Subversion Repositories HelenOS

Rev

Rev 2069 | Rev 2087 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
703 jermar 1
/*
2071 jermar 2
 * Copyright (c) 2001-2006 Jakub Jermar
703 jermar 3
 * All rights reserved.
4
 *
5
 * Redistribution and use in source and binary forms, with or without
6
 * modification, are permitted provided that the following conditions
7
 * are met:
8
 *
9
 * - Redistributions of source code must retain the above copyright
10
 *   notice, this list of conditions and the following disclaimer.
11
 * - Redistributions in binary form must reproduce the above copyright
12
 *   notice, this list of conditions and the following disclaimer in the
13
 *   documentation and/or other materials provided with the distribution.
14
 * - The name of the author may not be used to endorse or promote products
15
 *   derived from this software without specific prior written permission.
16
 *
17
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
 */
28
 
1757 jermar 29
/** @addtogroup genericmm
1702 cejka 30
 * @{
31
 */
32
 
1248 jermar 33
/**
1702 cejka 34
 * @file
1248 jermar 35
 * @brief   Address space related functions.
36
 *
703 jermar 37
 * This file contains address space manipulation functions.
38
 * Roughly speaking, this is a higher-level client of
39
 * Virtual Address Translation (VAT) subsystem.
1248 jermar 40
 *
41
 * Functionality provided by this file allows one to
1757 jermar 42
 * create address spaces and create, resize and share
1248 jermar 43
 * address space areas.
44
 *
45
 * @see page.c
46
 *
703 jermar 47
 */
48
 
49
#include <mm/as.h>
756 jermar 50
#include <arch/mm/as.h>
703 jermar 51
#include <mm/page.h>
52
#include <mm/frame.h>
814 palkovsky 53
#include <mm/slab.h>
703 jermar 54
#include <mm/tlb.h>
55
#include <arch/mm/page.h>
56
#include <genarch/mm/page_pt.h>
1108 jermar 57
#include <genarch/mm/page_ht.h>
727 jermar 58
#include <mm/asid.h>
703 jermar 59
#include <arch/mm/asid.h>
60
#include <synch/spinlock.h>
1380 jermar 61
#include <synch/mutex.h>
788 jermar 62
#include <adt/list.h>
1147 jermar 63
#include <adt/btree.h>
1235 jermar 64
#include <proc/task.h>
1288 jermar 65
#include <proc/thread.h>
1235 jermar 66
#include <arch/asm.h>
703 jermar 67
#include <panic.h>
68
#include <debug.h>
1235 jermar 69
#include <print.h>
703 jermar 70
#include <memstr.h>
1070 jermar 71
#include <macros.h>
703 jermar 72
#include <arch.h>
1235 jermar 73
#include <errno.h>
74
#include <config.h>
1387 jermar 75
#include <align.h>
1235 jermar 76
#include <arch/types.h>
77
#include <typedefs.h>
1288 jermar 78
#include <syscall/copy.h>
79
#include <arch/interrupt.h>
703 jermar 80
 
2009 jermar 81
#ifdef CONFIG_VIRT_IDX_DCACHE
82
#include <arch/mm/cache.h>
83
#endif /* CONFIG_VIRT_IDX_DCACHE */
84
 
1757 jermar 85
/**
86
 * Each architecture decides what functions will be used to carry out
87
 * address space operations such as creating or locking page tables.
88
 */
756 jermar 89
as_operations_t *as_operations = NULL;
703 jermar 90
 
1890 jermar 91
/**
92
 * Slab for as_t objects.
93
 */
94
static slab_cache_t *as_slab;
95
 
1415 jermar 96
/** This lock protects inactive_as_with_asid_head list. It must be acquired before as_t mutex. */
97
SPINLOCK_INITIALIZE(inactive_as_with_asid_lock);
823 jermar 98
 
99
/**
100
 * This list contains address spaces that are not active on any
101
 * processor and that have valid ASID.
102
 */
103
LIST_INITIALIZE(inactive_as_with_asid_head);
104
 
757 jermar 105
/** Kernel address space. */
106
as_t *AS_KERNEL = NULL;
107
 
1235 jermar 108
static int area_flags_to_page_flags(int aflags);
1780 jermar 109
static as_area_t *find_area_and_lock(as_t *as, uintptr_t va);
110
static bool check_area_conflicts(as_t *as, uintptr_t va, size_t size, as_area_t *avoid_area);
1409 jermar 111
static void sh_info_remove_reference(share_info_t *sh_info);
703 jermar 112
 
1891 jermar 113
static int as_constructor(void *obj, int flags)
114
{
115
    as_t *as = (as_t *) obj;
116
    int rc;
117
 
118
    link_initialize(&as->inactive_as_with_asid_link);
119
    mutex_initialize(&as->lock);   
120
 
121
    rc = as_constructor_arch(as, flags);
122
 
123
    return rc;
124
}
125
 
126
static int as_destructor(void *obj)
127
{
128
    as_t *as = (as_t *) obj;
129
 
130
    return as_destructor_arch(as);
131
}
132
 
756 jermar 133
/** Initialize address space subsystem. */
134
void as_init(void)
135
{
136
    as_arch_init();
1890 jermar 137
 
1891 jermar 138
    as_slab = slab_cache_create("as_slab", sizeof(as_t), 0,
139
        as_constructor, as_destructor, SLAB_CACHE_MAGDEFERRED);
1890 jermar 140
 
789 palkovsky 141
    AS_KERNEL = as_create(FLAG_AS_KERNEL);
1383 decky 142
    if (!AS_KERNEL)
143
        panic("can't create kernel address space\n");
144
 
756 jermar 145
}
146
 
757 jermar 147
/** Create address space.
148
 *
149
 * @param flags Flags that influence way in wich the address space is created.
150
 */
756 jermar 151
as_t *as_create(int flags)
703 jermar 152
{
153
    as_t *as;
154
 
1890 jermar 155
    as = (as_t *) slab_alloc(as_slab, 0);
1891 jermar 156
    (void) as_create_arch(as, 0);
157
 
1147 jermar 158
    btree_create(&as->as_area_btree);
822 palkovsky 159
 
160
    if (flags & FLAG_AS_KERNEL)
161
        as->asid = ASID_KERNEL;
162
    else
163
        as->asid = ASID_INVALID;
164
 
1468 jermar 165
    as->refcount = 0;
1415 jermar 166
    as->cpu_refcount = 0;
822 palkovsky 167
    as->page_table = page_table_create(flags);
703 jermar 168
 
169
    return as;
170
}
171
 
1468 jermar 172
/** Destroy adress space.
173
 *
174
 * When there are no tasks referencing this address space (i.e. its refcount is zero),
175
 * the address space can be destroyed.
176
 */
177
void as_destroy(as_t *as)
973 palkovsky 178
{
1468 jermar 179
    ipl_t ipl;
1594 jermar 180
    bool cond;
973 palkovsky 181
 
1468 jermar 182
    ASSERT(as->refcount == 0);
183
 
184
    /*
185
     * Since there is no reference to this area,
186
     * it is safe not to lock its mutex.
187
     */
188
    ipl = interrupts_disable();
189
    spinlock_lock(&inactive_as_with_asid_lock);
1587 jermar 190
    if (as->asid != ASID_INVALID && as != AS_KERNEL) {
1594 jermar 191
        if (as != AS && as->cpu_refcount == 0)
1587 jermar 192
            list_remove(&as->inactive_as_with_asid_link);
1468 jermar 193
        asid_put(as->asid);
194
    }
195
    spinlock_unlock(&inactive_as_with_asid_lock);
196
 
197
    /*
198
     * Destroy address space areas of the address space.
1954 jermar 199
     * The B+tree must be walked carefully because it is
1594 jermar 200
     * also being destroyed.
1468 jermar 201
     */
1594 jermar 202
    for (cond = true; cond; ) {
1468 jermar 203
        btree_node_t *node;
1594 jermar 204
 
205
        ASSERT(!list_empty(&as->as_area_btree.leaf_head));
206
        node = list_get_instance(as->as_area_btree.leaf_head.next, btree_node_t, leaf_link);
207
 
208
        if ((cond = node->keys)) {
209
            as_area_destroy(as, node->key[0]);
210
        }
1468 jermar 211
    }
1495 jermar 212
 
1483 jermar 213
    btree_destroy(&as->as_area_btree);
1468 jermar 214
    page_table_destroy(as->page_table);
215
 
