Subversion Repositories HelenOS

Rev

Rev 3742 | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
1 jermar 1
/*
2071 jermar 2
 * Copyright (c) 2001-2004 Jakub Jermar
1 jermar 3
 * All rights reserved.
4
 *
5
 * Redistribution and use in source and binary forms, with or without
6
 * modification, are permitted provided that the following conditions
7
 * are met:
8
 *
9
 * - Redistributions of source code must retain the above copyright
10
 *   notice, this list of conditions and the following disclaimer.
11
 * - Redistributions in binary form must reproduce the above copyright
12
 *   notice, this list of conditions and the following disclaimer in the
13
 *   documentation and/or other materials provided with the distribution.
14
 * - The name of the author may not be used to endorse or promote products
15
 *   derived from this software without specific prior written permission.
16
 *
17
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
 */
28
 
1731 jermar 29
/** @addtogroup time
1702 cejka 30
 * @{
31
 */
32
 
1264 jermar 33
/**
1702 cejka 34
 * @file
1264 jermar 35
 * @brief   High-level clock interrupt handler.
36
 *
37
 * This file contains the clock() function which is the source
38
 * of preemption. It is also responsible for executing expired
39
 * timeouts.
40
 */
41
 
1 jermar 42
#include <time/clock.h>
43
#include <time/timeout.h>
44
#include <config.h>
45
#include <synch/spinlock.h>
46
#include <synch/waitq.h>
47
#include <func.h>
48
#include <proc/scheduler.h>
49
#include <cpu.h>
50
#include <arch.h>
788 jermar 51
#include <adt/list.h>
1104 jermar 52
#include <atomic.h>
391 jermar 53
#include <proc/thread.h>
1434 palkovsky 54
#include <sysinfo/sysinfo.h>
3862 rimsky 55
#include <arch/asm.h>
1434 palkovsky 56
#include <arch/barrier.h>
2015 jermar 57
#include <mm/frame.h>
58
#include <ddi/ddi.h>
1 jermar 59
 
2275 decky 60
/* Pointer to variable with uptime */
61
uptime_t *uptime;
62
 
63
/** Physical memory area of the real time clock */
2015 jermar 64
static parea_t clock_parea;
65
 
1434 palkovsky 66
/* Variable holding fragment of second, so that we would update
67
 * seconds correctly
68
 */
1780 jermar 69
static unative_t secfrag = 0;
1434 palkovsky 70
 
71
/** Initialize realtime clock counter
72
 *
73
 * The applications (and sometimes kernel) need to access accurate
74
 * information about realtime data. We allocate 1 page with these
75
 * data and update it periodically.
76
 */
77
void clock_counter_init(void)
78
{
79
    void *faddr;
80
 
2015 jermar 81
    faddr = frame_alloc(ONE_FRAME, FRAME_ATOMIC);
1434 palkovsky 82
    if (!faddr)
83
        panic("Cannot allocate page for clock");
84
 
2275 decky 85
    uptime = (uptime_t *) PA2KA(faddr);
86
 
87
    uptime->seconds1 = 0;
88
    uptime->seconds2 = 0;
89
    uptime->useconds = 0;
1434 palkovsky 90
 
2015 jermar 91
    clock_parea.pbase = (uintptr_t) faddr;
2275 decky 92
    clock_parea.vbase = (uintptr_t) uptime;
2015 jermar 93
    clock_parea.frames = 1;
94
    clock_parea.cacheable = true;
95
    ddi_parea_register(&clock_parea);
96
 
97
    /*
98
     * Prepare information for the userspace so that it can successfully
99
     * physmem_map() the clock_parea.
100
     */
101
    sysinfo_set_item_val("clock.cacheable", NULL, (unative_t) true);
102
    sysinfo_set_item_val("clock.faddr", NULL, (unative_t) faddr);
1434 palkovsky 103
}
104
 
