Subversion Repositories HelenOS-doc

Rev

Rev 45 | Rev 47 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
9 bondari 1
<?xml version="1.0" encoding="UTF-8"?>
11 bondari 2
<chapter id="mm">
3
  <?dbhtml filename="mm.html"?>
9 bondari 4
 
11 bondari 5
  <title>Memory management</title>
9 bondari 6
 
26 bondari 7
  <section>
11 bondari 8
    <title>Virtual memory management</title>
9 bondari 9
 
10
    <section>
35 bondari 11
      <title>Introduction</title>
12
 
13
      <para>Virtual memory is a special memory management technique, used by
14
      kernel to achieve a bunch of mission critical goals. <itemizedlist>
15
          <listitem>
16
             Isolate each task from other tasks that are running on the system at the same time.
17
          </listitem>
18
 
19
          <listitem>
20
             Allow to allocate more memory, than is actual physical memory size of the machine.
21
          </listitem>
22
 
23
          <listitem>
24
             Allowing, in general, to load and execute two programs that are linked on the same address without complicated relocations.
25
          </listitem>
26
        </itemizedlist></para>
38 bondari 27
 
39 bondari 28
      <para><!--
29
 
38 bondari 30
                TLB shootdown ASID/ASID:PAGE/ALL.
31
                TLB shootdown requests can come in asynchroniously
32
                so there is a cache of TLB shootdown requests. Upon cache overflow TLB shootdown ALL is executed
33
 
34
 
35
                <para>
36
                        Address spaces. Address space area (B+ tree). Only for uspace. Set of syscalls (shrink/extend etc).
37
                        Special address space area type - device - prohibits shrink/extend syscalls to call on it.
38
                        Address space has link to mapping tables (hierarchical - per Address space, hash - global tables).
39
                </para>
40
 
41
--></para>
35 bondari 42
    </section>
43
 
44
    <section>
45
      <title>Paging</title>
46
 
47
      <para>Virtual memory is usually using paged memory model, where virtual
48
      memory address space is divided into the <emphasis>pages</emphasis>
49
      (usually having size 4096 bytes) and physical memory is divided into the
39 bondari 50
      frames (same sized as a page, of course). Each page may be mapped to
51
      some frame and then, upon memory access to the virtual address, CPU
52
      performs <emphasis>address translation</emphasis> during the instruction
35 bondari 53
      execution. Non-existing mapping generates page fault exception, calling
54
      kernel exception handler, thus allowing kernel to manipulate rules of
55
      memory access. Information for pages mapping is stored by kernel in the
56
      <link linkend="page_tables">page tables</link></para>
57
 
58
      <para>The majority of the architectures use multi-level page tables,
59
      which means need to access physical memory several times before getting
60
      physical address. This fact would make serios performance overhead in
61
      virtual memory management. To avoid this <link linkend="tlb">Traslation
62
      Lookaside Buffer (TLB)</link> is used.</para>
63
    </section>
64
 
65
    <section>
11 bondari 66
      <title>Address spaces</title>
9 bondari 67
 
35 bondari 68
      <section>
46 bondari 69
        <title>Address space areas</title>
35 bondari 70
 
46 bondari 71
        <para>Each address space consists of mutually disjunctive continuous
72
        address space areas. Address space area is precisely defined by its
73
        base address and the number of frames is contains.</para>
35 bondari 74
 
46 bondari 75
        <para>Address space area also has special flags, that define behaviour
76
        and permissions on the particular area. <itemizedlist>
77
            <listitem>
78
 
79
 
80
              <emphasis>AS_AREA_READ</emphasis>
81
 
82
               flag indicates reading permission.
83
            </listitem>
84
 
85
            <listitem>
86
 
87
 
88
              <emphasis>AS_AREA_WRITE</emphasis>
89
 
90
               flag indicates writing permission.
91
            </listitem>
92
 
