is asked to allocate a block
400
        of size <mathphrase>2<superscript>i</superscript></mathphrase>, it
401
        first tries to satisfy the request from the list with index i. If the
402
        request cannot be satisfied (i.e. the list i is empty), the buddy
403
        allocator will try to allocate and split a larger block from the list
404
        with index i + 1. Both of these algorithms are recursive. The
405
        recursion ends either when there are no blocks to coalesce in the
406
        former case or when there are no blocks that can be split in the
407
        latter case.</para>
408
 
409
        <!--graphic fileref="images/mm1.png" format="EPS" /-->
410
 
411
        <para>This approach greatly reduces external fragmentation of memory
412
        and helps in allocating bigger continuous blocks of memory aligned to
413
        their size. On the other hand, the buddy allocator suffers increased
414
        internal fragmentation of memory and is not suitable for general
415
        kernel allocations. This purpose is better addressed by the <link
416
        linkend="slab">slab allocator</link>.</para>
417
      </section>
418
 
64 jermar 419
      <section>
420
        <title>Implementation</title>
421
 
422
        <para>The buddy allocator is, in fact, an abstract framework wich can
423
        be easily specialized to serve one particular task. It knows nothing
424
        about the nature of memory it helps to allocate. In order to beat the
425
        lack of this knowledge, the buddy allocator exports an interface that
426
        each of its clients is required to implement. When supplied with an
427
        implementation of this interface, the buddy allocator can use
428
        specialized external functions to find a buddy for a block, split and
429
        coalesce blocks, manipulate block order and mark blocks busy or
66 bondari 430
        available. For precise documentation of this interface, refer to
431
        <emphasis>"HelenOS Generic Kernel Reference Manual"</emphasis>.</para>
64 jermar 432
 
433
        <formalpara>
434
          <title>Data organization</title>
435
 
436
          <para>Each entity allocable by the buddy allocator is required to
437
          contain space for storing block order number and a link variable
438
          used to interconnect blocks within the same order.</para>
439
 
440
          <para>Whatever entities are allocated by the buddy allocator, the
441
          first entity within a block is used to represent the entire block.
442
          The first entity keeps the order of the whole block. Other entities
443
          within the block are assigned the magic value
444
          <constant>BUDDY_INNER_BLOCK</constant>. This is especially important
445
          for effective identification of buddies in a one-dimensional array
446
          because the entity that represents a potential buddy cannot be
447
          associated with <constant>BUDDY_INNER_BLOCK</constant> (i.e. if it
448
          is associated with <constant>BUDDY_INNER_BLOCK</constant> then it is
449
          not a buddy).</para>
66 bondari 450
 
451
          <para>The buddy allocator always uses the first frame to represent
452
          the frame block. This frame contains <varname>buddy_order</varname>
453
          variable to provide information about the block size it actually
454
          represents (
455
          <mathphrase>2<superscript>buddy_order</superscript></mathphrase>
456
          frames block). Other frames in block have this value set to magic
457
          <constant>BUDDY_INNER_BLOCK</constant> that is much greater than
458
          buddy <varname>max_order</varname> value.</para>
459
 
460
          <para>Each <varname>frame_t</varname> also contains pointer member
461
          to hold frame structure in the linked list inside one order.</para>
64 jermar 462
        </formalpara>
66 bondari 463
 
464
        <formalpara>
465
          <title>Allocation algorithm</title>
466
 
467
          <para>Upon <mathphrase>2<superscript>i</superscript></mathphrase>
468
          frames block allocation request, allocator checks if there are any
469
          blocks available at the order list <varname>i</varname>. If yes,
470
          removes block from order list and returns its address. If no,
471
          recursively allocates
472
          <mathphrase>2<superscript>i+1</superscript></mathphrase> frame
473
          block, splits it into two
474
          <mathphrase>2<superscript>i</superscript></mathphrase> frame blocks.
475
          Then adds one of the blocks to the <varname>i</varname> order list
476
          and returns address of another.</para>
477
        </formalpara>
478
 