105
 
106
/** Update public counters
107
 *
108
 * Update it only on first processor
109
 * TODO: Do we really need so many write barriers?
110
 */
111
static void clock_update_counters(void)
112
{
113
    if (CPU->id == 0) {
2275 decky 114
        secfrag += 1000000 / HZ;
1434 palkovsky 115
        if (secfrag >= 1000000) {
1438 palkovsky 116
            secfrag -= 1000000;
2275 decky 117
            uptime->seconds1++;
1434 palkovsky 118
            write_barrier();
2275 decky 119
            uptime->useconds = secfrag;
1438 palkovsky 120
            write_barrier();
2275 decky 121
            uptime->seconds2 = uptime->seconds1;
1434 palkovsky 122
        } else
2275 decky 123
            uptime->useconds += 1000000 / HZ;
1434 palkovsky 124
    }
125
}
126
 
107 decky 127
/** Clock routine
128
 *
129
 * Clock routine executed from clock interrupt handler
413 jermar 130
 * (assuming interrupts_disable()'d). Runs expired timeouts
107 decky 131
 * and preemptive scheduling.
132
 *
1 jermar 133
 */
134
void clock(void)
135
{
136
    link_t *l;
137
    timeout_t *h;
411 jermar 138
    timeout_handler_t f;
1 jermar 139
    void *arg;
1457 jermar 140
    count_t missed_clock_ticks = CPU->missed_clock_ticks;
2745 decky 141
    unsigned int i;
1 jermar 142
 
143
    /*
144
     * To avoid lock ordering problems,
145
     * run all expired timeouts as you visit them.
146
     */
1457 jermar 147
    for (i = 0; i <= missed_clock_ticks; i++) {
1434 palkovsky 148
        clock_update_counters();
1431 jermar 149
        spinlock_lock(&CPU->timeoutlock);
150
        while ((l = CPU->timeout_active_head.next) != &CPU->timeout_active_head) {
151
            h = list_get_instance(l, timeout_t, link);
152
            spinlock_lock(&h->lock);
153
            if (h->ticks-- != 0) {
154
                spinlock_unlock(&h->lock);
155
                break;
156
            }
157
            list_remove(l);
158
            f = h->handler;
159
            arg = h->arg;
160
            timeout_reinitialize(h);
161
            spinlock_unlock(&h->lock); 
162
            spinlock_unlock(&CPU->timeoutlock);
163
 
164
            f(arg);
165
 
166
            spinlock_lock(&CPU->timeoutlock);
1 jermar 167
        }
15 jermar 168
        spinlock_unlock(&CPU->timeoutlock);
1 jermar 169
    }
1431 jermar 170
    CPU->missed_clock_ticks = 0;
1 jermar 171
 
172
    /*
15 jermar 173
     * Do CPU usage accounting and find out whether to preempt THREAD.
1 jermar 174
     */
175
 
15 jermar 176
    if (THREAD) {
1780 jermar 177
        uint64_t ticks;
221 jermar 178
 
15 jermar 179
        spinlock_lock(&CPU->lock);
1457 jermar 180
        CPU->needs_relink += 1 + missed_clock_ticks;
15 jermar 181
        spinlock_unlock(&CPU->lock);   
1 jermar 182
 
15 jermar 183
        spinlock_lock(&THREAD->lock);
1457 jermar 184
        if ((ticks = THREAD->ticks)) {
185
            if (ticks >= 1 + missed_clock_ticks)
186
                THREAD->ticks -= 1 + missed_clock_ticks;
187
            else
188
                THREAD->ticks = 0;
189
        }
221 jermar 190
        spinlock_unlock(&THREAD->lock);
191
 
192
        if (!ticks && !PREEMPTION_DISABLED) {
3742 rimsky 193
#ifdef CONFIG_UDEBUG
194
            istate_t *istate;
195
#endif
1 jermar 196
            scheduler();
3665 rimsky 197
#ifdef CONFIG_UDEBUG
198
            /*
199
             * Give udebug chance to stop the thread
3742 rimsky 200
             * before it begins executing userspace code.
3665 rimsky 201
             */
3742 rimsky 202
            istate = THREAD->udebug.uspace_state;
203
            if (istate && istate_from_uspace(istate))
3665 rimsky 204
                udebug_before_thread_runs();
205
#endif
1 jermar 206
        }
207
    }
208
 
209
}
1702 cejka 210
 
1731 jermar 211
/** @}
1702 cejka 212
 */