93
            <listitem>
94
 
95
 
96
              <emphasis>AS_AREA_EXEC</emphasis>
97
 
98
               flag indicates code execution permission. Some architectures do not support execution persmission restriction. In this case this flag has no effect.
99
            </listitem>
100
 
101
            <listitem>
102
 
103
 
104
              <emphasis>AS_AREA_DEVICE</emphasis>
105
 
106
               marks area as mapped to the device memory.
107
            </listitem>
108
          </itemizedlist></para>
109
 
110
        <para>Kernel provides possibility tasks create/expand/shrink/share its
111
        address space via the set of syscalls.</para>
35 bondari 112
      </section>
113
 
114
      <section>
115
        <title>Address Space ID (ASID)</title>
116
 
46 bondari 117
        <para>When switching to the different task, kernel also require to
118
        switch mappings to the different address space. In case TLB cannot
119
        distinguish address space mappings, all mappings from the old address
120
        space should be flushed, which can create certain uncessary
121
        overhead.</para>
35 bondari 122
 
46 bondari 123
        <para>To avoid this, some architectures have capability to segregate
124
        different address spaces on HW level introducing the ASID (address
125
        space ID). On those architectures each TLB record contains an address
126
        space identifier, that tells to which address space this record is
127
        applicable.</para>
35 bondari 128
 
46 bondari 129
        <para>HelenOS kernel can take advantage of this hardware supported
130
        identifier by having an ASID abstraction which is connected to the
131
        corresponding architecture identifier. I.e. on ia64 kernel ASID is
132
        built from RID (region identifier) and on the mips32 kernel ASID is
133
        actually the hardware identifier.</para>
35 bondari 134
 
46 bondari 135
        <para>Due to the hardware limitations ASID has limited length from 8
136
        bits on ia64 to 24 bits on mips32, which makes it impossible to use as
137
        unique address space identifier for all tasks running in the system.
138
        In such situations special ASID stealing algoritm is used, which takes
139
        ASID from inactive task and assigns it to the active task.</para>
35 bondari 140
      </section>
9 bondari 141
    </section>
142
 
143
    <section>
11 bondari 144
      <title>Virtual address translation</title>
9 bondari 145
 
35 bondari 146
      <section id="page_tables">
147
        <title>Page tables</title>
34 bondari 148
 
35 bondari 149
        <para>HelenOS kernel has two different approaches to the paging
150
        implementation: <emphasis>4 level page tables</emphasis> and
151
        <emphasis>global hash tables</emphasis>, which are accessible via
152
        generic paging abstraction layer. This division was caused by the
153
        major architectural differences between different platforms.</para>
34 bondari 154
 
35 bondari 155
        <formalpara>
156
          <title>4-level page tables</title>
34 bondari 157
 
35 bondari 158
          <para>4-level page tables are the generalization of the hardware
159
          capabilities of the certain platforms. <itemizedlist>
160
              <listitem>
161
                 ia32 uses 2-level page tables, with full hardware support.
162
              </listitem>
34 bondari 163
 
35 bondari 164
              <listitem>
165
                 amd64 uses 4-level page tables, also coming with full hardware support.
166
              </listitem>
167
 
168
              <listitem>
169
                 mips and ppc32 have 2-level tables, software simulated support.
170
              </listitem>
171
            </itemizedlist></para>
172
        </formalpara>
173
 
174
        <formalpara>
175
          <title>Global hash tables</title>
176
 
177
          <para>- global page hash table: existuje jen jedna v celem systemu
178
          (vyuziva ji ia64), pozn. ia64 ma zatim vypnuty VHPT. Pouziva se
46 bondari 179
          genericke hash table s oddelenymi collision chains. ASID support is
180
          required to use global hash tables.</para>
35 bondari 181
        </formalpara>
182
 
183
        <para>Thanks to the abstract paging interface, there is possibility
184
        left have more paging implementations, for example B-Tree page
185
        tables.</para>
186
      </section>
187
 
188
      <section id="tlb">
46 bondari 189
        <title>Translation Lookaside Buffer</title>
35 bondari 190
 
