Subversion Repositories HelenOS-doc

Rev

Rev 47 | Rev 62 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
9 bondari 1
<?xml version="1.0" encoding="UTF-8"?>
11 bondari 2
<chapter id="mm">
3
  <?dbhtml filename="mm.html"?>
9 bondari 4
 
11 bondari 5
  <title>Memory management</title>
9 bondari 6
 
26 bondari 7
  <section>
11 bondari 8
    <title>Virtual memory management</title>
9 bondari 9
 
10
    <section>
35 bondari 11
      <title>Introduction</title>
12
 
13
      <para>Virtual memory is a special memory management technique, used by
14
      kernel to achieve a bunch of mission critical goals. <itemizedlist>
15
          <listitem>
16
             Isolate each task from other tasks that are running on the system at the same time.
17
          </listitem>
18
 
19
          <listitem>
20
             Allow to allocate more memory, than is actual physical memory size of the machine.
21
          </listitem>
22
 
23
          <listitem>
24
             Allowing, in general, to load and execute two programs that are linked on the same address without complicated relocations.
25
          </listitem>
26
        </itemizedlist></para>
38 bondari 27
 
39 bondari 28
      <para><!--
29
 
38 bondari 30
                TLB shootdown ASID/ASID:PAGE/ALL.
31
                TLB shootdown requests can come in asynchroniously
32
                so there is a cache of TLB shootdown requests. Upon cache overflow TLB shootdown ALL is executed
33
 
34
 
35
                <para>
36
                        Address spaces. Address space area (B+ tree). Only for uspace. Set of syscalls (shrink/extend etc).
37
                        Special address space area type - device - prohibits shrink/extend syscalls to call on it.
38
                        Address space has link to mapping tables (hierarchical - per Address space, hash - global tables).
39
                </para>
40
 
41
--></para>
35 bondari 42
    </section>
43
 
44
    <section>
45
      <title>Paging</title>
46
 
47
      <para>Virtual memory is usually using paged memory model, where virtual
48
      memory address space is divided into the <emphasis>pages</emphasis>
49
      (usually having size 4096 bytes) and physical memory is divided into the
39 bondari 50
      frames (same sized as a page, of course). Each page may be mapped to
51
      some frame and then, upon memory access to the virtual address, CPU
52
      performs <emphasis>address translation</emphasis> during the instruction
35 bondari 53
      execution. Non-existing mapping generates page fault exception, calling
54
      kernel exception handler, thus allowing kernel to manipulate rules of
55
      memory access. Information for pages mapping is stored by kernel in the
56
      <link linkend="page_tables">page tables</link></para>
57
 
58
      <para>The majority of the architectures use multi-level page tables,
59
      which means need to access physical memory several times before getting
60
      physical address. This fact would make serios performance overhead in
61
      virtual memory management. To avoid this <link linkend="tlb">Traslation
62
      Lookaside Buffer (TLB)</link> is used.</para>
63
    </section>
64
 
65
    <section>
11 bondari 66
      <title>Address spaces</title>
9 bondari 67
 
35 bondari 68
      <section>
46 bondari 69
        <title>Address space areas</title>
35 bondari 70
 
46 bondari 71
        <para>Each address space consists of mutually disjunctive continuous
72
        address space areas. Address space area is precisely defined by its
47 bondari 73
        base address and the number of frames/pages is contains.</para>
35 bondari 74
 
47 bondari 75
        <para>Address space area , that define behaviour and permissions on
76
        the particular area. <itemizedlist>
46 bondari 77
            <listitem>
78
 
79
 
80
              <emphasis>AS_AREA_READ</emphasis>
81
 
82
               flag indicates reading permission.
83
            </listitem>
84
 
85
            <listitem>
86
 
87
 
88
              <emphasis>AS_AREA_WRITE</emphasis>
89
 
90
               flag indicates writing permission.
91
            </listitem>
92
 
93
            <listitem>
94
 
95
 
96
              <emphasis>AS_AREA_EXEC</emphasis>
97
 
98
               flag indicates code execution permission. Some architectures do not support execution persmission restriction. In this case this flag has no effect.
99
            </listitem>
100
 
