Subversion Repositories HelenOS

Rev

Rev 4668 | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
4419 trochtova 1
/*
2
 * Copyright (c) 2008 Jakub Jermar
3
 * All rights reserved.
4
 *
5
 * Redistribution and use in source and binary forms, with or without
6
 * modification, are permitted provided that the following conditions
7
 * are met:
8
 *
9
 * - Redistributions of source code must retain the above copyright
10
 *   notice, this list of conditions and the following disclaimer.
11
 * - Redistributions in binary form must reproduce the above copyright
12
 *   notice, this list of conditions and the following disclaimer in the
13
 *   documentation and/or other materials provided with the distribution.
14
 * - The name of the author may not be used to endorse or promote products
15
 *   derived from this software without specific prior written permission.
16
 *
17
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
 */
28
 
29
/** @addtogroup fs
30
 * @{
31
 */
32
 
33
/**
34
 * @file    fat_ops.c
35
 * @brief   Implementation of VFS operations for the FAT file system server.
36
 */
37
 
38
#include "fat.h"
39
#include "fat_dentry.h"
40
#include "fat_fat.h"
41
#include "../../vfs/vfs.h"
42
#include <libfs.h>
43
#include <libblock.h>
44
#include <ipc/ipc.h>
45
#include <ipc/services.h>
46
#include <ipc/devmap.h>
47
#include <async.h>
48
#include <errno.h>
49
#include <string.h>
50
#include <byteorder.h>
4537 trochtova 51
#include <adt/hash_table.h>
52
#include <adt/list.h>
4419 trochtova 53
#include <assert.h>
4668 trochtova 54
#include <fibril_sync.h>
4419 trochtova 55
#include <sys/mman.h>
56
#include <align.h>
57
 
4420 trochtova 58
#define FAT_NODE(node)  ((node) ? (fat_node_t *) (node)->data : NULL)
59
#define FS_NODE(node)   ((node) ? (node)->bp : NULL)
60
 
4668 trochtova 61
/** Mutex protecting the list of cached free FAT nodes. */
62
static FIBRIL_MUTEX_INITIALIZE(ffn_mutex);
4419 trochtova 63
 
64
/** List of cached free FAT nodes. */
65
static LIST_INITIALIZE(ffn_head);
66
 
67
static void fat_node_initialize(fat_node_t *node)
68
{
4668 trochtova 69
    fibril_mutex_initialize(&node->lock);
4420 trochtova 70
    node->bp = NULL;
4419 trochtova 71
    node->idx = NULL;
72
    node->type = 0;
73
    link_initialize(&node->ffn_link);
74
    node->size = 0;
75
    node->lnkcnt = 0;
76
    node->refcnt = 0;
77
    node->dirty = false;
78
}
79
 
80
static void fat_node_sync(fat_node_t *node)
81
{
82
    block_t *b;
83
    fat_bs_t *bs;
84
    fat_dentry_t *d;
85
    uint16_t bps;
86
    unsigned dps;
87
 
88
    assert(node->dirty);
89
 
90
    bs = block_bb_get(node->idx->dev_handle);
91
    bps = uint16_t_le2host(bs->bps);
92
    dps = bps / sizeof(fat_dentry_t);
93
 
94
    /* Read the block that contains the dentry of interest. */
95
    b = _fat_block_get(bs, node->idx->dev_handle, node->idx->pfc,
96
        (node->idx->pdi * sizeof(fat_dentry_t)) / bps, BLOCK_FLAGS_NONE);
97
 
98
    d = ((fat_dentry_t *)b->data) + (node->idx->pdi % dps);
99
 
100
    d->firstc = host2uint16_t_le(node->firstc);
101
    if (node->type == FAT_FILE) {
102
        d->size = host2uint32_t_le(node->size);
103
    } else if (node->type == FAT_DIRECTORY) {
104
        d->attr = FAT_ATTR_SUBDIR;
105
    }
106
 
107
    /* TODO: update other fields? (e.g time fields) */
108
 
109
    b->dirty = true;        /* need to sync block */
110
    block_put(b);
111
}
112
 
113
static fat_node_t *fat_node_get_new(void)
114
{
4420 trochtova 115
    fs_node_t *fn;
4419 trochtova 116
    fat_node_t *nodep;
117
 
4668 trochtova 118
    fibril_mutex_lock(&ffn_mutex);
4419 trochtova 119
    if (!list_empty(&ffn_head)) {
120
        /* Try to use a cached free node structure. */
121
        fat_idx_t *idxp_tmp;
122
        nodep = list_get_instance(ffn_head.next, fat_node_t, ffn_link);
4668 trochtova 123
        if (!fibril_mutex_trylock(&nodep->lock))
4419 trochtova 124
            goto skip_cache;
125
        idxp_tmp = nodep->idx;
4668 trochtova 126
        if (!fibril_mutex_trylock(&idxp_tmp->lock)) {
127
            fibril_mutex_unlock(&nodep->lock);
4419 trochtova 128
            goto skip_cache;
129
        }
130
        list_remove(&nodep->ffn_link);
4668 trochtova 131
        fibril_mutex_unlock(&ffn_mutex);
4419 trochtova 132
        if (nodep->dirty)
133
            fat_node_sync(nodep);
134
        idxp_tmp->nodep = NULL;
4668 trochtova 135
        fibril_mutex_unlock(&nodep->lock);
136
        fibril_mutex_unlock(&idxp_tmp->lock);
4420 trochtova 137
        fn = FS_NODE(nodep);
4419 trochtova 138
    } else {
139
skip_cache:
140
        /* Try to allocate a new node structure. */
4668 trochtova 141
        fibril_mutex_unlock(&ffn_mutex);
4420 trochtova 142
        fn = (fs_node_t *)malloc(sizeof(fs_node_t));
143
        if (!fn)
144
            return NULL;
4419 trochtova 145
        nodep = (fat_node_t *)malloc(sizeof(fat_node_t));
4420 trochtova 146
        if (!nodep) {
147
            free(fn);
4419 trochtova 148
            return NULL;
4420 trochtova 149
        }
4419 trochtova 150
    }
151
    fat_node_initialize(nodep);
4420 trochtova 152
    fs_node_initialize(fn);
153
    fn->data = nodep;
154
    nodep->bp = fn;
4419 trochtova 155
 