191
        <para>- TLB cachuji informace ve strankovacich tabulkach; alternativne
192
        se lze na strankovaci tabulky (ci ruzne hw rozsireni [e.g. VHPT, ppc32
193
        hw hash table]) divat jako na velke TLB</para>
194
 
195
        <para>- pri modifikaci mapovani nebo odstraneni mapovani ze
196
        strankovacich tabulek je potreba zajistit konsistenci TLB a techto
197
        tabulek; nutne delat na vsech CPU; na to mame zjednodusenou verzi TLB
198
        shootdown mechanismu; je to variace na algoritmus popsany zde: D.
199
        Black et al., "Translation Lookaside Buffer Consistency: A Software
200
        Approach," Proc. Third Int'l Conf. Architectural Support for
201
        Programming Languages and Operating Systems, 1989, pp. 113-122.</para>
202
 
203
        <para>- nutno poznamenat, ze existuji odlehcenejsi verze TLB shootdown
46 bondari 204
        algoritm</para>
35 bondari 205
      </section>
206
    </section>
46 bondari 207
 
208
    <section>
209
      <title>---</title>
210
 
211
      <para>At the moment HelenOS does not support swapping.</para>
212
 
213
      <para>- pouzivame vypadky stranky k alokaci ramcu on-demand v ramci
214
      as_area - na architekturach, ktere to podporuji, podporujeme non-exec
215
      stranky</para>
216
    </section>
26 bondari 217
  </section>
9 bondari 218
 
26 bondari 219
  <!-- End of VM -->
24 bondari 220
 
26 bondari 221
  <section>
222
    <!-- Phys mem -->
223
 
11 bondari 224
    <title>Physical memory management</title>
9 bondari 225
 
24 bondari 226
    <section id="zones_and_frames">
227
      <title>Zones and frames</title>
228
 
34 bondari 229
      <para><!--graphic fileref="images/mm2.png" /--><!--graphic fileref="images/buddy_alloc.svg" format="SVG" /--></para>
26 bondari 230
 
231
      <para>On some architectures not whole physical memory is available for
232
      conventional usage. This limitations require from kernel to maintain a
233
      table of available and unavailable ranges of physical memory addresses.
234
      Main idea of zones is in creating memory zone entity, that is a
235
      continuous chunk of memory available for allocation. If some chunk is
236
      not available, we simply do not put it in any zone.</para>
237
 
238
      <para>Zone is also serves for informational purposes, containing
239
      information about number of free and busy frames. Physical memory
240
      allocation is also done inside the certain zone. Allocation of zone
241
      frame must be organized by the <link linkend="frame_allocator">frame
242
      allocator</link> associated with the zone.</para>
243
 
244
      <para>Some of the architectures (mips32, ppc32) have only one zone, that
245
      covers whole physical memory, and the others (like ia32) may have
246
      multiple zones. Information about zones on current machine is stored in
247
      BIOS hardware tables or can be hardcoded into kernel during compile
248
      time.</para>
24 bondari 249
    </section>
250
 
251
    <section id="frame_allocator">
252
      <title>Frame allocator</title>
253
 
39 bondari 254
      <para><mediaobject id="frame_alloc">
255
          <imageobject role="html">
256
            <imagedata fileref="images/frame_alloc.png" format="PNG" />
257
          </imageobject>
258
 
259
          <imageobject role="fop">
260
            <imagedata fileref="images.vector/frame_alloc.svg" format="SVG" />
261
          </imageobject>
262
        </mediaobject></para>
263
 
26 bondari 264
      <formalpara>
265
        <title>Overview</title>
24 bondari 266
 
26 bondari 267
        <para>Frame allocator provides physical memory allocation for the
268
        kernel. Because of zonal organization of physical memory, frame
269
        allocator is always working in context of some zone, thus making
270
        impossible to allocate a piece of memory, which lays in different
271
        zone, which cannot happen, because two adjacent zones can be merged
272
        into one. Frame allocator is also being responsible to update
273
        information on the number of free/busy frames in zone. Physical memory
274
        allocation inside one <link linkend="zones_and_frames">memory
275
        zone</link> is being handled by an instance of <link
276
        linkend="buddy_allocator">buddy allocator</link> tailored to allocate
277
        blocks of physical memory frames.</para>
278
      </formalpara>
24 bondari 279
 