101
            <listitem>
102
 
103
 
104
              <emphasis>AS_AREA_DEVICE</emphasis>
105
 
106
               marks area as mapped to the device memory.
107
            </listitem>
108
          </itemizedlist></para>
109
 
110
        <para>Kernel provides possibility tasks create/expand/shrink/share its
111
        address space via the set of syscalls.</para>
35 bondari 112
      </section>
113
 
114
      <section>
115
        <title>Address Space ID (ASID)</title>
116
 
46 bondari 117
        <para>When switching to the different task, kernel also require to
118
        switch mappings to the different address space. In case TLB cannot
47 bondari 119
        distinguish address space mappings, all mapping information in TLB
120
        from the old address space must be flushed, which can create certain
121
        uncessary overhead during the task switching. To avoid this, some
122
        architectures have capability to segregate different address spaces on
123
        hardware level introducing the address space identifier as a part of
124
        TLB record, telling the virtual address space translation unit to
125
        which address space this record is applicable.</para>
35 bondari 126
 
46 bondari 127
        <para>HelenOS kernel can take advantage of this hardware supported
47 bondari 128
        identifier by having an ASID abstraction which is somehow related to
129
        the corresponding architecture identifier. I.e. on ia64 kernel ASID is
130
        derived from RID (region identifier) and on the mips32 kernel ASID is
131
        actually the hardware identifier. As expected, this ASID information
132
        record is the part of <emphasis>as_t</emphasis> structure.</para>
35 bondari 133
 
47 bondari 134
        <para>Due to the hardware limitations, hardware ASID has limited
135
        length from 8 bits on ia64 to 24 bits on mips32, which makes it
136
        impossible to use it as unique address space identifier for all tasks
137
        running in the system. In such situations special ASID stealing
138
        algoritm is used, which takes ASID from inactive task and assigns it
139
        to the active task.</para>
140
 
141
        <para><classname>ASID stealing algoritm here.</classname></para>
35 bondari 142
      </section>
9 bondari 143
    </section>
144
 
145
    <section>
11 bondari 146
      <title>Virtual address translation</title>
9 bondari 147
 
35 bondari 148
      <section id="page_tables">
149
        <title>Page tables</title>
34 bondari 150
 
35 bondari 151
        <para>HelenOS kernel has two different approaches to the paging
152
        implementation: <emphasis>4 level page tables</emphasis> and
153
        <emphasis>global hash tables</emphasis>, which are accessible via
47 bondari 154
        generic paging abstraction layer. Such different functionality was
155
        caused by the major architectural differences between supported
156
        platforms. This abstraction is implemented with help of the global
157
        structure of pointers to basic mapping functions
158
        <emphasis>page_mapping_operations</emphasis>. To achieve different
159
        functionality of page tables, corresponding layer must implement
160
        functions, declared in
161
        <emphasis>page_mapping_operations</emphasis></para>
34 bondari 162
 
35 bondari 163
        <formalpara>
164
          <title>4-level page tables</title>
34 bondari 165
 
35 bondari 166
          <para>4-level page tables are the generalization of the hardware
47 bondari 167
          capabilities of several architectures.<itemizedlist>
35 bondari 168
              <listitem>
169
                 ia32 uses 2-level page tables, with full hardware support.
170
              </listitem>
34 bondari 171
 
35 bondari 172
              <listitem>
173
                 amd64 uses 4-level page tables, also coming with full hardware support.
174
              </listitem>
175
 
176
              <listitem>
177
                 mips and ppc32 have 2-level tables, software simulated support.
178
              </listitem>
179
            </itemizedlist></para>
180
        </formalpara>
181
 
182
        <formalpara>
183
          <title>Global hash tables</title>
184
 
185
          <para>- global page hash table: existuje jen jedna v celem systemu
186
          (vyuziva ji ia64), pozn. ia64 ma zatim vypnuty VHPT. Pouziva se
46 bondari 187
          genericke hash table s oddelenymi collision chains. ASID support is
188
          required to use global hash tables.</para>
35 bondari 189
        </formalpara>
190
 
191
        <para>Thanks to the abstract paging interface, there is possibility
192
        left have more paging implementations, for example B-Tree page
193
        tables.</para>
194
      </section>
195
 
196
      <section id="tlb">
54 bondari 197
        <title>Translation Lookaside buffer</title>
35 bondari 198
 