156
    return nodep;
157
}
158
 
159
/** Internal version of fat_node_get().
160
 *
161
 * @param idxp      Locked index structure.
162
 */
4420 trochtova 163
static fat_node_t *fat_node_get_core(fat_idx_t *idxp)
4419 trochtova 164
{
165
    block_t *b;
166
    fat_bs_t *bs;
167
    fat_dentry_t *d;
168
    fat_node_t *nodep = NULL;
169
    unsigned bps;
170
    unsigned spc;
171
    unsigned dps;
172
 
173
    if (idxp->nodep) {
174
        /*
175
         * We are lucky.
176
         * The node is already instantiated in memory.
177
         */
4668 trochtova 178
        fibril_mutex_lock(&idxp->nodep->lock);
4419 trochtova 179
        if (!idxp->nodep->refcnt++)
180
            list_remove(&idxp->nodep->ffn_link);
4668 trochtova 181
        fibril_mutex_unlock(&idxp->nodep->lock);
4419 trochtova 182
        return idxp->nodep;
183
    }
184
 
185
    /*
186
     * We must instantiate the node from the file system.
187
     */
188
 
189
    assert(idxp->pfc);
190
 
191
    nodep = fat_node_get_new();
192
    if (!nodep)
193
        return NULL;
194
 
195
    bs = block_bb_get(idxp->dev_handle);
196
    bps = uint16_t_le2host(bs->bps);
197
    spc = bs->spc;
198
    dps = bps / sizeof(fat_dentry_t);
199
 
200
    /* Read the block that contains the dentry of interest. */
201
    b = _fat_block_get(bs, idxp->dev_handle, idxp->pfc,
202
        (idxp->pdi * sizeof(fat_dentry_t)) / bps, BLOCK_FLAGS_NONE);
203
    assert(b);
204
 
205
    d = ((fat_dentry_t *)b->data) + (idxp->pdi % dps);
206
    if (d->attr & FAT_ATTR_SUBDIR) {
207
        /*
208
         * The only directory which does not have this bit set is the
209
         * root directory itself. The root directory node is handled
210
         * and initialized elsewhere.
211
         */
212
        nodep->type = FAT_DIRECTORY;
213
        /*
214
         * Unfortunately, the 'size' field of the FAT dentry is not
215
         * defined for the directory entry type. We must determine the
216
         * size of the directory by walking the FAT.
217
         */
218
        nodep->size = bps * spc * fat_clusters_get(bs, idxp->dev_handle,
219
            uint16_t_le2host(d->firstc));
220
    } else {
221
        nodep->type = FAT_FILE;
222
        nodep->size = uint32_t_le2host(d->size);
223
    }
224
    nodep->firstc = uint16_t_le2host(d->firstc);
225
    nodep->lnkcnt = 1;
226
    nodep->refcnt = 1;
227
 
228
    block_put(b);
229
 
230
    /* Link the idx structure with the node structure. */
231
    nodep->idx = idxp;
232
    idxp->nodep = nodep;
233
 
234
    return nodep;
235
}
236
 
237
/*
238
 * Forward declarations of FAT libfs operations.
239
 */
4420 trochtova 240
static fs_node_t *fat_node_get(dev_handle_t, fs_index_t);
241
static void fat_node_put(fs_node_t *);
242
static fs_node_t *fat_create_node(dev_handle_t, int);
243
static int fat_destroy_node(fs_node_t *);
244
static int fat_link(fs_node_t *, fs_node_t *, const char *);
245
static int fat_unlink(fs_node_t *, fs_node_t *, const char *);
246
static fs_node_t *fat_match(fs_node_t *, const char *);
247
static fs_index_t fat_index_get(fs_node_t *);
248
static size_t fat_size_get(fs_node_t *);
249
static unsigned fat_lnkcnt_get(fs_node_t *);
250
static bool fat_has_children(fs_node_t *);
251
static fs_node_t *fat_root_get(dev_handle_t);
4419 trochtova 252
static char fat_plb_get_char(unsigned);
4420 trochtova 253
static bool fat_is_directory(fs_node_t *);
254
static bool fat_is_file(fs_node_t *node);
4419 trochtova 255
 
256
/*
257
 * FAT libfs operations.
258
 */
259
 
260
/** Instantiate a FAT in-core node. */
4420 trochtova 261
fs_node_t *fat_node_get(dev_handle_t dev_handle, fs_index_t index)
4419 trochtova 262
{
4420 trochtova 263
    fat_node_t *nodep;
4419 trochtova 264
    fat_idx_t *idxp;
265
 
266
    idxp = fat_idx_get_by_index(dev_handle, index);
267
    if (!idxp)
268
        return NULL;
269
    /* idxp->lock held */
4420 trochtova 270
    nodep = fat_node_get_core(idxp);
4668 trochtova 271
    fibril_mutex_unlock(&idxp->lock);
4420 trochtova 272
    return FS_NODE(nodep);
4419 trochtova 273
}
274
 
4420 trochtova 275
void fat_node_put(fs_node_t *fn)
4419 trochtova 276
{
4420 trochtova 277
    fat_node_t *nodep = FAT_NODE(fn);
4419 trochtova 278
    bool destroy = false;
279
 
4668 trochtova 280
    fibril_mutex_lock(&nodep->lock);
4419 trochtova 281
    if (!--nodep->refcnt) {
282
        if (nodep->idx) {
4668 trochtova 283
            fibril_mutex_lock(&ffn_mutex);
4419 trochtova 284
            list_append(&nodep->ffn_link, &ffn_head);
4668 trochtova 285
            fibril_mutex_unlock(&ffn_mutex);
4419 trochtova 286
        } else {
287
            /*
288
             * The node does not have any index structure associated
289
             * with itself. This can only mean that we are releasing
290
             * the node after a failed attempt to allocate the index
291
             * structure for it.
292
             */
293
            destroy = true;
294
        }
295
    }
4668 trochtova 296
    fibril_mutex_unlock(&nodep->lock);
4420 trochtova 297
    if (destroy) {
298
        free(nodep->bp);
299
        free(nodep);
300
    }
4419 trochtova 301
}
302
 
4420 trochtova 303
fs_node_t *fat_create_node(dev_handle_t dev_handle, int flags)
4419 trochtova 304
{
305
    fat_idx_t *idxp;
306
    fat_node_t *nodep;
307
    fat_bs_t *bs;
308
    fat_cluster_t mcl, lcl;
309
    uint16_t bps;
310
    int rc;
311
 
312
    bs = block_bb_get(dev_handle);
313
    bps = uint16_t_le2host(bs->bps);
314
    if (flags & L_DIRECTORY) {
315
        /* allocate a cluster */
316
        rc = fat_alloc_clusters(bs, dev_handle, 1, &mcl, &lcl);
317
        if (rc != EOK)
318
            return NULL;
319
    }
320
 