26 bondari 280
      <formalpara>
281
        <title>Allocation / deallocation</title>
24 bondari 282
 
26 bondari 283
        <para>Upon allocation request, frame allocator tries to find first
284
        zone, that can satisfy the incoming request (has required amount of
285
        free frames to allocate). During deallocation, frame allocator needs
286
        to find zone, that contain deallocated frame. This approach could
287
        bring up two potential problems: <itemizedlist>
288
            <listitem>
289
               Linear search of zones does not any good to performance, but number of zones is not expected to be high. And if yes, list of zones can be replaced with more time-efficient B-tree.
290
            </listitem>
24 bondari 291
 
26 bondari 292
            <listitem>
293
               Quickly find out if zone contains required number of frames to allocate and if this chunk of memory is properly aligned. This issue is perfectly solved bu the buddy allocator.
294
            </listitem>
295
          </itemizedlist></para>
296
      </formalpara>
297
    </section>
17 jermar 298
 
34 bondari 299
    <section id="buddy_allocator">
300
      <title>Buddy allocator</title>
17 jermar 301
 
34 bondari 302
      <section>
303
        <title>Overview</title>
17 jermar 304
 
39 bondari 305
        <para><mediaobject id="buddy_alloc">
306
            <imageobject role="html">
307
              <imagedata fileref="images/buddy_alloc.png" format="PNG" />
308
            </imageobject>
309
 
310
            <imageobject role="fop">
311
              <imagedata fileref="images.vector/buddy_alloc.svg" format="SVG" />
312
            </imageobject>
313
          </mediaobject></para>
314
 
45 jermar 315
        <para>In the buddy allocator, the memory is broken down into
316
        power-of-two sized naturally aligned blocks. These blocks are
317
        organized in an array of lists, in which the list with index i
318
        contains all unallocated blocks of size
319
        <mathphrase>2<superscript>i</superscript></mathphrase>. The index i is
320
        called the order of block. Should there be two adjacent equally sized
46 bondari 321
        blocks in the list i<mathphrase />(i.e. buddies), the buddy allocator
322
        would coalesce them and put the resulting block in list <mathphrase>i
323
        + 1</mathphrase>, provided that the resulting block would be naturally
324
        aligned. Similarily, when the allocator is asked to allocate a block
325
        of size <mathphrase>2<superscript>i</superscript></mathphrase>, it
326
        first tries to satisfy the request from the list with index i. If the
327
        request cannot be satisfied (i.e. the list i is empty), the buddy
328
        allocator will try to allocate and split a larger block from the list
329
        with index i + 1. Both of these algorithms are recursive. The
330
        recursion ends either when there are no blocks to coalesce in the
331
        former case or when there are no blocks that can be split in the
332
        latter case.</para>
17 jermar 333
 
34 bondari 334
        <!--graphic fileref="images/mm1.png" format="EPS" /-->
17 jermar 335
 
34 bondari 336
        <para>This approach greatly reduces external fragmentation of memory
337
        and helps in allocating bigger continuous blocks of memory aligned to
338
        their size. On the other hand, the buddy allocator suffers increased
339
        internal fragmentation of memory and is not suitable for general
340
        kernel allocations. This purpose is better addressed by the <link
341
        linkend="slab">slab allocator</link>.</para>
342
      </section>
17 jermar 343
 
34 bondari 344
      <section>
345
        <title>Implementation</title>
17 jermar 346
 