216
    interrupts_restore(ipl);
217
 
1890 jermar 218
    slab_free(as_slab, as);
973 palkovsky 219
}
220
 
703 jermar 221
/** Create address space area of common attributes.
222
 *
223
 * The created address space area is added to the target address space.
224
 *
225
 * @param as Target address space.
1239 jermar 226
 * @param flags Flags of the area memory.
1048 jermar 227
 * @param size Size of area.
703 jermar 228
 * @param base Base address of area.
1239 jermar 229
 * @param attrs Attributes of the area.
1409 jermar 230
 * @param backend Address space area backend. NULL if no backend is used.
231
 * @param backend_data NULL or a pointer to an array holding two void *.
703 jermar 232
 *
233
 * @return Address space area on success or NULL on failure.
234
 */
2069 jermar 235
as_area_t *
236
as_area_create(as_t *as, int flags, size_t size, uintptr_t base, int attrs,
1424 jermar 237
           mem_backend_t *backend, mem_backend_data_t *backend_data)
703 jermar 238
{
239
    ipl_t ipl;
240
    as_area_t *a;
241
 
242
    if (base % PAGE_SIZE)
1048 jermar 243
        return NULL;
244
 
1233 jermar 245
    if (!size)
246
        return NULL;
247
 
1048 jermar 248
    /* Writeable executable areas are not supported. */
249
    if ((flags & AS_AREA_EXEC) && (flags & AS_AREA_WRITE))
250
        return NULL;
703 jermar 251
 
252
    ipl = interrupts_disable();
1380 jermar 253
    mutex_lock(&as->lock);
703 jermar 254
 
1048 jermar 255
    if (!check_area_conflicts(as, base, size, NULL)) {
1380 jermar 256
        mutex_unlock(&as->lock);
1048 jermar 257
        interrupts_restore(ipl);
258
        return NULL;
259
    }
703 jermar 260
 
822 palkovsky 261
    a = (as_area_t *) malloc(sizeof(as_area_t), 0);
703 jermar 262
 
1380 jermar 263
    mutex_initialize(&a->lock);
822 palkovsky 264
 
1424 jermar 265
    a->as = as;
1026 jermar 266
    a->flags = flags;
1239 jermar 267
    a->attributes = attrs;
1048 jermar 268
    a->pages = SIZE2FRAMES(size);
822 palkovsky 269
    a->base = base;
1409 jermar 270
    a->sh_info = NULL;
271
    a->backend = backend;
1424 jermar 272
    if (backend_data)
273
        a->backend_data = *backend_data;
274
    else
1780 jermar 275
        memsetb((uintptr_t) &a->backend_data, sizeof(a->backend_data), 0);
1424 jermar 276
 
1387 jermar 277
    btree_create(&a->used_space);
822 palkovsky 278
 
1147 jermar 279
    btree_insert(&as->as_area_btree, base, (void *) a, NULL);
822 palkovsky 280
 
1380 jermar 281
    mutex_unlock(&as->lock);
703 jermar 282
    interrupts_restore(ipl);
704 jermar 283
 
703 jermar 284
    return a;
285
}
286
 
1235 jermar 287
/** Find address space area and change it.
288
 *
289
 * @param as Address space.
290
 * @param address Virtual address belonging to the area to be changed. Must be page-aligned.
291
 * @param size New size of the virtual memory block starting at address.
292
 * @param flags Flags influencing the remap operation. Currently unused.
293
 *
1306 jermar 294
 * @return Zero on success or a value from @ref errno.h otherwise.
1235 jermar 295
 */
1780 jermar 296
int as_area_resize(as_t *as, uintptr_t address, size_t size, int flags)
1235 jermar 297
{
1306 jermar 298
    as_area_t *area;
1235 jermar 299
    ipl_t ipl;
300
    size_t pages;
301
 
302
    ipl = interrupts_disable();
1380 jermar 303
    mutex_lock(&as->lock);
1235 jermar 304
 
305
    /*
306
     * Locate the area.
307
     */
308
    area = find_area_and_lock(as, address);
309
    if (!area) {
1380 jermar 310
        mutex_unlock(&as->lock);
1235 jermar 311
        interrupts_restore(ipl);
1306 jermar 312
        return ENOENT;
1235 jermar 313
    }
314
 
1424 jermar 315
    if (area->backend == &phys_backend) {
1235 jermar 316
        /*
317
         * Remapping of address space areas associated
318
         * with memory mapped devices is not supported.
319
         */
1380 jermar 320
        mutex_unlock(&area->lock);
321
        mutex_unlock(&as->lock);
1235 jermar 322
        interrupts_restore(ipl);
1306 jermar 323
        return ENOTSUP;
1235 jermar 324
    }
1409 jermar 325
    if (area->sh_info) {
326
        /*
327
         * Remapping of shared address space areas
328
         * is not supported.
329
         */
330
        mutex_unlock(&area->lock);
331
        mutex_unlock(&as->lock);
332
        interrupts_restore(ipl);
333
        return ENOTSUP;
334
    }
1235 jermar 335
 
336
    pages = SIZE2FRAMES((address - area->base) + size);
337
    if (!pages) {
338
        /*
339
         * Zero size address space areas are not allowed.
340
         */
1380 jermar 341
        mutex_unlock(&area->lock);
342
        mutex_unlock(&as->lock);
1235 jermar 343
        interrupts_restore(ipl);
1306 jermar 344
        return EPERM;
1235 jermar 345
    }
346
 
347
    if (pages < area->pages) {
1403 jermar 348
        bool cond;
1780 jermar 349
        uintptr_t start_free = area->base + pages*PAGE_SIZE;
1235 jermar 350
 
351
        /*
352
         * Shrinking the area.
353
         * No need to check for overlaps.
354
         */
1403 jermar 355
 
356
        /*
1436 jermar 357
         * Start TLB shootdown sequence.
358
         */
359
        tlb_shootdown_start(TLB_INVL_PAGES, AS->asid, area->base + pages*PAGE_SIZE, area->pages - pages);
360
 
361
        /*
1403 jermar 362
         * Remove frames belonging to used space starting from
363
         * the highest addresses downwards until an overlap with
364
         * the resized address space area is found. Note that this
365
         * is also the right way to remove part of the used_space
366
         * B+tree leaf list.
367
         */    
368
        for (cond = true; cond;) {
369
            btree_node_t *node;
370
 
371
            ASSERT(!list_empty(&area->used_space.leaf_head));
372
            node = list_get_instance(area->used_space.leaf_head.prev, btree_node_t, leaf_link);
373
            if ((cond = (bool) node->keys)) {
1780 jermar 374
                uintptr_t b = node->key[node->keys - 1];
1403 jermar 375
                count_t c = (count_t) node->value[node->keys - 1];
376
                int i = 0;
1235 jermar 377
 
1403 jermar 378
                if (overlaps(b, c*PAGE_SIZE, area->base, pages*PAGE_SIZE)) {
379
 
380
                    if (b + c*PAGE_SIZE <= start_free) {
381
                        /*
382
                         * The whole interval fits completely
383
                         * in the resized address space area.
384
                         */
385
                        break;
386
                    }
387
 
388
                    /*
389
                     * Part of the interval corresponding to b and c
390
                     * overlaps with the resized address space area.
391
                     */
392
 
393
                    cond = false;   /* we are almost done */
394
                    i = (start_free - b) >> PAGE_WIDTH;
395
                    if (!used_space_remove(area, start_free, c - i))
1889 jermar 396
                        panic("Could not remove used space.\n");
1403 jermar 397
                } else {
398
                    /*
399
                     * The interval of used space can be completely removed.
400
                     */
401
                    if (!used_space_remove(area, b, c))
402
                        panic("Could not remove used space.\n");
403
                }
404
 
405
                for (; i < c; i++) {
406
                    pte_t *pte;
407
 
408
                    page_table_lock(as, false);
409
                    pte = page_mapping_find(as, b + i*PAGE_SIZE);
410
                    ASSERT(pte && PTE_VALID(pte) && PTE_PRESENT(pte));
1424 jermar 411
                    if (area->backend && area->backend->frame_free) {
412
                        area->backend->frame_free(area,
1409 jermar 413
                            b + i*PAGE_SIZE, PTE_GET_FRAME(pte));
414
                    }
1403 jermar 415
                    page_mapping_remove(as, b + i*PAGE_SIZE);
416
                    page_table_unlock(as, false);
417
                }
1235 jermar 418
            }
419
        }
1436 jermar 420
 
1235 jermar 421
        /*
1436 jermar 422
         * Finish TLB shootdown sequence.
1235 jermar 423
         */
1954 jermar 424
        tlb_invalidate_pages(as->asid, area->base + pages*PAGE_SIZE, area->pages - pages);
1235 jermar 425
        tlb_shootdown_finalize();
1889 jermar 426
 