321
    nodep = fat_node_get_new();
322
    if (!nodep) {
323
        fat_free_clusters(bs, dev_handle, mcl);
324
        return NULL;
325
    }
326
    idxp = fat_idx_get_new(dev_handle);
327
    if (!idxp) {
328
        fat_free_clusters(bs, dev_handle, mcl);
4420 trochtova 329
        fat_node_put(FS_NODE(nodep));
4419 trochtova 330
        return NULL;
331
    }
332
    /* idxp->lock held */
333
    if (flags & L_DIRECTORY) {
334
        int i;
335
        block_t *b;
336
 
337
        /*
338
         * Populate the new cluster with unused dentries.
339
         */
340
        for (i = 0; i < bs->spc; i++) {
341
            b = _fat_block_get(bs, dev_handle, mcl, i,
342
                BLOCK_FLAGS_NOREAD);
343
            /* mark all dentries as never-used */
344
            memset(b->data, 0, bps);
345
            b->dirty = false;
346
            block_put(b);
347
        }
348
        nodep->type = FAT_DIRECTORY;
349
        nodep->firstc = mcl;
350
        nodep->size = bps * bs->spc;
351
    } else {
352
        nodep->type = FAT_FILE;
353
        nodep->firstc = FAT_CLST_RES0;
354
        nodep->size = 0;
355
    }
356
    nodep->lnkcnt = 0;  /* not linked anywhere */
357
    nodep->refcnt = 1;
358
    nodep->dirty = true;
359
 
360
    nodep->idx = idxp;
361
    idxp->nodep = nodep;
362
 
4668 trochtova 363
    fibril_mutex_unlock(&idxp->lock);
4420 trochtova 364
    return FS_NODE(nodep);
4419 trochtova 365
}
366
 
4420 trochtova 367
int fat_destroy_node(fs_node_t *fn)
4419 trochtova 368
{
4420 trochtova 369
    fat_node_t *nodep = FAT_NODE(fn);
4419 trochtova 370
    fat_bs_t *bs;
371
 
372
    /*
373
     * The node is not reachable from the file system. This means that the
374
     * link count should be zero and that the index structure cannot be
375
     * found in the position hash. Obviously, we don't need to lock the node
376
     * nor its index structure.
377
     */
378
    assert(nodep->lnkcnt == 0);
379
 
380
    /*
381
     * The node may not have any children.
382
     */
4420 trochtova 383
    assert(fat_has_children(fn) == false);
4419 trochtova 384
 
385
    bs = block_bb_get(nodep->idx->dev_handle);
386
    if (nodep->firstc != FAT_CLST_RES0) {
387
        assert(nodep->size);
388
        /* Free all clusters allocated to the node. */
389
        fat_free_clusters(bs, nodep->idx->dev_handle, nodep->firstc);
390
    }
391
 
392
    fat_idx_destroy(nodep->idx);
4420 trochtova 393
    free(nodep->bp);
4419 trochtova 394
    free(nodep);
395
    return EOK;
396
}
397
 
4420 trochtova 398
int fat_link(fs_node_t *pfn, fs_node_t *cfn, const char *name)
4419 trochtova 399
{
4420 trochtova 400
    fat_node_t *parentp = FAT_NODE(pfn);
401
    fat_node_t *childp = FAT_NODE(cfn);
4419 trochtova 402
    fat_dentry_t *d;
403
    fat_bs_t *bs;
404
    block_t *b;
4688 trochtova 405
    unsigned i, j;
4419 trochtova 406
    uint16_t bps;
407
    unsigned dps;
408
    unsigned blocks;
409
    fat_cluster_t mcl, lcl;
410
    int rc;
411
 
4668 trochtova 412
    fibril_mutex_lock(&childp->lock);
4419 trochtova 413
    if (childp->lnkcnt == 1) {
414
        /*
415
         * On FAT, we don't support multiple hard links.
416
         */
4668 trochtova 417
        fibril_mutex_unlock(&childp->lock);
4419 trochtova 418
        return EMLINK;
419
    }
420
    assert(childp->lnkcnt == 0);
4668 trochtova 421
    fibril_mutex_unlock(&childp->lock);
4419 trochtova 422
 
423
    if (!fat_dentry_name_verify(name)) {
424
        /*
425
         * Attempt to create unsupported name.
426
         */
427
        return ENOTSUP;
428
    }
429
 
430
    /*
431
     * Get us an unused parent node's dentry or grow the parent and allocate
432
     * a new one.
433
     */
434
 
4668 trochtova 435
    fibril_mutex_lock(&parentp->idx->lock);
4419 trochtova 436
    bs = block_bb_get(parentp->idx->dev_handle);
437
    bps = uint16_t_le2host(bs->bps);
438
    dps = bps / sizeof(fat_dentry_t);
439
 
440
    blocks = parentp->size / bps;
441
 
442
    for (i = 0; i < blocks; i++) {
443
        b = fat_block_get(bs, parentp, i, BLOCK_FLAGS_NONE);
444
        for (j = 0; j < dps; j++) {
445
            d = ((fat_dentry_t *)b->data) + j;
446
            switch (fat_classify_dentry(d)) {
447
            case FAT_DENTRY_SKIP:
448
            case FAT_DENTRY_VALID:
449
                /* skipping used and meta entries */
450
                continue;
451
            case FAT_DENTRY_FREE:
452
            case FAT_DENTRY_LAST:
453
                /* found an empty slot */
454
                goto hit;
455
            }
456
        }
457
        block_put(b);
458
    }
459
    j = 0;
460
 
461
    /*
462
     * We need to grow the parent in order to create a new unused dentry.
463
     */
464
    if (parentp->idx->pfc == FAT_CLST_ROOT) {
465
        /* Can't grow the root directory. */
4668 trochtova 466
        fibril_mutex_unlock(&parentp->idx->lock);
4419 trochtova 467
        return ENOSPC;
468
    }
469
    rc = fat_alloc_clusters(bs, parentp->idx->dev_handle, 1, &mcl, &lcl);
470
    if (rc != EOK) {
4668 trochtova 471
        fibril_mutex_unlock(&parentp->idx->lock);
4419 trochtova 472
        return rc;
473
    }
474
    fat_append_clusters(bs, parentp, mcl);
475
    b = fat_block_get(bs, parentp, i, BLOCK_FLAGS_NOREAD);
476
    d = (fat_dentry_t *)b->data;
477
    /*
478
     * Clear all dentries in the block except for the first one (the first
479
     * dentry will be cleared in the next step).
480
     */
481
    memset(d + 1, 0, bps - sizeof(fat_dentry_t));
482
 