34 bondari 347
        <para>The buddy allocator is, in fact, an abstract framework wich can
348
        be easily specialized to serve one particular task. It knows nothing
349
        about the nature of memory it helps to allocate. In order to beat the
350
        lack of this knowledge, the buddy allocator exports an interface that
45 jermar 351
        each of its clients is required to implement. When supplied with an
34 bondari 352
        implementation of this interface, the buddy allocator can use
45 jermar 353
        specialized external functions to find a buddy for a block, split and
34 bondari 354
        coalesce blocks, manipulate block order and mark blocks busy or
45 jermar 355
        available. For precise documentation of this interface, refer to
39 bondari 356
        <emphasis>"HelenOS Generic Kernel Reference Manual"</emphasis>.</para>
17 jermar 357
 
34 bondari 358
        <formalpara>
359
          <title>Data organization</title>
17 jermar 360
 
34 bondari 361
          <para>Each entity allocable by the buddy allocator is required to
362
          contain space for storing block order number and a link variable
363
          used to interconnect blocks within the same order.</para>
15 bondari 364
 
34 bondari 365
          <para>Whatever entities are allocated by the buddy allocator, the
366
          first entity within a block is used to represent the entire block.
367
          The first entity keeps the order of the whole block. Other entities
368
          within the block are assigned the magic value
369
          <constant>BUDDY_INNER_BLOCK</constant>. This is especially important
45 jermar 370
          for effective identification of buddies in a one-dimensional array
34 bondari 371
          because the entity that represents a potential buddy cannot be
372
          associated with <constant>BUDDY_INNER_BLOCK</constant> (i.e. if it
373
          is associated with <constant>BUDDY_INNER_BLOCK</constant> then it is
374
          not a buddy).</para>
15 bondari 375
 
45 jermar 376
          <para>The buddy allocator always uses the first frame to represent
377
          the frame block. This frame contains <varname>buddy_order</varname>
378
          variable to provide information about the block size it actually
379
          represents (
34 bondari 380
          <mathphrase>2<superscript>buddy_order</superscript></mathphrase>
381
          frames block). Other frames in block have this value set to magic
382
          <constant>BUDDY_INNER_BLOCK</constant> that is much greater than
383
          buddy <varname>max_order</varname> value.</para>
15 bondari 384
 
34 bondari 385
          <para>Each <varname>frame_t</varname> also contains pointer member
386
          to hold frame structure in the linked list inside one order.</para>
387
        </formalpara>
15 bondari 388
 
34 bondari 389
        <formalpara>
390
          <title>Allocation algorithm</title>
15 bondari 391
 
34 bondari 392
          <para>Upon <mathphrase>2<superscript>i</superscript></mathphrase>
393
          frames block allocation request, allocator checks if there are any
394
          blocks available at the order list <varname>i</varname>. If yes,
395
          removes block from order list and returns its address. If no,
396
          recursively allocates
397
          <mathphrase>2<superscript>i+1</superscript></mathphrase> frame
398
          block, splits it into two
399
          <mathphrase>2<superscript>i</superscript></mathphrase> frame blocks.
400
          Then adds one of the blocks to the <varname>i</varname> order list
401
          and returns address of another.</para>
402
        </formalpara>
15 bondari 403
 
34 bondari 404
        <formalpara>
405
          <title>Deallocation algorithm</title>
17 jermar 406
 
34 bondari 407
          <para>Check if block has so called buddy (another free
408
          <mathphrase>2<superscript>i</superscript></mathphrase> frame block
409
          that can be linked with freed block into the
410
          <mathphrase>2<superscript>i+1</superscript></mathphrase> block).
411
          Technically, buddy is a odd/even block for even/odd block
412
          respectively. Plus we can put an extra requirement, that resulting
413
          block must be aligned to its size. This requirement guarantees
414
          natural block alignment for the blocks coming out the allocation
415
          system.</para>
9 bondari 416
 
34 bondari 417
          <para>Using direct pointer arithmetics,
418
          <varname>frame_t::ref_count</varname> and
419
          <varname>frame_t::buddy_order</varname> variables, finding buddy is
420
          done at constant time.</para>
421
        </formalpara>
422
      </section>
26 bondari 423
    </section>
424
 