54 bondari 199
        <para>Due to the extensive overhead during the page mapping lookup in
200
        the page tables, all architectures has fast assotiative cache memory
201
        built-in CPU. This memory called TLB stores recently used page table
202
        entries.</para>
35 bondari 203
 
54 bondari 204
        <section id="tlb_shootdown">
205
          <title>TLB consistency. TLB shootdown algorithm.</title>
35 bondari 206
 
54 bondari 207
          <para>Operating system is responsible for keeping TLB consistent by
208
          invalidating the contents of TLB, whenever there is some change in
209
          page tables. Those changes may occur when page or group of pages
210
          were unmapped, mapping is changed or system switching active address
211
          space to schedule a new system task (which is a batch unmap of all
212
          address space mappings). Moreover, this invalidation operation must
213
          be done an all system CPUs because each CPU has its own independent
214
          TLB cache. Thus maintaining TLB consistency on SMP configuration as
215
          not as trivial task as it looks at the first glance. Naive solution
216
          would assume remote TLB invalidatation, which is not possible on the
217
          most of the architectures, because of the simple fact - flushing TLB
218
          is allowed only on the local CPU and there is no possibility to
219
          access other CPUs' TLB caches.</para>
220
 
221
          <para>Technique of remote invalidation of TLB entries is called "TLB
222
          shootdown". HelenOS uses a variation of the algorithm described by
223
          D. Black et al., "Translation Lookaside Buffer Consistency: A
224
          Software Approach," Proc. Third Int'l Conf. Architectural Support
225
          for Programming Languages and Operating Systems, 1989, pp.
226
          113-122.</para>
227
 
228
          <para>As the situation demands, you will want partitial invalidation
229
          of TLB caches. In case of simple memory mapping change it is
230
          necessary to invalidate only one or more adjacent pages. In case if
231
          the architecture is aware of ASIDs, during the address space
232
          switching, kernel invalidates only entries from this particular
233
          address space. Final option of the TLB invalidation is the complete
234
          TLB cache invalidation, which is the operation that flushes all
235
          entries in TLB.</para>
236
 
237
          <para>TLB shootdown is performed in two phases. First, the initiator
238
          process sends an IPI message indicating the TLB shootdown request to
239
          the rest of the CPUs. Then, it waits until all CPUs confirm TLB
240
          invalidating action execution.</para>
241
        </section>
35 bondari 242
      </section>
243
    </section>
46 bondari 244
 
245
    <section>
246
      <title>---</title>
247
 
248
      <para>At the moment HelenOS does not support swapping.</para>
249
 
250
      <para>- pouzivame vypadky stranky k alokaci ramcu on-demand v ramci
251
      as_area - na architekturach, ktere to podporuji, podporujeme non-exec
252
      stranky</para>
253
    </section>
26 bondari 254
  </section>
9 bondari 255
 
26 bondari 256
  <!-- End of VM -->
24 bondari 257
 
26 bondari 258
  <section>
259
    <!-- Phys mem -->
260
 
11 bondari 261
    <title>Physical memory management</title>
9 bondari 262
 
24 bondari 263
    <section id="zones_and_frames">
264
      <title>Zones and frames</title>
265
 
34 bondari 266
      <para><!--graphic fileref="images/mm2.png" /--><!--graphic fileref="images/buddy_alloc.svg" format="SVG" /--></para>
26 bondari 267
 
268
      <para>On some architectures not whole physical memory is available for
269
      conventional usage. This limitations require from kernel to maintain a
270
      table of available and unavailable ranges of physical memory addresses.
271
      Main idea of zones is in creating memory zone entity, that is a
272
      continuous chunk of memory available for allocation. If some chunk is
273
      not available, we simply do not put it in any zone.</para>
274
 
275
      <para>Zone is also serves for informational purposes, containing
276
      information about number of free and busy frames. Physical memory
277
      allocation is also done inside the certain zone. Allocation of zone
278
      frame must be organized by the <link linkend="frame_allocator">frame
279
      allocator</link> associated with the zone.</para>
280
 
281
      <para>Some of the architectures (mips32, ppc32) have only one zone, that
282
      covers whole physical memory, and the others (like ia32) may have
283
      multiple zones. Information about zones on current machine is stored in
284
      BIOS hardware tables or can be hardcoded into kernel during compile
285
      time.</para>
24 bondari 286
    </section>
287
 