483
hit:
484
    /*
485
     * At this point we only establish the link between the parent and the
486
     * child.  The dentry, except of the name and the extension, will remain
487
     * uninitialized until the corresponding node is synced. Thus the valid
488
     * dentry data is kept in the child node structure.
489
     */
490
    memset(d, 0, sizeof(fat_dentry_t));
491
    fat_dentry_name_set(d, name);
492
    b->dirty = true;        /* need to sync block */
493
    block_put(b);
4668 trochtova 494
    fibril_mutex_unlock(&parentp->idx->lock);
4419 trochtova 495
 
4668 trochtova 496
    fibril_mutex_lock(&childp->idx->lock);
4419 trochtova 497
 
498
    /*
499
     * If possible, create the Sub-directory Identifier Entry and the
500
     * Sub-directory Parent Pointer Entry (i.e. "." and ".."). These entries
501
     * are not mandatory according to Standard ECMA-107 and HelenOS VFS does
502
     * not use them anyway, so this is rather a sign of our good will.
503
     */
504
    b = fat_block_get(bs, childp, 0, BLOCK_FLAGS_NONE);
505
    d = (fat_dentry_t *)b->data;
506
    if (fat_classify_dentry(d) == FAT_DENTRY_LAST ||
507
        str_cmp(d->name, FAT_NAME_DOT) == 0) {
508
        memset(d, 0, sizeof(fat_dentry_t));
509
        str_cpy(d->name, 8, FAT_NAME_DOT);
510
        str_cpy(d->ext, 3, FAT_EXT_PAD);
511
        d->attr = FAT_ATTR_SUBDIR;
512
        d->firstc = host2uint16_t_le(childp->firstc);
513
        /* TODO: initialize also the date/time members. */
514
    }
515
    d++;
516
    if (fat_classify_dentry(d) == FAT_DENTRY_LAST ||
517
        str_cmp(d->name, FAT_NAME_DOT_DOT) == 0) {
518
        memset(d, 0, sizeof(fat_dentry_t));
519
        str_cpy(d->name, 8, FAT_NAME_DOT_DOT);
520
        str_cpy(d->ext, 3, FAT_EXT_PAD);
521
        d->attr = FAT_ATTR_SUBDIR;
522
        d->firstc = (parentp->firstc == FAT_CLST_ROOT) ?
523
            host2uint16_t_le(FAT_CLST_RES0) :
524
            host2uint16_t_le(parentp->firstc);
525
        /* TODO: initialize also the date/time members. */
526
    }
527
    b->dirty = true;        /* need to sync block */
528
    block_put(b);
529
 
530
    childp->idx->pfc = parentp->firstc;
531
    childp->idx->pdi = i * dps + j;
4668 trochtova 532
    fibril_mutex_unlock(&childp->idx->lock);
4419 trochtova 533
 
4668 trochtova 534
    fibril_mutex_lock(&childp->lock);
4419 trochtova 535
    childp->lnkcnt = 1;
536
    childp->dirty = true;       /* need to sync node */
4668 trochtova 537
    fibril_mutex_unlock(&childp->lock);
4419 trochtova 538
 
539
    /*
540
     * Hash in the index structure into the position hash.
541
     */
542
    fat_idx_hashin(childp->idx);
543
 
544
    return EOK;
545
}
546
 
4420 trochtova 547
int fat_unlink(fs_node_t *pfn, fs_node_t *cfn, const char *nm)
4419 trochtova 548
{
4420 trochtova 549
    fat_node_t *parentp = FAT_NODE(pfn);
550
    fat_node_t *childp = FAT_NODE(cfn);
4419 trochtova 551
    fat_bs_t *bs;
552
    fat_dentry_t *d;
553
    uint16_t bps;
554
    block_t *b;
555
 
4420 trochtova 556
    if (!parentp)
557
        return EBUSY;
558
 
559
    if (fat_has_children(cfn))
560
        return ENOTEMPTY;
561
 
4668 trochtova 562
    fibril_mutex_lock(&parentp->lock);
563
    fibril_mutex_lock(&childp->lock);
4419 trochtova 564
    assert(childp->lnkcnt == 1);
4668 trochtova 565
    fibril_mutex_lock(&childp->idx->lock);
4419 trochtova 566
    bs = block_bb_get(childp->idx->dev_handle);
567
    bps = uint16_t_le2host(bs->bps);
568
 
569
    b = _fat_block_get(bs, childp->idx->dev_handle, childp->idx->pfc,
570
        (childp->idx->pdi * sizeof(fat_dentry_t)) / bps,
571
        BLOCK_FLAGS_NONE);
572
    d = (fat_dentry_t *)b->data +
573
        (childp->idx->pdi % (bps / sizeof(fat_dentry_t)));
574
    /* mark the dentry as not-currently-used */
575
    d->name[0] = FAT_DENTRY_ERASED;
576
    b->dirty = true;        /* need to sync block */
577
    block_put(b);
578
 
579
    /* remove the index structure from the position hash */
580
    fat_idx_hashout(childp->idx);
581
    /* clear position information */
582
    childp->idx->pfc = FAT_CLST_RES0;
583
    childp->idx->pdi = 0;
4668 trochtova 584
    fibril_mutex_unlock(&childp->idx->lock);
4419 trochtova 585
    childp->lnkcnt = 0;
586
    childp->dirty = true;
4668 trochtova 587
    fibril_mutex_unlock(&childp->lock);
588
    fibril_mutex_unlock(&parentp->lock);
4419 trochtova 589
 
590
    return EOK;
591
}
592
 
4420 trochtova 593
fs_node_t *fat_match(fs_node_t *pfn, const char *component)
4419 trochtova 594
{
595
    fat_bs_t *bs;
4420 trochtova 596
    fat_node_t *parentp = FAT_NODE(pfn);
4419 trochtova 597
    char name[FAT_NAME_LEN + 1 + FAT_EXT_LEN + 1];
598
    unsigned i, j;
599
    unsigned bps;       /* bytes per sector */
600
    unsigned dps;       /* dentries per sector */
601
    unsigned blocks;
602
    fat_dentry_t *d;
603
    block_t *b;
604
 