15 bondari 425
    <section id="slab">
11 bondari 426
      <title>Slab allocator</title>
9 bondari 427
 
26 bondari 428
      <section>
34 bondari 429
        <title>Overview</title>
9 bondari 430
 
34 bondari 431
        <para><termdef><glossterm>Slab</glossterm> represents a contiguous
432
        piece of memory, usually made of several physically contiguous
433
        pages.</termdef> <termdef><glossterm>Slab cache</glossterm> consists
434
        of one or more slabs.</termdef></para>
435
 
26 bondari 436
        <para>The majority of memory allocation requests in the kernel are for
437
        small, frequently used data structures. For this purpose the slab
34 bondari 438
        allocator is a perfect solution. The basic idea behind the slab
26 bondari 439
        allocator is to have lists of commonly used objects available packed
440
        into pages. This avoids the overhead of allocating and destroying
34 bondari 441
        commonly used types of objects such threads, virtual memory structures
442
        etc. Also due to the exact allocated size matching, slab allocation
443
        completely eliminates internal fragmentation issue.</para>
26 bondari 444
      </section>
24 bondari 445
 
26 bondari 446
      <section>
34 bondari 447
        <title>Implementation</title>
9 bondari 448
 
39 bondari 449
        <para><mediaobject id="slab_alloc">
450
            <imageobject role="html">
451
              <imagedata fileref="images/slab_alloc.png" format="PNG" />
452
            </imageobject>
453
 
454
            <imageobject role="fop">
455
              <imagedata fileref="images.vector/slab_alloc.svg" format="SVG" />
456
            </imageobject>
457
          </mediaobject></para>
458
 
26 bondari 459
        <para>The SLAB allocator is closely modelled after <ulink
460
        url="http://www.usenix.org/events/usenix01/full_papers/bonwick/bonwick_html/">
461
        OpenSolaris SLAB allocator by Jeff Bonwick and Jonathan Adams </ulink>
462
        with the following exceptions: <itemizedlist>
463
            <listitem>
464
               empty SLABS are deallocated immediately (in Linux they are kept in linked list, in Solaris ???)
465
            </listitem>
466
 
467
            <listitem>
468
               empty magazines are deallocated when not needed (in Solaris they are held in linked list in slab cache)
469
            </listitem>
470
          </itemizedlist> Following features are not currently supported but
471
        would be easy to do: <itemizedlist>
472
            <listitem>
473
               - cache coloring
474
            </listitem>
475
 
476
            <listitem>
34 bondari 477
               - dynamic magazine grow (different magazine sizes are already supported, but we would need to adjust allocation strategy)
26 bondari 478
            </listitem>
479
          </itemizedlist></para>
480
 
34 bondari 481
        <section>
482
          <title>Magazine layer</title>
26 bondari 483
 
34 bondari 484
          <para>Due to the extensive bottleneck on SMP architures, caused by
485
          global SLAB locking mechanism, making processing of all slab
486
          allocation requests serialized, a new layer was introduced to the
487
          classic slab allocator design. Slab allocator was extended to
488
          support per-CPU caches 'magazines' to achieve good SMP scaling.
489
          <termdef>Slab SMP perfromance bottleneck was resolved by introducing
490
          a per-CPU caching scheme called as <glossterm>magazine
491
          layer</glossterm></termdef>.</para>
26 bondari 492
 
34 bondari 493
          <para>Magazine is a N-element cache of objects, so each magazine can
494
          satisfy N allocations. Magazine behaves like a automatic weapon
495
          magazine (LIFO, stack), so the allocation/deallocation become simple
496
          push/pop pointer operation. Trick is that CPU does not access global
497
          slab allocator data during the allocation from its magazine, thus
498
          making possible parallel allocations between CPUs.</para>
26 bondari 499
 
34 bondari 500
          <para>Implementation also requires adding another feature as the
501
          CPU-bound magazine is actually a pair of magazines to avoid
502
          thrashing when during allocation/deallocatiion of 1 item at the
503
          magazine size boundary. LIFO order is enforced, which should avoid
504
          fragmentation as much as possible.</para>
26 bondari 505
 
