Subversion Repositories HelenOS-doc

Rev

Rev 24 | Rev 27 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
9 bondari 1
<?xml version="1.0" encoding="UTF-8"?>
11 bondari 2
<chapter id="mm">
3
  <?dbhtml filename="mm.html"?>
9 bondari 4
 
11 bondari 5
  <title>Memory management</title>
9 bondari 6
 
26 bondari 7
  <section>
8
    <!-- VM -->
24 bondari 9
 
11 bondari 10
    <title>Virtual memory management</title>
9 bondari 11
 
12
    <section>
11 bondari 13
      <title>Address spaces</title>
9 bondari 14
 
15
      <para></para>
16
    </section>
17
 
18
    <section>
11 bondari 19
      <title>Virtual address translation</title>
9 bondari 20
 
21
      <para></para>
22
    </section>
26 bondari 23
  </section>
9 bondari 24
 
26 bondari 25
  <!-- End of VM -->
24 bondari 26
 
26 bondari 27
  <section>
28
    <!-- Phys mem -->
29
 
11 bondari 30
    <title>Physical memory management</title>
9 bondari 31
 
24 bondari 32
    <section id="zones_and_frames">
33
      <title>Zones and frames</title>
34
 
35
      <para>
26 bondari 36
      <!--graphic fileref="images/mm2.png" /-->
24 bondari 37
 
26 bondari 38
      <!--graphic fileref="images/buddy_alloc.svg" format="SVG" /-->
39
      <mediaobject
24 bondari 40
 
26 bondari 41
 
42
      </para>
43
 
44
      <para>On some architectures not whole physical memory is available for
45
      conventional usage. This limitations require from kernel to maintain a
46
      table of available and unavailable ranges of physical memory addresses.
47
      Main idea of zones is in creating memory zone entity, that is a
48
      continuous chunk of memory available for allocation. If some chunk is
49
      not available, we simply do not put it in any zone.</para>
50
 
51
      <para>Zone is also serves for informational purposes, containing
52
      information about number of free and busy frames. Physical memory
53
      allocation is also done inside the certain zone. Allocation of zone
54
      frame must be organized by the <link linkend="frame_allocator">frame
55
      allocator</link> associated with the zone.</para>
56
 
57
      <para>Some of the architectures (mips32, ppc32) have only one zone, that
58
      covers whole physical memory, and the others (like ia32) may have
59
      multiple zones. Information about zones on current machine is stored in
60
      BIOS hardware tables or can be hardcoded into kernel during compile
61
      time.</para>
24 bondari 62
    </section>
63
 
64
    <section id="frame_allocator">
65
      <title>Frame allocator</title>
66
 
26 bondari 67
      <formalpara>
68
        <title>Overview</title>
24 bondari 69
 
26 bondari 70
        <para>Frame allocator provides physical memory allocation for the
71
        kernel. Because of zonal organization of physical memory, frame
72
        allocator is always working in context of some zone, thus making
73
        impossible to allocate a piece of memory, which lays in different
74
        zone, which cannot happen, because two adjacent zones can be merged
75
        into one. Frame allocator is also being responsible to update
76
        information on the number of free/busy frames in zone. Physical memory
77
        allocation inside one <link linkend="zones_and_frames">memory
78
        zone</link> is being handled by an instance of <link
79
        linkend="buddy_allocator">buddy allocator</link> tailored to allocate
80
        blocks of physical memory frames.</para>
81
      </formalpara>
24 bondari 82
 
26 bondari 83
      <formalpara>
84
        <title>Allocation / deallocation</title>
24 bondari 85
 
26 bondari 86
        <para>Upon allocation request, frame allocator tries to find first
87
        zone, that can satisfy the incoming request (has required amount of
88
        free frames to allocate). During deallocation, frame allocator needs
89
        to find zone, that contain deallocated frame. This approach could
90
        bring up two potential problems: <itemizedlist>
91
            <listitem>
92
               Linear search of zones does not any good to performance, but number of zones is not expected to be high. And if yes, list of zones can be replaced with more time-efficient B-tree.
93
            </listitem>
24 bondari 94
 