4668 trochtova 605
    fibril_mutex_lock(&parentp->idx->lock);
4419 trochtova 606
    bs = block_bb_get(parentp->idx->dev_handle);
607
    bps = uint16_t_le2host(bs->bps);
608
    dps = bps / sizeof(fat_dentry_t);
609
    blocks = parentp->size / bps;
610
    for (i = 0; i < blocks; i++) {
611
        b = fat_block_get(bs, parentp, i, BLOCK_FLAGS_NONE);
612
        for (j = 0; j < dps; j++) {
613
            d = ((fat_dentry_t *)b->data) + j;
614
            switch (fat_classify_dentry(d)) {
615
            case FAT_DENTRY_SKIP:
616
            case FAT_DENTRY_FREE:
617
                continue;
618
            case FAT_DENTRY_LAST:
619
                block_put(b);
4668 trochtova 620
                fibril_mutex_unlock(&parentp->idx->lock);
4419 trochtova 621
                return NULL;
622
            default:
623
            case FAT_DENTRY_VALID:
624
                fat_dentry_name_get(d, name);
625
                break;
626
            }
627
            if (fat_dentry_namecmp(name, component) == 0) {
628
                /* hit */
4420 trochtova 629
                fat_node_t *nodep;
4419 trochtova 630
                /*
631
                 * Assume tree hierarchy for locking.  We
632
                 * already have the parent and now we are going
633
                 * to lock the child.  Never lock in the oposite
634
                 * order.
635
                 */
636
                fat_idx_t *idx = fat_idx_get_by_pos(
637
                    parentp->idx->dev_handle, parentp->firstc,
638
                    i * dps + j);
4668 trochtova 639
                fibril_mutex_unlock(&parentp->idx->lock);
4419 trochtova 640
                if (!idx) {
641
                    /*
642
                     * Can happen if memory is low or if we
643
                     * run out of 32-bit indices.
644
                     */
645
                    block_put(b);
646
                    return NULL;
647
                }
4420 trochtova 648
                nodep = fat_node_get_core(idx);
4668 trochtova 649
                fibril_mutex_unlock(&idx->lock);
4419 trochtova 650
                block_put(b);
4420 trochtova 651
                return FS_NODE(nodep);
4419 trochtova 652
            }
653
        }
654
        block_put(b);
655
    }
656
 
4668 trochtova 657
    fibril_mutex_unlock(&parentp->idx->lock);
4419 trochtova 658
    return NULL;
659
}
660
 
4420 trochtova 661
fs_index_t fat_index_get(fs_node_t *fn)
4419 trochtova 662
{
4420 trochtova 663
    return FAT_NODE(fn)->idx->index;
4419 trochtova 664
}
665
 
4420 trochtova 666
size_t fat_size_get(fs_node_t *fn)
4419 trochtova 667
{
4420 trochtova 668
    return FAT_NODE(fn)->size;
4419 trochtova 669
}
670
 
4420 trochtova 671
unsigned fat_lnkcnt_get(fs_node_t *fn)
4419 trochtova 672
{
4420 trochtova 673
    return FAT_NODE(fn)->lnkcnt;
4419 trochtova 674
}
675
 
4420 trochtova 676
bool fat_has_children(fs_node_t *fn)
4419 trochtova 677
{
678
    fat_bs_t *bs;
4420 trochtova 679
    fat_node_t *nodep = FAT_NODE(fn);
4419 trochtova 680
    unsigned bps;
681
    unsigned dps;
682
    unsigned blocks;
683
    block_t *b;
684
    unsigned i, j;
685
 
686
    if (nodep->type != FAT_DIRECTORY)
687
        return false;
688
 
4668 trochtova 689
    fibril_mutex_lock(&nodep->idx->lock);
4419 trochtova 690
    bs = block_bb_get(nodep->idx->dev_handle);
691
    bps = uint16_t_le2host(bs->bps);
692
    dps = bps / sizeof(fat_dentry_t);
693
 
694
    blocks = nodep->size / bps;
695
 
696
    for (i = 0; i < blocks; i++) {
697
        fat_dentry_t *d;
698
 
699
        b = fat_block_get(bs, nodep, i, BLOCK_FLAGS_NONE);
700
        for (j = 0; j < dps; j++) {
701
            d = ((fat_dentry_t *)b->data) + j;
702
            switch (fat_classify_dentry(d)) {
703
            case FAT_DENTRY_SKIP:
704
            case FAT_DENTRY_FREE:
705
                continue;
706
            case FAT_DENTRY_LAST:
707
                block_put(b);
4668 trochtova 708
                fibril_mutex_unlock(&nodep->idx->lock);
4419 trochtova 709
                return false;
710
            default:
711
            case FAT_DENTRY_VALID:
712
                block_put(b);
4668 trochtova 713
                fibril_mutex_unlock(&nodep->idx->lock);
4419 trochtova 714
                return true;
715
            }
716
            block_put(b);
4668 trochtova 717
            fibril_mutex_unlock(&nodep->idx->lock);
4419 trochtova 718
            return true;
719
        }
720
        block_put(b);
721
    }
722
 
4668 trochtova 723
    fibril_mutex_unlock(&nodep->idx->lock);
4419 trochtova 724
    return false;
725
}
726
 
4420 trochtova 727
fs_node_t *fat_root_get(dev_handle_t dev_handle)
4419 trochtova 728
{
729
    return fat_node_get(dev_handle, 0);
730
}
731
 
732
char fat_plb_get_char(unsigned pos)
733
{
734
    return fat_reg.plb_ro[pos % PLB_SIZE];
735
}
736
 
4420 trochtova 737
bool fat_is_directory(fs_node_t *fn)
4419 trochtova 738
{
4420 trochtova 739
    return FAT_NODE(fn)->type == FAT_DIRECTORY;
4419 trochtova 740
}
741
 
4420 trochtova 742
bool fat_is_file(fs_node_t *fn)
4419 trochtova 743
{
4420 trochtova 744
    return FAT_NODE(fn)->type == FAT_FILE;
4419 trochtova 745
}
746
 
747
/** libfs operations */
748
libfs_ops_t fat_libfs_ops = {
749
    .match = fat_match,
750
    .node_get = fat_node_get,
751
    .node_put = fat_node_put,
752
    .create = fat_create_node,
753
    .destroy = fat_destroy_node,
754
    .link = fat_link,
755
    .unlink = fat_unlink,
756
    .index_get = fat_index_get,
757
    .size_get = fat_size_get,
758
    .lnkcnt_get = fat_lnkcnt_get,
759
    .has_children = fat_has_children,
760
    .root_get = fat_root_get,
761
    .plb_get_char = fat_plb_get_char,
762
    .is_directory = fat_is_directory,
763
    .is_file = fat_is_file
764
};
765
 
