Subversion Repositories HelenOS-doc

Rev

Rev 17 | Rev 26 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
9 bondari 1
<?xml version="1.0" encoding="UTF-8"?>
11 bondari 2
<chapter id="mm">
3
  <?dbhtml filename="mm.html"?>
9 bondari 4
 
11 bondari 5
  <title>Memory management</title>
9 bondari 6
 
24 bondari 7
 
8
 
9
  <section><!-- VM -->
11 bondari 10
    <title>Virtual memory management</title>
9 bondari 11
 
12
    <section>
11 bondari 13
      <title>Address spaces</title>
9 bondari 14
 
15
      <para></para>
16
    </section>
17
 
18
    <section>
11 bondari 19
      <title>Virtual address translation</title>
9 bondari 20
 
21
      <para></para>
22
    </section>
24 bondari 23
  </section><!-- End of VM -->
9 bondari 24
 
24 bondari 25
 
26
  <section><!-- Phys mem -->
11 bondari 27
    <title>Physical memory management</title>
9 bondari 28
 
24 bondari 29
 
30
    <section id="zones_and_frames">
31
      <title>Zones and frames</title>
32
    <para>        <graphic fileref="images/mm2.png" /> </para>
33
 
34
 
35
      <para>On some architectures not whole physical memory is available for conventional usage. This limitations
36
      require from kernel to maintain a table of available and unavailable ranges of physical memory addresses.
37
      Main idea of zones is in creating memory zone entity, that is a continuous chunk of memory available for allocation.
38
      If some chunk is not available, we simply do not put it in any zone.
39
      </para>
40
 
41
      <para>
42
      Zone is also serves for informational purposes, containing information about number of free and busy frames. Physical memory
43
      allocation is also done inside the certain zone. Allocation of zone frame must be organized by the
44
      <link linkend="frame_allocator">frame allocator</link> associated with the zone.
45
      </para>
46
 
47
      <para>Some of the architectures (mips32, ppc32) have only one zone, that covers whole
48
      physical memory, and the others (like ia32) may have multiple zones.  Information about zones on current machine is stored
49
      in BIOS hardware tables or can be hardcoded into kernel during compile time.</para>
50
 
51
    </section>
52
 
53
    <section id="frame_allocator">
54
      <title>Frame allocator</title>
55
 
56
    <formalpara>
57
    <title>Overview</title>
58
        <para>Frame allocator provides physical memory allocation for the kernel. Because of zonal organization of physical memory,
59
    frame allocator is always working in context of some zone, thus making impossible to allocate a piece of memory, which lays in different zone, which
60
    cannot happen, because two adjacent zones can be merged into one. Frame allocator is also being responsible to update information on
61
    the number of free/busy frames in zone.
62
    Physical memory allocation inside one <link
63
        linkend="zones_and_frames">memory zone</link> is being handled by an
64
        instance of <link linkend="buddy_allocator">buddy allocator</link>
65
        tailored to allocate blocks of physical memory frames.
66
    </para>
67
    </formalpara>
68
 
69
 
70
 
71
 
72
    <formalpara>
73
    <title>Allocation / deallocation</title>
74
    <para>
75
    Upon allocation request, frame allocator tries to find first zone, that can satisfy the incoming request (has required amount of free frames to allocate).
76
    During deallocation, frame allocator needs to find zone, that contain deallocated frame.
77
 
78
    This approach could bring up two potential problems:
79
    <itemizedlist>
80
        <listitem>
81
            Linear search of zones does not any good to performance, but number of zones is not expected to be high. And if yes, list of zones can be replaced with more time-efficient B-tree.
82
        </listitem>
83
        <listitem>
84
            Quickly find out if zone contains required number of frames to allocate and if this chunk of memory is properly aligned. This issue is perfectly solved bu the buddy allocator.
85
        </listitem>
86
    </itemizedlist>
87
 
88
 
89
    </para>
90
    </formalpara>
91
 
92
      </section>
93
 
94
    </section>
95
 
96
 
97
 
17 jermar 98
    <section id="buddy_allocator">
99
      <title>Buddy allocator</title>
100
 
101
      <section>
102
        <title>Overview</title>
103
 
104
        <para>In buddy allocator, memory is broken down into power-of-two
105
        sized naturally aligned blocks. These blocks are organized in an array
106
        of lists in which list with index i contains all unallocated blocks of
107
        the size <mathphrase>2<superscript>i</superscript></mathphrase>. The
108
        index i is called the order of block. Should there be two adjacent
109
        equally sized blocks in list <mathphrase>i</mathphrase> (i.e.
110
        buddies), the buddy allocator would coalesce them and put the
111
        resulting block in list <mathphrase>i + 1</mathphrase>, provided that
112
        the resulting block would be naturally aligned. Similarily, when the
113
        allocator is asked to allocate a block of size
114
        <mathphrase>2<superscript>i</superscript></mathphrase>, it first tries
115
        to satisfy the request from list with index i. If the request cannot
116
        be satisfied (i.e. the list i is empty), the buddy allocator will try
117
        to allocate and split larger block from list with index i + 1. Both of
118
        these algorithms are recursive. The recursion ends either when there
119
        are no blocks to coalesce in the former case or when there are no
120
        blocks that can be split in the latter case.</para>
121
 