26 bondari 95
            <listitem>
96
               Quickly find out if zone contains required number of frames to allocate and if this chunk of memory is properly aligned. This issue is perfectly solved bu the buddy allocator.
97
            </listitem>
98
          </itemizedlist></para>
99
      </formalpara>
100
    </section>
101
  </section>
17 jermar 102
 
26 bondari 103
  <section id="buddy_allocator">
104
    <title>Buddy allocator</title>
17 jermar 105
 
26 bondari 106
    <section>
107
      <title>Overview</title>
17 jermar 108
 
26 bondari 109
      <para>In buddy allocator, memory is broken down into power-of-two sized
110
      naturally aligned blocks. These blocks are organized in an array of
111
      lists in which list with index i contains all unallocated blocks of the
112
      size <mathphrase>2<superscript>i</superscript></mathphrase>. The index i
113
      is called the order of block. Should there be two adjacent equally sized
114
      blocks in list <mathphrase>i</mathphrase> (i.e. buddies), the buddy
115
      allocator would coalesce them and put the resulting block in list
116
      <mathphrase>i + 1</mathphrase>, provided that the resulting block would
117
      be naturally aligned. Similarily, when the allocator is asked to
118
      allocate a block of size
119
      <mathphrase>2<superscript>i</superscript></mathphrase>, it first tries
120
      to satisfy the request from list with index i. If the request cannot be
121
      satisfied (i.e. the list i is empty), the buddy allocator will try to
122
      allocate and split larger block from list with index i + 1. Both of
123
      these algorithms are recursive. The recursion ends either when there are
124
      no blocks to coalesce in the former case or when there are no blocks
125
      that can be split in the latter case.</para>
17 jermar 126
 
26 bondari 127
      <graphic fileref="images/mm1.png" format="EPS" />
17 jermar 128
 
26 bondari 129
      <para>This approach greatly reduces external fragmentation of memory and
130
      helps in allocating bigger continuous blocks of memory aligned to their
131
      size. On the other hand, the buddy allocator suffers increased internal
132
      fragmentation of memory and is not suitable for general kernel
133
      allocations. This purpose is better addressed by the <link
134
      linkend="slab">slab allocator</link>.</para>
135
    </section>
17 jermar 136
 
26 bondari 137
    <section>
138
      <title>Implementation</title>
17 jermar 139
 
26 bondari 140
      <para>The buddy allocator is, in fact, an abstract framework wich can be
141
      easily specialized to serve one particular task. It knows nothing about
142
      the nature of memory it helps to allocate. In order to beat the lack of
143
      this knowledge, the buddy allocator exports an interface that each of
144
      its clients is required to implement. When supplied an implementation of
145
      this interface, the buddy allocator can use specialized external
146
      functions to find buddy for a block, split and coalesce blocks,
147
      manipulate block order and mark blocks busy or available. For precize
148
      documentation of this interface, refer to <link linkend="???">HelenOS
149
      Generic Kernel Reference Manual</link>.</para>
17 jermar 150
 
26 bondari 151
      <formalpara>
152
        <title>Data organization</title>
17 jermar 153
 
26 bondari 154
        <para>Each entity allocable by the buddy allocator is required to
155
        contain space for storing block order number and a link variable used
156
        to interconnect blocks within the same order.</para>
15 bondari 157
 
26 bondari 158
        <para>Whatever entities are allocated by the buddy allocator, the
159
        first entity within a block is used to represent the entire block. The
160
        first entity keeps the order of the whole block. Other entities within
161
        the block are assigned the magic value
162
        <constant>BUDDY_INNER_BLOCK</constant>. This is especially important
163
        for effective identification of buddies in one-dimensional array
164
        because the entity that represents a potential buddy cannot be
165
        associated with <constant>BUDDY_INNER_BLOCK</constant> (i.e. if it is
166
        associated with <constant>BUDDY_INNER_BLOCK</constant> then it is not
167
        a buddy).</para>
168
      </formalpara>
15 bondari 169
 