288
    <section id="frame_allocator">
289
      <title>Frame allocator</title>
290
 
39 bondari 291
      <para><mediaobject id="frame_alloc">
292
          <imageobject role="html">
293
            <imagedata fileref="images/frame_alloc.png" format="PNG" />
294
          </imageobject>
295
 
296
          <imageobject role="fop">
297
            <imagedata fileref="images.vector/frame_alloc.svg" format="SVG" />
298
          </imageobject>
299
        </mediaobject></para>
300
 
26 bondari 301
      <formalpara>
302
        <title>Overview</title>
24 bondari 303
 
26 bondari 304
        <para>Frame allocator provides physical memory allocation for the
305
        kernel. Because of zonal organization of physical memory, frame
306
        allocator is always working in context of some zone, thus making
307
        impossible to allocate a piece of memory, which lays in different
308
        zone, which cannot happen, because two adjacent zones can be merged
309
        into one. Frame allocator is also being responsible to update
310
        information on the number of free/busy frames in zone. Physical memory
311
        allocation inside one <link linkend="zones_and_frames">memory
312
        zone</link> is being handled by an instance of <link
313
        linkend="buddy_allocator">buddy allocator</link> tailored to allocate
314
        blocks of physical memory frames.</para>
315
      </formalpara>
24 bondari 316
 
26 bondari 317
      <formalpara>
318
        <title>Allocation / deallocation</title>
24 bondari 319
 
26 bondari 320
        <para>Upon allocation request, frame allocator tries to find first
321
        zone, that can satisfy the incoming request (has required amount of
322
        free frames to allocate). During deallocation, frame allocator needs
323
        to find zone, that contain deallocated frame. This approach could
324
        bring up two potential problems: <itemizedlist>
325
            <listitem>
326
               Linear search of zones does not any good to performance, but number of zones is not expected to be high. And if yes, list of zones can be replaced with more time-efficient B-tree.
327
            </listitem>
24 bondari 328
 
26 bondari 329
            <listitem>
330
               Quickly find out if zone contains required number of frames to allocate and if this chunk of memory is properly aligned. This issue is perfectly solved bu the buddy allocator.
331
            </listitem>
332
          </itemizedlist></para>
333
      </formalpara>
334
    </section>
17 jermar 335
 
34 bondari 336
    <section id="buddy_allocator">
337
      <title>Buddy allocator</title>
17 jermar 338
 
34 bondari 339
      <section>
340
        <title>Overview</title>
17 jermar 341
 
39 bondari 342
        <para><mediaobject id="buddy_alloc">
343
            <imageobject role="html">
344
              <imagedata fileref="images/buddy_alloc.png" format="PNG" />
345
            </imageobject>
346
 
347
            <imageobject role="fop">
348
              <imagedata fileref="images.vector/buddy_alloc.svg" format="SVG" />
349
            </imageobject>
350
          </mediaobject></para>
351
 
45 jermar 352
        <para>In the buddy allocator, the memory is broken down into
353
        power-of-two sized naturally aligned blocks. These blocks are
354
        organized in an array of lists, in which the list with index i
355
        contains all unallocated blocks of size
356
        <mathphrase>2<superscript>i</superscript></mathphrase>. The index i is
357
        called the order of block. Should there be two adjacent equally sized
46 bondari 358
        blocks in the list i<mathphrase />(i.e. buddies), the buddy allocator
359
        would coalesce them and put the resulting block in list <mathphrase>i
360
        + 1</mathphrase>, provided that the resulting block would be naturally
361
        aligned. Similarily, when the allocator is asked to allocate a block
362
        of size <mathphrase>2<superscript>i</superscript></mathphrase>, it
363
        first tries to satisfy the request from the list with index i. If the
364
        request cannot be satisfied (i.e. the list i is empty), the buddy
365
        allocator will try to allocate and split a larger block from the list
366
        with index i + 1. Both of these algorithms are recursive. The
367
        recursion ends either when there are no blocks to coalesce in the
368
        former case or when there are no blocks that can be split in the
369
        latter case.</para>
17 jermar 370
 