766
/*
767
 * VFS operations.
768
 */
769
 
770
void fat_mounted(ipc_callid_t rid, ipc_call_t *request)
771
{
772
    dev_handle_t dev_handle = (dev_handle_t) IPC_GET_ARG1(*request);
4668 trochtova 773
    enum cache_mode cmode;
4419 trochtova 774
    fat_bs_t *bs;
775
    uint16_t bps;
776
    uint16_t rde;
777
    int rc;
778
 
4420 trochtova 779
    /* accept the mount options */
780
    ipc_callid_t callid;
781
    size_t size;
782
    if (!ipc_data_write_receive(&callid, &size)) {
783
        ipc_answer_0(callid, EINVAL);
784
        ipc_answer_0(rid, EINVAL);
785
        return;
786
    }
787
    char *opts = malloc(size + 1);
788
    if (!opts) {
789
        ipc_answer_0(callid, ENOMEM);
790
        ipc_answer_0(rid, ENOMEM);
791
        return;
792
    }
793
    ipcarg_t retval = ipc_data_write_finalize(callid, opts, size);
794
    if (retval != EOK) {
795
        ipc_answer_0(rid, retval);
796
        free(opts);
797
        return;
798
    }
799
    opts[size] = '\0';
800
 
4668 trochtova 801
    /* Check for option enabling write through. */
802
    if (str_cmp(opts, "wtcache") == 0)
803
        cmode = CACHE_MODE_WT;
804
    else
805
        cmode = CACHE_MODE_WB;
806
 
4419 trochtova 807
    /* initialize libblock */
808
    rc = block_init(dev_handle, BS_SIZE);
809
    if (rc != EOK) {
810
        ipc_answer_0(rid, rc);
811
        return;
812
    }
813
 
814
    /* prepare the boot block */
815
    rc = block_bb_read(dev_handle, BS_BLOCK * BS_SIZE, BS_SIZE);
816
    if (rc != EOK) {
817
        block_fini(dev_handle);
818
        ipc_answer_0(rid, rc);
819
        return;
820
    }
821
 
822
    /* get the buffer with the boot sector */
823
    bs = block_bb_get(dev_handle);
824
 
825
    /* Read the number of root directory entries. */
826
    bps = uint16_t_le2host(bs->bps);
827
    rde = uint16_t_le2host(bs->root_ent_max);
828
 
829
    if (bps != BS_SIZE) {
830
        block_fini(dev_handle);
831
        ipc_answer_0(rid, ENOTSUP);
832
        return;
833
    }
834
 
835
    /* Initialize the block cache */
4668 trochtova 836
    rc = block_cache_init(dev_handle, bps, 0 /* XXX */, cmode);
4419 trochtova 837
    if (rc != EOK) {
838
        block_fini(dev_handle);
839
        ipc_answer_0(rid, rc);
840
        return;
841
    }
842
 
843
    rc = fat_idx_init_by_dev_handle(dev_handle);
844
    if (rc != EOK) {
845
        block_fini(dev_handle);
846
        ipc_answer_0(rid, rc);
847
        return;
848
    }
849
 
850
    /* Initialize the root node. */
4420 trochtova 851
    fs_node_t *rfn = (fs_node_t *)malloc(sizeof(fs_node_t));
852
    if (!rfn) {
853
        block_fini(dev_handle);
854
        fat_idx_fini_by_dev_handle(dev_handle);
855
        ipc_answer_0(rid, ENOMEM);
856
        return;
857
    }
858
    fs_node_initialize(rfn);
4419 trochtova 859
    fat_node_t *rootp = (fat_node_t *)malloc(sizeof(fat_node_t));
860
    if (!rootp) {
4420 trochtova 861
        free(rfn);
4419 trochtova 862
        block_fini(dev_handle);
863
        fat_idx_fini_by_dev_handle(dev_handle);
864
        ipc_answer_0(rid, ENOMEM);
865
        return;
866
    }
867
    fat_node_initialize(rootp);
868
 
869
    fat_idx_t *ridxp = fat_idx_get_by_pos(dev_handle, FAT_CLST_ROOTPAR, 0);
870
    if (!ridxp) {
4420 trochtova 871
        free(rfn);
872
        free(rootp);
4419 trochtova 873
        block_fini(dev_handle);
874
        fat_idx_fini_by_dev_handle(dev_handle);
875
        ipc_answer_0(rid, ENOMEM);
876
        return;
877
    }
878
    assert(ridxp->index == 0);
879
    /* ridxp->lock held */
880
 
881
    rootp->type = FAT_DIRECTORY;
882
    rootp->firstc = FAT_CLST_ROOT;
883
    rootp->refcnt = 1;
884
    rootp->lnkcnt = 0;  /* FS root is not linked */
885
    rootp->size = rde * sizeof(fat_dentry_t);
886
    rootp->idx = ridxp;
887
    ridxp->nodep = rootp;
4420 trochtova 888
    rootp->bp = rfn;
889
    rfn->data = rootp;
4419 trochtova 890
 
4668 trochtova 891
    fibril_mutex_unlock(&ridxp->lock);
4419 trochtova 892
 
893
    ipc_answer_3(rid, EOK, ridxp->index, rootp->size, rootp->lnkcnt);
894
}
895
 
896
void fat_mount(ipc_callid_t rid, ipc_call_t *request)
897
{
4439 trochtova 898
    libfs_mount(&fat_libfs_ops, fat_reg.fs_handle, rid, request);
4419 trochtova 899
}
900
 
901
void fat_lookup(ipc_callid_t rid, ipc_call_t *request)
902
{
903
    libfs_lookup(&fat_libfs_ops, fat_reg.fs_handle, rid, request);
904
}
905
 
906
void fat_read(ipc_callid_t rid, ipc_call_t *request)
907
{
908
    dev_handle_t dev_handle = (dev_handle_t)IPC_GET_ARG1(*request);
909
    fs_index_t index = (fs_index_t)IPC_GET_ARG2(*request);
910
    off_t pos = (off_t)IPC_GET_ARG3(*request);
4420 trochtova 911
    fs_node_t *fn = fat_node_get(dev_handle, index);
912
    fat_node_t *nodep;
4419 trochtova 913
    fat_bs_t *bs;
914
    uint16_t bps;
915
    size_t bytes;
916
    block_t *b;
917
 