427
        /*
428
         * Invalidate software translation caches (e.g. TSB on sparc64).
429
         */
430
        as_invalidate_translation_cache(as, area->base + pages*PAGE_SIZE, area->pages - pages);
1235 jermar 431
    } else {
432
        /*
433
         * Growing the area.
434
         * Check for overlaps with other address space areas.
435
         */
436
        if (!check_area_conflicts(as, address, pages * PAGE_SIZE, area)) {
1380 jermar 437
            mutex_unlock(&area->lock);
438
            mutex_unlock(&as->lock);       
1235 jermar 439
            interrupts_restore(ipl);
1306 jermar 440
            return EADDRNOTAVAIL;
1235 jermar 441
        }
442
    }
443
 
444
    area->pages = pages;
445
 
1380 jermar 446
    mutex_unlock(&area->lock);
447
    mutex_unlock(&as->lock);
1235 jermar 448
    interrupts_restore(ipl);
449
 
1306 jermar 450
    return 0;
1235 jermar 451
}
452
 
1306 jermar 453
/** Destroy address space area.
454
 *
455
 * @param as Address space.
456
 * @param address Address withing the area to be deleted.
457
 *
458
 * @return Zero on success or a value from @ref errno.h on failure.
459
 */
1780 jermar 460
int as_area_destroy(as_t *as, uintptr_t address)
1306 jermar 461
{
462
    as_area_t *area;
1780 jermar 463
    uintptr_t base;
1495 jermar 464
    link_t *cur;
1306 jermar 465
    ipl_t ipl;
466
 
467
    ipl = interrupts_disable();
1380 jermar 468
    mutex_lock(&as->lock);
1306 jermar 469
 
470
    area = find_area_and_lock(as, address);
471
    if (!area) {
1380 jermar 472
        mutex_unlock(&as->lock);
1306 jermar 473
        interrupts_restore(ipl);
474
        return ENOENT;
475
    }
476
 
1403 jermar 477
    base = area->base;
478
 
1411 jermar 479
    /*
1436 jermar 480
     * Start TLB shootdown sequence.
481
     */
1889 jermar 482
    tlb_shootdown_start(TLB_INVL_PAGES, as->asid, area->base, area->pages);
1436 jermar 483
 
484
    /*
1411 jermar 485
     * Visit only the pages mapped by used_space B+tree.
486
     */
1495 jermar 487
    for (cur = area->used_space.leaf_head.next; cur != &area->used_space.leaf_head; cur = cur->next) {
1411 jermar 488
        btree_node_t *node;
1495 jermar 489
        int i;
1403 jermar 490
 
1495 jermar 491
        node = list_get_instance(cur, btree_node_t, leaf_link);
492
        for (i = 0; i < node->keys; i++) {
1780 jermar 493
            uintptr_t b = node->key[i];
1495 jermar 494
            count_t j;
1411 jermar 495
            pte_t *pte;
1403 jermar 496
 
1495 jermar 497
            for (j = 0; j < (count_t) node->value[i]; j++) {
1411 jermar 498
                page_table_lock(as, false);
1495 jermar 499
                pte = page_mapping_find(as, b + j*PAGE_SIZE);
1411 jermar 500
                ASSERT(pte && PTE_VALID(pte) && PTE_PRESENT(pte));
1424 jermar 501
                if (area->backend && area->backend->frame_free) {
502
                    area->backend->frame_free(area,
1495 jermar 503
                        b + j*PAGE_SIZE, PTE_GET_FRAME(pte));
1403 jermar 504
                }
1889 jermar 505
                page_mapping_remove(as, b + j*PAGE_SIZE);              
1411 jermar 506
                page_table_unlock(as, false);
1306 jermar 507
            }
508
        }
509
    }
1403 jermar 510
 
1306 jermar 511
    /*
1436 jermar 512
     * Finish TLB shootdown sequence.
1306 jermar 513
     */
1889 jermar 514
    tlb_invalidate_pages(as->asid, area->base, area->pages);
1306 jermar 515
    tlb_shootdown_finalize();
1436 jermar 516
 
1889 jermar 517
    /*
518
     * Invalidate potential software translation caches (e.g. TSB on sparc64).
519
     */
520
    as_invalidate_translation_cache(as, area->base, area->pages);
521
 
1436 jermar 522
    btree_destroy(&area->used_space);
1306 jermar 523
 
1309 jermar 524
    area->attributes |= AS_AREA_ATTR_PARTIAL;
1409 jermar 525
 
526
    if (area->sh_info)
527
        sh_info_remove_reference(area->sh_info);
528
 
1380 jermar 529
    mutex_unlock(&area->lock);
1306 jermar 530
 
531
    /*
532
     * Remove the empty area from address space.
533
     */
1889 jermar 534
    btree_remove(&as->as_area_btree, base, NULL);
1306 jermar 535
 
1309 jermar 536
    free(area);
537
 
1889 jermar 538
    mutex_unlock(&as->lock);
1306 jermar 539
    interrupts_restore(ipl);
540
    return 0;
541
}
542
 
1413 jermar 543
/** Share address space area with another or the same address space.
1235 jermar 544
 *
1424 jermar 545
 * Address space area mapping is shared with a new address space area.
546
 * If the source address space area has not been shared so far,
547
 * a new sh_info is created. The new address space area simply gets the
548
 * sh_info of the source area. The process of duplicating the
549
 * mapping is done through the backend share function.
1413 jermar 550
 *
1417 jermar 551
 * @param src_as Pointer to source address space.
1239 jermar 552
 * @param src_base Base address of the source address space area.
1417 jermar 553
 * @param acc_size Expected size of the source area.
1428 palkovsky 554
 * @param dst_as Pointer to destination address space.
1417 jermar 555
 * @param dst_base Target base address.
556
 * @param dst_flags_mask Destination address space area flags mask.
1235 jermar 557
 *
2007 jermar 558
 * @return Zero on success or ENOENT if there is no such task or if there is no
559
 * such address space area, EPERM if there was a problem in accepting the area
560
 * or ENOMEM if there was a problem in allocating destination address space
561
 * area. ENOTSUP is returned if the address space area backend does not support
2015 jermar 562
 * sharing or if the kernel detects an attempt to create an illegal address
563
 * alias.
1235 jermar 564
 */
1780 jermar 565
int as_area_share(as_t *src_as, uintptr_t src_base, size_t acc_size,
566
          as_t *dst_as, uintptr_t dst_base, int dst_flags_mask)
1235 jermar 567
{
568
    ipl_t ipl;
1239 jermar 569
    int src_flags;
570
    size_t src_size;
571
    as_area_t *src_area, *dst_area;
1413 jermar 572
    share_info_t *sh_info;
1424 jermar 573
    mem_backend_t *src_backend;
574
    mem_backend_data_t src_backend_data;
1434 palkovsky 575
 
1235 jermar 576
    ipl = interrupts_disable();
1380 jermar 577
    mutex_lock(&src_as->lock);
1329 palkovsky 578
    src_area = find_area_and_lock(src_as, src_base);
1239 jermar 579
    if (!src_area) {
1238 jermar 580
        /*
581
         * Could not find the source address space area.
582
         */
1380 jermar 583
        mutex_unlock(&src_as->lock);
1238 jermar 584
        interrupts_restore(ipl);
585
        return ENOENT;
586
    }
2007 jermar 587
 
1424 jermar 588
    if (!src_area->backend || !src_area->backend->share) {
1413 jermar 589
        /*
1851 jermar 590
         * There is no backend or the backend does not
1424 jermar 591
         * know how to share the area.
1413 jermar 592
         */
593
        mutex_unlock(&src_area->lock);
594
        mutex_unlock(&src_as->lock);
595
        interrupts_restore(ipl);
596
        return ENOTSUP;
597
    }
598
 
1239 jermar 599
    src_size = src_area->pages * PAGE_SIZE;
600
    src_flags = src_area->flags;
1424 jermar 601
    src_backend = src_area->backend;
602
    src_backend_data = src_area->backend_data;
1544 palkovsky 603
 
604
    /* Share the cacheable flag from the original mapping */
605
    if (src_flags & AS_AREA_CACHEABLE)
606
        dst_flags_mask |= AS_AREA_CACHEABLE;
607
 
1461 palkovsky 608
    if (src_size != acc_size || (src_flags & dst_flags_mask) != dst_flags_mask) {
1413 jermar 609
        mutex_unlock(&src_area->lock);
610
        mutex_unlock(&src_as->lock);
1235 jermar 611
        interrupts_restore(ipl);
612
        return EPERM;
613
    }
1413 jermar 614
 