46 bondari 506
          <para>Another important entity of magazine layer is the common full
507
          magazine list (also called a depot), that stores full magazines that
508
          may be used by any of the CPU magazine caches to reload active CPU
509
          magazine. This list of magazines can be pre-filled with full
510
          magazines during initialization, but in current implementation it is
511
          filled during object deallocation, when CPU magazine becomes
512
          full.</para>
26 bondari 513
 
34 bondari 514
          <para>Slab allocator control structures are allocated from special
515
          slabs, that are marked by special flag, indicating that it should
516
          not be used for slab magazine layer. This is done to avoid possible
517
          infinite recursions and deadlock during conventional slab allocaiton
518
          requests.</para>
519
        </section>
26 bondari 520
 
34 bondari 521
        <section>
522
          <title>Allocation/deallocation</title>
26 bondari 523
 
34 bondari 524
          <para>Every cache contains list of full slabs and list of partialy
525
          full slabs. Empty slabs are immediately freed (thrashing will be
526
          avoided because of magazines).</para>
26 bondari 527
 
34 bondari 528
          <para>The SLAB allocator allocates lots of space and does not free
529
          it. When frame allocator fails to allocate the frame, it calls
530
          slab_reclaim(). It tries 'light reclaim' first, then brutal reclaim.
531
          The light reclaim releases slabs from cpu-shared magazine-list,
532
          until at least 1 slab is deallocated in each cache (this algorithm
533
          should probably change). The brutal reclaim removes all cached
534
          objects, even from CPU-bound magazines.</para>
535
 
536
          <formalpara>
537
            <title>Allocation</title>
538
 
539
            <para><emphasis>Step 1.</emphasis> When it comes to the allocation
540
            request, slab allocator first of all checks availability of memory
541
            in local CPU-bound magazine. If it is there, we would just "pop"
542
            the CPU magazine and return the pointer to object.</para>
543
 
544
            <para><emphasis>Step 2.</emphasis> If the CPU-bound magazine is
545
            empty, allocator will attempt to reload magazin, swapping it with
546
            second CPU magazine and returns to the first step.</para>
547
 
548
            <para><emphasis>Step 3.</emphasis> Now we are in the situation
549
            when both CPU-bound magazines are empty, which makes allocator to
550
            access shared full-magazines depot to reload CPU-bound magazines.
551
            If reload is succesful (meaning there are full magazines in depot)
552
            algoritm continues at Step 1.</para>
553
 
554
            <para><emphasis>Step 4.</emphasis> Final step of the allocation.
555
            In this step object is allocated from the conventional slab layer
556
            and pointer is returned.</para>
557
          </formalpara>
558
 
559
          <formalpara>
560
            <title>Deallocation</title>
561
 
562
            <para><emphasis>Step 1.</emphasis> During deallocation request,
563
            slab allocator will check if the local CPU-bound magazine is not
564
            full. In this case we will just push the pointer to this
565
            magazine.</para>
566
 
567
            <para><emphasis>Step 2.</emphasis> If the CPU-bound magazine is
568
            full, allocator will attempt to reload magazin, swapping it with
569
            second CPU magazine and returns to the first step.</para>
570
 
571
            <para><emphasis>Step 3.</emphasis> Now we are in the situation
572
            when both CPU-bound magazines are full, which makes allocator to
573
            access shared full-magazines depot to put one of the magazines to
574
            the depot and creating new empty magazine. Algoritm continues at
575
            Step 1.</para>
576
          </formalpara>
577
        </section>
26 bondari 578
      </section>
15 bondari 579
    </section>
26 bondari 580
 
581
    <!-- End of Physmem -->
582
  </section>
583
 
584
  <section>
585
    <title>Memory sharing</title>
586
 
587
    <para>Not implemented yet(?)</para>
588
  </section>
11 bondari 589
</chapter>