4420 trochtova 918
    if (!fn) {
4419 trochtova 919
        ipc_answer_0(rid, ENOENT);
920
        return;
921
    }
4420 trochtova 922
    nodep = FAT_NODE(fn);
4419 trochtova 923
 
924
    ipc_callid_t callid;
925
    size_t len;
926
    if (!ipc_data_read_receive(&callid, &len)) {
4420 trochtova 927
        fat_node_put(fn);
4419 trochtova 928
        ipc_answer_0(callid, EINVAL);
929
        ipc_answer_0(rid, EINVAL);
930
        return;
931
    }
932
 
933
    bs = block_bb_get(dev_handle);
934
    bps = uint16_t_le2host(bs->bps);
935
 
936
    if (nodep->type == FAT_FILE) {
937
        /*
938
         * Our strategy for regular file reads is to read one block at
939
         * most and make use of the possibility to return less data than
940
         * requested. This keeps the code very simple.
941
         */
942
        if (pos >= nodep->size) {
943
            /* reading beyond the EOF */
944
            bytes = 0;
945
            (void) ipc_data_read_finalize(callid, NULL, 0);
946
        } else {
947
            bytes = min(len, bps - pos % bps);
948
            bytes = min(bytes, nodep->size - pos);
949
            b = fat_block_get(bs, nodep, pos / bps,
950
                BLOCK_FLAGS_NONE);
951
            (void) ipc_data_read_finalize(callid, b->data + pos % bps,
952
                bytes);
953
            block_put(b);
954
        }
955
    } else {
956
        unsigned bnum;
957
        off_t spos = pos;
958
        char name[FAT_NAME_LEN + 1 + FAT_EXT_LEN + 1];
959
        fat_dentry_t *d;
960
 
961
        assert(nodep->type == FAT_DIRECTORY);
962
        assert(nodep->size % bps == 0);
963
        assert(bps % sizeof(fat_dentry_t) == 0);
964
 
965
        /*
966
         * Our strategy for readdir() is to use the position pointer as
967
         * an index into the array of all dentries. On entry, it points
968
         * to the first unread dentry. If we skip any dentries, we bump
969
         * the position pointer accordingly.
970
         */
971
        bnum = (pos * sizeof(fat_dentry_t)) / bps;
972
        while (bnum < nodep->size / bps) {
973
            off_t o;
974
 
975
            b = fat_block_get(bs, nodep, bnum, BLOCK_FLAGS_NONE);
976
            for (o = pos % (bps / sizeof(fat_dentry_t));
977
                o < bps / sizeof(fat_dentry_t);
978
                o++, pos++) {
979
                d = ((fat_dentry_t *)b->data) + o;
980
                switch (fat_classify_dentry(d)) {
981
                case FAT_DENTRY_SKIP:
982
                case FAT_DENTRY_FREE:
983
                    continue;
984
                case FAT_DENTRY_LAST:
985
                    block_put(b);
986
                    goto miss;
987
                default:
988
                case FAT_DENTRY_VALID:
989
                    fat_dentry_name_get(d, name);
990
                    block_put(b);
991
                    goto hit;
992
                }
993
            }
994
            block_put(b);
995
            bnum++;
996
        }
997
miss:
4420 trochtova 998
        fat_node_put(fn);
4419 trochtova 999
        ipc_answer_0(callid, ENOENT);
1000
        ipc_answer_1(rid, ENOENT, 0);
1001
        return;
1002
hit:
1003
        (void) ipc_data_read_finalize(callid, name, str_size(name) + 1);
1004
        bytes = (pos - spos) + 1;
1005
    }
1006
 
4420 trochtova 1007
    fat_node_put(fn);
4419 trochtova 1008
    ipc_answer_1(rid, EOK, (ipcarg_t)bytes);
1009
}
1010
 
1011
void fat_write(ipc_callid_t rid, ipc_call_t *request)
1012
{
1013
    dev_handle_t dev_handle = (dev_handle_t)IPC_GET_ARG1(*request);
1014
    fs_index_t index = (fs_index_t)IPC_GET_ARG2(*request);
1015
    off_t pos = (off_t)IPC_GET_ARG3(*request);
4420 trochtova 1016
    fs_node_t *fn = fat_node_get(dev_handle, index);
1017
    fat_node_t *nodep;
4419 trochtova 1018
    fat_bs_t *bs;
1019
    size_t bytes;
1020
    block_t *b;
1021
    uint16_t bps;
1022
    unsigned spc;
1023
    unsigned bpc;       /* bytes per cluster */
1024
    off_t boundary;
1025
    int flags = BLOCK_FLAGS_NONE;
1026
 
4420 trochtova 1027
    if (!fn) {
4419 trochtova 1028
        ipc_answer_0(rid, ENOENT);
1029
        return;
1030
    }
4420 trochtova 1031
    nodep = FAT_NODE(fn);
4419 trochtova 1032
 
1033
    ipc_callid_t callid;
1034
    size_t len;
1035
    if (!ipc_data_write_receive(&callid, &len)) {
4420 trochtova 1036
        fat_node_put(fn);
4419 trochtova 1037
        ipc_answer_0(callid, EINVAL);
1038
        ipc_answer_0(rid, EINVAL);
1039
        return;
1040
    }
1041
 
1042
    bs = block_bb_get(dev_handle);
1043
    bps = uint16_t_le2host(bs->bps);
1044
    spc = bs->spc;
1045
    bpc = bps * spc;
1046
 
1047
    /*
1048
     * In all scenarios, we will attempt to write out only one block worth
1049
     * of data at maximum. There might be some more efficient approaches,
1050
     * but this one greatly simplifies fat_write(). Note that we can afford
1051
     * to do this because the client must be ready to handle the return
1052
     * value signalizing a smaller number of bytes written.
1053
     */
1054
    bytes = min(len, bps - pos % bps);
1055
    if (bytes == bps)
1056
        flags |= BLOCK_FLAGS_NOREAD;
1057
 
1058
    boundary = ROUND_UP(nodep->size, bpc);
1059
    if (pos < boundary) {
1060
        /*
1061
         * This is the easier case - we are either overwriting already
1062
         * existing contents or writing behind the EOF, but still within
1063
         * the limits of the last cluster. The node size may grow to the
1064
         * next block size boundary.
1065
         */
1066
        fat_fill_gap(bs, nodep, FAT_CLST_RES0, pos);
1067
        b = fat_block_get(bs, nodep, pos / bps, flags);
1068
        (void) ipc_data_write_finalize(callid, b->data + pos % bps,
1069
            bytes);
1070
        b->dirty = true;        /* need to sync block */
1071
        block_put(b);
1072
        if (pos + bytes > nodep->size) {
1073
            nodep->size = pos + bytes;
1074
            nodep->dirty = true;    /* need to sync node */
1075
        }
1076
        ipc_answer_2(rid, EOK, bytes, nodep->size);
4420 trochtova 1077
        fat_node_put(fn);
4419 trochtova 1078
        return;
1079
    } else {
1080
        /*
1081
         * This is the more difficult case. We must allocate new
1082
         * clusters for the node and zero them out.
1083
         */
1084
        int status;
1085
        unsigned nclsts;
1086
        fat_cluster_t mcl, lcl;
1087
 