479
        <formalpara>
480
          <title>Deallocation algorithm</title>
481
 
482
          <para>Check if block has so called buddy (another free
483
          <mathphrase>2<superscript>i</superscript></mathphrase> frame block
484
          that can be linked with freed block into the
485
          <mathphrase>2<superscript>i+1</superscript></mathphrase> block).
486
          Technically, buddy is a odd/even block for even/odd block
487
          respectively. Plus we can put an extra requirement, that resulting
488
          block must be aligned to its size. This requirement guarantees
489
          natural block alignment for the blocks coming out the allocation
490
          system.</para>
491
 
492
          <para>Using direct pointer arithmetics,
493
          <varname>frame_t::ref_count</varname> and
494
          <varname>frame_t::buddy_order</varname> variables, finding buddy is
495
          done at constant time.</para>
496
        </formalpara>
64 jermar 497
      </section>
498
    </section>
499
 
500
    <section id="slab">
501
      <title>Slab allocator</title>
502
 
66 bondari 503
      <section>
504
        <title>Overview</title>
64 jermar 505
 
66 bondari 506
        <para><termdef><glossterm>Slab</glossterm> represents a contiguous
507
        piece of memory, usually made of several physically contiguous
508
        pages.</termdef> <termdef><glossterm>Slab cache</glossterm> consists
509
        of one or more slabs.</termdef></para>
64 jermar 510
 
66 bondari 511
        <para>The majority of memory allocation requests in the kernel are for
512
        small, frequently used data structures. For this purpose the slab
513
        allocator is a perfect solution. The basic idea behind the slab
514
        allocator is to have lists of commonly used objects available packed
515
        into pages. This avoids the overhead of allocating and destroying
516
        commonly used types of objects such threads, virtual memory structures
517
        etc. Also due to the exact allocated size matching, slab allocation
518
        completely eliminates internal fragmentation issue.</para>
519
      </section>
65 jermar 520
 
66 bondari 521
      <section>
522
        <title>Implementation</title>
523
 
524
        <figure>
64 jermar 525
          <mediaobject id="slab_alloc">
526
            <imageobject role="html">
527
              <imagedata fileref="images/slab_alloc.png" format="PNG" />
528
            </imageobject>
66 bondari 529
 
530
            <imageobject role="fop">
531
              <imagedata fileref="images.vector/slab_alloc.svg" format="SVG" />
532
            </imageobject>
64 jermar 533
          </mediaobject>
534
 
535
          <title>Slab allocator scheme.</title>
66 bondari 536
        </figure>
64 jermar 537
 
538
        <para>The slab allocator is closely modelled after <ulink
539
        url="http://www.usenix.org/events/usenix01/full_papers/bonwick/bonwick_html/">
540
        OpenSolaris slab allocator by Jeff Bonwick and Jonathan Adams </ulink>
66 bondari 541
        with the following exceptions: <itemizedlist>
64 jermar 542
            <listitem>
66 bondari 543
               empty slabs are deallocated immediately (in Linux they are kept in linked list, in Solaris ???)
64 jermar 544
            </listitem>
66 bondari 545
 
546
            <listitem>
547
               empty magazines are deallocated when not needed (in Solaris they are held in linked list in slab cache)
548
            </listitem>
64 jermar 549
          </itemizedlist> Following features are not currently supported but
550
        would be easy to do: <itemizedlist>
551
            <listitem>
66 bondari 552
               - cache coloring
64 jermar 553
            </listitem>
554
 
555
            <listitem>
66 bondari 556
               - dynamic magazine grow (different magazine sizes are already supported, but we would need to adjust allocation strategy)
64 jermar 557
            </listitem>
558
          </itemizedlist></para>
559
 
560
        <section>
561
          <title>Magazine layer</title>
562
 
563
          <para>Due to the extensive bottleneck on SMP architures, caused by
564
          global slab locking mechanism, making processing of all slab
565
          allocation requests serialized, a new layer was introduced to the
566
          classic slab allocator design. Slab allocator was extended to
567
          support per-CPU caches 'magazines' to achieve good SMP scaling.
568
          <termdef>Slab SMP perfromance bottleneck was resolved by introducing
569
          a per-CPU caching scheme called as <glossterm>magazine
570
          layer</glossterm></termdef>.</para>
571
 