2015 jermar 615
#ifdef CONFIG_VIRT_IDX_DCACHE
616
    if (!(dst_flags_mask & AS_AREA_EXEC)) {
617
        if (PAGE_COLOR(src_area->base) != PAGE_COLOR(dst_base)) {
618
            /*
619
             * Refuse to create an illegal address alias.
620
             */
621
            mutex_unlock(&src_area->lock);
622
            mutex_unlock(&src_as->lock);
623
            interrupts_restore(ipl);
624
            return ENOTSUP;
625
        }
626
    }
627
#endif /* CONFIG_VIRT_IDX_DCACHE */
628
 
1235 jermar 629
    /*
1413 jermar 630
     * Now we are committed to sharing the area.
1954 jermar 631
     * First, prepare the area for sharing.
1413 jermar 632
     * Then it will be safe to unlock it.
633
     */
634
    sh_info = src_area->sh_info;
635
    if (!sh_info) {
636
        sh_info = (share_info_t *) malloc(sizeof(share_info_t), 0);
637
        mutex_initialize(&sh_info->lock);
638
        sh_info->refcount = 2;
639
        btree_create(&sh_info->pagemap);
640
        src_area->sh_info = sh_info;
641
    } else {
642
        mutex_lock(&sh_info->lock);
643
        sh_info->refcount++;
644
        mutex_unlock(&sh_info->lock);
645
    }
646
 
1424 jermar 647
    src_area->backend->share(src_area);
1413 jermar 648
 
649
    mutex_unlock(&src_area->lock);
650
    mutex_unlock(&src_as->lock);
651
 
652
    /*
1239 jermar 653
     * Create copy of the source address space area.
654
     * The destination area is created with AS_AREA_ATTR_PARTIAL
655
     * attribute set which prevents race condition with
656
     * preliminary as_page_fault() calls.
1417 jermar 657
     * The flags of the source area are masked against dst_flags_mask
658
     * to support sharing in less privileged mode.
1235 jermar 659
     */
1461 palkovsky 660
    dst_area = as_area_create(dst_as, dst_flags_mask, src_size, dst_base,
1424 jermar 661
                  AS_AREA_ATTR_PARTIAL, src_backend, &src_backend_data);
1239 jermar 662
    if (!dst_area) {
1235 jermar 663
        /*
664
         * Destination address space area could not be created.
665
         */
1413 jermar 666
        sh_info_remove_reference(sh_info);
667
 
1235 jermar 668
        interrupts_restore(ipl);
669
        return ENOMEM;
670
    }
2009 jermar 671
 
1235 jermar 672
    /*
1239 jermar 673
     * Now the destination address space area has been
674
     * fully initialized. Clear the AS_AREA_ATTR_PARTIAL
1413 jermar 675
     * attribute and set the sh_info.
1239 jermar 676
     */
2009 jermar 677
    mutex_lock(&dst_as->lock); 
1380 jermar 678
    mutex_lock(&dst_area->lock);
1239 jermar 679
    dst_area->attributes &= ~AS_AREA_ATTR_PARTIAL;
1413 jermar 680
    dst_area->sh_info = sh_info;
1380 jermar 681
    mutex_unlock(&dst_area->lock);
2009 jermar 682
    mutex_unlock(&dst_as->lock);   
683
 
1235 jermar 684
    interrupts_restore(ipl);
685
 
686
    return 0;
687
}
688
 
1423 jermar 689
/** Check access mode for address space area.
690
 *
691
 * The address space area must be locked prior to this call.
692
 *
693
 * @param area Address space area.
694
 * @param access Access mode.
695
 *
696
 * @return False if access violates area's permissions, true otherwise.
697
 */
698
bool as_area_check_access(as_area_t *area, pf_access_t access)
699
{
700
    int flagmap[] = {
701
        [PF_ACCESS_READ] = AS_AREA_READ,
702
        [PF_ACCESS_WRITE] = AS_AREA_WRITE,
703
        [PF_ACCESS_EXEC] = AS_AREA_EXEC
704
    };
705
 
706
    if (!(area->flags & flagmap[access]))
707
        return false;
708
 
709
    return true;
710
}
711
 
703 jermar 712
/** Handle page fault within the current address space.
713
 *
1409 jermar 714
 * This is the high-level page fault handler. It decides
715
 * whether the page fault can be resolved by any backend
716
 * and if so, it invokes the backend to resolve the page
717
 * fault.
718
 *
703 jermar 719
 * Interrupts are assumed disabled.
720
 *
721
 * @param page Faulting page.
1411 jermar 722
 * @param access Access mode that caused the fault (i.e. read/write/exec).
1288 jermar 723
 * @param istate Pointer to interrupted state.
703 jermar 724
 *
1409 jermar 725
 * @return AS_PF_FAULT on page fault, AS_PF_OK on success or AS_PF_DEFER if the
726
 *     fault was caused by copy_to_uspace() or copy_from_uspace().
703 jermar 727
 */
1780 jermar 728
int as_page_fault(uintptr_t page, pf_access_t access, istate_t *istate)
703 jermar 729
{
1044 jermar 730
    pte_t *pte;
977 jermar 731
    as_area_t *area;
703 jermar 732
 
1380 jermar 733
    if (!THREAD)
1409 jermar 734
        return AS_PF_FAULT;
1380 jermar 735
 
703 jermar 736
    ASSERT(AS);
1044 jermar 737
 
1380 jermar 738
    mutex_lock(&AS->lock);
977 jermar 739
    area = find_area_and_lock(AS, page);   
703 jermar 740
    if (!area) {
741
        /*
742
         * No area contained mapping for 'page'.
743
         * Signal page fault to low-level handler.
744
         */
1380 jermar 745
        mutex_unlock(&AS->lock);
1288 jermar 746
        goto page_fault;
703 jermar 747
    }
748
 
1239 jermar 749
    if (area->attributes & AS_AREA_ATTR_PARTIAL) {
750
        /*
751
         * The address space area is not fully initialized.
752
         * Avoid possible race by returning error.
753
         */
1380 jermar 754
        mutex_unlock(&area->lock);
755
        mutex_unlock(&AS->lock);
1288 jermar 756
        goto page_fault;       
1239 jermar 757
    }
758
 
1424 jermar 759
    if (!area->backend || !area->backend->page_fault) {
1409 jermar 760
        /*
761
         * The address space area is not backed by any backend
762
         * or the backend cannot handle page faults.
763
         */
764
        mutex_unlock(&area->lock);
765
        mutex_unlock(&AS->lock);
766
        goto page_fault;       
767
    }
1179 jermar 768
 
1044 jermar 769
    page_table_lock(AS, false);
770
 
703 jermar 771
    /*
1044 jermar 772
     * To avoid race condition between two page faults
773
     * on the same address, we need to make sure
774
     * the mapping has not been already inserted.
775
     */
776
    if ((pte = page_mapping_find(AS, page))) {
777
        if (PTE_PRESENT(pte)) {
1423 jermar 778
            if (((access == PF_ACCESS_READ) && PTE_READABLE(pte)) ||
779
                (access == PF_ACCESS_WRITE && PTE_WRITABLE(pte)) ||
780
                (access == PF_ACCESS_EXEC && PTE_EXECUTABLE(pte))) {
781
                page_table_unlock(AS, false);
782
                mutex_unlock(&area->lock);
783
                mutex_unlock(&AS->lock);
784
                return AS_PF_OK;
785
            }
1044 jermar 786
        }
787
    }
1409 jermar 788
 
1044 jermar 789
    /*
1409 jermar 790
     * Resort to the backend page fault handler.
703 jermar 791
     */
1424 jermar 792
    if (area->backend->page_fault(area, page, access) != AS_PF_OK) {
1409 jermar 793
        page_table_unlock(AS, false);
794
        mutex_unlock(&area->lock);
795
        mutex_unlock(&AS->lock);
796
        goto page_fault;
797
    }
703 jermar 798
 
1044 jermar 799
    page_table_unlock(AS, false);
1380 jermar 800
    mutex_unlock(&area->lock);
801
    mutex_unlock(&AS->lock);
1288 jermar 802
    return AS_PF_OK;
803
 
804
page_fault:
805
    if (THREAD->in_copy_from_uspace) {
806
        THREAD->in_copy_from_uspace = false;
1780 jermar 807
        istate_set_retaddr(istate, (uintptr_t) &memcpy_from_uspace_failover_address);
1288 jermar 808
    } else if (THREAD->in_copy_to_uspace) {
809
        THREAD->in_copy_to_uspace = false;
1780 jermar 810
        istate_set_retaddr(istate, (uintptr_t) &memcpy_to_uspace_failover_address);
1288 jermar 811
    } else {
812
        return AS_PF_FAULT;
813
    }
814
 