26 bondari 170
      <formalpara>
171
        <title>Data organization</title>
15 bondari 172
 
26 bondari 173
        <para>Buddy allocator always uses first frame to represent frame
174
        block. This frame contains <varname>buddy_order</varname> variable to
175
        provide information about the block size it actually represents (
176
        <mathphrase>2<superscript>buddy_order</superscript></mathphrase>
177
        frames block). Other frames in block have this value set to magic
178
        <constant>BUDDY_INNER_BLOCK</constant> that is much greater than buddy
179
        <varname>max_order</varname> value.</para>
15 bondari 180
 
26 bondari 181
        <para>Each <varname>frame_t</varname> also contains pointer member to
182
        hold frame structure in the linked list inside one order.</para>
183
      </formalpara>
15 bondari 184
 
26 bondari 185
      <formalpara>
186
        <title>Allocation algorithm</title>
15 bondari 187
 
26 bondari 188
        <para>Upon <mathphrase>2<superscript>i</superscript></mathphrase>
189
        frames block allocation request, allocator checks if there are any
190
        blocks available at the order list <varname>i</varname>. If yes,
191
        removes block from order list and returns its address. If no,
192
        recursively allocates
193
        <mathphrase>2<superscript>i+1</superscript></mathphrase> frame block,
194
        splits it into two
195
        <mathphrase>2<superscript>i</superscript></mathphrase> frame blocks.
196
        Then adds one of the blocks to the <varname>i</varname> order list and
197
        returns address of another.</para>
198
      </formalpara>
17 jermar 199
 
26 bondari 200
      <formalpara>
201
        <title>Deallocation algorithm</title>
9 bondari 202
 
26 bondari 203
        <para>Check if block has so called buddy (another free
204
        <mathphrase>2<superscript>i</superscript></mathphrase> frame block
205
        that can be linked with freed block into the
206
        <mathphrase>2<superscript>i+1</superscript></mathphrase> block).
207
        Technically, buddy is a odd/even block for even/odd block
208
        respectively. Plus we can put an extra requirement, that resulting
209
        block must be aligned to its size. This requirement guarantees natural
210
        block alignment for the blocks coming out the allocation
211
        system.</para>
24 bondari 212
 
26 bondari 213
        <para>Using direct pointer arithmetics,
214
        <varname>frame_t::ref_count</varname> and
215
        <varname>frame_t::buddy_order</varname> variables, finding buddy is
216
        done at constant time.</para>
217
      </formalpara>
218
    </section>
219
 
15 bondari 220
    <section id="slab">
11 bondari 221
      <title>Slab allocator</title>
9 bondari 222
 
26 bondari 223
      <section>
224
        <title>Introduction</title>
9 bondari 225
 
26 bondari 226
        <para>The majority of memory allocation requests in the kernel are for
227
        small, frequently used data structures. For this purpose the slab
228
        allocator is a perfect solution. The basic idea behind a slab
229
        allocator is to have lists of commonly used objects available packed
230
        into pages. This avoids the overhead of allocating and destroying
231
        commonly used types of objects such as inodes, threads, virtual memory
232
        structures etc.</para>
24 bondari 233
 
26 bondari 234
        <para>Original slab allocator locking mechanism has become a
235
        significant preformance bottleneck on SMP architectures. <termdef>Slab
236
        SMP perfromance bottleneck was resolved by introducing a per-CPU
237
        caching scheme called as <glossterm>magazine
238
        layer</glossterm></termdef>.</para>
239
      </section>
24 bondari 240
 
26 bondari 241
      <section>
242
        <title>Implementation details (needs revision)</title>
9 bondari 243
 