24 bondari 122
        <graphic fileref="images/mm1.png" format="EPS" />
17 jermar 123
 
124
        <para>This approach greatly reduces external fragmentation of memory
125
        and helps in allocating bigger continuous blocks of memory aligned to
126
        their size. On the other hand, the buddy allocator suffers increased
127
        internal fragmentation of memory and is not suitable for general
128
        kernel allocations. This purpose is better addressed by the <link
129
        linkend="slab">slab allocator</link>.</para>
130
      </section>
131
 
132
      <section>
133
        <title>Implementation</title>
134
 
135
        <para>The buddy allocator is, in fact, an abstract framework wich can
136
        be easily specialized to serve one particular task. It knows nothing
137
        about the nature of memory it helps to allocate. In order to beat the
138
        lack of this knowledge, the buddy allocator exports an interface that
139
        each of its clients is required to implement. When supplied an
140
        implementation of this interface, the buddy allocator can use
141
        specialized external functions to find buddy for a block, split and
142
        coalesce blocks, manipulate block order and mark blocks busy or
143
        available. For precize documentation of this interface, refer to <link
144
        linkend="???">HelenOS Generic Kernel Reference Manual</link>.</para>
145
 
146
        <formalpara>
147
          <title>Data organization</title>
148
 
149
          <para>Each entity allocable by the buddy allocator is required to
150
          contain space for storing block order number and a link variable
151
          used to interconnect blocks within the same order.</para>
152
 
153
          <para>Whatever entities are allocated by the buddy allocator, the
154
          first entity within a block is used to represent the entire block.
155
          The first entity keeps the order of the whole block. Other entities
156
          within the block are assigned the magic value
157
          <constant>BUDDY_INNER_BLOCK</constant>. This is especially important
158
          for effective identification of buddies in one-dimensional array
24 bondari 159
          because the entity that represents a potential buddy cannot be
160
          associated with <constant>BUDDY_INNER_BLOCK</constant> (i.e. if it
161
          is associated with <constant>BUDDY_INNER_BLOCK</constant> then it is
162
          not a buddy).</para>
17 jermar 163
        </formalpara>
24 bondari 164
 
15 bondari 165
        <formalpara>
166
          <title>Data organization</title>
167
 
168
          <para>Buddy allocator always uses first frame to represent frame
169
          block. This frame contains <varname>buddy_order</varname> variable
170
          to provide information about the block size it actually represents (
171
          <mathphrase>2<superscript>buddy_order</superscript></mathphrase>
172
          frames block). Other frames in block have this value set to magic
173
          <constant>BUDDY_INNER_BLOCK</constant> that is much greater than
174
          buddy <varname>max_order</varname> value.</para>
175
 
176
          <para>Each <varname>frame_t</varname> also contains pointer member
177
          to hold frame structure in the linked list inside one order.</para>
178
        </formalpara>
179
 
180
        <formalpara>
181
          <title>Allocation algorithm</title>
182
 
183
          <para>Upon <mathphrase>2<superscript>i</superscript></mathphrase>
184
          frames block allocation request, allocator checks if there are any
185
          blocks available at the order list <varname>i</varname>. If yes,
186
          removes block from order list and returns its address. If no,
187
          recursively allocates
188
          <mathphrase>2<superscript>i+1</superscript></mathphrase> frame
189
          block, splits it into two
190
          <mathphrase>2<superscript>i</superscript></mathphrase> frame blocks.
191
          Then adds one of the blocks to the <varname>i</varname> order list
192
          and returns address of another.</para>
193
        </formalpara>
194
 
195
        <formalpara>
196
          <title>Deallocation algorithm</title>
197
 
198
          <para>Check if block has so called buddy (another free
199
          <mathphrase>2<superscript>i</superscript></mathphrase> frame block
200
          that can be linked with freed block into the
201
          <mathphrase>2<superscript>i+1</superscript></mathphrase> block).
202
          Technically, buddy is a odd/even block for even/odd block
203
          respectively. Plus we can put an extra requirement, that resulting
204
          block must be aligned to its size. This requirement guarantees
205
          natural block alignment for the blocks coming out the allocation
17 jermar 206
          system.</para>
207
 
208
          <para>Using direct pointer arithmetics,
209
          <varname>frame_t::ref_count</varname> and
210
          <varname>frame_t::buddy_order</varname> variables, finding buddy is
211
          done at constant time.</para>
15 bondari 212
        </formalpara>
24 bondari 213
 
15 bondari 214
      </section>
9 bondari 215
 
24 bondari 216
 
15 bondari 217
    <section id="slab">
11 bondari 218
      <title>Slab allocator</title>
9 bondari 219
 
11 bondari 220
      <para>Kernel memory allocation is handled by slab.</para>
24 bondari 221
    </section><!-- End of Physmem -->
9 bondari 222
 
24 bondari 223
  </section>
224
 
225
 
15 bondari 226
    <section>
227
      <title>Memory sharing</title>
9 bondari 228
 
15 bondari 229
      <para>Not implemented yet(?)</para>
230
    </section>
11 bondari 231
</chapter>