815
    return AS_PF_DEFER;
703 jermar 816
}
817
 
823 jermar 818
/** Switch address spaces.
703 jermar 819
 *
1380 jermar 820
 * Note that this function cannot sleep as it is essentially a part of
1415 jermar 821
 * scheduling. Sleeping here would lead to deadlock on wakeup.
1380 jermar 822
 *
823 jermar 823
 * @param old Old address space or NULL.
824
 * @param new New address space.
703 jermar 825
 */
823 jermar 826
void as_switch(as_t *old, as_t *new)
703 jermar 827
{
828
    ipl_t ipl;
823 jermar 829
    bool needs_asid = false;
703 jermar 830
 
831
    ipl = interrupts_disable();
1415 jermar 832
    spinlock_lock(&inactive_as_with_asid_lock);
703 jermar 833
 
834
    /*
823 jermar 835
     * First, take care of the old address space.
836
     */
837
    if (old) {
1380 jermar 838
        mutex_lock_active(&old->lock);
1415 jermar 839
        ASSERT(old->cpu_refcount);
840
        if((--old->cpu_refcount == 0) && (old != AS_KERNEL)) {
823 jermar 841
            /*
842
             * The old address space is no longer active on
843
             * any processor. It can be appended to the
844
             * list of inactive address spaces with assigned
845
             * ASID.
846
             */
847
             ASSERT(old->asid != ASID_INVALID);
848
             list_append(&old->inactive_as_with_asid_link, &inactive_as_with_asid_head);
849
        }
1380 jermar 850
        mutex_unlock(&old->lock);
1890 jermar 851
 
852
        /*
853
         * Perform architecture-specific tasks when the address space
854
         * is being removed from the CPU.
855
         */
856
        as_deinstall_arch(old);
823 jermar 857
    }
858
 
859
    /*
860
     * Second, prepare the new address space.
861
     */
1380 jermar 862
    mutex_lock_active(&new->lock);
1415 jermar 863
    if ((new->cpu_refcount++ == 0) && (new != AS_KERNEL)) {
823 jermar 864
        if (new->asid != ASID_INVALID)
865
            list_remove(&new->inactive_as_with_asid_link);
866
        else
867
            needs_asid = true;  /* defer call to asid_get() until new->lock is released */
868
    }
869
    SET_PTL0_ADDRESS(new->page_table);
1380 jermar 870
    mutex_unlock(&new->lock);
823 jermar 871
 
872
    if (needs_asid) {
873
        /*
874
         * Allocation of new ASID was deferred
875
         * until now in order to avoid deadlock.
876
         */
877
        asid_t asid;
878
 
879
        asid = asid_get();
1380 jermar 880
        mutex_lock_active(&new->lock);
823 jermar 881
        new->asid = asid;
1380 jermar 882
        mutex_unlock(&new->lock);
823 jermar 883
    }
1415 jermar 884
    spinlock_unlock(&inactive_as_with_asid_lock);
823 jermar 885
    interrupts_restore(ipl);
886
 
887
    /*
703 jermar 888
     * Perform architecture-specific steps.
727 jermar 889
     * (e.g. write ASID to hardware register etc.)
703 jermar 890
     */
823 jermar 891
    as_install_arch(new);
703 jermar 892
 
823 jermar 893
    AS = new;
703 jermar 894
}
754 jermar 895
 
1235 jermar 896
/** Convert address space area flags to page flags.
754 jermar 897
 *
1235 jermar 898
 * @param aflags Flags of some address space area.
754 jermar 899
 *
1235 jermar 900
 * @return Flags to be passed to page_mapping_insert().
754 jermar 901
 */
1235 jermar 902
int area_flags_to_page_flags(int aflags)
754 jermar 903
{
904
    int flags;
905
 
1178 jermar 906
    flags = PAGE_USER | PAGE_PRESENT;
754 jermar 907
 
1235 jermar 908
    if (aflags & AS_AREA_READ)
1026 jermar 909
        flags |= PAGE_READ;
910
 
1235 jermar 911
    if (aflags & AS_AREA_WRITE)
1026 jermar 912
        flags |= PAGE_WRITE;
913
 
1235 jermar 914
    if (aflags & AS_AREA_EXEC)
1026 jermar 915
        flags |= PAGE_EXEC;
916
 
1424 jermar 917
    if (aflags & AS_AREA_CACHEABLE)
1178 jermar 918
        flags |= PAGE_CACHEABLE;
919
 
754 jermar 920
    return flags;
921
}
756 jermar 922
 
1235 jermar 923
/** Compute flags for virtual address translation subsytem.
924
 *
925
 * The address space area must be locked.
926
 * Interrupts must be disabled.
927
 *
928
 * @param a Address space area.
929
 *
930
 * @return Flags to be used in page_mapping_insert().
931
 */
1409 jermar 932
int as_area_get_flags(as_area_t *a)
1235 jermar 933
{
934
    return area_flags_to_page_flags(a->flags);
935
}
936
 
756 jermar 937
/** Create page table.
938
 *
939
 * Depending on architecture, create either address space
940
 * private or global page table.
941
 *
942
 * @param flags Flags saying whether the page table is for kernel address space.
943
 *
944
 * @return First entry of the page table.
945
 */
946
pte_t *page_table_create(int flags)
947
{
948
        ASSERT(as_operations);
949
        ASSERT(as_operations->page_table_create);
950
 
951
        return as_operations->page_table_create(flags);
952
}
977 jermar 953
 
1468 jermar 954
/** Destroy page table.
955
 *
956
 * Destroy page table in architecture specific way.
957
 *
958
 * @param page_table Physical address of PTL0.
959
 */
960
void page_table_destroy(pte_t *page_table)
961
{
962
        ASSERT(as_operations);
963
        ASSERT(as_operations->page_table_destroy);
964
 
965
        as_operations->page_table_destroy(page_table);
966
}
967
 
1044 jermar 968
/** Lock page table.
969
 *
970
 * This function should be called before any page_mapping_insert(),
971
 * page_mapping_remove() and page_mapping_find().
972
 *
973
 * Locking order is such that address space areas must be locked
974
 * prior to this call. Address space can be locked prior to this
975
 * call in which case the lock argument is false.
976
 *
977
 * @param as Address space.
1248 jermar 978
 * @param lock If false, do not attempt to lock as->lock.
1044 jermar 979
 */
980
void page_table_lock(as_t *as, bool lock)
981
{
982
    ASSERT(as_operations);
983
    ASSERT(as_operations->page_table_lock);
984
 
985
    as_operations->page_table_lock(as, lock);
986
}
987
 
988
/** Unlock page table.
989
 *
990
 * @param as Address space.
1248 jermar 991
 * @param unlock If false, do not attempt to unlock as->lock.
1044 jermar 992
 */
993
void page_table_unlock(as_t *as, bool unlock)
994
{
995
    ASSERT(as_operations);
996
    ASSERT(as_operations->page_table_unlock);
997
 
998
    as_operations->page_table_unlock(as, unlock);
999
}
1000
 
977 jermar 1001
 
1002
/** Find address space area and lock it.
1003
 *
1004
 * The address space must be locked and interrupts must be disabled.
1005
 *
1006
 * @param as Address space.
1007
 * @param va Virtual address.
1008
 *
1009
 * @return Locked address space area containing va on success or NULL on failure.
1010
 */
1780 jermar 1011
as_area_t *find_area_and_lock(as_t *as, uintptr_t va)
977 jermar 1012
{
1013
    as_area_t *a;
1147 jermar 1014
    btree_node_t *leaf, *lnode;
1015
    int i;
977 jermar 1016
 
1147 jermar 1017
    a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf);
1018
    if (a) {
1019
        /* va is the base address of an address space area */
1380 jermar 1020
        mutex_lock(&a->lock);
1147 jermar 1021
        return a;
1022
    }
1023
 
1024
    /*
1150 jermar 1025
     * Search the leaf node and the righmost record of its left neighbour
1147 jermar 1026
     * to find out whether this is a miss or va belongs to an address
1027
     * space area found there.
1028
     */
1029
 
1030
    /* First, search the leaf node itself. */
1031
    for (i = 0; i < leaf->keys; i++) {
1032
        a = (as_area_t *) leaf->value[i];
1380 jermar 1033
        mutex_lock(&a->lock);
1147 jermar 1034
        if ((a->base <= va) && (va < a->base + a->pages * PAGE_SIZE)) {
1035
            return a;
1036
        }
1380 jermar 1037
        mutex_unlock(&a->lock);
1147 jermar 1038
    }
977 jermar 1039
 
1147 jermar 1040
    /*
1150 jermar 1041
     * Second, locate the left neighbour and test its last record.
1148 jermar 1042
     * Because of its position in the B+tree, it must have base < va.
1147 jermar 1043
     */
1150 jermar 1044
    if ((lnode = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf))) {
1147 jermar 1045
        a = (as_area_t *) lnode->value[lnode->keys - 1];
1380 jermar 1046
        mutex_lock(&a->lock);
1147 jermar 1047
        if (va < a->base + a->pages * PAGE_SIZE) {
1048 jermar 1048
            return a;
1147 jermar 1049
        }
1380 jermar 1050
        mutex_unlock(&a->lock);
977 jermar 1051
    }
1052
 