26 bondari 244
        <para>The SLAB allocator is closely modelled after <ulink
245
        url="http://www.usenix.org/events/usenix01/full_papers/bonwick/bonwick_html/">
246
        OpenSolaris SLAB allocator by Jeff Bonwick and Jonathan Adams </ulink>
247
        with the following exceptions: <itemizedlist>
248
            <listitem>
249
               empty SLABS are deallocated immediately (in Linux they are kept in linked list, in Solaris ???)
250
            </listitem>
251
 
252
            <listitem>
253
               empty magazines are deallocated when not needed (in Solaris they are held in linked list in slab cache)
254
            </listitem>
255
          </itemizedlist> Following features are not currently supported but
256
        would be easy to do: <itemizedlist>
257
            <listitem>
258
               - cache coloring
259
            </listitem>
260
 
261
            <listitem>
262
               - dynamic magazine growing (different magazine sizes are already supported, but we would need to adjust allocation strategy)
263
            </listitem>
264
          </itemizedlist></para>
265
 
266
        <para>The SLAB allocator supports per-CPU caches ('magazines') to
267
        facilitate good SMP scaling.</para>
268
 
269
        <para>When a new object is being allocated, it is first checked, if it
270
        is available in CPU-bound magazine. If it is not found there, it is
271
        allocated from CPU-shared SLAB - if partial full is found, it is used,
272
        otherwise a new one is allocated.</para>
273
 
274
        <para>When an object is being deallocated, it is put to CPU-bound
275
        magazine. If there is no such magazine, new one is allocated (if it
276
        fails, the object is deallocated into SLAB). If the magazine is full,
277
        it is put into cpu-shared list of magazines and new one is
278
        allocated.</para>
279
 
280
        <para>The CPU-bound magazine is actually a pair of magazines to avoid
281
        thrashing when somebody is allocating/deallocating 1 item at the
282
        magazine size boundary. LIFO order is enforced, which should avoid
283
        fragmentation as much as possible.</para>
284
 
285
        <para>Every cache contains list of full slabs and list of partialy
286
        full slabs. Empty SLABS are immediately freed (thrashing will be
287
        avoided because of magazines).</para>
288
 
289
        <para>The SLAB information structure is kept inside the data area, if
290
        possible. The cache can be marked that it should not use magazines.
291
        This is used only for SLAB related caches to avoid deadlocks and
292
        infinite recursion (the SLAB allocator uses itself for allocating all
293
        it's control structures).</para>
294
 
295
        <para>The SLAB allocator allocates lots of space and does not free it.
296
        When frame allocator fails to allocate the frame, it calls
297
        slab_reclaim(). It tries 'light reclaim' first, then brutal reclaim.
298
        The light reclaim releases slabs from cpu-shared magazine-list, until
299
        at least 1 slab is deallocated in each cache (this algorithm should
300
        probably change). The brutal reclaim removes all cached objects, even
301
        from CPU-bound magazines.</para>
302
 
303
        <para>TODO: <itemizedlist>
304
            <listitem>
305
               For better CPU-scaling the magazine allocation strategy should be extended. Currently, if the cache does not have magazine, it asks for non-cpu cached magazine cache to provide one. It might be feasible to add cpu-cached magazine cache (which would allocate it's magazines from non-cpu-cached mag. cache). This would provide a nice per-cpu buffer. The other possibility is to use the per-cache 'empty-magazine-list', which decreases competing for 1 per-system magazine cache.
306
            </listitem>
307
 
308
            <listitem>
309
               - it might be good to add granularity of locks even to slab level, we could then try_spinlock over all partial slabs and thus improve scalability even on slab level
310
            </listitem>
311
          </itemizedlist></para>
312
      </section>
15 bondari 313
    </section>
26 bondari 314
 
315
    <!-- End of Physmem -->
316
  </section>
317
 
318
  <section>
319
    <title>Memory sharing</title>
320
 
321
    <para>Not implemented yet(?)</para>
322
  </section>
11 bondari 323
</chapter>