572
          <para>Magazine is a N-element cache of objects, so each magazine can
573
          satisfy N allocations. Magazine behaves like a automatic weapon
574
          magazine (LIFO, stack), so the allocation/deallocation become simple
575
          push/pop pointer operation. Trick is that CPU does not access global
576
          slab allocator data during the allocation from its magazine, thus
577
          making possible parallel allocations between CPUs.</para>
578
 
579
          <para>Implementation also requires adding another feature as the
580
          CPU-bound magazine is actually a pair of magazines to avoid
581
          thrashing when during allocation/deallocatiion of 1 item at the
582
          magazine size boundary. LIFO order is enforced, which should avoid
583
          fragmentation as much as possible.</para>
584
 
585
          <para>Another important entity of magazine layer is the common full
586
          magazine list (also called a depot), that stores full magazines that
587
          may be used by any of the CPU magazine caches to reload active CPU
588
          magazine. This list of magazines can be pre-filled with full
589
          magazines during initialization, but in current implementation it is
590
          filled during object deallocation, when CPU magazine becomes
591
          full.</para>
592
 
593
          <para>Slab allocator control structures are allocated from special
594
          slabs, that are marked by special flag, indicating that it should
595
          not be used for slab magazine layer. This is done to avoid possible
596
          infinite recursions and deadlock during conventional slab allocaiton
597
          requests.</para>
598
        </section>
599
 
600
        <section>
601
          <title>Allocation/deallocation</title>
602
 
603
          <para>Every cache contains list of full slabs and list of partialy
604
          full slabs. Empty slabs are immediately freed (thrashing will be
605
          avoided because of magazines).</para>
606
 
607
          <para>The SLAB allocator allocates lots of space and does not free
608
          it. When frame allocator fails to allocate the frame, it calls
609
          slab_reclaim(). It tries 'light reclaim' first, then brutal reclaim.
610
          The light reclaim releases slabs from cpu-shared magazine-list,
611
          until at least 1 slab is deallocated in each cache (this algorithm
612
          should probably change). The brutal reclaim removes all cached
613
          objects, even from CPU-bound magazines.</para>
614
 
615
          <formalpara>
616
            <title>Allocation</title>
617
 
618
            <para><emphasis>Step 1.</emphasis> When it comes to the allocation
619
            request, slab allocator first of all checks availability of memory
620
            in local CPU-bound magazine. If it is there, we would just "pop"
621
            the CPU magazine and return the pointer to object.</para>
622
 
623
            <para><emphasis>Step 2.</emphasis> If the CPU-bound magazine is
624
            empty, allocator will attempt to reload magazin, swapping it with
625
            second CPU magazine and returns to the first step.</para>
626
 
627
            <para><emphasis>Step 3.</emphasis> Now we are in the situation
628
            when both CPU-bound magazines are empty, which makes allocator to
629
            access shared full-magazines depot to reload CPU-bound magazines.
630
            If reload is succesful (meaning there are full magazines in depot)
631
            algoritm continues at Step 1.</para>
632
 
633
            <para><emphasis>Step 4.</emphasis> Final step of the allocation.
634
            In this step object is allocated from the conventional slab layer
635
            and pointer is returned.</para>
636
          </formalpara>
637
 
638
          <formalpara>
639
            <title>Deallocation</title>
640
 
641
            <para><emphasis>Step 1.</emphasis> During deallocation request,
642
            slab allocator will check if the local CPU-bound magazine is not
643
            full. In this case we will just push the pointer to this
644
            magazine.</para>
645
 
646
            <para><emphasis>Step 2.</emphasis> If the CPU-bound magazine is
647
            full, allocator will attempt to reload magazin, swapping it with
648
            second CPU magazine and returns to the first step.</para>
649
 
650
            <para><emphasis>Step 3.</emphasis> Now we are in the situation
651
            when both CPU-bound magazines are full, which makes allocator to
652
            access shared full-magazines depot to put one of the magazines to
653
            the depot and creating new empty magazine. Algoritm continues at
654
            Step 1.</para>
655
          </formalpara>
656
        </section>
657
      </section>
658
    </section>
659
 
660
    <!-- End of Physmem -->
661
  </section>
662
 
663
  <section>
66 bondari 664
    <title>Memory sharing</title>
9 bondari 665
 
66 bondari 666
    <para>Not implemented yet(?)</para>
26 bondari 667
  </section>
11 bondari 668
</chapter>