1053
    return NULL;
1054
}
1048 jermar 1055
 
1056
/** Check area conflicts with other areas.
1057
 *
1058
 * The address space must be locked and interrupts must be disabled.
1059
 *
1060
 * @param as Address space.
1061
 * @param va Starting virtual address of the area being tested.
1062
 * @param size Size of the area being tested.
1063
 * @param avoid_area Do not touch this area.
1064
 *
1065
 * @return True if there is no conflict, false otherwise.
1066
 */
1780 jermar 1067
bool check_area_conflicts(as_t *as, uintptr_t va, size_t size, as_area_t *avoid_area)
1048 jermar 1068
{
1069
    as_area_t *a;
1147 jermar 1070
    btree_node_t *leaf, *node;
1071
    int i;
1048 jermar 1072
 
1070 jermar 1073
    /*
1074
     * We don't want any area to have conflicts with NULL page.
1075
     */
1076
    if (overlaps(va, size, NULL, PAGE_SIZE))
1077
        return false;
1078
 
1147 jermar 1079
    /*
1080
     * The leaf node is found in O(log n), where n is proportional to
1081
     * the number of address space areas belonging to as.
1082
     * The check for conflicts is then attempted on the rightmost
1150 jermar 1083
     * record in the left neighbour, the leftmost record in the right
1084
     * neighbour and all records in the leaf node itself.
1147 jermar 1085
     */
1048 jermar 1086
 
1147 jermar 1087
    if ((a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf))) {
1088
        if (a != avoid_area)
1089
            return false;
1090
    }
1091
 
1092
    /* First, check the two border cases. */
1150 jermar 1093
    if ((node = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf))) {
1147 jermar 1094
        a = (as_area_t *) node->value[node->keys - 1];
1380 jermar 1095
        mutex_lock(&a->lock);
1147 jermar 1096
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1380 jermar 1097
            mutex_unlock(&a->lock);
1147 jermar 1098
            return false;
1099
        }
1380 jermar 1100
        mutex_unlock(&a->lock);
1147 jermar 1101
    }
1150 jermar 1102
    if ((node = btree_leaf_node_right_neighbour(&as->as_area_btree, leaf))) {
1147 jermar 1103
        a = (as_area_t *) node->value[0];
1380 jermar 1104
        mutex_lock(&a->lock);
1147 jermar 1105
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1380 jermar 1106
            mutex_unlock(&a->lock);
1147 jermar 1107
            return false;
1108
        }
1380 jermar 1109
        mutex_unlock(&a->lock);
1147 jermar 1110
    }
1111
 
1112
    /* Second, check the leaf node. */
1113
    for (i = 0; i < leaf->keys; i++) {
1114
        a = (as_area_t *) leaf->value[i];
1115
 
1048 jermar 1116
        if (a == avoid_area)
1117
            continue;
1147 jermar 1118
 
1380 jermar 1119
        mutex_lock(&a->lock);
1147 jermar 1120
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1380 jermar 1121
            mutex_unlock(&a->lock);
1147 jermar 1122
            return false;
1123
        }
1380 jermar 1124
        mutex_unlock(&a->lock);
1048 jermar 1125
    }
1126
 
1070 jermar 1127
    /*
1128
     * So far, the area does not conflict with other areas.
1129
     * Check if it doesn't conflict with kernel address space.
1130
     */  
1131
    if (!KERNEL_ADDRESS_SPACE_SHADOWED) {
1132
        return !overlaps(va, size,
1133
            KERNEL_ADDRESS_SPACE_START, KERNEL_ADDRESS_SPACE_END-KERNEL_ADDRESS_SPACE_START);
1134
    }
1135
 
1048 jermar 1136
    return true;
1137
}
1235 jermar 1138
 
1380 jermar 1139
/** Return size of the address space area with given base.  */
1780 jermar 1140
size_t as_get_size(uintptr_t base)
1329 palkovsky 1141
{
1142
    ipl_t ipl;
1143
    as_area_t *src_area;
1144
    size_t size;
1145
 
1146
    ipl = interrupts_disable();
1147
    src_area = find_area_and_lock(AS, base);
1148
    if (src_area){
1149
        size = src_area->pages * PAGE_SIZE;
1380 jermar 1150
        mutex_unlock(&src_area->lock);
1329 palkovsky 1151
    } else {
1152
        size = 0;
1153
    }
1154
    interrupts_restore(ipl);
1155
    return size;
1156
}
1157
 
1387 jermar 1158
/** Mark portion of address space area as used.
1159
 *
1160
 * The address space area must be already locked.
1161
 *
1162
 * @param a Address space area.
1163
 * @param page First page to be marked.
1164
 * @param count Number of page to be marked.
1165
 *
1166
 * @return 0 on failure and 1 on success.
1167
 */
1780 jermar 1168
int used_space_insert(as_area_t *a, uintptr_t page, count_t count)
1387 jermar 1169
{
1170
    btree_node_t *leaf, *node;
1171
    count_t pages;
1172
    int i;
1173
 
1174
    ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1175
    ASSERT(count);
1176
 
1177
    pages = (count_t) btree_search(&a->used_space, page, &leaf);
1178
    if (pages) {
1179
        /*
1180
         * We hit the beginning of some used space.
1181
         */
1182
        return 0;
1183
    }
1184
 
1437 jermar 1185
    if (!leaf->keys) {
1186
        btree_insert(&a->used_space, page, (void *) count, leaf);
1187
        return 1;
1188
    }
1189
 
1387 jermar 1190
    node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1191
    if (node) {
1780 jermar 1192
        uintptr_t left_pg = node->key[node->keys - 1], right_pg = leaf->key[0];
1387 jermar 1193
        count_t left_cnt = (count_t) node->value[node->keys - 1], right_cnt = (count_t) leaf->value[0];
1194
 
1195
        /*
1196
         * Examine the possibility that the interval fits
1197
         * somewhere between the rightmost interval of
1198
         * the left neigbour and the first interval of the leaf.
1199
         */
1200
 
1201
        if (page >= right_pg) {
1202
            /* Do nothing. */
1203
        } else if (overlaps(page, count*PAGE_SIZE, left_pg, left_cnt*PAGE_SIZE)) {
1204
            /* The interval intersects with the left interval. */
1205
            return 0;
1206
        } else if (overlaps(page, count*PAGE_SIZE, right_pg, right_cnt*PAGE_SIZE)) {
1207
            /* The interval intersects with the right interval. */
1208
            return 0;          
1209
        } else if ((page == left_pg + left_cnt*PAGE_SIZE) && (page + count*PAGE_SIZE == right_pg)) {
1210
            /* The interval can be added by merging the two already present intervals. */
1403 jermar 1211
            node->value[node->keys - 1] += count + right_cnt;
1387 jermar 1212
            btree_remove(&a->used_space, right_pg, leaf);
1213
            return 1;
1214
        } else if (page == left_pg + left_cnt*PAGE_SIZE) {
1215
            /* The interval can be added by simply growing the left interval. */
1403 jermar 1216
            node->value[node->keys - 1] += count;
1387 jermar 1217
            return 1;
1218
        } else if (page + count*PAGE_SIZE == right_pg) {
1219
            /*
1220
             * The interval can be addded by simply moving base of the right
1221
             * interval down and increasing its size accordingly.
1222
             */
1403 jermar 1223
            leaf->value[0] += count;
1387 jermar 1224
            leaf->key[0] = page;
1225
            return 1;
1226
        } else {
1227
            /*
1228
             * The interval is between both neigbouring intervals,
1229
             * but cannot be merged with any of them.
1230
             */
1231
            btree_insert(&a->used_space, page, (void *) count, leaf);
1232
            return 1;
1233
        }
1234
    } else if (page < leaf->key[0]) {
1780 jermar 1235
        uintptr_t right_pg = leaf->key[0];
1387 jermar 1236
        count_t right_cnt = (count_t) leaf->value[0];
1237
 
1238
        /*
1239
         * Investigate the border case in which the left neighbour does not
1240
         * exist but the interval fits from the left.
1241
         */
1242
 