34 bondari 371
        <!--graphic fileref="images/mm1.png" format="EPS" /-->
17 jermar 372
 
34 bondari 373
        <para>This approach greatly reduces external fragmentation of memory
374
        and helps in allocating bigger continuous blocks of memory aligned to
375
        their size. On the other hand, the buddy allocator suffers increased
376
        internal fragmentation of memory and is not suitable for general
377
        kernel allocations. This purpose is better addressed by the <link
378
        linkend="slab">slab allocator</link>.</para>
379
      </section>
17 jermar 380
 
34 bondari 381
      <section>
382
        <title>Implementation</title>
17 jermar 383
 
34 bondari 384
        <para>The buddy allocator is, in fact, an abstract framework wich can
385
        be easily specialized to serve one particular task. It knows nothing
386
        about the nature of memory it helps to allocate. In order to beat the
387
        lack of this knowledge, the buddy allocator exports an interface that
45 jermar 388
        each of its clients is required to implement. When supplied with an
34 bondari 389
        implementation of this interface, the buddy allocator can use
45 jermar 390
        specialized external functions to find a buddy for a block, split and
34 bondari 391
        coalesce blocks, manipulate block order and mark blocks busy or
45 jermar 392
        available. For precise documentation of this interface, refer to
39 bondari 393
        <emphasis>"HelenOS Generic Kernel Reference Manual"</emphasis>.</para>
17 jermar 394
 
34 bondari 395
        <formalpara>
396
          <title>Data organization</title>
17 jermar 397
 
34 bondari 398
          <para>Each entity allocable by the buddy allocator is required to
399
          contain space for storing block order number and a link variable
400
          used to interconnect blocks within the same order.</para>
15 bondari 401
 
34 bondari 402
          <para>Whatever entities are allocated by the buddy allocator, the
403
          first entity within a block is used to represent the entire block.
404
          The first entity keeps the order of the whole block. Other entities
405
          within the block are assigned the magic value
406
          <constant>BUDDY_INNER_BLOCK</constant>. This is especially important
45 jermar 407
          for effective identification of buddies in a one-dimensional array
34 bondari 408
          because the entity that represents a potential buddy cannot be
409
          associated with <constant>BUDDY_INNER_BLOCK</constant> (i.e. if it
410
          is associated with <constant>BUDDY_INNER_BLOCK</constant> then it is
411
          not a buddy).</para>
15 bondari 412
 
45 jermar 413
          <para>The buddy allocator always uses the first frame to represent
414
          the frame block. This frame contains <varname>buddy_order</varname>
415
          variable to provide information about the block size it actually
416
          represents (
34 bondari 417
          <mathphrase>2<superscript>buddy_order</superscript></mathphrase>
418
          frames block). Other frames in block have this value set to magic
419
          <constant>BUDDY_INNER_BLOCK</constant> that is much greater than
420
          buddy <varname>max_order</varname> value.</para>
15 bondari 421
 
34 bondari 422
          <para>Each <varname>frame_t</varname> also contains pointer member
423
          to hold frame structure in the linked list inside one order.</para>
424
        </formalpara>
15 bondari 425
 
34 bondari 426
        <formalpara>
427
          <title>Allocation algorithm</title>
15 bondari 428
 
34 bondari 429
          <para>Upon <mathphrase>2<superscript>i</superscript></mathphrase>
430
          frames block allocation request, allocator checks if there are any
431
          blocks available at the order list <varname>i</varname>. If yes,
432
          removes block from order list and returns its address. If no,
433
          recursively allocates
434
          <mathphrase>2<superscript>i+1</superscript></mathphrase> frame
435
          block, splits it into two
436
          <mathphrase>2<superscript>i</superscript></mathphrase> frame blocks.
437
          Then adds one of the blocks to the <varname>i</varname> order list
438
          and returns address of another.</para>
439
        </formalpara>
15 bondari 440
 
34 bondari 441
        <formalpara>
442
          <title>Deallocation algorithm</title>
17 jermar 443
 
34 bondari 444
          <para>Check if block has so called buddy (another free
445
          <mathphrase>2<superscript>i</superscript></mathphrase> frame block
446
          that can be linked with freed block into the
447
          <mathphrase>2<superscript>i+1</superscript></mathphrase> block).
448
          Technically, buddy is a odd/even block for even/odd block
449
          respectively. Plus we can put an extra requirement, that resulting
450
          block must be aligned to its size. This requirement guarantees
451
          natural block alignment for the blocks coming out the allocation
452
          system.</para>
9 bondari 453
 