1088
        nclsts = (ROUND_UP(pos + bytes, bpc) - boundary) / bpc;
1089
        /* create an independent chain of nclsts clusters in all FATs */
1090
        status = fat_alloc_clusters(bs, dev_handle, nclsts, &mcl, &lcl);
1091
        if (status != EOK) {
1092
            /* could not allocate a chain of nclsts clusters */
4420 trochtova 1093
            fat_node_put(fn);
4419 trochtova 1094
            ipc_answer_0(callid, status);
1095
            ipc_answer_0(rid, status);
1096
            return;
1097
        }
1098
        /* zero fill any gaps */
1099
        fat_fill_gap(bs, nodep, mcl, pos);
1100
        b = _fat_block_get(bs, dev_handle, lcl, (pos / bps) % spc,
1101
            flags);
1102
        (void) ipc_data_write_finalize(callid, b->data + pos % bps,
1103
            bytes);
1104
        b->dirty = true;        /* need to sync block */
1105
        block_put(b);
1106
        /*
1107
         * Append the cluster chain starting in mcl to the end of the
1108
         * node's cluster chain.
1109
         */
1110
        fat_append_clusters(bs, nodep, mcl);
1111
        nodep->size = pos + bytes;
1112
        nodep->dirty = true;        /* need to sync node */
1113
        ipc_answer_2(rid, EOK, bytes, nodep->size);
4420 trochtova 1114
        fat_node_put(fn);
4419 trochtova 1115
        return;
1116
    }
1117
}
1118
 
1119
void fat_truncate(ipc_callid_t rid, ipc_call_t *request)
1120
{
1121
    dev_handle_t dev_handle = (dev_handle_t)IPC_GET_ARG1(*request);
1122
    fs_index_t index = (fs_index_t)IPC_GET_ARG2(*request);
1123
    size_t size = (off_t)IPC_GET_ARG3(*request);
4420 trochtova 1124
    fs_node_t *fn = fat_node_get(dev_handle, index);
1125
    fat_node_t *nodep;
4419 trochtova 1126
    fat_bs_t *bs;
1127
    uint16_t bps;
1128
    uint8_t spc;
1129
    unsigned bpc;   /* bytes per cluster */
1130
    int rc;
1131
 
4420 trochtova 1132
    if (!fn) {
4419 trochtova 1133
        ipc_answer_0(rid, ENOENT);
1134
        return;
1135
    }
4420 trochtova 1136
    nodep = FAT_NODE(fn);
4419 trochtova 1137
 
1138
    bs = block_bb_get(dev_handle);
1139
    bps = uint16_t_le2host(bs->bps);
1140
    spc = bs->spc;
1141
    bpc = bps * spc;
1142
 
1143
    if (nodep->size == size) {
1144
        rc = EOK;
1145
    } else if (nodep->size < size) {
1146
        /*
1147
         * The standard says we have the freedom to grow the node.
1148
         * For now, we simply return an error.
1149
         */
1150
        rc = EINVAL;
1151
    } else if (ROUND_UP(nodep->size, bpc) == ROUND_UP(size, bpc)) {
1152
        /*
1153
         * The node will be shrunk, but no clusters will be deallocated.
1154
         */
1155
        nodep->size = size;
1156
        nodep->dirty = true;        /* need to sync node */
1157
        rc = EOK;  
1158
    } else {
1159
        /*
1160
         * The node will be shrunk, clusters will be deallocated.
1161
         */
1162
        if (size == 0) {
1163
            fat_chop_clusters(bs, nodep, FAT_CLST_RES0);
1164
        } else {
1165
            fat_cluster_t lastc;
1166
            (void) fat_cluster_walk(bs, dev_handle, nodep->firstc,
1167
                &lastc, (size - 1) / bpc);
1168
            fat_chop_clusters(bs, nodep, lastc);
1169
        }
1170
        nodep->size = size;
1171
        nodep->dirty = true;        /* need to sync node */
1172
        rc = EOK;  
1173
    }
4420 trochtova 1174
    fat_node_put(fn);
4419 trochtova 1175
    ipc_answer_0(rid, rc);
1176
    return;
1177
}
1178
 
4537 trochtova 1179
void fat_close(ipc_callid_t rid, ipc_call_t *request)
1180
{
1181
    ipc_answer_0(rid, EOK);
1182
}
1183
 
4419 trochtova 1184
void fat_destroy(ipc_callid_t rid, ipc_call_t *request)
1185
{
1186
    dev_handle_t dev_handle = (dev_handle_t)IPC_GET_ARG1(*request);
1187
    fs_index_t index = (fs_index_t)IPC_GET_ARG2(*request);
1188
    int rc;
1189
 
4420 trochtova 1190
    fs_node_t *fn = fat_node_get(dev_handle, index);
1191
    if (!fn) {
4419 trochtova 1192
        ipc_answer_0(rid, ENOENT);
1193
        return;
1194
    }
1195
 
4420 trochtova 1196
    rc = fat_destroy_node(fn);
4419 trochtova 1197
    ipc_answer_0(rid, rc);
1198
}
1199
 
4537 trochtova 1200
void fat_open_node(ipc_callid_t rid, ipc_call_t *request)
1201
{
1202
    libfs_open_node(&fat_libfs_ops, fat_reg.fs_handle, rid, request);
1203
}
1204
 
4668 trochtova 1205
void fat_stat(ipc_callid_t rid, ipc_call_t *request)
4537 trochtova 1206
{
4668 trochtova 1207
    libfs_stat(&fat_libfs_ops, fat_reg.fs_handle, rid, request);
4537 trochtova 1208
}
1209
 
1210
void fat_sync(ipc_callid_t rid, ipc_call_t *request)
1211
{
1212
    /* Dummy implementation */
1213
    ipc_answer_0(rid, EOK);
1214
}
1215
 
4419 trochtova 1216
/**
1217
 * @}
4537 trochtova 1218
 */