1243
        if (overlaps(page, count*PAGE_SIZE, right_pg, right_cnt*PAGE_SIZE)) {
1244
            /* The interval intersects with the right interval. */
1245
            return 0;
1246
        } else if (page + count*PAGE_SIZE == right_pg) {
1247
            /*
1248
             * The interval can be added by moving the base of the right interval down
1249
             * and increasing its size accordingly.
1250
             */
1251
            leaf->key[0] = page;
1403 jermar 1252
            leaf->value[0] += count;
1387 jermar 1253
            return 1;
1254
        } else {
1255
            /*
1256
             * The interval doesn't adjoin with the right interval.
1257
             * It must be added individually.
1258
             */
1259
            btree_insert(&a->used_space, page, (void *) count, leaf);
1260
            return 1;
1261
        }
1262
    }
1263
 
1264
    node = btree_leaf_node_right_neighbour(&a->used_space, leaf);
1265
    if (node) {
1780 jermar 1266
        uintptr_t left_pg = leaf->key[leaf->keys - 1], right_pg = node->key[0];
1387 jermar 1267
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1], right_cnt = (count_t) node->value[0];
1268
 
1269
        /*
1270
         * Examine the possibility that the interval fits
1271
         * somewhere between the leftmost interval of
1272
         * the right neigbour and the last interval of the leaf.
1273
         */
1274
 
1275
        if (page < left_pg) {
1276
            /* Do nothing. */
1277
        } else if (overlaps(page, count*PAGE_SIZE, left_pg, left_cnt*PAGE_SIZE)) {
1278
            /* The interval intersects with the left interval. */
1279
            return 0;
1280
        } else if (overlaps(page, count*PAGE_SIZE, right_pg, right_cnt*PAGE_SIZE)) {
1281
            /* The interval intersects with the right interval. */
1282
            return 0;          
1283
        } else if ((page == left_pg + left_cnt*PAGE_SIZE) && (page + count*PAGE_SIZE == right_pg)) {
1284
            /* The interval can be added by merging the two already present intervals. */
1403 jermar 1285
            leaf->value[leaf->keys - 1] += count + right_cnt;
1387 jermar 1286
            btree_remove(&a->used_space, right_pg, node);
1287
            return 1;
1288
        } else if (page == left_pg + left_cnt*PAGE_SIZE) {
1289
            /* The interval can be added by simply growing the left interval. */
1403 jermar 1290
            leaf->value[leaf->keys - 1] +=  count;
1387 jermar 1291
            return 1;
1292
        } else if (page + count*PAGE_SIZE == right_pg) {
1293
            /*
1294
             * The interval can be addded by simply moving base of the right
1295
             * interval down and increasing its size accordingly.
1296
             */
1403 jermar 1297
            node->value[0] += count;
1387 jermar 1298
            node->key[0] = page;
1299
            return 1;
1300
        } else {
1301
            /*
1302
             * The interval is between both neigbouring intervals,
1303
             * but cannot be merged with any of them.
1304
             */
1305
            btree_insert(&a->used_space, page, (void *) count, leaf);
1306
            return 1;
1307
        }
1308
    } else if (page >= leaf->key[leaf->keys - 1]) {
1780 jermar 1309
        uintptr_t left_pg = leaf->key[leaf->keys - 1];
1387 jermar 1310
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1311
 
1312
        /*
1313
         * Investigate the border case in which the right neighbour does not
1314
         * exist but the interval fits from the right.
1315
         */
1316
 
1317
        if (overlaps(page, count*PAGE_SIZE, left_pg, left_cnt*PAGE_SIZE)) {
1403 jermar 1318
            /* The interval intersects with the left interval. */
1387 jermar 1319
            return 0;
1320
        } else if (left_pg + left_cnt*PAGE_SIZE == page) {
1321
            /* The interval can be added by growing the left interval. */
1403 jermar 1322
            leaf->value[leaf->keys - 1] += count;
1387 jermar 1323
            return 1;
1324
        } else {
1325
            /*
1326
             * The interval doesn't adjoin with the left interval.
1327
             * It must be added individually.
1328
             */
1329
            btree_insert(&a->used_space, page, (void *) count, leaf);
1330
            return 1;
1331
        }
1332
    }
1333
 
1334
    /*
1335
     * Note that if the algorithm made it thus far, the interval can fit only
1336
     * between two other intervals of the leaf. The two border cases were already
1337
     * resolved.
1338
     */
1339
    for (i = 1; i < leaf->keys; i++) {
1340
        if (page < leaf->key[i]) {
1780 jermar 1341
            uintptr_t left_pg = leaf->key[i - 1], right_pg = leaf->key[i];
1387 jermar 1342
            count_t left_cnt = (count_t) leaf->value[i - 1], right_cnt = (count_t) leaf->value[i];
1343
 
1344
            /*
1345
             * The interval fits between left_pg and right_pg.
1346
             */
1347
 
1348
            if (overlaps(page, count*PAGE_SIZE, left_pg, left_cnt*PAGE_SIZE)) {
1349
                /* The interval intersects with the left interval. */
1350
                return 0;
1351
            } else if (overlaps(page, count*PAGE_SIZE, right_pg, right_cnt*PAGE_SIZE)) {
1352
                /* The interval intersects with the right interval. */
1353
                return 0;          
1354
            } else if ((page == left_pg + left_cnt*PAGE_SIZE) && (page + count*PAGE_SIZE == right_pg)) {
1355
                /* The interval can be added by merging the two already present intervals. */
1403 jermar 1356
                leaf->value[i - 1] += count + right_cnt;
1387 jermar 1357
                btree_remove(&a->used_space, right_pg, leaf);
1358
                return 1;
1359
            } else if (page == left_pg + left_cnt*PAGE_SIZE) {
1360
                /* The interval can be added by simply growing the left interval. */
1403 jermar 1361
                leaf->value[i - 1] += count;
1387 jermar 1362
                return 1;
1363
            } else if (page + count*PAGE_SIZE == right_pg) {
1364
                /*
1365
                     * The interval can be addded by simply moving base of the right
1366
                 * interval down and increasing its size accordingly.
1367
                 */
1403 jermar 1368
                leaf->value[i] += count;
1387 jermar 1369
                leaf->key[i] = page;
1370
                return 1;
1371
            } else {
1372
                /*
1373
                 * The interval is between both neigbouring intervals,
1374
                 * but cannot be merged with any of them.
1375
                 */
1376
                btree_insert(&a->used_space, page, (void *) count, leaf);
1377
                return 1;
1378
            }
1379
        }
1380
    }
1381
 
1735 decky 1382
    panic("Inconsistency detected while adding %d pages of used space at %p.\n", count, page);
1387 jermar 1383
}
1384
 
1385
/** Mark portion of address space area as unused.
1386
 *
1387
 * The address space area must be already locked.
1388
 *
1389
 * @param a Address space area.
1390
 * @param page First page to be marked.
1391
 * @param count Number of page to be marked.
1392
 *
1393
 * @return 0 on failure and 1 on success.
1394
 */
1780 jermar 1395
int used_space_remove(as_area_t *a, uintptr_t page, count_t count)
1387 jermar 1396
{
1397
    btree_node_t *leaf, *node;
1398
    count_t pages;
1399
    int i;
1400
 
1401
    ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1402
    ASSERT(count);
1403
 
1404
    pages = (count_t) btree_search(&a->used_space, page, &leaf);
1405
    if (pages) {
1406
        /*
1407
         * We are lucky, page is the beginning of some interval.
1408
         */
1409
        if (count > pages) {
1410
            return 0;
1411
        } else if (count == pages) {
1412
            btree_remove(&a->used_space, page, leaf);
1403 jermar 1413
            return 1;
1387 jermar 1414
        } else {
1415
            /*
1416
             * Find the respective interval.
1417
             * Decrease its size and relocate its start address.
1418
             */
1419
            for (i = 0; i < leaf->keys; i++) {
1420
                if (leaf->key[i] == page) {
1421
                    leaf->key[i] += count*PAGE_SIZE;
1403 jermar 1422
                    leaf->value[i] -= count;
1387 jermar 1423
                    return 1;
1424
                }
1425
            }
1426
            goto error;
1427
        }
1428
    }
1429
 
1430
    node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1431
    if (node && page < leaf->key[0]) {
1780 jermar 1432
        uintptr_t left_pg = node->key[node->keys - 1];
1387 jermar 1433
        count_t left_cnt = (count_t) node->value[node->keys - 1];
1434
 
1435
        if (overlaps(left_pg, left_cnt*PAGE_SIZE, page, count*PAGE_SIZE)) {
1436
            if (page + count*PAGE_SIZE == left_pg + left_cnt*PAGE_SIZE) {
1437
                /*
1438
                 * The interval is contained in the rightmost interval
1439
                 * of the left neighbour and can be removed by
1440
                 * updating the size of the bigger interval.
1441
                 */
1403 jermar 1442
                node->value[node->keys - 1] -= count;
1387 jermar 1443
                return 1;
1444
            } else if (page + count*PAGE_SIZE < left_pg + left_cnt*PAGE_SIZE) {
1403 jermar 1445
                count_t new_cnt;
1387 jermar 1446
 