34 bondari 454
          <para>Using direct pointer arithmetics,
455
          <varname>frame_t::ref_count</varname> and
456
          <varname>frame_t::buddy_order</varname> variables, finding buddy is
457
          done at constant time.</para>
458
        </formalpara>
459
      </section>
26 bondari 460
    </section>
461
 
15 bondari 462
    <section id="slab">
11 bondari 463
      <title>Slab allocator</title>
9 bondari 464
 
26 bondari 465
      <section>
34 bondari 466
        <title>Overview</title>
9 bondari 467
 
34 bondari 468
        <para><termdef><glossterm>Slab</glossterm> represents a contiguous
469
        piece of memory, usually made of several physically contiguous
470
        pages.</termdef> <termdef><glossterm>Slab cache</glossterm> consists
471
        of one or more slabs.</termdef></para>
472
 
26 bondari 473
        <para>The majority of memory allocation requests in the kernel are for
474
        small, frequently used data structures. For this purpose the slab
34 bondari 475
        allocator is a perfect solution. The basic idea behind the slab
26 bondari 476
        allocator is to have lists of commonly used objects available packed
477
        into pages. This avoids the overhead of allocating and destroying
34 bondari 478
        commonly used types of objects such threads, virtual memory structures
479
        etc. Also due to the exact allocated size matching, slab allocation
480
        completely eliminates internal fragmentation issue.</para>
26 bondari 481
      </section>
24 bondari 482
 
26 bondari 483
      <section>
34 bondari 484
        <title>Implementation</title>
9 bondari 485
 
39 bondari 486
        <para><mediaobject id="slab_alloc">
487
            <imageobject role="html">
488
              <imagedata fileref="images/slab_alloc.png" format="PNG" />
489
            </imageobject>
490
 
491
            <imageobject role="fop">
492
              <imagedata fileref="images.vector/slab_alloc.svg" format="SVG" />
493
            </imageobject>
494
          </mediaobject></para>
495
 
26 bondari 496
        <para>The SLAB allocator is closely modelled after <ulink
497
        url="http://www.usenix.org/events/usenix01/full_papers/bonwick/bonwick_html/">
498
        OpenSolaris SLAB allocator by Jeff Bonwick and Jonathan Adams </ulink>
499
        with the following exceptions: <itemizedlist>
500
            <listitem>
501
               empty SLABS are deallocated immediately (in Linux they are kept in linked list, in Solaris ???)
502
            </listitem>
503
 
504
            <listitem>
505
               empty magazines are deallocated when not needed (in Solaris they are held in linked list in slab cache)
506
            </listitem>
507
          </itemizedlist> Following features are not currently supported but
508
        would be easy to do: <itemizedlist>
509
            <listitem>
510
               - cache coloring
511
            </listitem>
512
 
513
            <listitem>
34 bondari 514
               - dynamic magazine grow (different magazine sizes are already supported, but we would need to adjust allocation strategy)
26 bondari 515
            </listitem>
516
          </itemizedlist></para>
517
 
34 bondari 518
        <section>
519
          <title>Magazine layer</title>
26 bondari 520
 
34 bondari 521
          <para>Due to the extensive bottleneck on SMP architures, caused by
522
          global SLAB locking mechanism, making processing of all slab
523
          allocation requests serialized, a new layer was introduced to the
524
          classic slab allocator design. Slab allocator was extended to
525
          support per-CPU caches 'magazines' to achieve good SMP scaling.
526
          <termdef>Slab SMP perfromance bottleneck was resolved by introducing
527
          a per-CPU caching scheme called as <glossterm>magazine
528
          layer</glossterm></termdef>.</para>
26 bondari 529
 
34 bondari 530
          <para>Magazine is a N-element cache of objects, so each magazine can
531
          satisfy N allocations. Magazine behaves like a automatic weapon
532
          magazine (LIFO, stack), so the allocation/deallocation become simple
533
          push/pop pointer operation. Trick is that CPU does not access global
534
          slab allocator data during the allocation from its magazine, thus
535
          making possible parallel allocations between CPUs.</para>
26 bondari 536
 
34 bondari 537
          <para>Implementation also requires adding another feature as the
538
          CPU-bound magazine is actually a pair of magazines to avoid
539
          thrashing when during allocation/deallocatiion of 1 item at the
540
          magazine size boundary. LIFO order is enforced, which should avoid
541
          fragmentation as much as possible.</para>
26 bondari 542
 
46 bondari 543
          <para>Another important entity of magazine layer is the common full
544
          magazine list (also called a depot), that stores full magazines that
545
          may be used by any of the CPU magazine caches to reload active CPU
546
          magazine. This list of magazines can be pre-filled with full
547
          magazines during initialization, but in current implementation it is
548
          filled during object deallocation, when CPU magazine becomes
549
          full.</para>
26 bondari 550
 
34 bondari 551
          <para>Slab allocator control structures are allocated from special
552
          slabs, that are marked by special flag, indicating that it should
553
          not be used for slab magazine layer. This is done to avoid possible
554
          infinite recursions and deadlock during conventional slab allocaiton
555
          requests.</para>
556
        </section>
26 bondari 557
 
34 bondari 558
        <section>
559
          <title>Allocation/deallocation</title>
26 bondari 560
 
34 bondari 561
          <para>Every cache contains list of full slabs and list of partialy
562
          full slabs. Empty slabs are immediately freed (thrashing will be
563
          avoided because of magazines).</para>
26 bondari 564
 
34 bondari 565
          <para>The SLAB allocator allocates lots of space and does not free
566
          it. When frame allocator fails to allocate the frame, it calls
567
          slab_reclaim(). It tries 'light reclaim' first, then brutal reclaim.
568
          The light reclaim releases slabs from cpu-shared magazine-list,
569
          until at least 1 slab is deallocated in each cache (this algorithm
570
          should probably change). The brutal reclaim removes all cached
571
          objects, even from CPU-bound magazines.</para>
572
 
573
          <formalpara>
574
            <title>Allocation</title>
575
 
576
            <para><emphasis>Step 1.</emphasis> When it comes to the allocation
577
            request, slab allocator first of all checks availability of memory
578
            in local CPU-bound magazine. If it is there, we would just "pop"
579
            the CPU magazine and return the pointer to object.</para>
580
 
581
            <para><emphasis>Step 2.</emphasis> If the CPU-bound magazine is
582
            empty, allocator will attempt to reload magazin, swapping it with
583
            second CPU magazine and returns to the first step.</para>
584
 
585
            <para><emphasis>Step 3.</emphasis> Now we are in the situation
586
            when both CPU-bound magazines are empty, which makes allocator to
587
            access shared full-magazines depot to reload CPU-bound magazines.
588
            If reload is succesful (meaning there are full magazines in depot)
589
            algoritm continues at Step 1.</para>
590
 
591
            <para><emphasis>Step 4.</emphasis> Final step of the allocation.
592
            In this step object is allocated from the conventional slab layer
593
            and pointer is returned.</para>
594
          </formalpara>
595
 
596
          <formalpara>
597
            <title>Deallocation</title>
598
 
599
            <para><emphasis>Step 1.</emphasis> During deallocation request,
600
            slab allocator will check if the local CPU-bound magazine is not
601
            full. In this case we will just push the pointer to this
602
            magazine.</para>
603
 
604
            <para><emphasis>Step 2.</emphasis> If the CPU-bound magazine is
605
            full, allocator will attempt to reload magazin, swapping it with
606
            second CPU magazine and returns to the first step.</para>
607
 
608
            <para><emphasis>Step 3.</emphasis> Now we are in the situation
609
            when both CPU-bound magazines are full, which makes allocator to
610
            access shared full-magazines depot to put one of the magazines to
611
            the depot and creating new empty magazine. Algoritm continues at
612
            Step 1.</para>
613
          </formalpara>
614
        </section>
26 bondari 615
      </section>
15 bondari 616
    </section>
26 bondari 617
 
618
    <!-- End of Physmem -->
619
  </section>
620
 
621
  <section>
622
    <title>Memory sharing</title>
623
 
624
    <para>Not implemented yet(?)</para>
625
  </section>
11 bondari 626
</chapter>