1447
                /*
1448
                 * The interval is contained in the rightmost interval
1449
                 * of the left neighbour but its removal requires
1450
                 * both updating the size of the original interval and
1451
                 * also inserting a new interval.
1452
                 */
1403 jermar 1453
                new_cnt = ((left_pg + left_cnt*PAGE_SIZE) - (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1454
                node->value[node->keys - 1] -= count + new_cnt;
1387 jermar 1455
                btree_insert(&a->used_space, page + count*PAGE_SIZE, (void *) new_cnt, leaf);
1456
                return 1;
1457
            }
1458
        }
1459
        return 0;
1460
    } else if (page < leaf->key[0]) {
1461
        return 0;
1462
    }
1463
 
1464
    if (page > leaf->key[leaf->keys - 1]) {
1780 jermar 1465
        uintptr_t left_pg = leaf->key[leaf->keys - 1];
1387 jermar 1466
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1467
 
1468
        if (overlaps(left_pg, left_cnt*PAGE_SIZE, page, count*PAGE_SIZE)) {
1469
            if (page + count*PAGE_SIZE == left_pg + left_cnt*PAGE_SIZE) {
1470
                /*
1471
                 * The interval is contained in the rightmost interval
1472
                 * of the leaf and can be removed by updating the size
1473
                 * of the bigger interval.
1474
                 */
1403 jermar 1475
                leaf->value[leaf->keys - 1] -= count;
1387 jermar 1476
                return 1;
1477
            } else if (page + count*PAGE_SIZE < left_pg + left_cnt*PAGE_SIZE) {
1403 jermar 1478
                count_t new_cnt;
1387 jermar 1479
 
1480
                /*
1481
                 * The interval is contained in the rightmost interval
1482
                 * of the leaf but its removal requires both updating
1483
                 * the size of the original interval and
1484
                 * also inserting a new interval.
1485
                 */
1403 jermar 1486
                new_cnt = ((left_pg + left_cnt*PAGE_SIZE) - (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1487
                leaf->value[leaf->keys - 1] -= count + new_cnt;
1387 jermar 1488
                btree_insert(&a->used_space, page + count*PAGE_SIZE, (void *) new_cnt, leaf);
1489
                return 1;
1490
            }
1491
        }
1492
        return 0;
1493
    }  
1494
 
1495
    /*
1496
     * The border cases have been already resolved.
1497
     * Now the interval can be only between intervals of the leaf.
1498
     */
1499
    for (i = 1; i < leaf->keys - 1; i++) {
1500
        if (page < leaf->key[i]) {
1780 jermar 1501
            uintptr_t left_pg = leaf->key[i - 1];
1387 jermar 1502
            count_t left_cnt = (count_t) leaf->value[i - 1];
1503
 
1504
            /*
1505
             * Now the interval is between intervals corresponding to (i - 1) and i.
1506
             */
1507
            if (overlaps(left_pg, left_cnt*PAGE_SIZE, page, count*PAGE_SIZE)) {
1508
                if (page + count*PAGE_SIZE == left_pg + left_cnt*PAGE_SIZE) {
1509
                    /*
1510
                    * The interval is contained in the interval (i - 1)
1511
                     * of the leaf and can be removed by updating the size
1512
                     * of the bigger interval.
1513
                     */
1403 jermar 1514
                    leaf->value[i - 1] -= count;
1387 jermar 1515
                    return 1;
1516
                } else if (page + count*PAGE_SIZE < left_pg + left_cnt*PAGE_SIZE) {
1403 jermar 1517
                    count_t new_cnt;
1387 jermar 1518
 
1519
                    /*
1520
                     * The interval is contained in the interval (i - 1)
1521
                     * of the leaf but its removal requires both updating
1522
                     * the size of the original interval and
1523
                     * also inserting a new interval.
1524
                     */
1403 jermar 1525
                    new_cnt = ((left_pg + left_cnt*PAGE_SIZE) - (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1526
                    leaf->value[i - 1] -= count + new_cnt;
1387 jermar 1527
                    btree_insert(&a->used_space, page + count*PAGE_SIZE, (void *) new_cnt, leaf);
1528
                    return 1;
1529
                }
1530
            }
1531
            return 0;
1532
        }
1533
    }
1534
 
1535
error:
1735 decky 1536
    panic("Inconsistency detected while removing %d pages of used space from %p.\n", count, page);
1387 jermar 1537
}
1538
 
1409 jermar 1539
/** Remove reference to address space area share info.
1540
 *
1541
 * If the reference count drops to 0, the sh_info is deallocated.
1542
 *
1543
 * @param sh_info Pointer to address space area share info.
1544
 */
1545
void sh_info_remove_reference(share_info_t *sh_info)
1546
{
1547
    bool dealloc = false;
1548
 
1549
    mutex_lock(&sh_info->lock);
1550
    ASSERT(sh_info->refcount);
1551
    if (--sh_info->refcount == 0) {
1552
        dealloc = true;
1495 jermar 1553
        link_t *cur;
1409 jermar 1554
 
1555
        /*
1556
         * Now walk carefully the pagemap B+tree and free/remove
1557
         * reference from all frames found there.
1558
         */
1495 jermar 1559
        for (cur = sh_info->pagemap.leaf_head.next; cur != &sh_info->pagemap.leaf_head; cur = cur->next) {
1409 jermar 1560
            btree_node_t *node;
1495 jermar 1561
            int i;
1409 jermar 1562
 
1495 jermar 1563
            node = list_get_instance(cur, btree_node_t, leaf_link);
1564
            for (i = 0; i < node->keys; i++)
1780 jermar 1565
                frame_free((uintptr_t) node->value[i]);
1409 jermar 1566
        }
1567
 
1568
    }
1569
    mutex_unlock(&sh_info->lock);
1570
 
1571
    if (dealloc) {
1572
        btree_destroy(&sh_info->pagemap);
1573
        free(sh_info);
1574
    }
1575
}
1576
 
1235 jermar 1577
/*
1578
 * Address space related syscalls.
1579
 */
1580
 
1581
/** Wrapper for as_area_create(). */
1780 jermar 1582
unative_t sys_as_area_create(uintptr_t address, size_t size, int flags)
1235 jermar 1583
{
1424 jermar 1584
    if (as_area_create(AS, flags | AS_AREA_CACHEABLE, size, address, AS_AREA_ATTR_NONE, &anon_backend, NULL))
1780 jermar 1585
        return (unative_t) address;
1235 jermar 1586
    else
1780 jermar 1587
        return (unative_t) -1;
1235 jermar 1588
}
1589
 
1793 jermar 1590
/** Wrapper for as_area_resize(). */
1780 jermar 1591
unative_t sys_as_area_resize(uintptr_t address, size_t size, int flags)
1235 jermar 1592
{
1780 jermar 1593
    return (unative_t) as_area_resize(AS, address, size, 0);
1235 jermar 1594
}
1595
 
1793 jermar 1596
/** Wrapper for as_area_destroy(). */
1780 jermar 1597
unative_t sys_as_area_destroy(uintptr_t address)
1306 jermar 1598
{
1780 jermar 1599
    return (unative_t) as_area_destroy(AS, address);
1306 jermar 1600
}
1702 cejka 1601
 
1914 jermar 1602
/** Print out information about address space.
1603
 *
1604
 * @param as Address space.
1605
 */
1606
void as_print(as_t *as)
1607
{
1608
    ipl_t ipl;
1609
 
1610
    ipl = interrupts_disable();
1611
    mutex_lock(&as->lock);
1612
 
1613
    /* print out info about address space areas */
1614
    link_t *cur;
1615
    for (cur = as->as_area_btree.leaf_head.next; cur != &as->as_area_btree.leaf_head; cur = cur->next) {
1915 jermar 1616
        btree_node_t *node = list_get_instance(cur, btree_node_t, leaf_link);
1914 jermar 1617
 
1618
        int i;
1619
        for (i = 0; i < node->keys; i++) {
1915 jermar 1620
            as_area_t *area = node->value[i];
1914 jermar 1621
 
1622
            mutex_lock(&area->lock);
1623
            printf("as_area: %p, base=%p, pages=%d (%p - %p)\n",
1624
                area, area->base, area->pages, area->base, area->base + area->pages*PAGE_SIZE);
1625
            mutex_unlock(&area->lock);
1626
        }
1627
    }
1628
 
1629
    mutex_unlock(&as->lock);
1630
    interrupts_restore(ipl);
1631
}
1632
 
1757 jermar 1633
/** @}
1702 cejka 1634
 */